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Preface

The Third International Workshop on Connectomics in NeuroImaging (CNI 2019)
was held in Shenzhen, China, on October 13, 2019, in conjunction with the 22nd
International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI).

Connectomics is the study of whole brain association maps, i.e., the connectome,
with a focus on understanding, quantifying, and visualizing brain network organization.
Connectomics research is of interest to the neuroscientific community largely because
of its potential to understand human cognition, its variation over development and
aging, and its alteration in disease or injury. As such, big data in connectomics are
rapidly growing with emerging international research initiatives collecting large,
high-quality brain images with structural, diffusion, and functional imaging modalities.
CNI aimed to propel research which leverages this increasing wealth of connectomic
data. It brought together computational researchers (computer scientists, data scientists,
computational neuroscientists) to discuss advancements in connectome construction,
analysis, visualization, and their use in clinical diagnosis and group comparison
studies. CNI 2019 was held as a single-track workshop that included two keynote
speakers (Yong He from the Beijing Normal University, Beijing, China, and Fan
Zhang, from Harvard Medical School, Boston, USA), oral paper presentations, and
poster sessions.

Large, open source datasets, such as the Human Connectome Project (HCP) and the
Autism Brain Imaging Data Exchange (ABIDE), have spurred the development of new
and increasingly powerful machine learning strategies in connectomics, for which
testing in a controlled setting is lacking. For the first time, CNI combined the workshop
with a Transfer Learning Challenge. We provided training and validation sets of
functional connectivity data of an attention deficit hyperactivity disorder (ADHD)
cohort with age-matched neurotypical controls. The test data was withheld before the
challenge to ensure comparability of the results. Therefore, CNI not only continued to
showcase the latest contributions in this area, but acknowledged the challenge of
validating new methodologies by providing a platform to address the open questions
of their generalizability and clinical relevance.

The quality of submissions to our workshop was very high. Authors were asked to
submit papers of 8–10 pages in length for review. A total of 14 papers were submitted
to the workshop in response to our call for papers. Each of the 14 papers underwent a
rigorous double-blind peer-review process, with each paper being reviewed by at least
two reviewers from the Program Committee, composed of 20 well-known experts in
the field of connectomics. Based on the reviewing scores and critiques, 13 papers were
accepted for presentation at the workshop, and chosen to be included in this
Springer LNCS volume. In order to allow the authors to address the reviews, the page
limit was further extended per submission. The large variety of connectomics



techniques applied in neuroimaging applications were well represented at the CNI 2019
workshop as demonstrated in Fig. 1.

We are grateful to the Steering and Program Committees for reviewing the sub-
mitted papers and giving constructive comments and critiques, to the authors for
submitting high-quality papers, to the presenters for excellent presentations, and to all
CNI 2019 attendees who came to Shenzhen from all around the world.

October 2019 Markus D. Schirmer
Archana Venkataraman

Islem Rekik
Minjeong Kim

Ai Wern Chung

Fig. 1. Word cloud based on the abstracts of accepted submissions.

vi Preface



Organization

General Chairs

Markus D. Schirmer Harvard Medical School, USA
Archana Venkataraman Johns Hopkins University, USA
Islem Rekik Istanbul Technical University, Turkey
Minjeong Kim University of North Carolina at Greensboro, USA
Ai Wern Chung Harvard Medical School, USA

Steering Committee

Brent Munsell University of North Carolina at Chapel Hill, USA
Guorong Wu University of North Carolina at Chapel Hill, USA
Peipeng Liang Capital Normal University, China

Program Committee

Gareth Ball Murdoch Children’s Research Institute, Australia
Dafnis Batalle King’s College London, UK
Brian Caffo Johns Hopkins University, USA
Sheng He Boston Children’s Hospital, USA
Yoonmi Hong University of North Carolina at Chapel Hill, USA
Kiho Im Boston Children’s Hospital, USA
Jaeil Kim Kyungpook National University, South Korea
Peipeng Liang Capital Normal University, China
Brent Munsell University of North Carolina at Chapel Hill, USA
Mary Beth Nebel Kennedy Krieger Institute, USA
Jonathan O’Muircheartaigh King’s College London, UK
Yangming Ou Boston Children’s Hospital, USA
Sanghyun Park DGIST, South Korea
Mayssa Soussia École Nationale d’Ingénieurs de Tunis, Tunisia
Heung-Il Suk Korea University, South Korea
Matthew Toews École de technologie supérieure, France
Guorong Wu University of North Carolina, USA
Han Zhang University of North Carolina at Chapel Hill, USA
Yu Zhang Stanford University, USA
Lilla Zöllei Massachusetts General Hospital, USA



Contents

Unsupervised Feature Selection via Adaptive Embedding and Sparse
Learning for Parkinson’s Disease Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . 1

Zhongwei Huang, Haijun Lei, Guoliang Chen, Shiqi Li, Hancong Li,
Ahmed Elazab, and Baiying Lei

A Novel Graph Neural Network to Localize Eloquent Cortex in Brain
Tumor Patients from Resting-State fMRI Connectivity. . . . . . . . . . . . . . . . . 10

Naresh Nandakumar, Komal Manzoor, Jay J. Pillai, Sachin K. Gujar,
Haris I. Sair, and Archana Venkataraman

Graph Morphology-Based Genetic Algorithm for Classifying Late
Dementia States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Oumaima Ben Khelifa and Islem Rekik

Covariance Shrinkage for Dynamic Functional Connectivity . . . . . . . . . . . . . 32
Nicolas Honnorat, Ehsan Adeli, Qingyu Zhao, Adolf Pfefferbaum,
Edith V. Sullivan, and Kilian Pohl

Rapid Acceleration of the Permutation Test via Transpositions . . . . . . . . . . . 42
Moo K. Chung, Linhui Xie, Shih-Gu Huang, Yixian Wang, Jingwen Yan,
and Li Shen

Heat Kernels with Functional Connectomes Reveal Atypical Energy
Transport in Peripheral Subnetworks in Autism. . . . . . . . . . . . . . . . . . . . . . 54

Markus D. Schirmer and Ai Wern Chung

A Mass Multivariate Edge-wise Approach for Combining Multiple
Connectomes to Improve the Detection of Group Differences . . . . . . . . . . . . 64

Javid Dadashkarimi, Siyuan Gao, Erin Yeagle, Stephanie Noble,
and Dustin Scheinost

Adversarial Connectome Embedding for Mild Cognitive Impairment
Identification Using Cortical Morphological Networks . . . . . . . . . . . . . . . . . 74

Alin Banka and Islem Rekik

A Machine Learning Framework for Accurate Functional Connectome
Fingerprinting and an Application of a Siamese Network . . . . . . . . . . . . . . . 83

Ali Shojaee, Kendrick Li, and Gowtham Atluri

Test-Retest Reliability of Functional Networks for Evaluation
of Data-Driven Parcellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Jianfeng Zeng, Anh The Dang, and Gowtham Atluri



Constraining Disease Progression Models Using Subject Specific
Connectivity Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Anvar Kurmukov, Yuji Zhao, Ayagoz Mussabaeva, and Boris Gutman

Hemodynamic Matrix Factorization for Functional Magnetic
Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Michael Hütel, Michela Antonelli, Jinendra Ekanayake,
Sebastien Ourselin, and Andrew Melbourne

Network Dependency Index Stratified Subnetwork Analysis of Functional
Connectomes: An Application to Autism . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Ai Wern Chung and Markus D. Schirmer

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

x Contents



Unsupervised Feature Selection
via Adaptive Embedding and Sparse
Learning for Parkinson’s Disease

Diagnosis

Zhongwei Huang1, Haijun Lei1, Guoliang Chen1, Shiqi Li1, Hancong Li1,
Ahmed Elazab2, and Baiying Lei2(B)

1 Key Laboratory of Service Computing and Applications, Guangdong Province Key
Laboratory of Popular High Performance Computers, College of Computer Science

and Software Engineering, Shenzhen University, Shenzhen 518060, China
2 National-Regional Key Technology Engineering Laboratory for Medical

Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and
Ultrasound Imaging, School of Biomedical Engineering, Health Science Center,

Shenzhen University, Shenzhen 518060, China
leiby@szu.edu.cn

Abstract. Parkinson’s disease (PD) is known as a progressive neurode-
generative disease in elderly people. Apart from decelerating the dis-
ease exacerbation, early and accurate diagnosis also alleviates mental
and physical sufferings and provides timely and appropriate medication.
In this paper, we propose an unsupervised feature selection method via
adaptive manifold embedding and sparse learning exploiting longitudinal
multimodal neuroimaging data for classification and regression predic-
tion. Specifically, the proposed method simultaneously carries out feature
selection and dynamic local structure learning to obtain the structural
information inherent in the neuroimaging data. We conduct extensive
experiments on the publicly available Parkinson’s progression markers
initiative (PPMI) dataset to validate the proposed method. Our pro-
posed method outperforms other state-of-the-art methods in terms of
classification and regression prediction performance.

Keywords: Parkinson’s disease · Unsupervised feature selection ·
Adaptive manifold embedding · Classification · Regression prediction

1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder in the
elderly people. The symptoms of PD progressively occur and continue to be
worsen, thus middle or late patients usually have enduring mental and physical
torment and even life threatening conditions. PD mainly has four symptoms:
muscle rigidity, bradykinesia, rest tremor, and postural instability. Apart from

c© Springer Nature Switzerland AG 2019
M. D. Schirmer et al. (Eds.): CNI 2019, LNCS 11848, pp. 1–9, 2019.
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these external symptoms, there are also accompanying symptoms such as depres-
sion, sleep, olfaction, and cognition disturbances [4]. These symptoms appear
primarily due to the degeneration of dopaminergic neurons in the substantiani-
gra [7]. In the meantime, no dopaminergic deficiency was observed in some PD
sufferers, namely, scans without evidence of dopamine deficit (SWEDD). This
also raises the difficulty of PD diagnosis. Hence accurate PD diagnosis is essen-
tial, which can decelerate the disease exacerbation further and abate the physical
and mental sufferings of patients.

Since multimodal data can supply complementary information for computer-
aided PD diagnosis, multimodal data has attracted much attention and increas-
ingly played a vital role in this area of work [12]. However, the limited number
of subjects and multi-modal neuroimaging data usually has high feature dimen-
sionality, which may cause overfitting issue and render the generalization model
quite difficult. Although deep learning has been widely used in medical image
analysis and achieved good performance, it is hard to build a good and robust
model using a small number of subjects [6]. To overcome this weakness, feature
selection is an impactful way using either supervised or unsupervised method
by discovering disease-related characteristics [9]. Most supervised methods are
based on single-task [13] or multi-task models [5]. The latter generally has better
performance. However, there are two problems with multi-task methods. On the
one hand, these methods forces to build a linear relationship of data to multi-task
targets but they lose sight of the learning of the structural information inherent
in data. On the other hand, these supervised methods need to provide addi-
tional labels and scores information. By contrast, unsupervised feature selection
methods emphasize more on learning the structural information inherent in data.
Most of them are based on filter methods [2], or embedded methods [10]. The lat-
ter generally has better performance and thus receives wide-ranging attention.
However, there are two problems with embedding methods. First, they con-
duct local structure learning and sparse regression, respectively. Second, when
learning local manifold structure, the similarity matrix obtained by the con-
ventional embedding methods usually does not have a suitable neighborhood
assignment. In other words, the connected components of the ideal similarity
matrix should be the same as the number of classification. In the meantime,
most existing studies mainly exploited baseline data to perform classification or
clinical scores prediction. The longitudinal data (with multi-time points) is often
ignored. However, due to the irreversible and sustained deterioration of the dis-
ease, it is important to build a good and robust diagnostic model for longitudinal
data.

Inspired by the above, we propose an unsupervised feature selection method
via adaptive manifold embedding and sparse learning based on longitudinal mul-
timodal data. Overall, we show the main contributions of this study as follows:

1. We propose an unsupervised method that jointly carries out feature selection
and dynamic local structure learning to obtain discriminative features.

2. We make the connected numbers of the similarity matrix equal to the number
of classifications to obtain the inherent structural information of the data.
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3. We conduct extensive experiments to validate the effectiveness of our method
on PPMI dataset. Particularly, we exploit longitudinal data to increase the
class label identification performance and achieve high accuracy compared
with the state-of-art methods.

2 Methodology

2.1 System Overview

The whole procedures for classification and clinical scores prediction are shown
in Fig. 1. First, we respectively extract 116-dimensional features from gray mat-
ter (GM) from magnetic resonance imaging (MRI), first eigenvalue (L1) and first
eigenvector (V1) from diffusive tensor imaging (DTI). Then, we linearly combine
these features and perform feature selection via adaptive manifold embedding
and sparse learning. Finally, we exploit support vector machine to train a clas-
sification model and four regression models in baseline multimodal data. Specif-
ically, we propose a new objective function to select discriminative features in
baseline multimodal data and then build a classification model for classification
in the baseline, 12 months, and 24 months data, respectively. Also, we build four
regression models for predicting the clinical scores in baseline multimodal data.

Fig. 1. The frame of the proposed method via adaptive manifold embedding and sparse
learning.

2.2 Notation

In this paper, we use uppercase bold letters (e.g., A) as matrices and lowercase
bold characters (e.g., a) as vectors. For a matrix A = [akj ], ak denotes the k-
th row of A and tr(A) denotes the trade. AT denotes the transpose of A. We
denote l2,p norm of A as ||A||2,p = (

∑
k ||A||p2)

1
p .
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2.3 Proposed Method

Let A ∈ Rn×d and S ∈ Rn×n represent the original high-dimensional data and
the similarity matrix of n subjects and d features, respectively, where ak denote
k-th sample of A, skj is a value of S. Generally, we calculate S by the following
function:

min
∑

k,j

(||ak − aj ||22skj + μs2kj), s.t.sk1 = 1, 0 ≤ skj ≤ 1, (1)

where μ is a regularization parameter to avoid useless solutions. The similar-
ity matrix obtained by Eq. 1 usually does not have a suitable neighborhood
assignment. In other words, the connected components of the ideal similarity
matrix should be the same as the number of classification (e.g., r). However, it
is almost impossible to achieve the above requirement using Eq. 1. To solve the
problem, we can make the rank of Laplacian matrix L of S equal to n−r, namely,
rank(L) = n − r. By this way, the similarity matrix will contain r connected
components [8]. We add this constraint to Eq. 1 and then we have:

min
∑

k,j

(||ak − aj ||22skj + μs2kj), s.t.sk1 = 1, 0 ≤ skj ≤ 1, rank(L) = n − r,

(2)
where L = D − ST+S

2 , D is a diagonal matrix whose k-th diagonal value is
∑

j
skj+sjk

2 . Since rank(L) = n− r also depends on the similarity matrix S, it is
hard to optimize Eq. 2. To solve it, let Ψk(L) denote the k-th smallest eigenvalue
of L. Owing to positive semi-definiteness of L, we easily get Ψk(L) ≥ 0. In the
meantime, it can be easily known that rank(L) = n−r denotes

∑r
k=1 Ψk(L) = 0.

Because the derivation of
∑r

k=1 Ψk(L) is difficult to solve, we use Ky Fan’s
Theorem [1] to obtain:

r∑

k=1

Ψk(L) = min Tr(QTLQ), s.t. Q ∈ Rn×r,QTQ = I. (3)

Further, we can rewrite Eq. 2 as follows:

min
∑

k,j

(||ak − aj ||22skj + μs2kj) + σtr(QTLQ),

s.t. sk1 = 1, 0 ≤ skj ≤ 1,Q ∈ Rn×r,QTQ = I,
(4)

where σ is a parameter which can be automatically adjusted in each iteration to
make the connected component of S equal to r. In Eq. 4, the similarity matrix
S is computed with the original high-dimensional feature space. However, multi-
modal data often has many noisy and redundant features. To solve this problem
and gain the sparse solution of the original feature, we jointly perform feature
selection and adaptive manifold learning as follows:
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min
∑

k,j

(||ak − aj ||22skj + μs2kj) + σtr(QTLQ) + λ||W||p2,p,
s.t. sk1 = 1, 0 ≤ skj ≤ 1,Q ∈ Rn×r,QTQ = I,WTW = I,

(5)

where W ∈ Rd×c represents the weight coefficient of features, d and c are the
original dimension and projection dimension, respectively. λ denotes weighting
parameter, and the larger its value, the fewer features are selected. Meanwhile, we
exploit multiple regularizers, namely, l2,p norm, to conduct adaptive sparse con-
trol for obtaining the most discriminative features according to different cases.
Since the high-dimensional data easily makes the covariance matrix of A become
singular, we introduce the constraint WTW = I to obtain discriminative fea-
tures. Finally, Fig. 2 presents the algorithm to solve Eq. 5 and its convergence.
Due to the space finite, the derivation of this algorithm will be provided in its
extended journal paper.

Fig. 2. The algorithm to solve Eq. 5 and its convergence.

3 Experiments

In this study, we use PPMI dataset for performance evaluation. We collected
baseline data obtained from 238 samples including 62 normal control (NC),
142 PD, and 34 SWEDD samples. We also collected 12 months data obtained
from 186 including 54 NC, 123 PD, and 9 SWEDD samples and collected 24
months data obtained from 127 samples including 7 NC, 98 PD, and 22 SWEDD
samples. Meanwhile, we used Geriatric Depression Scale, Epworth Sleepiness
Scale, University of Pennsylvania Smell Identification Test, and Montreal Cog-
nitive Assessment (MoCA) to evaluate depression, sleep, olfaction, and cognition
scores, respectively.

3.1 Image Preprocessing

For MRI data preprocessing, we first conduct anterior commissure-posterior com-
missure (AC-PC) reorientation and then exploit the voxel-based morphometric
tool [11] to segment MRI images for obtaining GM tissue. Further, we reg-
ister the GM with the automated anatomical labeling (AAL) atlas to obtain
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116-dimensional features. For DTI data preprocessing, we use the FMRIB soft-
ware library toolbox [3] to correct eddy current distortion and further compute
L1 and V1 data. Finally, we conduct AC-PC reorientation on L1 and V1 data
and then use AAL atlas to obtain 116-dimensional features from L1 and V1
data, respectively.

3.2 Experimental Setting

In the paper, on the whole pipeline, we use a 10-fold cross-validation method to
verify the effectiveness of our method in baseline data. Specifically, we perform
two classification tasks (i.e., NC vs. PD and NC vs. SWEDD) and four scores
prediction (i.e., depression, sleep, olfaction, cognition scores) in baseline data. To
verify the robustness and accuracy of the proposed method on longitudinal time,
we also use 12 months and 24 months data as test dataset to validate classifica-
tion performance. We use quantitative measurements to evaluate classification
performance, namely, accuracy (ACC), sensitivity (SEN), precision (PREC), and
area under the receiver operating characteristic (ROC) curve (AUC). To esti-
mate regression performance, we compute the Pearson’s correlation coefficient
(CC) and root mean squared error (RMSE) between the predicted and actual
clinical scores.

We also compare the proposed method with state-of-the-art methods includ-
ing: (1) The Laplacian score (Lscore) method for unsupervised feature selec-
tion [2]; (2) The robust spectral feature selection (RSFS) method simultane-
ously using flexible manifold embedding and l1 norm for robust unsupervised
feature selection [10]; (3) The multimodal multi-task (M3T) method exploiting
l2,1 norm to gain a common feature subset of multi-task for supervised feature
selection [12]; (4) The multimodal sparse learning (MMSL) method consider-
ing the relations among rows and columns in response matrices for supervised
feature selection [5].

3.3 Classification Performance

Table 1 presents the classification performances in longitudinal multimodal data.
We can see that the proposed method has the best classification performance.
Meanwhile, in the longitudinal direction, our method achieves the most robust
performance, such as the accuracies of 81.45%, 80.23%, and 97.14% in NC vs.
PD and the accuracies of 89.56%, 95.24%, and 82.76% in NC vs. SEDDD, respec-
tively.

Traditionally, unsupervised methods are more difficult than the supervised
one for the absence of label information. However, our method exhibits better
classification performance than M3T and MMSL methods. For example, the
proposed method has higher accuracies than the MMSL method in baseline
data, such as 81.45% vs. 81.33% for NC and PD and 89.56% vs. 87.44% for
NC and SWEDD. The reason is that our method can effectively capture the
structural information inherent in data. In addition, Fig. 3 also shows the ROC
curves for different methods, which further presents the good performance of
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Table 1. Classification performances for longitudinal data in all methods.

Time Method NC vs. PD NC vs. SWEDD

ACC SEN PREC AUC ACC SEN PREC AUC

0 min Lscore 79.45 63.57 70.60 74.36 83.67 98.33 81.41 75.32

RSFS 79.43 66.67 69.94 74.41 85.56 100.00 82.79 74.70

M3T 78.90 62.62 68.88 72.62 82.44 96.67 80.98 68.83

MMSL 81.33 64.52 76.06 75.28 87.44 100.00 85.24 76.71

Proposed 81.45 64.76 76.90 73.59 89.56 98.33 87.62 81.85

12 min Lscore 80.23 62.96 69.39 77.36 90.48 100.00 90.00 84.16

RSFS 81.92 68.52 71.15 80.13 92.06 96.30 94.55 85.80

M3T 80.23 64.81 68.63 79.01 90.48 96.30 92.86 81.07

MMSL 81.36 64.81 71.43 78.65 92.06 96.30 94.55 84.36

Proposed 80.23 81.48 63.77 81.21 95.24 100.00 94.74 87.24

24 min Lscore 96.19 57.14 80.00 79.15 58.62 85.71 35.29 74.03

RSFS 97.14 71.43 83.33 80.03 72.41 100.00 46.67 92.86

M3T 93.33 71.43 50.00 88.19 65.52 100.00 41.18 92.86

MMSL 96.19 71.43 71.43 93.15 72.41 100.00 46.67 88.31

Proposed 97.14 71.43 83.33 88.05 82.76 100.00 58.33 89.61

Fig. 3. ROC curves for the longitudinal multimodal data in all methods.

our method. Finally, Fig. 4 shows top brain regions that contribute most to
the learned common structure and their connection network, which can help
researchers to further study in the future.
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Fig. 4. Top brain regions that contribute most to the learned common structure and
their connection network.

3.4 Regression Performance

We use CC and RMSE to estimate the regression performance in baseline data. In
NC vs. PD, the MMSL achieves the best performance for predicting depression
and sleep scores. The best performance using CC and RMSE is 0.5699 and
4.4037 in depression score, and 0.5694 and 5.7426 in sleep score. Our method
has best performance in the prediction of olfaction and cognition scores. The
best performance is 0.5526 (CC) and 8.3057 (RMSE) in olfaction score, and
0.6046 (CC) and 4.5603 (RMSE) in cognition score. In NC vs. SWEDD, our
method achieves the best performance for predicting depression, sleep, olfaction,
and cognition scores. The best performance using CC and RMSE is 0.7727 and
3.1047, 0.7583 and 4.3512, 0.7932 and 5.2154, and 0.7998 and 2.8487 in the four
scores, respectively. Figure 5 also shows regression performance of the competing
methods. We can see that our method has the best performance overall.

Fig. 5. Regression performance of the competing methods in baseline data.
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4 Conclusion

In this paper, an unsupervised feature selection method is proposed to simul-
taneously carry out adaptive sparse learning by exploiting l2,p norm and local
structure learning to select discriminative features. Extensive experiments were
performed to validate the effectiveness of the proposed method on PPMI
dataset. The longitudinal experimental results demonstrated that our method
can strengthen the performance in class label identification and outperforms the
state-of-art methods as well. Meanwhile, our unsupervised method is superior
to other unsupervised methods in clinical scores prediction and has the best
regression performance.

Acknowledgments. This work was supported partly by the Integration Project
of Production Teaching and Research by Guangdong Province and Ministry of
Education (No. 2012B091100495), Shenzhen Key Basic Research Project (No.
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Abstract. We develop a novel method to localize the language and
motor areas of the eloquent cortex in brain tumor patients based on
resting-state fMRI (rs-fMRI) connectivity. Our method leverages the
representation power of convolutional neural networks through special-
ized filters that act topologically on the rs-fMRI connectivity data. This
Graph Neural Network (GNN) classifies each parcel in the brain into
eloquent cortex, tumor, or background gray matter, thus accommodat-
ing varying tumor characteristics across patients. Our loss function also
reflects the large class-imbalance present in our data. We evaluate our
GNN on rs-fMRI data from 60 brain tumor patients with different tumor
sizes and locations. We use motor and language task fMRI for valida-
tion. Our model achieves better localization than linear SVM, random
forest, and a multilayer perceptron architecture. Our GNN is able to cor-
rectly identify bilateral language areas in the brain even when trained
on patients whose language network is lateralized to the left hemisphere.

Keywords: Rs-fMRI · Graph Neural Network · Language localization

1 Introduction

The eloquent cortex consists of sensorimotor and language areas in the brain
that are essential for human functioning. Given its importance, localizing and
subsequently avoiding the eloquent cortex is a crucial step when planning a neu-
rosurgery. However, this localization is challenging due to the varying anatomical
boundaries of these networks and the effects of the tumor. For example, it has
been shown that motor and language functionality in brain tumor patients can
be displaced due to neural plasticity [1]. The gold standard for eloquent mapping
is intraoperative electrical stimulation, which is highly invasive and requires the
c© Springer Nature Switzerland AG 2019
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patient to be awake during surgery. The noninvasive alternative is task-fMRI.
However, severely impaired patients, such as those with advanced brain tumors,
may not be able to perform these tasks, thus reducing the reliability of the
fMRI activation maps. Resting-state fMRI (rs-fMRI) captures spontaneous fluc-
tuations in the brain, which can be used to identify functional systems in the
absence of an experimental paradigm. Hence, rs-fMRI may provide an alternative
for motor and language localization in critically ill patients [2].

Automatically identifying the eloquent cortex in brain tumor patients is
a challenging problem with limited success in the literature. The work of [3]
addresses the problem of shifting anatomical boundaries by matching functional
brain regions across individuals via a diffusion map representation of task-fMRI.
However, this method has yet to generalize to rs-fMRI. With regards to rs-fMRI,
the work of [4] describes a method to obtain subject-specific functional parcel-
lations of brain tumor patients using a Markov Random Field prior. However,
this method is validated on a coarse functional parcellation which is unsuitible
for presurgical mapping. The work of [5] describes a method to compute lan-
guage laterality from rs-fMRI by comparing connectivity between fixed areas of
expected language activation. However, this study stopped short of localization,
which is the main clinical need. The authors of [2] propose a semi-automated
method to determine the language network from group ICA maps of rs-fMRI
data. However, this method relies on manual thresholding for each patient.
Finally, the work of [6] describes a multi-layer perceptron to classify resting-
state networks at the voxel level based on seed correlation maps, which was then
extended to identify the language network in three separate tumor cases [7].
However, this method is computationally expensive, requires a large amount of
training data, and has only been evaluated on a limited dataset.

In this paper, we propose the first end-to-end model that uses convolutional
neural networks (CNNs) to identify eloquent cortex in brain tumor patients.
Our problem loosely resembles image segmentation, for which deep learning
approaches using CNNs have made great strides [8]. However, rs-fMRI captures
correlated patterns of activity rather than local similarities, which cannot be
represented by a traditional spatial convolution. Therefore, deep learning for rs-
fMRI has focused almost exclusively on perceptron architectures [6] and patient
wise classification [9], rather than network analysis. Our approach blends the
ideas of image segmentation and functional network extraction. Namely, we con-
struct a similarity graph from rs-fMRI data that summarizes functional connec-
tivity between ROIs. These graphs are then input to a novel graph neural network
(GNN) which leverages convolutional filters designed to act topologically upon
similarity matrices [10]. The output of our GNN is a vector that classifies each
node in the graph as either eloquent cortex, tumor, or background gray matter.
We train and evaluate four separate GNN’s to perform either language or motor
classification. The motor classes are divided into three regions of the motor strip
corresponding to finger, tongue, or foot movements. Our loss function reflects
the large class-imbalance in our data, as eloquent cortex and tumor represent a
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Fig. 1. The overall workflow of our model. Left: Graph construction encodes fMRI and
tumor information. Middle: Our GNN architecture employs E2E, E2N, and FC layers
for feature extraction. Right: We perform a node (parcel) identification task.

small fraction of the brain. Our model outperforms three baseline approaches in
eloquent cortex detection, overall accuracy, and AUC.

2 A Graph Neural Network for Node Identification

The underlying assumption of our framework is that, while the anatomical
boundaries of the eloquent cortex, particularly the language network, may shift,
its connectivity with the rest of the brain will remain consistent [2]. We construct
a weighted graph from the rs-fMRI data. We use a deep learning framework to
capture complex interactions in the connectivity data. Our GNN node classi-
fier extracts salient edge-node relationships and node features within the graph
using a combination of specialized convolutional filters and fully-connected (FC)
layers. An important distinction in our problem is the presence of large anatom-
ical lesions, i.e, the brain tumors. Since the tumors often encroach into the gray
matter, we introduce “missing” full rows and columns into our graph. These
missing rows and columns are the most salient features of the data, therfore we
introduce two baseline class labels, “tumor” and “background gray matter” to
avoid biasing the algorithm. Figure 1 outlines our overall pipeline from graph
construction to node classification.

Graph Construction. Let N be the number of brain regions in our parcellation
and T be the number of time points for a rs-fMRI scan. We define xi ∈ R

T×1 as
the average time series extracted from parcel i. We construct graph W ∈ R

N×N

Wi,j = exp
[ 〈xi,xj〉

ε
− 1

]
(1)

where 〈·, ·〉 represents the Pearson’s correlation coefficient between time courses
and ε ≥ 1 controls decay speed. By construction, rows and columns of W that
correspond to tumor are “missing” and computationally set to zero to indicate
that they are not functionally similar to any other region in the brain. Our choice
of ε ≥ 1 along with the form of Eq. (1) asserts that Wi,j > 0 for all non-tumor
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regions. Therefore, even two healthy parcels with a strong negative correlation
will still be more functionally similar than tumor regions in our model. Our
framework assumes that tumor boundaries have been delineated for each patient.

Neural Network Architecture. Our GNN architecture employs both convolu-
tional and FC layers to process node information. While traditional convolutional
layers assume a grid-like organization to extract spatially local features, our
GNN uses one edge-to-egde (E2E) and one edge-to-node (E2N) layer developed
in [10], which act topologically on similarity graph data. These convolutional
filters span full rows and columns of the graph and were originally designed to
perform regression from diffusion MRI connectivity. Mathematically, an E2E fil-
ter is composed one row filter, one column filter, and a learned bias, which totals
2N + 1 parameters. Let m ∈ {1, · · · ,M} be the E2E filter index, rm ∈ R

1×N

be the m-th row filter, cm ∈ R
N×1 be the m-th column filter and b ∈ R

M×1

be the E2E bias. The feature map Am ∈ R
N×N output from E2E filter m and

activation function φ is computed as

Am
i,j = φ

( N∑
n=1

rmn Wi,n + cmn Wn,j + bm

)
(2)

Intuitively, an E2E filter for node pair (i, j) computes a weighted sum of edge
strengths over all edges connected to either node i or j. Even with symmetric
input W, E2E filters and corresponding feature maps are not necessarily sym-
metric. This asymmetry is desirable, as functional systems in the brain tend to
be lateralized. We use the E2E layer to encode multiple different views (maps)
of the edge-to-egde similarities within our connectome data.

The E2N layer condenses our representation from size N × N × M after
the E2E layer to N × M , analogous to M features for each node. The E2N
filter is simply a 1D convolution along the columns of each feature map. Let
gm ∈ R

N×1 be the m-th E2N filter and d ∈ R
M×1 be the E2N bias. The E2N

output am ∈ R
N×1 from input Am is computed as

ami = φ
( N∑

n=1

gm
n Am

n,i + dm

)
. (3)

Mathematically, the E2N filter computes a single value for each node i by taking
a weighted combination of edges associated with it. Our motivation for using this
layer is to collapse our representation along the second dimension to obtain M
features for each node. This step is similar in nature to extracting graph theoretic
features, such as node centrality. In particular, we have a representation that
encodes the relationship each node has to its connectivity matrix [11].

Our node identification network uses a cascade of three FC layers of sizes
M ×H1, H1×H2 and H2×3 respectively. We apply activation functions between
each layer. The FC layers find nonlinear combinations of the features to best
discriminate class membership for each brain parcel. Overall, our network takes
N × N input and outputs an N × 3 matrix for classification. Notice that the
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first input dimension N is maintained throughout our whole network and is
not transformed. Therefore, our network maintains node structure to ultimately
discriminate class membership for all nodes within one connectome at a time.
As shown in Fig. 1, one design choice we make is to set H2 > H1. Empircally,
this relationship robustly captures the structure of our class membership.

Weighted Loss Function. Naturally, there exists a large class imbalance in
our setup, as the majority of nodes considered will be background gray matter.
We cannot rely on traditional data augmentation techniques to mitigate this
imbalance, as our model operates on whole-brain connectivity. To accomodate
for the class imbalance, we train our model with a modified version of the Risk-
sensitive cross-entropy (RSCE) loss function [12], which is designed to handle
membership imbalance in multi-class classification. Let ŷn

c be the output prob-
ability of our network for assigning node n to class c and yn

c be 1 when node n
belongs to class c and 0 otherwise. The loss function per patient is

L(yn
c , ŷn

c ) = − 1
N

N∑
n=1

C∑
c=1

δc · yn
c log (ŷn

c ) (4)

where δc is the risk factor associated with class c. If δc is small, then we pay a
smaller penalty for misclassifying samples that belong to class c. Our strategy is
to penalize misclassifying eloquent nodes (false negatives) larger than misclassi-
fying background (false positives) to encourage our model to learn the language
and motor distributions given a small number of language training samples.

Neural Network Implementation Details. We implement our network in
PyTorch using the SGD optimizer with weight decay = 5 × 10−5 for parameter
stability, and momentum = 0.9 to improve convergence. For our model, ε = 1 and
layer dimensions are M = 8, H1 = 9, H2 = 27 and C = 3. We train our model
with learning rate .005 and 80 epochs, which provides for reliable performance
without overfitting. The LeakyReLU(x) = max(0, x) + 0.33·min(0, x) activation
function is applied at each hidden layer. Empirically, this activation function is
robust to a range of initializations. A softmax activation is applied at the final
layer for classification. After cross-validation, we set δ = (1.3, .3, .15) for the
eloquent cortex, tumor, and background gray matter classes respectively. With
GPU, total training time is within 3–5 min.

2.1 Baseline Comparisons

We evaluate the performance of our GNN against 3 baseline methods. The
first baseline is a linear SVM based on graph theoretic measures: node degree,
betweenness, closeness, and eigenvector centrality [11]. The second baseline is a
random forest (RF) on the stacked rs-fMRI similarity features of each node. We
omit tumor class and nodes for SVM and RF as the algorithms do not exploit
the spatial consistency of the similarity matrix. The last baseline is a multi-
layer perceptron (MLP) to observe how adding specialized E2E and E2N layers
changes performance for this task. The MLP maintains the same input-output
relationship, total parameter number, activations, and loss function as the GNN.



A Novel Graph Neural Network to Localize Eloquent Cortex 15

3 Experimental Results

Dataset and Preprocessing: We evaluate the GNN on rs-fMRI data from
60 patients who underwent preoperative mapping as part of their presurgical
workup. The data was acquired using a 3.0 T Siemens Trio Tim (TR = 2000
ms, TE = 30 ms, FOV = 24 cm, res = 3.59 × 3.59 × 5 mm). The fMRI was
processed using SPM8. The steps include slice timing correction, motion cor-
rection and registration to the MNI-152 template. The rs-fMRI was bandpass
filtered from 0.01 to 0.1 Hz, spatially smoothed with a 6 mm FWHM Gaussian
kernel, scrubbed using the ArtRepair toolbox in SPM, linearly detrended, and
underwent nuisance regression using CompCor.

Fig. 2. Left: One left-hemisphere language network (red) subject. Right: One bilateral
language network subject. (Color figure online)

Our dataset includes three different motor paradigms that were designed
to target distinct parts of the motor homonculus [13]: finger tapping, tongue
moving, and foot tapping. Since the task-fMRI data was acquired for clinical
purposes, only 38 patients performed the finger task, 41 patients performed the
tongue task, and 18 patients performed the foot task. Our ground truth language
annotations are derived from task-fMRI activations of the same 60 patients dur-
ing two language paradigms: sentence completion (SC) and silent word gener-
ation (SWG). Our dataset includes 55 patients with left-hemisphere language
networks and 5 patients with bilateral networks. The fMRI underwent slice tim-
ing correction, motion correction and registration to the MNI-152 template. The
General Linear Model (GLM) implemented in SPM8 was used to derive task-
fMRI activation maps. The task activation maps were confirmed by an expert
neuroradiologist as consistent with the information provided during presurgical
planning. The tumor boundaries for each patient were manually delineated by a
medical fellow using the MIPAV software. Figure 2 shows language areas (red)
for two separate subjects to illustrate the heterogeniety of our cohort.

Implementation Details and Evaluation Criteria: We parcellate our rs-
fMRI data using the Craddocks atlas [14] with the cerebellar regions removed
due to inconsistent acquisition (N = 384). Due to different patients performing
different tasks, we train and test four separate GNNs, one for language identifi-
cation and the rest for each motor task. We assign a parcel to the eloquent cortex
if a majority of its voxels coincided with the ground truth task activations. We
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employ a ten-fold cross validation for the language experiment, and a five-fold
cross validation for the motor experiments, as we observed the motor GNNs
overfit more easily. For language, we stratify our folds by ensuring at most one
bilateral language subject is in each fold. We report eloquent class accuracy as
well as overall accuracy for each method that reflect a viable trade-off between
true positive rate (TPR) and true negative rate (TNR). We compute and report
area under the curve (AUC) by varying hyperparameter settings to approximate
ROC. We consider eloquent vs. not eloquent for each ROC statistic reported. We
maintain the same hyperparameter values across each of the four experiments.
Tumor class accuracy is not reported, as both the MLP and GNN achieved near
perfect (≈.995) accuracy due to the assumptions of our setup.

Table 1. Node identification statistics for motor tasks.

Task Method Motor Overall Sensitivity Specificity AUC

Foot Linear SVM 0.48 0.52 0.46 0.49 0.52

RF 0.36 0.77 0.34 0.86 0.59

MLP 0.73 0.76 0.63 0.75 0.74

GNN 0.84 0.81 0.78 0.79 0.81

Tongue Linear SVM 0.58 0.59 0.57 0.55 0.56

RF 0.42 0.77 0.34 0.92 0.65

MLP 0.75 0.78 0.68 0.77 0.75

GNN 0.87 0.84 0.82 0.80 0.83

Finger Linear SVM 0.60 0.62 0.56 0.58 0.57

RF 0.49 0.80 0.43 0.92 0.69

MLP 0.82 0.76 0.78 0.73 0.80

GNN 0.88 0.87 0.84 0.83 0.86

3.1 Motor Class Identification

The motor identification results are reported in Table 1. As seen, our GNN over-
all outperforms all baselines in nearly all metrics. This notable performance is
especially highlighted in the AUC column, as our method has the best trade-
off between TPR and FPR. Our results suggest that approaching this problem
with a deep learning framework is favorable, as both neural networks outper-
form the traditional machine learning baselines. Furthermore, we show a marked
increase in performance employing the specialized convolutional filters. This sug-
gests that our network learns a more discriminative representation of eloquent
cortex at rest than the MLP. Due to different patient subcohorts performing
different tasks, we train and test on each motor task separately. Figure 3 shows
a coronal view of ground truth (red) and predicted (blue) motor regions for the
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foot (left) and tongue (right) tasks in one patient. As seen, our network is able
to pinpoint both the midline and the peripheral areas of the motor strip. Our
performance suggests that our method is able to localize specific parts of the
motor homonculus, which is important in a preoperative setting.

Table 2. Node identification statistics for language class (N = 60).

Method Language Overall Sensitivity Specificity AUC

Linear SVM 0.56 0.52 0.55 0.49 0.53

RF 0.37 0.77 0.33 0.89 0.63

MLP 0.66 0.73 0.61 0.76 0.70

GNN 0.74 0.86 0.70 0.77 0.76

Fig. 3. Ground truth (red) and predicted (blue) motor regions for foot (left) and tongue
(right) tasks in one patient. (Color figure online)

3.2 Language Class Identification

Table 2 reports the language identification performance across all methods. Once
again, our GNN outperforms the baselines in nearly all methods, with the most
notable gains in language accuracy and AUC. The specificity of our GNN is
lower than expected due to the hemispheric symmetry of rs-fMRI data. We saw
that the most frequent misclassification from our model was assigning contralat-
eral parcels to the language class. We ran two experiments to probe whether
our GNN is learning connectivity patterns associated with language rather than
memorizing node locations. In Fig. 4 (left), we plot the histogram of true (pink)
vs. predicted (blue) language parcels. The x-axis shows how frequently a certain
group of parcels was assigned to language in the ground truth and predicted
labels. Each bin represents a different group of parcels. Highlighted by the red
box, we see that our model tends to overpredict the language class. We assert
that this overprediction is viable due to the demands of the clinical application
of our work. We compared the GNN output with seed based correlation analysis
(SBA), where the “seed” for each patient is selected based on the ground truth
task-fMRI activations. The average rs-fMRI time course within the seed location
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is correlated with each of the average time courses defined by our parcellation.
The correlation maps are thresholded at ρ > 0.6 to retain only the strong associ-
ations. Figure 4 (right) shows a representative example, where the color of each
parcel represents the strength of the connection; red is closer to 0.6 and yellow
is closer to 1. Highlighted by the white arrows, there is right-hemisphere over
prediction (blue) from our model. However, as shown by the SBA map, these
right-hemisphere parcels have high resting-state connectivity with the seed aver-
age time course. Our GNN achieves a median of 0.81 dice overlap between the
predicted language areas and the seed based correlation maps.

Fig. 4. Left: Histogram of true (pink) vs predicted (blue) language parcels for frequency
> 0. Right: Arrows show overprediction overlaps with seed based maps. (Color figure
online)

Fig. 5. Ground truth (red) and predicted (blue) for two separate subjects. All bilateral
subjects were held out of training. (Color figure online)

Bilateral Language Identification: Our final experiment evaluates whether
the GNN can recover a bilateral language network, even when this case is not
present in the training data. Here, we trained the model on 55 left-hemisphere
language network patients and tested on the remaining 5 bilateral subjects. Our
model correctly predicted bilateral parcels in all five subjects. Figure 5 shows
ground truth (red) and predicted language maps (blue) for two bilateral subjects.
The median language class accuracy for these five cases was 0.62. Empirically,
this is slightly lower than reported in Table 2 due to the lack of training infor-
mation. This experiment shows that our network learns connectivity patterns,
rather than just spatial locations, of the language network.
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4 Conclusion

We have demonstrated a GNN approach to identify the language and motor areas
of eloquent cortex in brain tumor patients using rs-fMRI connectivity. Our model
learns the resting-state functional signature of both the language and motor
network within this tumor cohort by leveraging specialized convolutional filters
that encode edge-node relationships within similarity matrices. With higher AUC
for eloquent cortex detection, we prove that the features extracted from our
GNN are more informative for this task than standard graph theoretic features
and features extracted from a MLP. For language, we show that our model
can correctly identify bilateral language networks even when trained on only
unilateral network cases. Future work will decouple the lateralization problems
in detecting language. We aim to add a separate network to our model that will
determine which hemisphere(s) the language network is present in. We also aim
to extend this work to simultaneously classify language and motor areas in one
neural network, rather than training and testing these tasks separately.
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Abstract. Early diagnosis of neurological diseases such as Alzheimer’s
disease (AD) is extremely vital for patient treatment. Analyzing the
human brain connectivity is a popular approach in investigating the rela-
tionship between the brain morphology, structure, and function and the
emergence of neurological diseases. However, extracting relevant diag-
nostic information from the connectome is still one of the most chal-
lenging problems. Many works have thoroughly studied the connectional
map of the brain, however, to the best of our knowledge, no previous
study had used graph morphology to rigorously explore the topological
properties of the human connectome. In this paper, we propose a novel
graph morphology-based genetic algorithm (GMGA) to mine the brain
network and extract the most relevant connections for disordered brain
state stratification. First, we define our graph morphological structural
operators (SE) and design a subgraph matching technique for match-
ing a particular graph-based SE with an input brain connectome. Sec-
ond, we propose GMGA which identifies the optimal sequence of mor-
phological operations using a predefined structural element for distin-
guishing between two brain states (e.g., late mild cognitive impairment
(LMCI) vs Alzheimer’s disease (AD)). Last, we train a linear classifier in
a K-fold cross-validation fashion using the morphed brain graphs given
the optimal learned morphological operator sequence. Our experimen-
tal results demonstrate a significant gain in classification performance
between LMCI and AD groups in comparison with baseline methods.
This work constitutes the first proof-of-concept of the merit of graph
morphology in decoding the healthy and disorder brain connectomes.

Keywords: Brain connectivity · Brain dementia state classification ·
Graph matching · Genetic algorithm · Morphological brain networks

1 Introduction

The human brain network connectivity has long been the subject of numerous
studies [1,2,13]. In fact, understanding and mapping the human connectome is
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of great importance in detecting the early signs of various clinical disorders of the
brain (e.g., Alzheimer’s Disease (AD) [14] and late mild cognitive impairment
(LMCI)). In modern neuroscience, graphs are used to model the interactions
between the different regions of the brain considering their abilities in capturing
the topology and dynamics of the brain networks in both healthy and disordered
states. That is, the nodes of the graphs usually represent the brain regions while
the edges represent either anatomical, functional, morphological or effective con-
nections. Understanding the topological complexity of the human connectome
can be particularly relevant in detecting the atypical changes in the brain connec-
tivity. These changes are critical in the diagnosis of neurodegenerative diseases.

To identify the diagnostic biomarkers for these diseases, several works relied
on vectorizing the brain graph in Euclidean space in order to enable access
to the full repository of machine-learning methods. To this end, graph embed-
ding and other kernel methods are commonly used in connectomics. In [11], two
vector-space embeddings are used to decode the brain connectivity: direct con-
nection label sequence embedding and dissimilarity-based embedding. [8] uses
a multivariate pattern analysis (MVPA) method to distinguish patients with
social anxiety disorder (SAD) from healthy controls. While in [16] a novel net-
work construction method based on a graph regularized weighted sparse model
is proposed for the study of brain functional networks. However, despite their
empirical effectiveness, these methods fail to fully exploit the topological proper-
ties of the brain and might cause losing valuable information about the brain as
a connectional highly-interative and complex construct. Thus, to investigate the
brain graph topology, we propose a novel method rooted in the theory of graph
morphology, which remains largely unexplored in the field of connectomics. By
emphasizing the topological properties of the brain network, we will be able to
eventually model how a neurological disorder can change the brain connectional
map.

Graph morphology was first introduced in [5,15] and similar morphological
operators were used in image processing [3]. However, to the best of our knowl-
edge, no previous graph morphology methods were used on the brain graph.
To this end, we propose a novel graph morphology-based method that scour
the human connectome in order to accentuate the most relevant connections.
First, we design a set of morphological structural elements (SE) composed of a
center node and a set of subordinate nodes, then propose a subgraph match-
ing technique to match a given SE to a whole brain graph of interest. Each
structural element acts as a probe to extract diagnostic information from the
brain network. Since the brain connectome is a weighted graph, our proposed
subgraph matching technique takes into account the connectional strength (i.e.,
the weights of the edges of the graph). Second, we define the set of morpholog-
ical operators which will be applied to the brain graph using a SE of interest:
(i) the vertex-edge dilation and (ii) the vertex-edge erosion. Last, we present a
graph morphology-based genetic algorithm (GMGA) that searchs for the fittest
sequence of SE-based morphological operations that can mimic the alterations of
the brain connectivity caused by the neurodegenerative diseases. Particularly, by
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morphing each brain graph using the learned optimal morphological sequence,
we train a linear classifier in a K-fold cross-validation manner to classify patients
diagnosed with LMCI and AD.

Fig. 1. Example of morphological operations on a brain network: vertex-edge dilation
(red) and vertex-edge erosion (blue). The structural element (SE) here is composed of
a center node (yellow node) connected to four subordinate nodes (green nodes). The
first step is matching the SE to the brain graph where we first activate a matched node
to the center node (the pink node for the first subgraph and the red node for the last
subgraph). Then we match the other four nodes to the nodes in the brain graph with
the highest brain connectivities weights (i.e., thickest edges). Once we match the SE
to the brain graph, we perform a vertex-edge erosion (blue) and a vertex-edge dilation
(red). Finally, after dilating (resp., eroding) all the matched subgraphs, we obtain the
result of the SE-based dilation (resp., erosion) of the whole graph by merging together
the morphed subgraphs. (Color figure online)

2 Method

Mathematical morphology is a well-defined theory [6], where structural elements
act as probes to extract structural information from geometric spaces, nesting
images, graphs and other data structures. In this paper, we focus on graph
morphology and propose a novel approach for applying different morphological
operators to brain networks in order to better capture its topological complexity.
In this section, we introduce the different steps of our method, beginning with
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Fig. 2. Overview of the proposed pipeline for the graph morphology based genetic algo-
rithm (GMGA). We first initialize a population of chromosomes, where each chromo-
some stands for a sequence of morphological operations that will act on the training
brain graphs using a predefined SE. Each chromosome will then be graded according
to their accuracy score. Next, the fittest chromosomes are selected then added to the
mating pool. A crossover will then occur resulting in the production of the offspring.
One of the offspring will be randomly selected to undergo a mutation. Lastly a new
population will replace the previous one consisting of the new offspring and their par-
ents. This cycle will repeat until a termination criterion is reached. This will result
in an optimal sequence of morphological operations that will then be applied to the
training brain graphs which in turn will be used to train an support vector machine
(SVM) classifier. Last, we similarly morph the testing brain graph and feed it to SVM
for label prediction.

the first step, subgraph matching, since each structural element is defined as a
subgraph. Then we define our morphological operators the vertex-edge erosion
and the vertex-edge dilation, acting on the brain graph using a SE of interest.
And finally, we detail our proposed graph morphology-based genetic algorithm
(GMGA) for brain state classification.

2.1 Proposed Graph-Based Structural Element Matching Technique

Similar to classical morphology, the first step is defining the structural element
(SE). In our case the structural element is a structural subgraph. Each structural
subgraph has a simple and small structure: a center node which anchors the SE
matching process to the brain graph (the yellow node in the green SE in Fig. 1)
and a set of subordinate nodes (green neighboring nodes surrounding the center
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node in Fig. 1). Let G be an undirected graph G = (GV , GE), where GV denotes
the set of vertices and GE the set of edges in G. Let G′ denote a subgraph of G
if G′V ∈ GV and G′E ∈ GE .

However, since we are working on brain graphs, our subgraph matching tech-
nique depends on the edge weights (i.e., connectivity strength between different
anatomical regions of interest (ROIs) in the input brain network). Hence, we pro-
pose a novel graph-based SE matching strategy, which matches an unweighted
subgraph to a weighted graph. First, given a SE, we loop over all the nodes of the
graph and activate the nodes which align with the SE topological structure cen-
tered at the SE center (Fig. 1) –i.e., their local structure patterns are identical.
Once the nodes are activated, we then sort the subordinate matched nodes in the
weighted brain graph according to their connectivities weights. Next, we activate
the brain graph edges with the strongest connections matching the input SE sub-
graph. Figure 1–A illustrates these steps where first the pink node is activated
which means that the SE structure centered at the yellow node aligns with the
pink node. In other terms, the SE structure was successfully identified at the pink
node. Once activated, a sorting of the edges occurs based on their connectivity
weights. Next, given the matched list of the sorted edges to the SE of interest,
the nodes with the strongest connections with the pink node are matched. Notice
that even though the light blue node is a possible candidate we do not consider
it as a match since the other four nodes have stronger connections with the pink
node. Note that this is different from existing graph morphology methods [3,5]
that do not take into account the weights of the graph.

Throughout the remainder of this paper, we shall denote by M(G|SE) the
set of subgraphs resulting from matching the structural element SE to the graph
G.

2.2 Morphological Operators

After matching our structural element to the brain graph of interest, we define
a set of morphological operators, which will act on the resulting subgraphs in
M(G|SE) (Fig. 1). In this study, we mainly focus on the connectivity of the
network. Therefore, it is more convenient to consider morphological operators
that affect the edges of the graph (not the nodes).

• Vertex-edge dilation:

We denote by δ the vertex-edge dilation that goes from GV to GE , mapping
the set of vertices to the set of edges that are connected to at least one of these
vertices. Let A = (AV , AE) denote a subgraph of G. The vertex-edge dilation of
A is defined as:

δ(A) = {eu,v ∈ GE | either u ∈ AV or v ∈ AV }.

Respectively, the vertex-edge dilation of the graph G by the structural
element SE is the union of all the vertex-edge dilations of the subgraphs in
M(G|SE) (Fig. 1):
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δ(G|SE) = {δ(A) | A ∈ M(G|SE)}

• Vertex-edge erosion:

We denote by ε the vertex-edge erosion that goes from GV to GE , mapping the
set of vertices to the set of edges whose two extremities are included in the same
set of vertices. Let A = (AV , AE) be a subgraph of G. The vertex-edge erosion
of A is defined as:

ε(A) = {eu,v ∈ GE | u ∈ AV and v ∈ AV }.

Similar to the vertex-edge dilation of G by SE, the vertex-edge erosion of the
graph G by the structural element SE is the union of all the vertex-edge erosions
of the subgraphs in M(G|SE) (Fig. 1):

ε(G|SE) = {ε(A) | A ∈ M(G|SE)}
We note that both the vertex-edge erosion and the vertex-edge dilation are

applied iteratively. Therefore, the order in which we apply the morphological
operations on the matched brain subgraphs in M(G|SE) will not affect the
morphing of the graph G. This can be explained by the fact that we indepen-
dently apply the SE-based morphological operation to each matched subgraph in
the input brain graph, then merge all morphed graphs. After applying the mor-
phological operations to the graph, in our case on the brain graph, the output
graph is then transformed and only the edges accentuated by these operations
remain.

2.3 Graph Morphology Based Genetic Algorithm (GMGA)

Inspired by the evolution theory in biology, genetic algorithms (GAs) [7] were
introduced as a population-based optimization process. A typical GA maintains
a population of N individuals (chromosomes) by relying on biological operators
such as mutation, crossover and selection. In our study, each chromosome stands
for a sequence of SE-based morphological operations. Specifically, we seek to
find the best one that can mimic how a disorder can alter the connectivity of
the brain network. We illustrate in Fig. 2 the key components of the proposed
pipeline, which we detail below.

Initialization. In this step, an initial population of N chromosomes is set as an
input where each chromosome is represented by a binary code. We also have to
specify the structural element used and the number of iterations which will work
as the termination criterion.

Fitness Evaluation. For each chromosome in the population, a fitness score is
associated. This is the most critical step. Here, each chromosome stands for a
sequence of SE-based morphological operations, which is performed on our brain
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graphs. Then we use a support vector machine (SVM) linear classifier to rank
each chromosome according to its accuracy scores.

Selection. Based on their fitness scores, we select the best chromosomes and add
them to the mating pool allowing them to pass their genes to the next generation.

Crossover. Immediately after selecting the fittest chromosomes, every two “par-
ents” are paired together to produce an offspring. Each offspring inherits half of
his genes from each parent.

Mutation of the Offspring. Once the offspring are produced, one will be randomly
selected to undergo a mutation. One gene is then randomly selected to change
their status. This step will ensure the diversity in the population to avoid the
premature convergence.

Once this step is complete, the new population, consisting of parents and off-
spring, replaces the previous population and our algorithm resumes the fitness
evaluation. It is important that the new generation contains the best chromo-
somes of the previous generation (the parents). This will ensure that the perfor-
mance of this population will not get worse since there is no guarantee that the
new chromosomes (i.e., defined SE-based morphological operator sequence) will
give a better fitness score. After a predefined number of iterations, the optimal
sequence of morphological operations disentangling two brain groups is gener-
ated. This sequence is encoded in the chromosome with the highest fitness score
and highest ability to classify both training groups. We also note that the optimal
SE-based morphological operator sequence is learned in K-fold cross-validation
fashion. Once the optimal sequence is identified using the training brain graph
samples, we morph all training graphs to train a linear classifier. In the testing
stage, we apply the same sequence to morph the testing brain graphs, then input
them to the trained classifier for predicting the final brain state of each testing
subject (i.e., label).

3 Results and Discussion

Dataset. We used 11-fold cross validation to evaluate our proposed method on
77 subjects (41 AD and 36 LMCI) from ADNI GO public dataset each with
structural T1-w MR image. Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). We use
FreeSurfer processing pipeline to reconstruct both right (RH) and lef (LH) corti-
cal hemispheres for each subject from T1-w MRI. Then each cortical hemisphere
was parcellated into 35 cortical ROIs using Desikan Killiany cortical atlas. Next,
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Fig. 3. Evaluating the performance of our proposed graph morphology-based genetic
algorithm (GMGA) for classifying LMCI and AD patients using four different structural
elements on morphological brain graphs measured using maximum principal curvature.

for each subject, we generate a morphological brain network using the maxi-
mum principal curvature as a metric to quantify the dissimilarity in morphology
between pairs of ROIs [4,9,10,12].

Parameters. We note that we applied thresholding to this dataset before the
application of GMGA to create sparser brain graphs by eliminating the weaker
connections (i.e., where the weights of the edges are below a certain threshold).
Specifically, we evaluated GMGA on three datasets, each sparsified at a specific
threshold: (1) the mean μ of all the weights of the brain graph, (2) μ + η, where
η denotes the standard deviation of the data brain edge weights, and (3) μ − η.
Next, we report in Figs. 3 and 4 the averaged classification results across the three
thresholded connectomic datasets. For GMGA, each population P contains N =
6 chromosomes and each chromosome has 6 genes (i.e., morphological operators
–not necessarily different) with the termination criterion being 15 iterations. As
shown in Fig. 3, our method boosts the classification results in comparison with
the raw data.

Varying Structural Elements. We evaluated our method using different
structural elements as shown in Fig. 3. It can easily be seen that the perfor-
mance of this method depends mainly on the choice of the SE.
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Comparing the performance of each SE, we report that SE2 had the highest
accuracy score 68.39 while SE4 had the lowest 61.9. However, we should state
that all four of these SEs improved the accuracy by a large margin. It is also
interesting to note that the vertex-edge erosion can yield good result on its own;
however, a much better result can be obtained by sequencing many vertex-edge
erosions and vertex-edge dilations. Furthermore, the fact that very good results
are obtained by applying a sequence of morphological operations shows that
our technique is able to accentuate the critical connections in the brain network
which are affected by the neurodegenerative diseases.

Varying the Number of Genes. We also evaluated how different number of
genes (i.e., the number of morphological operations) can affect the accuracy as
shown in Fig. 4. The population with chromosomes consisting of 6 genes yields
better classification accuracy than those with only 4 genes for both structural
elements SE1 and SE2. However, when we increase the number of genes to 8, we
find that the accuracy of our algorithm when applied with SE1 increases while
the accuracy of our algorithm when applied with SE2 decreases. Moreover, the
longer our chromosomes are the longer time needed for our algorithm. Therefore
we conclude that a population with chromosomes consisting of 6 genes has bet-
ter empirical performance. However, even though our algorithm has proven to
predict the best sequence of morphological operations given a predefined struc-
tural element, the main limitation of our proposed work is that we predefined
the structural elements. In our future work, we will learn to identify the most
relevant SE for the target classification task. This is particularly important since
the performance of our algorithm mainly depends on the choice of the structural

Fig. 4. Comparing between the performance of our proposed algorithm using the previ-
ous first two structural elements SE1 and SE2 with different numbers of genes (number
of morphological operations).
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element. Furthermore, there are several future directions to build on this seminal
work including mixing structural elements to identify the optimal morphological
sequence as well as defining weighted structural elements.

4 Conclusion

In this work, we proposed a novel graph morphology-based genetic algorithm
(GMGA) for brain state classification using morphological connectomic data. We
conducted experiments on the ADNI GO public dataset and reported boosted
classification results when integrating graph morphology theory with genetic
algorithm for learning how to optimally morph disordered and healthy brain
graphs to accentuate their connectional differences. By learning the optimal
sequence of morphological operations for different structural elements, we were
able to investigate brain topological changes at different sub-graphic scales. Our
work shows that graph morphology can be a valuable approach for investigating
the topology of brain networks. There are several future directions we intend
to explore including the joint learning of the optimal structural elements along
with the optimal set of morphological operators.
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Abstract. The tracking of dynamic functional connectivity (dFC)
states in resting-state fMRI scans aims to reveal how the brain sequen-
tially processes stimuli and thoughts. Despite the recent advances in
statistical methods, estimating the high dimensional dFC states from a
small number of available time points remains a challenge. This paper
shows that the challenge is reduced by linear covariance shrinkage, a
statistical method used for the estimation of large covariance matrices
from small number of samples. We present a computationally efficient
formulation of our approach that scales dFC analysis up to full reso-
lution resting-state fMRI scans. Experiments on synthetic data demon-
strate that our approach produces dFC estimates that are closer to the
ground-truth than state-of-the-art estimation approaches. When com-
paring methods on the rs-fMRI scans of 162 subjects, we found that
our approach is better at extracting functional networks and capturing
differences in rs-fMRI acquisition and diagnosis.

1 Introduction

The development of resting-state functional MRI (rs-fMRI) has provided a way
to measure spontaneous brain activity across the brain, in vivo and in real-
time [1]. Similar patterns of spontaneous brain activity across brain regions are
referred to as functional connectivity. Traditionally, these patterns were assumed
to be static over the acquisition time of the rs-fMRI, but recent work suggests
otherwise [2]. Called Dynamic functional connectivity (dFC) patterns, they are
often clustered across time frames of the rs-fMRI series to identify recurring
connectivity patterns or ‘mind states’ [7]. Analysis of these mind states has
given new insights into mental disorders and neurodevelopment [9].

According to a recent review [9], the most accurate method for estimat-
ing dFC is called Dynamic Conditional Correlation (DCC) [6]. DCC filters the
rs-fMRI signal via the generalized autoregressive conditional heteroskedasticity
approach (GARCH) and defines a dFC for each time point of the blood-oxygen-
level dependent (BOLD) time series as the remaining global connectivity at that
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time. This global connectivity is captured by a covariance matrix across all vox-
els or regions of interest estimated using the Exponentially Weighted Moving
Average method (EWMA) [6]. EMWA, however, was not designed for estimat-
ing large covariance matrices from a small number of samples (or time points) as
it is the case in this application. In addition, the estimation is computationally
expensive preventing this type of analysis to be directly applied to the entire
high resolution fMRI of large data sets.

In this work, we tackle these issues by introducing an accurate and effi-
cient implementation of EWMA. Specifically, we first show that EWMA com-
putes weighted covariance matrices, where the weights are defined according to
a continuous sliding window. We then improve the accuracy of that weighted
covariance estimation via linear covariance shrinkage [5], a statistical method
designed for the estimation of large covariance matrices in low sample size set-
tings. Finally, we reformulate the approach to cluster dFCs without having to
explicitly compute the covariances themselves. Thus, we can efficiently identify
mind states on large data sets. Compared to DCC, the dFC estimated by our
approach is closer to the ground-truth on a synthetic data set. When applied to a
rs-fMRI data set of 162 subjects, our approach is better at estimating functional
networks and at capturing differences in MRI acquisition, and between healthy
controls and those with alcohol use disorder.

2 Covariance Shrinkage for dFC

2.1 EWMA-Based dFC Estimation Using Continuous Sliding
Windows

Let n be the number of time points and p the number of voxels or regions of
interests of a rs-fMRI, then we denote with X = [x1, ..., xn] the p × n matrix
storing all the BOLD measurements. We assume that these measurements have
been processed by a neuroimaging pipeline including standard motion correc-
tion, temporal band-pass filtering, and BOLD signal normalization. The entries
of each row of X are therefore assumed to have a zero mean and unit variance.
To relate EWMA to a continuous sliding window approach, we introduce a con-
tinuous sliding window wt := [wt(1), ..., wt(n)] for each time point t. The entries
of wt are positive and add up to 1.

w1 := (1, 0, 0, .., 0) ,

wt(i) :=

{
1 − θ if i = t

θ wt−1(i) otherwise

, (1)

where θ ∈ [0, 1] specifies the weight of previous time points. We then compute
the weighted covariance matrix with respect to time point t as

Ct :=
∑n

i=1 wt(i)
(
xi − ∑n

j=1 wt(j)xj

)(
xi − ∑n

j=1 wt(j)xj

)T

=
∑n

i=1 wt(i)xix
T
i − ∑n

ij wt(i)wt(j)xix
T
j .

(2)

This covariance computation is mathematically equivalent to the recursive com-
putation carried out by the EWMA in [6].
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2.2 Linear Covariance Shrinkage

This new mathematical formulation offers a way to improve the EWMA estima-
tions used for fMRI connectivity analysis. As mentioned, computing Ct ∈ R

p×p

is not reliable as the number of measurements p is much larger than the number
of samples or time points n. Linear covariance shrinkage [5] mitigates this issue
by replacing the empirical covariance with a linear combination between itself
and its trace Tr(·):

C∗
t = (1 − λt)Ct + λt

Tr (Ct)
p

I. (3)

Under the assumption that the measurements are Gaussian distributed and
wt(i) = 1/n, the optimal setting of the parameter λ can be directly computed
from Ct and n according to the Oracle Approximating Shrinkage [3]:

λt = min

⎛
⎝1,

(
1 − 2

p

)
Tr

(
C2

t

)
+ Tr2 (Ct)(

n + 1 − 2
p

) [
Tr (C2

t ) − Tr2(Ct)
p

]
⎞
⎠ . (4)

We found that the proof in [3] can be generalized to embed covariance shrinkage
into EMWA (i.e., Eq. (2)) and thus drop the assumption that wt(i) = 1/n.
We replaced the original Wishart distribution moments in [3] with moments
obtained for Wishart matrices weighted by wt and we followed the derivations
step by step. We finally found that Eq. (4) still holds, if one replaces the number
of time points n with the effective number of samples:

nw =
(
∑

i wt(i))
2∑

i (wt(i))
2 . (5)

2.3 Efficient Implementation

Typical dFC analysis involves clustering the covariance matrices, which requires
computing λt for each time point and �2 distance between each pair of covari-
ances C∗

s and C∗
t . We found that the following computational trick can be used

to efficiently compute λ and the �2 distance without computing the matrices
themselves. Specifically, we introduce a matrix K := XTX ∈ R

n×n, which is a
very small matrix that can be computed at once, at the very beginning of the
fMRI analysis. Denoting the entry-wise product between matrices with �, we
found that Eq. (4) can be efficiently estimated with

Tr (Ct) = wT
t Diag(K) − wT

t Kwt,

T r
(
C2

t

)
= wT

t (K � K) wt − 2wT
t KDiag(wt)Kwt +

(
wT

t Kwt

)2
,

T r (CsCt) = wT
s (K � K) wt − Lst +

(
wT

s Kwt

)2
,

where Lst = wT
s KDiag(wt)Kws + wT

t KDiag(ws)Kwt.

(6)
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Now let γ := λsTr(Cs)/p and δ := λtTr(Ct)/p, the �2 distance between two
covariances C∗

s and C∗
t is efficiently obtained by

||C∗
s − C∗

t ||22 = ||(1 − λ)Cs + γI − (1 − μ)Ct − δI||22
= 2(γ − δ)(1 − λ)Tr(Cs) + 2(δ − γ)(1 − μ)Tr(Ct)

+(1 − μ)2Tr(C2
t ) − 2(1 − λ)(1 − μ)Tr(CsCt)

+(1 − λ)2Tr(C2
s ) + (γ − δ)2p.

(7)

This trick, inspired from the Support Vector Machine literature [4], reduces the
computational burden by several order magnitudes during our experiments. It
provides us with a mean to process full-resolution scans in reasonable time, and
spares a significant amount of computer memory by preventing the computation
of the covariances matrices, which would have contained billions of entries.

We further improve the efficiency of the computations by exploiting the rela-
tion between consecutive EWMA time windows. More specifically, we recursively
compute the traces of the covariance matrices (Eq. (6)) by introducing interme-
diate variables:

αt := wt
TDiag(K),

εt := Kwt,
βt := wt

T εt,
(8)

so that Tr (Ct) = αt − βt. Now let K.t denote the column of K corresponding
to time point t, then the algorithm for recursively computing the intermediate
variables is as follows

Initialization Recursion
α1 = K11 αt = θαt−1 + (1 − θ) Ktt

ε1 = K.1 εt = θεt−1 + (1 − θ)K.t

β1 = K11 βt = θ2βt−1 + 2θ (1 − θ) εt−1(t) + (1 − θ)2 Ktt

(9)

Similarly, Tr
(
C2

t

)
and Tr (CsCt) in Eq. (6) can also be efficiently computed

based on the above intermediate variables. This strategy allows estimating dFCs
from full resolution fMRI in a few minutes using a standard office computer
instead of repeatedly computing Ct matrices which would require terabytes of
memory. Furthermore, it allows clustering the dFC in reproducible transient
mind states efficiently, by computing the distance matrix D across all dFCs

Dst = ||C∗
s − C∗

t ||22, (10)

and applying a clustering method to D. We establish the validity of this approach
by computing such matrices D during our experiments, and extracting from these
matrices a measurement indicative of the “clusterability” of the time points,
which are potential biomarkers.

3 Experiments

3.1 Data Sets

The first data set consists of rs-fMRI of 162 subjects [8]: 18 were diagnosed with
alcohol dependence (ALC) while the remaining samples were labeled as controls.
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Fig. 1. Average of the Pearson distances measured for the data sets with 25 time points
per brain state between the ground-truth and the dFCs estimated by EWMA, which
we refer to as the “estimation error” for (a) nw = 5, (b) nw = 25. (c) for 150 time
points per brain state and nw = 5. (d) estimation error measured without covariance
shrinkage minus the estimation error with covariance shrinkage. Covariance shrinkage
consistently reduces the estimation error. This improvement is larger for small nw, i.e.,
short time windows.

The total group comprising 73 female and 89 male participants, ranged in age
from 23–80 years. Furthermore three different acquisition sequences were used
to acquire the data. The fMRI repetition time (TR) of these protocols was 2 s
for 61 subjects, 2.2 s for 67, and 2.648 s for the remaining 34. The processing of
the rs-fMRI scan consisted of spatial smoothing with 5 mm FWHM, temporal
de-trending, and band-pass filtering between 0.01 and 0.1 Hz. The processed
scans were non-rigidly registered to an atlas of 111 regions of interest [10]. We
computed the average BOLD signal inside each region to produce low-resolution
time series. Furthermore, we kept the high-resolution time series, which consisted
of the 175473 BOLD series within the gray matter. As a result, the spatial
resolution of our high resolution series was thousand times finer than that of
typical dFC studies [9,11].
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We created a synthetic data set by first defining four distinct brain states. To
do so, we computed for each subject the correlation matrix of the low-resolution
time series. We selected for the ground-truth brain states the four correlation
matrices with the largest �2 distances to each others. To create a synthetic rs-
fMRI scan, we generated for each state a random band-passed signal by (i) cre-
ating a random timeseries, with a sampling rate of 0.5 Hz, by randomly sampling
from the normal Gaussian distribution N(0, 1), (ii) band-pass filtering these time
series using Butterworth filter of order 2 and a band-pass filter of [0.01, 0.1] Hz,
and (iii) multiplying the square root of the state correlation matrix with the fil-
tered time series. Lastly, we concatenated the four random band-passed signals
to create a synthetic rs-fMRI sequence. This process was repeated 10 times for
each data set. We created 8 of these data sets with different number of time
points per brain state: 25, 50, 75, 100, 125, 150, 200 and 250.

3.2 Implementations

The baseline for our experiments was defined by an implementation of DCC,
which was applied to all our data sets. Specifically, we first filtered rs-fMRI
time series via GARCH. Next, we estimated the dFC by applying our efficient
implementation of EWMA without covariance shrinkage. Note, we ensured on
the synthetic data set that the outcome of that implementation was exactly
the same as the EWMA implementation originally proposed in [6]. This imple-
mentation was applied to each data set seven times with the effective number of
samples nw being {5, 10, 15, 20, 25, 35, 50}. We then repeated these computations
a second time using our proposed approach, the efficient EWMA implementation
with covariance shrinkage.

3.3 Findings on the Synthetic Data

Figure 1 plots the error of each approach with respect to the synthetic data set
consisting of brain states of 25 time points and the effective sample size being
(a) nw = 5 and (b) nw = 25. The error is defined by the Pearson distance
between the estimated and ground-truth covariance matrices averaged across
the corresponding 10 scans. Our proposed approach exhibits a lower error for
almost all time points and the difference to the baseline was especially large for
the smaller effective sample size. The results obtained with different number of
time points per brain states were very similar, as shown for instance by Fig. 1(c).
The box plot of Fig. 1(d) confirms this finding as we observe better estimations
using covariance shrinkage for all the parameter values. The improvement is
larger for the smallest nw, which corresponds to the shortest dFC patterns.
These results strongly advocate for the use of covariance shrinkage when using
EWMA to estimate dFC.

3.4 Results on the Real rs-fMRI Data

Figure 2 plots the distance matrix D for both approaches with respect to the high
resolution data and three effective number of samples nw. For all three settings,
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Fig. 2. The distance matrix D based on the dFC estimation of both approaches applied
to the high resolution scans with different effective sample sizes nw. Covariance shrink-
age generates sharper distance matrices which would yield more reliable clusterings.

the pattern for the distance matrices computed by the proposed approach is
sharper, especially for the smallest nw. This observation suggests that clustering
dFC into distinct mind states is easier when using covariance shrinkage.

We confirmed these qualitative findings by computing the quartile coefficient
of dispersion (QCD) of all the distance matrices D obtained during our exper-
iments. To compute the QCD, we first computed the first quantile Q1 and the
third quartile Q3 of the distribution defined by the entries of D. We then defined

QCD :=
Q3 − Q1
Q3 + Q1

. (11)

We chose this metric as it is robust against outliers and is confined to [−1, 1],
which allows us to compare distance matrices of different magnitudes. More
importantly, the larger the QCD value is, the easier it is to partition the matrix
into distinct clusters, and the easier it is to separate dFCs into mind states.
Figure 3(a) plots the QCDs of the two approaches when applied to the high
resolution scans with the effective sample size of nw = 5. It is striking that the
QCD values obtained using our method are always higher than the ones derived
using DCC, which indicates that dFC clustering would result in more reliable
mind states.
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Fig. 3. (a) QCD measures obtained by applying the two approaches to all high-
resolution timeseries with the effective sample size being nw = 5. To ease visualization,
the scans are sorted according to their QCD values under the baseline approach. (b–c)
negative log p-value of the correlation between QCD and fMRI repetition time (TR)
and alcohol diagnosis (ALC) for high-resolution data (HR) and low-resolution data
(LR) as well as with shrinkage (S) or without covariance shrinkage (no S).

For both high resolution and low resolution clinical data sets, we also mod-
elled the relation between QCD and explanatory variables by computing the
following generative additive model

QCD ∼ α + β0sex + β1age + β2ALC + β3TR. (12)

We then plotted in Fig. 3 the negative log of the p-value for those explanatory
variables, whose correlation with QCD is significant (p < 0.05). Specifically,
the QCDs generated by both implementations recorded significant correlations
with alcohol diagnosis ALC and acquisition protocol TR. Figure 3(b) and (c)
show agreement between the results obtained for low and high resolution data
sets. Specifically, for small effective sample sizes the impact of the explanatory
variables on the QCDs is similar for high and low resolution data. For large
effective sample sizes, the effect of the explanatory variables on the QCD is
always higher for the baseline approach. Assuming that the results obtained for
our synthetic data set translate to real fMRI data, these results would suggest
that the findings generated by the approach without covariance shrinkage, i.e.,
DCC, overestimate the impact of explanatory variables for large effective sample
sizes.

3.5 Networks Extraction from High Resolution Data

For the final experiment, we extracted the Default Mode Network (DMN) from
the dFC by slightly modifying both approaches. Specifically, we confined the
computations of Eq. 2+3 to the correlations between the average BOLD signal
within the Posterior Cingulate Cortex (PCC) and all the gray matter voxels in
the atlas. Of the two approaches, Fig. 4 reveals that the Default Mode Networks
extracted from a small number of dFC matrices by our method are closer to the
typical DMN (scan average). Indeed the Spearman correlation with respect to the
scan average was 0.72 on the high resolution data and 0.85 on the low resolution
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Fig. 4. Default mode network (DMN) extraction by averaging over 5 randomly selected
dFCs estimated without (Left) and with shrinkage (Middle); Standard DMN extraction
by averaging over the entire time series (scan average). On both low and high resolution
data, the networks generated from the approach with shrinkage are much closer to the
scan average than without shrinkage.

data for the approach with covariance shrinkage. The correlations drop down
to 0.61 on the high-resolution data and 0.75 on the low resolution data for the
approach without covariance shrinkage. In summary, this experiment suggests
that covariance shrinkage improves functional networks extraction when only a
few BOLD measurements are available for the estimation.

4 Conclusion

In this paper, we demonstrated that linear covariance shrinkage improved the
estimation of dynamic resting-state fMRI connectivity, in particular when short
brain connectivity states are extracted. We showed how the computation of large
covariance matrices can be averted to scale the processing to full resolution fMRI
scans, which suppressed the need of defining summary statistics for functional
brain atlases regions. Our experiments on synthetic data demonstrate that our
approach produced dFC estimates that are closer to the ground-truth. On real
data, we found that our approach is better at extracting functional networks
and capturing differences in rs-fMRI acquisition and diagnosis.
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AA010723, and AA026762.
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Abstract. The permutation test is an often used test procedure for
determining statistical significance in brain network studies. Unfortu-
nately, generating every possible permutation for large-scale brain imag-
ing datasets such as HCP and ADNI with hundreds of subjects is not
practical. Many previous attempts at speeding up the permutation test
rely on various approximation strategies such as estimating the tail dis-
tribution with known parametric distributions. In this study, we propose
the novel transposition test that exploits the underlying algebraic struc-
ture of the permutation group. The method is applied to a large number
of diffusion tensor images in localizing the regions of the brain network
differences.

Keywords: Permutation test · Transposition test · Structural brain
networks · Permutation group · Online statistics computation

1 Introduction

The permutation test is perhaps the most widely used nonparametric test proce-
dure in sciences [8,19,21,24,27]. It is known as the exact test in statistics since
the distribution of the test statistic under the null hypothesis can be exactly
computed if we can calculate all the test statistics under every possible permu-
tation. Unfortunately, generating every possible permutation for a large-sample
network dataset is still extremely time consuming even for a modest sample size.

When the total number of permutations is large, various resampling tech-
niques have been proposed to speed up the computation in the past [8,19,21,27].
In the resampling methods, only a small fraction of possible permutations is gen-
erated and the statistical significance is computed approximately. This approxi-
mate permutation test is the most widely used version of the permutation test.
In most of brain imaging studies, 5,000–1,000,000 permutations are often used,
which puts the total number of generated permutations usually less than a frac-
tion of all possible permutations. In [27], 5,000 permutations out of possible
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(
27
12

)
= 17, 383, 860 permutations (0.029%) were used. In [21], 1 million permuta-

tions out of
(
40
20

)
possible permutations (0.0007%) were generated using a super

computer. In [18], 5,000 permutations out of possible
(
33
10

)
= 92561040 permuta-

tions (0.005%) were used.
To remedy the computational bottleneck, the tail regions of the distributions

are often estimated using the extreme value theory [11,24]. One main tool in the
extreme value theory is the use of generalized Pareto distribution in approximat-
ing the tail distributions. Unfortunately, without a prior information or model
fit, it is difficult to even guess the shape of tails accurately. Recently, an exact
topological inference approach with quadratic run time was proposed to combi-
natorially enumerate every possible permutation [8,9], but the method is limited
to monotone network features and not applicable to more general settings.

In this paper, we propose a novel transposition test that is motived by the
permutation test. The method is based on the concept of random transpositions
that sequentially update the test statistic. Unlike the traditional permutation
test that takes up to a few days on a computer, our method takes less than
an hour and does not require large computer memory. As an application, the
method is used in determining the statistical significance of the male and female
differences in a large-sample structural brain network study.

2 Preliminary

The usual statistical test setting in brain imaging is a two-sample comparison
[8,19,21]. Consider two ordered sets

x = (x1, x2, · · · , xm), y = (y1, y2, · · · , yn).

The distance between x and y is measured by test statistic f(x,y) such as
t-statistic or correlations. Under the null assumption of the equivalence of x
and y, elements in x and y are permutable. Consider combined ordered set
z = (x1, · · · , xm, y1, · · · , yn) and its all possible permutations Sm+n. Note Sm+n

is a symmetric group of order m + n with (m + n)! possible permutations [14].
Since there is an isomorphism between z and integer set {1, 2, · · · ,m + n}, we
will interchangeably use them when appropriate [17]. Permutation τ ∈ Sm+n is
often denoted as

τ =
(

x1 · · · xm y1 · · · yn

τ(x1) · · · τ(xm) τ(y1) · · · τ(yn)

)

using a single combined sample notation in mathematical literature [10,14].
For instance, consider a permutation of {1, 2, 3, 4} given by τ(1) = 4, τ(2) =

2, τ(3) = 1, τ(4) = 3. Since there are two cycles in the permutation, τ can be
written in the cyclic form as τ = [2][1, 4, 3] indicating 2 is a cycle of length 1
(2 → 2) while 1, 3, 4 are a cycle of length 3 (1 → 4 → 3 → 1) [14]. A cycle of
length 1 is simply ignored and the permutation can be written as τ = [1, 4, 3].
If another permutation is given by π(1) = 1, π(2) = 4, π(3) = 3, π(4) = 2, the
sequential application of π to τ is written as
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π · τ = [1][3][2, 4] · [2][1, 4, 3] = [2, 4] · [1, 4, 3] = [1, 2, 4, 3].

Let us split the permutation τ(z) into two groups with m and n elements

τ(x) = (τ(x1), · · · , τ(xm)), τ(y) = (τ(y1), · · · , τ(yn)).

For test statistic f , the exact p-value for testing a one sided hypothesis is then
given by the fraction

p-value =
1

(m + n)!

∑

τ∈Sm+n

I(
f(τ(x), τ(y)) > f(x,y)

)
, (1)

where I is an indicator function taking value 1 if the argument is true and 0
otherwise. In various brain imaging applications, computing statistic f for each
permutation has been the main computational bottleneck [8,21].

If the test statistic f is a symmetric function such that f(x,y) =
f(φ(x), ψ(y)), where φ ∈ Sm and ψ ∈ Sn, then we only need to consider

(
m+n

m

)

number of permutations in the denominator of (1), which reduces the number
of possible permutations substantially. Still

(
m+n

m

)
is an extremely large num-

ber and most computing systems including MATLAB/R cannot compute them
exactly if the sample size is larger than 100 in each group. The total number of
permutations when m = n is given asymptotically by Stirling’s formula [12]

(
2m

m

)
∼ 4m

√
πm

.

The number of permutations exponentially increases as the sample size increases,
and thus it is impractical to generate every possible permutation. In practice,
up to hundreds of thousands of random permutations are generated using the
uniform distribution on Sm+n with probability 1/

(
m+n

m

)
.

3 Methods

Transpositions. Consider permutation πij that exchanges i-th and j-th ele-
ments between x and y and keeps all others fixed such that

πij(x) = (x1, · · · , xi−1, yj , xi+1, · · · , xm),
πij(y) = (y1, · · · , yj−1, xi, yj+1, · · · , yn).

Such a permutation is called the transposition, which is related to card
shuffling problems [1,2,14]. Consider every possible sequence of transpositions
applied to x and y. If such sequence of transpositions covers every possible ele-
ment in Sm+n, we can perform the permutation test by sequentially transposing
two elements at a time.
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Theorem 1. Any permutation in Sm+n can be reachable by a sequence of trans-
positions.

Proof. Let l = m + n. Suppose τ ∈ Sl. For x ∈ {1, · · · , l}, consider cycle

Cx = [x, τ(x), τ2(x), · · · , τ j(x)]

with τ j+1(x) = x and τd(x) �= x for d ≤ j [14]. Since we are dealing with a finite
number of elements, such j always exists. If τ c(x) = τd(x) for some c ≤ d ≤ j,
we have τd−c(x) = x, thus all elements in the cycle Cx are distinct.

If Cx covers all the elements in {1, · · · , l} we proved the statement. If there
is an element, say y ∈ {1, · · · , l}, that is not covered by Cx, we construct a new
cycle Cy. Cycles Cx and Cy must be disjoint. If not, we have τ i(x) = τ j(y) and
y = τ i−j(x), which is in contradiction. Hence τ = Cx · Cy.

If Cx · Cy does not cover {1, · · · , l}, we repeat the process until we exhaust
all the elements in {1, · · · , l}. Hence any permutation can be decomposed as a
product of disjoint cycles. Then algebraic derivation can further show that cycle
Cx can be decomposed as a product of 2-cycles

Cx = [x, τ j(x)] · [x, τ j−1(x)] · · · [x, τ2(x)] · [x, τ(x)].

A 2-cycle is simply a walk. Hence we proved τ is a sequence of walks. �	
From Theorem 1, any permutation can be reached by a sequence of trans-

positions. Thus, instead of performing uniform random sampling in Sm+n, we
will perform a sequence of random transpositions and compute the test statis-
tic at each transposition. Over random transposition πij , the statistic changes
from f(x,y) to f(πij(x), πij(y)). Instead of computing f(πij(x), πij(y)) directly,
we will compute it from f(x,y) incrementally in constant run time by updat-
ing the value of f(x,y). Note, the statistics computation over transpositions is
slightly different from the usual online computation where new data is added
sequentially. Instead of adding the new data, the existing data is replaced.

Theorem 2. If f is an algebraic function such as addition, subtraction, multi-
plication, division and integer exponents, there exists a function g such that

f(πij(x), πij(y)) = g(f(x,y), xi, yj), (2)

where the computational complexity of g is constant.

The lengthy proof involves explicitly constructing an iterative formula for each
algebraic operation so it will not be shown here. Often used statistics such as
t-statistic and F -statistic are all algebraic functions. If we take computation
involving fractional exponents as constant run time as well, then a much wider
class of statistics such as correlations can all have constant run time. In this
study, we will explicitly construct the t-statistic over transpositions that runs in
constant run time. From this construction, it should be obvious that Theorem2
should be applicable to other test statistics.
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t-Statistic over a Transposition. Two sample t-statistic is a function of sym-
metric functions involving the mean and variance of x and y. If we have the
symmetric functions

ν(x) =
m∑

j=1

xj , ω(x) =
m∑

j=1

(
xj − ν(x)

m

)2

,

the sample mean and variance of x are given by ν(x)/m and ω(x)/(m − 1). We
will determine how ν and ω change over a transposition.

Theorem 3. Functions ν and ω are updated over transposition πij as

ν(πij(x)) = ν(x) − xi + yj

ω(πij(x)) = ω(x) − x2
i + y2

j +
ν(x)2 − ν(πij(x))2

m
.

Proof. The algebraic derivation follows applying the online computations of
updating ν and ω twice. Suppose new data a and b is added to x′ =
(x1, · · · , xm−1) such that xa = (x′, a) and xb = (x′, b). Then we have

ν(xb) = ν(xa) − a + b.

Since ν is symmetric, by identifying a = xi and b = yj , we obtain ν(πij(x)) =
ν(x) − xi + yj . An algebraic derivation can show that

ω(xa) =
m−1∑

j=1

x2
j + a2 − ν(xa)2

m
, ω(xb) =

m−1∑

j=1

x2
j + b2 − ν(xb)2

m
. (3)

From (3), we obtain ω(xb) = ω(xa) − a2 + b2 + ν(xa)
2−ν(xb)

2

m and the result
follows. �	

From Theorem 3, the two-sample t-statistic over a transposition is then com-
puted as follows.

T (πij(x), πij(y)) =
ν(πij(x))/m − ν(πij(y))/n

√
ω(πij(x))+ω(πij(y))

m+n−2

(
1
m + 1

n

) .

Computing two-sample t-statistic with m and n samples directly requires com-
puting the sample means, which is m and n algebraic operations each. Then we
need to compute the sample variances and pool them together, which requires
3m + 2 and 3n + 2 operations. Combining the numerator and denominator in
t-statistic takes 16 operations. Thus, it takes total 3(m + n) + 20 operations to
compute the t-statistic per permutation. In comparison, it only takes 35 opera-
tions to computer t-statistic per transposition. In the case of m = n = 200, the
proposed method can generate 1220 times more permutations compared to the
standard permutation test.
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Fig. 1. Left: Mixing of subject labels over transpositions. Right: The estimated mixing
proportion based on the average of 1000 simulations.

Reducing Mixing Time. Given m = n elements in each group, the standard
permutation test mixes half of elements in one group to the other. Thus, the
mixing proportion is 0.5 on average. On the other, the transposition method
mixes one element at a time, so the mixing is slow but it rapidly catches up.
The rate of mixing can be formally measured by the mixing time, which is
defined as the time until the transpositions are close to the uniform distribution
in Sm+n in the variation distance sense [2,5]. Even though the transposition
method does not guarantee the uniform distribution in Sm+n in the early stage
of transpositions, the method converges to the uniform distribution quickly in
O((m + n)log(m + n)) time [2,5]. This is demonstrated in Fig. 1.

Figure 1-left displays how the subject labels change over transpositions based
on the sample sizes m = n = 200. The first group is indexed between 1 and 200
while the second group is indexed between −1 and −200. At each transposition,
only two subjects are swapped. As the number of transpositions increases, sub-
ject labels rapidly mix up. Figure 1-right shows that how the mixing proportion
converges to 0.5 based on the average of 1000 simulations. On average, about
1000 transpositions are enough to mix all the elements in the two groups uni-
formly. For far smaller sample sizes, to which most brain imaging studies belong,
few hundreds transpositions are more than enough to mix the groups evenly.

To increase the rate of mixing further, we did not start with the original
data x and y but started with a random permutation of x and y. This has the
effect of starting with a completely mixed initial starting data. Then sequentially
applied 5,000 random transpositions. This process is iteratively repeated. Thus,
for every 5,000 random transpositions, one random permutation is intermixed.
In real data, this process is repeated 10,000 times to generate 50 million random
transpositions, which are intermixed with 10,000 permutations.
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Multiple Comparisons. So far we have shown how test statistics change over
transpositions. We now show how the multiple comparison corrected p-values
are affected over transpositions. Suppose x(q) and y(q) are functional data on
edge q in a brain network M. Given statistic map h(q) = f(x(q),y(q)) at the
edge level, the hypotheses of interests are given by

H0 : h(q) = 0 for all q ∈ M vs. H1 : h(q) > 0 for some q ∈ M. (4)

Once the iterative algorithm for computing the test statistic is identified, the
p-value for pointwise inference at each fixed q can be computed iteratively. At
the k-th random transposition, the uncorrected p-value is given as pk. Then pk+1

is computed from iterative formula

(k + 1)pk+1 = kpk + I
(
f(πij(x), πij(y)) ≥ f(x,y)

)
, (5)

where πij changes over random transpositions. Note the p-value for multiple
comparisons over all q is given by

p-value = P
( ⋃

q∈M
{h(q) > c}

)
= 1 − P

( ⋂

q∈M
{h(q) ≤ c}

)

= 1 − P
(

sup
q∈M

h(q) ≤ c
)

for some threshold c [25]. Thus, for multiple comparisons, the formula (5) changes
to

(k + 1)pk+1 = kpk + I
(

sup
q∈M

h(πij(x(q)), πij(y(q))) ≥ sup
q∈M

h(x(q),y(q))
)
.

For alternate hypothesis H1 : h(q) < 0, a similar algorithm can be used for test
statistic infq∈M h(q).

Validation. The real data does not have the ground truth. Thus, we compared
the proposed transposition method against the standard permutation test in
random simulations with the ground truth. We simulated x1, · · · , xm ∼ N(0, 1),
standard normal distribution, and y1, · · · , yn ∼ N(0.1, 1), which provides the
ground truth in computing t-statistic and p-value. The use of t-statistic is the
standard validation framework in many previous permutation test studies [6,
13,19,24]. The simulations were independently performed 100 times and their
average was reported here. In both Simulations 1 and 2 below, we used the same
model but different sample sizes.

Simulation 1 (small sample size). We used m = n = 10. There are exactly(
20
10

)
= 184756 total permutations. The sample sizes are too small to differen-

tiate the group difference. We obtained the t-statistic value of 0.0533, which
corresponds to the exact p-value of 0.479 (Fig. 2a green line). We performed the
standard permutation test with up to 10,000 permutations, which took 0.0926 s
on average on a desktop computer. Within the same run time, we were able
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Fig. 2. (a, c) One representative simulation study showing faster convergence of the
transposition method. The Gaussian distribution provides the exact ground truth. (b,
d) The average relative error against the ground truth. The average of 100 independent
simulations was plotted. (Color figure online)

to generate more than 1,220,000 transpositions. The transposition method uni-
formly converged faster than the standard permutation test due to 122 times
more permutations the transposition method generated (Fig. 2b). The relative
errors of the transposition method are about half the size of the standard method
in most run time.

Simulation 2 (large sample size). We used m = n = 100. The sample sizes are
big enough to differentiate the group difference. We obtained the t-statistic value
of 2.39 and corresponding p-value of 0.0088, which are taken as the ground truth
(Fig. 2c green line). We performed the standard permutation test with up to 1
million permutations, which took 173 s per simulation on average. With the same
run time, the transposition was sequentially done about 125 million times. The
transposition method uniformly converged faster than the standard permuta-
tion test through the whole run time (Fig. 2d). The performance results did not
change much even if we performed more permutations over longer durations with
different simulation parameters.

The computer code for performing the transposition test in the above simu-
lation study is available at http://www.stat.wisc.edu/∼mchung/transpositions.
The MATLAB code is written in such a way that it accepts vector data. For
brain connectivity matrices that are symmetric, vectorizing the upper triangle
entries of connectivity matrices is necessary to reduce the computational time.

http://www.stat.wisc.edu/~mchung/transpositions
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Fig. 3. Average connectivity matrices of females (left) and males (right) between 116
AAL parcellations. The two-sample t-statistic result (female − male). Females have
more structural connections between brain regions than males.

4 Application

Subjects and Preprocessing. Diffusion weighted imaging (DWI) data of 202
female and 154 male subjects (ages 29.2 ± 3.4) were obtained from the Human
Connectome Project (HCP) [16]. The fiber orientation distribution functions
were estimated and apparent fiber densities were exploited to produce reliable
WM/GM/CSF volume maps [7,16]. Subsequently, random seeds on the basis
of the voxel were selected to generate about initial 10 million streamlines per
subject with the maximum fiber tract length at 250 mm and FA larger than 0.06
using MRtrix3 (http://www.mrtrix.org) [22,26]. The Spherical-Deconvolution
Informed Filtering of Tractograms (SIFT2) technique making use of complete
streamlines was subsequently applied to generate more biologically accurate
brain connectivity, which results in about 1 million tracts per subject [20]. Non-
linear diffeomorphic registration between subject images to the template was
performed using ANTS [3,4]. Automated Anatomical Labeling (AAL) was used
to parcellate the brain into 116 regions [23]. The subject-level connectivity matri-
ces were constructed by counting the number of tracts connecting between brain
regions.

Transposition Test. We are interested in testing and localizing the female and
male differences in structural connectivity. Figure 3 displays the result of group
averages and the two sample t-statistic (female − male). Females have more
structural connections between brain regions than males. Since the tract counts
between brain regions do not follow normal distributions, assumption-free non-
parametric procedures such as the permutation test are needed to determine the
statistical significance of t-statistic accurately. We use the proposed transposition
test by sequentially generating 50 million transpositions for 40 min on a desk-
top computer. For multiple comparisons correction, we counted the fraction of
transpositions where the maximum t-statistic value over the whole connections
is above the observed maximum t-statistic value. Any t-statistic value below

http://www.mrtrix.org
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−4.05 and above 3.96 is statistically significant at 0.05 (Fig. 4). The statistically
significant connections are shown in Fig. 5.

Fig. 4. The empirical distributions of minimum t-statistic (dotted blue) and maximum
t-statistic (solid red), which do not follow well known statistical distributions. The
proposed method is used to compute the multiple comparisons corrected p-value. (Color
figure online)

Fig. 5. t-statistic map (female − male). Only the connections that are statistically
significant (thresholded at −4.05 and 3.96) after multiple comparisons correction at
0.05 are shown. Females have more connections in most parts of the brain while males
are more connected in the frontal regions of the brain.

Sex Difference in Connectivity. Females have far more connections in most
parts of the brain while males have more connections in the frontal regions of the
brain. Females also have more bilateral connections between the hemispheres.
This indicates that females use the both sides of the brain while males only use
one side of the brain. Females have more connections in the limbic structures that
regulate emotions. Males have more connections between the back and frontal
regions. Our findings are consistent with the previous structural connectivity
study [15].

5 Discussion

Although we did not show here, it is also possible to construct incremental
procedures for computing other test statistics such as F -statistic and Hotelling’s
T 2 statistic over random transpositions. These problems are left as future studies.
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Compared to other approximate strategies for the permutation test, the pro-
posed method is assumption and model free. The tail approximation method in
[24] has parametric model assumptions to fit the tail regions, so the tail of the
distribution needs to follow some specific pattern. On the other hand, the pro-
posed method has no assumption on the distribution other than permutability
between the groups and offers far more flexibility than [24].

We did not perform the comparisons between the methods in the real data
since there is no ground truth. Thus the comparisons were done on the simula-
tion, where the ground truths are exactly given.
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Abstract. Autism is increasing in prevalence and is a neurodevelopmen-
tal disorder characterised by impairments in communication skills and
social behaviour. Connectomes enable a systems-level representation of
the brain with recent interests in understanding the distributed nature
of higher order cognitive function using modules or subnetworks. By
dividing the connectome according to a central component of the brain
critical for its function (it’s hub), we investigate network organisation
in autism from hub through to peripheral subnetworks. We complement
this analysis by extracting features of energy transport computed from
heat kernels fitted with increasing time steps. This heat kernel frame-
work is advantageous as it can capture the energy transported in all
direct and indirect pathways between pair-wise regions over ’time’, with
features that have correspondence to small-world properties. We apply
our framework to resting-state functional MRI connectomes from a large,
publically available autism dataset, ABIDE. We show that energy prop-
agating through the brain over time are different between subnetworks,
and that heat kernel features significantly differ between autism and
controls. Furthermore, the hub was functionally preserved and similar
to controls, however, increasing statistical significance between groups
was found in increasingly peripheral subnetworks. Our results support
the increasing opinion of non-hub regions playing an important role in
functional organisation. This work shows that analysing autism by sub-
networks with the heat kernel reflects the atypical activations in periph-
eral regions as alterations in energy dispersion and may provide useful
features towards understanding the distributed impact of this disorder
on the functional connectome.
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1 Introduction

Autism spectrum disorder is a neurodevelopmental condition estimated to affect
1 in 59 children in the US [2]. It is characterised by atypical social behaviour
and sensory processing, with deficits in high-level cognitive function and mental
flexibility [16,22]. It has also been increasingly suggested that the neural bases
of autism may not be explained by specific regions, but by aberrant connectivity
within and between functional modules [16,19].

Thus strategies to interrogate brain connectivity in autism have evolved from
specific tract analysis to connectomes. This connectome approach recognises
the distributed nature of higher order cognitive functions. Recent approaches
have been to identify modules or subsets of regions that are most critical for
efficient network function [18,26,27] and which exhibit specialisation for spe-
cific processes [11]. For one such approach, inter-connected brain regions of
high functional or structural connectivity are considered to form a collection
of core “hubs”, a subnetwork that is essential for efficient cognitive function.
Such hubs are the first to develop and present at birth, with strong similarity
to adults [12,14]. Other regions that form later during development around the
hubs constitute the “feeder” and “seeder” subnetworks [15,24]. Grouping con-
nections into subnetworks allows interrogation of the relative importance of each
subnetwork in characterising a disorder, such as autism, providing information
on changes in the fundamental core of a network compared to secondary mal-
adaptive changes that potentially give rise to cognitive dysfunction [3,4,28,30].

Studies using subnetworks often compare measures of density or connectiv-
ity strength [8,30], or traditional network metrics [3,24]. With brain function
potentially being supported by coordinated activity between different functional
modules, recent methods have sought to capture these dynamic processes [13,16].
Here, we propose to use heat kernels, a diffusion model, on resting-state func-
tional MRI (rs-fMRI) data to extract features of energy transport [5,6]. The heat
kernel describes the effect of applying a heat source to a network and observ-
ing the diffusion process over ’time’. It encodes the distribution of energy over
a network and characterises the underlying structure of the graph [7,31]. Heat
kernels have been applied to connectomes to investigate atrophy patterns in
Alzheimer’s [21], mappings between functional and structural connectomes [1]
and for predicting motor outcome in preterm infants [6].

In this work, we present an edge-centric analysis where energy propagation
features are computed from rs-fMRI hub-stratified subnetworks. These heat ker-
nel features are then compared between a large, multi-centre cohort of autism
and control subjects. By combining a dynamic network model with hub analy-
sis, our aim is to better understand the vulnerability of and interplay between
subnetworks in autism.



56 M. D. Schirmer and A. W. Chung

2 Materials and Methods

2.1 Subjects and rs-FMRI Data Preprocessing

We used rs-fMRI data from the Autism Brain Imaging Data Exchange (ABIDE)
initiative [10], comprising of typically-developing controls (n = 440) and subjects
with autism (n = 379). Data were preprocessed with the ABIDE Connectome
Computation System pipeline. In brief, preprocessing steps included: removal
of spikes, with slice timing and motion correction, removal of mean CSF and
white matter signals, and detrending of linear and quadratic drifts. Band-pass
temporal filtering (0.01–0.1 Hz) was applied after the above nuisance variable
regressions. The global mean signal was not regressed from the data. rs-fMRI
data were registered to the MNI template and signals averaged into regions
according to the AAL atlas. The pre-processed timeseries was demeaned, and a
covariance matrix [29] was computed for each subject. Omitting brainstem and
cerebellar regions resulted in a 90 × 90 connectivity matrix for each subject.

2.2 Group Connectomes, Hub Organisation and Subnetworks

Group Connectome. A group-averaged network was computed from only
the control population. The absolute of the connectivity matrix was taken and
thresholded to retain values greater than 0.05 to remove spurious associations.
A binarised, group-average adjacency matrix, Wgroup, was then computed by
retaining edges in at least 75% of the control group.

Hub Organisation and Defining Subnetworks. Hub regions were identi-
fied from Wgroup by selecting the top ten nodes with the greatest strength [8].
Network edges are then labelled into subnetworks based on their connection
to the hub nodes [24]: Hub subnetwork - Contains edges connecting two hub
nodes; Feeder subnetwork - are edges connecting hub to non-hub nodes; and
Seeder subnetwork - have edges connecting two non-hub nodes. We include a
fourth ‘Non-edge subnetwork’, comprising of the remaining entries in the net-
work which do not have an actual connection. These four subnetworks form the
’regions-of-interest’ to group the edge-based, heat kernel features for analysis.

2.3 Computing Heat Kernels and Their Features

The following computations are performed on a network W for each subject (in
both control and patient groups) found by multiplying their respective covariance
matrix with Wgroup.

Graph Notation. G = (V,E) where V is the set of |V | nodes on which a graph
is defined and E ⊆ V × V the corresponding set of edges. A subject’s weighted
matrix, W, is defined as W (u, v) = wuv where wuv is the corresponding edge
strength. A diagonal strength matrix, D, is defined as D(u, u) = deg(u) =∑

v∈V wuv . The Laplacian of G is L = D − W and the normalised Laplacian is
given by L̂ = D−1/2LD−1/2.
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Heat Kernel Features. The heat kernel, H(t), is the fundamental solution to
the standard, partial differential equation of a diffusion process,

∂H(t)
∂t

= −L̂H(t), (1)

and can be computed analytically,

H(t) = exp(−tL̂). (2)

H(t) describes the flow of energy through G at time t where the rate of flow
is governed by L̂ calculated from W . H(t) is a symmetric |V | times|V | matrix
where the entry Hu,v(t) represents the amount of heat transfer between nodes u
and v after time t.

Based on heat kernels computed from Eq. 2 for a range of t, several features
can be extracted for each entry in H to represent the dynamic properties of the
network [3]. One measure is the intrinsic time constant, tc, which is the time
when the relative change in heat transfer has dropped below a given percentage.
The tc(u, v) between nodes u and v for percentage threshold s is

tc(u, v) = tmax :
∣
∣
∣
∣
Hu,v(t + Δt) − Hu,v(t)

Hu,v(t)

∣
∣
∣
∣

t2

t1

< s, (3)

where Δt is a time step within the range of t1 ≤ t ≤ t2. The next set of measures
are the maximal energy passed between two regions (maximal value across all
heat kernels)

hpeak(u, v) = max |Hu,t(t)|t2t1 , (4)

and the time that hpeak occurs

tpeak(u, v) = t : hpeak(u, v). (5)

The last set of features represent the maximal difference in energy transferred
between two regions,

h′
peak(u, v) = max |Hu,v(t + Δt) − Hu,v(t)|t2t1 (6)

and the time that h′
peak occurs

t′peak(u, v) = t : h′
peak(u, v). (7)

2.4 Experimental Design

For each subject, 1500 heat kernels were computed from W for t =
[0.00, 0.01, . . . 15.0]. tc was calculated for a range of thresholds s = [2, 3, 4, 5%].
This results in a total of eight features for every edge in E. For each feature,
the mean is calculated from edges belonging to each subnetwork, yielding a final
32 measures for each subject (number of features × number of subnetworks).
Group differences of these 32 measures are tested for using independent t-tests.
Multiple comparisons was accounted for with a Bonferroni corrected significance
threshold of p < 0.05/32 = 0.00156.
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3 Results

Table 1 is an overview of subject demographics. Ages were not significantly dif-
ferent between groups (independent t-test, p = 0.61).

Table 1. Demographics of subjects from ABIDE

Heading level Controls Patients

Number of subjects 440 379

Age (years, mean ± std) 16.27 ± 6.74 16.53 ± 7.54

Age (years, range) 6.47–56.2 7.0–58.0

Regions identified as hub nodes are listed in Table 2. These regions were
predominantly deep grey matter structures and have found to be key hub regions
(e.g. insular, superior medial frontal, supramarginal gyrus) elsewhere [20,23].

Table 2. Identified hub regions in controls.

Regions

Superior medial frontal - Left

Insular - Left

Insular - Right

Putamen - Left

Putamen - Right

Supramarginal gyrus - Right

Rolandic operculum - Left

Rolandic operculum - Right

Figure 1 plots the amount of energy in heat kernels with time, averaged by
subnetwork, for each group. Specifically, it plots the heat kernel value, Hu,v(t),
averaged across all edges within a subnetwork, versus t. The slope and shape
of each curve varies depending on the subnetwork. The non-edge subnetwork
transports the least amount of energy over time, and the remaining subnetworks
all exhibit a peak where energy is maximal at different t. There is also a consistent
difference between groups over time after the peak - patients have lower heat
kernel values than controls in the hub and feeder subnetworks, and the reverse
can be observed in the seeder subnetwork.

Figure 2 plots each of the eight averaged heat kernel features, for all subnet-
works and groups, and Table 3 shows features’ mean (standard deviation) values
and statistical significance levels between groups. There are no significant group
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Fig. 1. Plots of mean values in the heat kernel matrix by subnetwork, with increasing
time for all subjects in each group. Shaded areas represent standard deviations.

differences for all measures in the hub subnetwork, however, the more periph-
eral the subnetwork is to the hub, the greater the number of significant group
differences, and the greater their statistical significance (Table 3). This is most
apparent in tc, irrespective of the threshold s used. Furthermore, the autism
group has greater tc than controls in all non-hub subnetworks. This trend can
be similarly seen for tpeak and t′peak.

4 Discussion

In this work, we presented an rs-fMRI subnetwork analysis comparing features
of energy propagation between autism and controls. More specifically, we investi-
gated how heat kernel derived measures differ between groups in the central func-
tional core of the brain and its peripheral subnetworks. We found no significant
difference in energy transport in hub regions between groups. However, periph-
eral subnetworks differed significantly, with important properties of change in
energy transport occurring at later time points in autism when compared to
controls.

Combining hub-stratified subnetwork analysis with the above heat kernel
framework is a complementary strategy to further our understanding of brain
topology. The strategic importance of hubs for information transport makes
them potentially vulnerable and thus sensitive to disease [9,18,26,28]. Whereas
alterations in the feeder and seeder subnetworks have been viewed as potential
secondary adaptations to disease or injury [3,4,30]. However, analysis treating
subnetworks as separate, standalone, entities with their own topology may be
unrealistic given the highly integrative nature of the brain. Heat kernels provide a
means to incorporate information from the entire network, even when computing
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Fig. 2. Boxplots of mean heat kernel features by subnetwork, for controls versus autism.
* denotes group differences at p < 0.05 and † for statistically significant group differ-
ences corrected for multiple comparisons at p < 0.00156.

edge-wise measures. This is because each element in H represents energy trans-
port through all possible pathways that connect any two regions. It is because
of this that the non-edge subnetwork possesses heat information, and has the
lowest heat kernel value. The non-edge subnetwork is also highly indicative of a
network’s capacity (its small world propensity) for efficient energy propagation
when using heat kernels [6], explaining the greatest significance between groups
of all subnetworks tested in our analysis.

This combined framework revealed a number of interesting findings. The lack
of significant group differences in the hub subnetwork suggests a relatively pre-
served functional core in autism. Subnetwork analysis in other pathologies have
identified core regions to remain similar to controls, whereas peripheral regions
demonstrated greater differences [3,30]. While it has been suggested that the
core is stable in order to support and allow peripheral regions greater flexibility
to meet functional demands [11], others have found atypical functional activation
in the core in the ABIDE cohort against controls [16,17]. Differences in reported
hub connectivity in autism may be attributed to not only the different method-
ologies used, but also because of the many ways to rate a node’s importance to
be labelled as a hub.
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Table 3. Mean (stdev) heat kernel features by subnetwork for Control and autism
groups. Statistically significant group differences are in bold denoted by ∗p < 0.05,
†p < 0.00156 (Bonferroni-corrected threshold), ‡p < 0.0001.

Feature Non-edge Hub Feeder Seeder

Control Autism Control Autism Control Autism Control Autism

tc, 2% 1.207 1.215‡ 0.417 0.418 0.43 0.436* 0.429 0.436†
(0.027) (0.029) (0.037) (0.035) (0.03) (0.036) 0.023 (0.026)

tc, 3% 0.864 0.869‡ 0.3 0.301 0.312 0.316* 0.313 0.317†
(0.019) (0.021) (0.026) (0.025) (0.022) (0.026) (0.016) (0.019)

tc, 4% 0.674 0.679‡ 0.235 0.235 0.245 0.248* 0.247 0.250†
(0.015) (0.016) (0.021) (0.02) (0.017) (0.02) (0.013) (0.015)

tc, 5% 0.554 0.558‡ 0.193 0.193 0.203 0.205* 0.204 0.207†
(0.012) (0.014) (0.017) (0.017) (0.014) (0.017) (0.01) (0.012)

hpeak 0.976 0.974 4.473 4.465 3.747 3.733 4.987 5.005*

(0.032) (0.03) (0.299) (0.303) (0.119) (0.107) (0.101) (0.099)

tpeak 12.84 12.856 3.213 3.159 3.333 3.36 2.679 2.760†
(0.133) (0.142) (0.63) (0.454) (0.547) (0.572) (0.339) (0.385)

h′
peak 0.235 0.235 5.988 5.985 5.729 5.733 8.629 8.641

(0.007) (0.007) (0.43) (0.424) (0.246) (0.248) (0.113) (0.108)

t′
peak 3.937 4.018† 0.067 0.069 0.142 0.157 0.155 0.175†

(0.294) (0.306) (0.119) (0.112) (0.099) (0.119) (0.079) (0.091)

In terms of peripheral subnetworks, the recruitment of more seeder regions
has been found in long, indirect functional pathways in autism than in con-
trols [16]. The authors suggest this may be indicative of diminished segregation
between core and peripheral subnetworks. It is thus interesting that the more
peripheral the subnetwork, the greater the statistical significance of our group
differences measured by heat kernel features. This result in non-hub regions was
also accompanied by greater values in autism than in controls for all time related
features. Suggesting that while heat kernel values have a similar profile in both
subject groups (Fig. 1), the extracted features quantifying properties of these
curves appear at a later t in autism. As it stands, we cannot ascertain what
these changes in the heat kernel features and their timings represent, but taken
all together, our results suggest greater involvement from peripheral, rather than
hub regions in autism.

There are limitations to our study, one of which is the broad age range
in the ABIDE dataset. It is important to understand the potential impact of
age on our results, particularly as the age range encompasses a period of great
neurodevelopmental change from childhood through to early adulthood. Another
is our use of node strength to identify hubs when a measure which includes
information on shortest path lengths such as betweenness centrality may be
more relevant, even though there is great overlap between hubs found using
both metrics on ABIDE data [17]. Future work will take these limitations into
consideration and incorporate other methods to determine nodal importance
[25,27].
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In this study, we present a novel analysis by combining two complementary
frameworks of energy propagation and subnetworks to investigate differences in
network efficiency in a large autism and control dataset. Overall, we identify
significant group differences in all peripheral subnetworks (feeder, seeder, non-
edge) and a preserved central hub in the autism group, further supporting the key
role that non-centralised regions play in brain functional organisation. How these
energy transport features in the peripheral subnetwork are related to cognitive
function and their association with clinical measures in autism remain to be
determined.
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Abstract. Functional connectivity derived from functional magnetic
resonance imaging data has been extensively used to characterize indi-
vidual and group differences. While these connectomes have traditionally
been constructed using resting-state data, recent work has highlighted
the importance of combining multiple task connectomes, particularly for
identifying individual differences. Yet, these methods have not yet been
extended to investigate differences at the group level. Here, we propose a
mass multivariate edge-wise approach to improve the detection of group
differences by combining connectomes from multiple sources. For each
edge, the magnitude of connection strength from each of multiple con-
nectomes are included in statistical hypothesis testing. We evaluate the
proposed approach by estimating sex differences in two large, publicly
available datasets: the Human Connectome Project and Philadelphia
Neurodevelopmental Cohort. Results indicate the proposed mass multi-
variate edge-wise analysis offers improved detection of group differences
compared to univariate analysis, and support the utility of combining
multiple connectomes to improve detection of group differences.

1 Introduction

Functional connectomics derived from functional magnetic resonance imaging
(fMRI) is a powerful framework to elucidate individual and group differences
in brain organization [1]. While connectomes are traditionally generated from
resting-state data [2], recent work has shown that connectomes generated from
task data offer a significant improvement in detecting individual and group dif-
ferences [3,4]. Furthermore, combining multiple task connectomes per subject
further increases the amount of information useful for detecting these differences
[5]. However, these methods have only been used in the context of characteriz-
ing individual differences, not group differences. Thus, there remains a need to
c© Springer Nature Switzerland AG 2019
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develop methods that combine connectomes from multiple sources in the context
of detecting group differences.

To address this need, we extended a traditional mass univariate edge-wise
approach (c.f. [6]) to perform multivariate inferences that include, for each edge,
the connectivity strengths of all tasks. We label this approach “mass multivariate
edge-wise analysis”. We compared our multivariate approach for detecting group
differences to the traditional mass univariate approach using task connectomes
and the general functional connectivity approach for combining multiple task
connectomes into a single connectome using the Human Connectome Project
(HCP) and Philadelphia Neurodevelopmental Cohort (PNC) datasets [7,8]. We
hypothesize that the proposed mass multivariate approach will detect a greater
number of edges exhibiting significant sex effects in comparison to the competing
methods. Together, our results support the utility of combining multiple task
connectomes to improve the detection of group differences.

2 Related Works

Efforts aimed at combining connectomes from multiple sources is an active field
of research. Although an exhaustive review of this field is outside the scope of this
paper, we briefly highlight some relevant work. Several studies have combined
structural connectomes from diffusion tensor imaging (DTI) with functional con-
nectomes [9,10]. Similarly, work has been done to combine connectomes derived
from electroencephalogram (EEG) and fMRI data [11]. Yet, combining multiple
connectomes from different tasks has received less attention. To our knowledge
only three approaches, based on canonical correlation analysis, ridge regression,
and averaging connectomes, respectively, have been proposed [3,5].

3 Methods

In this section, we derive our proposed mass multivariate edge-wise analysis.
First, we briefly review multivariate hypothesis testing using the Hotelling’s T2

test in Sect. 3.1; second, we discuss univariate edge-wise analysis in Sect. 3.2;
and, finally, we propose our mass multivariate edge-wise analysis in Sect. 3.3.
Figure 1 shows an overall schematic of the two analyses.

3.1 Hotelling’s T2 Test

Briefly, the t-test is a statistical method to determine if the means of data
from two different groups differ from each other. The Hotelling’s T2 test is a
generalization of the t-test that allows for multivariate, rather than univariate,
hypothesis testing. For a t-distribution, a confidence interval for a sample of size
n, standard deviation of s, and significance level of α is defined as:

x̄ ± t1−α/2,n−1
s√
n

(1)
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Fig. 1. Mass multivariate edge-wise analysis pipeline. Common preprocessing steps:
(A) fMRI data consisting of k tasks acquired from two groups (e.g. males and female)
of participants;(B) parcellate the brain into N nodes; (C) average timeseries for each
node; (D) generate connectomes xi ∈ R

N×N for each task and participant using the
time series; Mass Univariate Edge-wise Analysis: (E) independently for each task con-
nectome, create a vector connectivity strength across all participants for each edge;
(F) apply a t-test on these vectors and corresponding labels y ∈ {0, 1}; (G) perform
hypothesis testing and multiple comparison correction using a priori thresholds; Mass
Multivariate Edge-wise Analysis: (H) stack all k connectomes X ∈ R

k×N×N , creating a
matrix of connectivity strength across all participants for each; (I) apply a Hotelling’s
T2 on X[:, i, j] and y ∈ {0, 1}; (J) perform hypothesis testing and multiple comparison
correction using a priori thresholds.

where t1−α/2,n−1 is 1 − α/2 fraction of t-distribution with n − 1 degrees of
freedom. In other words, with 1−2× α

2 trials, the true mean spans in this interval.
To test if the sample mean has a value of μ0 based on null-hypothesis, we need
to verify T = (x̄−μ0)/(s/

√
n) < tα/2,n−1 or T = (x̄−μ0)/(s/

√
n) > t1−α/2,n−1.

We can re-write T 2 = n (x̄−μ0)
2

s2 and compare with squared form of t-distribution.
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Given that x̄ = (x̄1, x̄2, .., x̄k) is a vector of k normally distributed variables
and µ0 = (μ0

1, μ
0
2, .., μ

0
k) are the corresponding means, we define:

T 2 = n(x̄ − µ0)S
−1(x̄ − µ0) (2)

where S is the variance-covariance matrix. Equation 2 is exactly comparable to
the ratio of between group variance n(x̄−µ0)(x̄−µ0)/(m−1) and within group
variance

∑
i Si/m. For hypothesis testing, Hotelling’s T2 is first transformed into

an F -statistic using F = n1+n2−p−1
p(n1+n2−2 T 2 ∼ Fp,n1+n2−p−1. The null hypothesis at

a chosen significance level is rejected if the calculated value is greater than the
F -table critical value. Rejecting the null hypothesis means that at least one of
the parameters, or a combination of one or more parameters working together,
is significantly different between the groups.

While mathematically similar, a Hotelling’s T2 test has a major advantage
over a t-test [12]. Since a single comparison is made in the former test, the Type
I error rate is well controlled and the relationship between multiple variables
is taken into account. In summary, a t-test will denote which variables differ
between groups; while a Hotelling’s T2 summarizes the between-group differ-
ences.

3.2 Mass Univariate Edge-wise Analysis

Using a single connectome for each participant as input, mass univariate edge-
wise analysis involves performing a statistical test (typically, a t-test) to inde-
pendently compare groups for each edge in a single connectome [6]. This results
in a “difference matrix” of test statistics, representing the magnitude of group
difference at each edge of that connectome. Multiple comparison correction for
the N×(N−1)

2 comparisons needs to be applied, where N is the number of nodes
in the parcellation. Finally, for each edge, the null hypothesis can be rejected if
the test statistic is greater than the critical value. Figure 1E-G shows an overview
of the mass univariate edge-wise analysis.

3.3 Mass Multivariate Edge-wise Analysis

The proposed mass multivariate edge-wise analysis is a multivariate extension of
the univariate approach. Using multiple task connectomes for each participant
as inputs, this multivariate analysis involves performing a multivariate test (e.g.
Hotelling’s T2) on connectivity strength for all tasks to create a “difference
matrix” of test statistics. In this manner, the connectivity strength of an edge
for each task is included in statistical testing. The “difference matrix” can then
be corrected for multiple comparisons as above and thresholded for statistical
significance. Post-hoc univariate tests (e.g. t-test) can be performed on each
individual connectome to determine which task or tasks most likely contributed
to edges exhibiting significant differences. Figure 1H–J shows an overview of the
proposed mass multivariate edge-wise analysis.
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4 Experiments

4.1 Datasets

We used two standard datasets in our analysis: the Human Connectome Project
(HCP) and Philadelphia Neurodevelopmental Cohort (PNC) [7,8] (see Table 1).
We narrowed the participants into the set of participants with mean frame-to-
frame displacement less than 0.1 mm and maximum frame-to-frame displacement
of less than 0.15 mm. The HCP dataset consists of 9 tasks: gambling (gam), emo-
tion, language, motor, relation, social, working memory (wm), and two resting-
state runs (rest1, rest2). The PNC dataset consists of three tasks: emotion, wm,
and a resting-state run.

Table 1. Characteristics for the HCP and PNC datasets.

ID Collection #male #female Size age #tasks

HCP Human Connectome Project 241 274 515 28± 3.98 9

PNC Philadelphia Neurodevelopmental Cohort 251 320 571 15± 3.65 3

4.2 Preprocessing

For the HCP dataset, we started with the minimally preprocessed HCP data [13].
For the PNC dataset, functional images were slice-timed and motion-corrected
and registered into common space as previously described [4]. Further prepro-
cessing steps were performed using BioImage Suite [14]. These included regress-
ing 24 motion parameters, regressing the mean time courses of the white matter,
CSF, and grey matter, removing the linear trend, and low-pass filtering.

Regions were delineated according to the Shen atlas [15]. This atlas, defined
in an independent dataset, provides a parcellation of the whole gray matter
(including subcortex) into 268 contiguous, functionally coherent regions. These
nodes have also been grouped into 10 functionally coherent “networks”. For
each scan, the average timecourse within each region was obtained, and the
Pearson’s correlation between the mean timecourses of each pair of regions was
calculated. These correlation values provided the edge strengths for a 268 ×
268 symmetric correlation matrix for each combination of subject, session, and
run. These correlations were converted to be approximately normally distributed
using a Fisher transformation.

4.3 Evaluation and Competing Methods

Using the HCP and PNC datasets, we evaluated our mass multivariate edge-wise
analysis by quantifying the number of edges exhibiting significant differences
between males and females. Significance was defined as q < 0.005 using the
Storey procedure for positive False Discovery Rate (pFDR) correction [16].
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We compared the number of significant edges between male and female par-
ticipants detected by our mass multivariate edge-wise analysis to the number of
significant edges detected by three competing approaches. First, we performed a
standard mass univariate edge-wise analysis (as described in Sect. 3.2) for each
task connectome, independently. For each task, we quantified the number of
edges that exhibited significant differences after correcting for multiple compar-
isons using pFDR. These results provide a baseline for the amount of significant
differences detectable in each connectome. Second, we quantified the union of
the significant edges from each task from the first comparison approach. This
result produces a comparison for the number of significant edges when naively
combining information across all tasks. Third, we combined all task connec-
tomes using the general functional connectivity method from [3] (i.e. averaging
all connectomes), performed a standard mass univariate edge-wise analysis on
this averaged connectome, and quantified the number of edges that exhibited sig-
nificant differences after correcting for multiple comparisons using pFDR. This
result produced a comparison for the number of significant edges when combining
information across all tasks with a previously published method [3].

We would like to note that results based on independently performed mass
univariate edge-wise analyses (i.e. the first and second competing approaches
from above) do properly control for type I error as multiple comparison cor-
rection is only performed on independent analyses, not accounting the multiple
tasks. This will inflate the number of edges detected with these approaches. How-
ever, type I error is well controlled for our mass univariate edge-wise analysis as
connectomes are combined for a single comparison.

4.4 Visualization of Anatomical Locations of Significant Edges

To visualize anatomical locations of significant edges, we used stacked area plots
to explain the probability of finding a significant edge in the network of interest.
The 268 nodes were grouped into 10 networks for visualization: limbic system
(Limb), default mode network (DMN), cerebellum (CBL), basal ganglia (BG),
mediofrontal cortex (MF), motor areas (Mot), subcortical areas (Sc), visual
association (VAs), visual-I (VI), visual-II (VII). Within a network of M nodes,
the hypergeometric distribution gives the probability of finding a sex difference
among all

(
M
2

)
possible edges [17,18]). This is exactly analogous to the tradi-

tional example of drawing, without replacement, a white ball from a bag of
(
M
2

)

white balls and
(
N
2

) − (
M
2

)
black balls, where M is the number of nodes in a

given network and N is the total number of nodes in the connectome.

5 Results

First, we compared the number of edges that were found to significantly differ
between male and female participants as a result of the multivariate analysis
with the number of edges that differed for each individual task in the univari-
ate analysis (Table 2). A greater number of edges were found to differ between
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groups when combining all connectomes compared to any single connectome. In
the HCP dataset, the proposed multivariate approach detected significant sex
effects in approximately 28% of the total number of edges; whereas, in the PNC
dataset, the proposed multivariate approach detected significant sex effects in
approximately 4.5% of the total number of edges.

Next, we compared the number of significant edges for the proposed multi-
variate approach with two competing approaches that also combine all connec-
tomes (Table 3). Our mass multivariate approach resulted in the greatest number
of significant edges in HCP dataset. Yet a mass univariate edge-wise analysis on
the mean connectome across tasks resulted in the greatest number of significant
edges in the PNC dataset.

Table 2. The number of edges exhibiting significant differences between male and
female participants for both univariate and multivariate approaches. For each task
in the univariate approach, differences between groups were calculated for each con-
nectome individually. For the multivariate approach, differences between groups were
calculated using all task connectomes together. Significance was defined as q < 0.005
corrected for multiple comparisons using pFDR. Bold numbers show the rows with
greatest number of significant edges.

Task #sig %conn Task #sig %conn Task #sig %conn

HCP gam 1355 3.79% HCP motor 1095 3.06% PNC emotion 1131 3.16%

rest1 3331 9.31% relation 716 2.00% wm 883 2.47%

rest2 2207 6.17% social 1069 2.99% rest 225 0.63%

language 1315 3.67% wm 1873 5.23% multivariate 1592 4.45%

emotion 1695 4.74% multivariate 9940 27.78%

Table 3. The number of significant edges for the ‘union’ (univariate) column are
based on the union of all significant edges each individual univariate edge-wise analysis.
The number of significant edges for the ‘mean’ (also univariate) column are based
on the univariate edge-wise analysis using the average connectome of all tasks. The
number of significant edges for the multivariate column are based on the proposed
mass multivariate edge-wise analysis. Significance was defined as q < 0.005 corrected
for multiple comparisons using pFDR. Bold numbers show the approaches with greatest
number of significant edges.

Union Mean Multivariate

HCP #sig 8091 5701 9940

%conn 22.61% 15.93% 27.78%

PNC #sig 1740 1920 1590

%conn 4.86% 5.36% 4.44%
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Fig. 2. Area plots for within networks Fig. 2a and b, and between networks Fig. 2c
and d. The horizontal axis shows network names and vertical axis shows the value of
the hypergeometric function [17,18]. Networks are sorted according to the cumulative
values across tasks.

Last, we investigated the anatomical locations of the significant edges
detected using the proposed approach. The MF, FP, and BG networks had the
greatest total number of significant edges, while the VAs and VII networks had
the fewest (Fig. 2a–b). The DMN and FP showed the most consistent between-
network association in the HCP dataset, while the Limb and MF networks show
the most consistent between network associations in PNC dataset (Fig. 2c–d).

6 Discussion and Conclusions

In this work, we proposed a method to combine connectomes from multiple
sources in the context of detecting group differences. To accomplish this, we
extended a traditional mass univariate edge-wise analysis by incorporating mul-
tivariate statistics, where, for each edge, the connectivity strength for each task
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is included in hypothesis testing. While connectomes derived from fMRI are
typically generated from resting-state data, in this paper, we have shown that
combining connectomes generated from multiple sources increases the amount
of information useful for characterizing group differences. These results are in
agreement with the recent work which has shown that connectomes generated
from task data offer a significant improvement in detecting individual and group
differences [3,4]. Furthermore, our results suggests that combining multiple con-
nectomes derived from tasks that tap into multiple cognitive dimensions offers
greater power than using a connectome from a single source. Although our mass
multivariate edge-wise analysis performed better than the competing methods
in the HCP dataset, this was not the case for the PNC dataset. One reason for
these diverging results is the higher number of tasks in the HCP compared to the
PNC dataset. Future work will include investigations into the optimal number
of connectomes for mass multivariate edge-wise analysis. Additional future work
will involve extending our mass multivariate edge-wise analysis to use multivari-
ate analysis of variance (MANOVA)–the multivariate extension of an analysis of
variance (ANOVA)–to compare multiple groups. Finally, our mass multivariate
edge-wise analysis generalizes across different sources of connectomes as long as
all connectomes have the same size. We will explore incorporating structural con-
nectomes generated from DTI data and functional connectomes generated from
EEG data. In conclusion, our results support the utility of combining multiple
task connectomes to improve the detection of group differences.
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Abstract. Cortical Morphological Networks provided unprecedented
insights into connectional brain alternations in patients diagnosed with
mild cognitive impairment (MCI) and, in combination with deep learn-
ing techniques, they can further be utilized to build computer-aided MCI
diagnosis models. In this paper, we introduce Adversarial Connectome
Embedding (ACE) architecture, which is rooted in graph convolution and
adversarial regularization to learn relevant connectional features for MCI
classification. Existing connectome-based embedding methods for exam-
ining the healthy and disorder brain connectivity generally rely on vector-
izing the connectivity matrix and use typical Euclidean embedding meth-
ods (e.g., principal component analysis), which work best in Euclidean
spaces such as images. On the other hand, a connectome, which is mod-
eled as a brain graph or network, lies in a non-Euclidean space. Hence,
the connectome vectorization might cause losing its topological structure
which can be leveraged to boost brain graph classification for diagnosis.
To fill this gap, we leverage geometric deep learning, a nascent field which
extends deep Euclidean feature representation learning to non-Euclidean
spaces. First, we propose to use a geometric autoencoder with graph con-
volutional layers to learn a latent brain connectivity representation (i.e.,
embedding) that exploits the connectome topology. Secondly, we utilize
an adversarial regularizing network which forces the learned latent dis-
tribution to match the prior distribution of the connectomes. Finally, we
feed the adversarially regularized latent connectome embeddings to train
a linear classifier for diagnosing MCI patients. ACE achieved the best
classification results across different connectomic datasets for MCI ver-
sus Alzheimer’s disease classification in comparison with typical graph
embedding techniques.
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networks · Mild cognitive impairment diagnosis · Geometric deep
learning · Brain connectivity classification

c© Springer Nature Switzerland AG 2019
M. D. Schirmer et al. (Eds.): CNI 2019, LNCS 11848, pp. 74–82, 2019.
https://doi.org/10.1007/978-3-030-32391-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32391-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-32391-2_8


Adversarial Connectome Embedding Using Cortical Morphological Networks 75

1 Introduction

Dementia is an umbrella term used to describe a decline in mental ability, which
may result in loss of capacity to complete daily tasks. The most common type
of dementia is Alzheimer’s Disease (AD), accounting for 60 to 80% of cases. The
evolution of the disease is divided into three stages, with the late stage being
the most severe. In the final stage of the disorder individuals may lose aware-
ness of their surroundings, experience difficulties in physical activities such as
walking, sitting and swallowing, have problems in communicating properly, and
are, therefore, in need of constant personal care [1]. Due to the severity of these
symptoms, it is a crucial task that early diagnosis of dementia, especially late
mild cognitive impairment (LMCI), is given to the patient in order to prevent
progression into AD. In order to achieve this, machine learning methods have
utilized magnetic resonance imaging (MRI) scans, providing an effective and
non-invasive facility to diagnose a variety of neurological disorders. In particu-
lar, the connectome is a graph-based representation of the brain wiring derived
from MRI data such as resting-state functional MRI (rsfMRI). Furthermore, the
connectome allows to efficiently map neural connections within an organism’s
nervous system and provides an effective and systematic way to extract con-
nectional features encoding the relationship between pairs of regions of interest
(ROIs) of the brain in both health and disease. These features can be utilized
in numerous applications regarding medical imaging and can provide an enor-
mous assistance to medical professionals working in diagnostics of neurological
disorders to develop connectivity-targeting treatments.

Brain disorders alter the brain construct in neural activity, which can be
quantified using functional magnetic resonance imaging (MRI), as well as brain
morphology, which can be measured using structural T1-weighted MRI. There-
fore, constructing a model that can accurately distinguish MCI from AD will
enable the development of precise treatments for each form of brain dementia.
Nevertheless, disentangling dementia brain states remains a challenging classi-
fication problem. To mitigate this issue, examining cortical measures derived
from the multi-folded surface of the cerebral cortex for dementia state identi-
fication, such as the cortical thickness, has been presented in several previous
studies [2,3]. For example, Frisoni et al. demonstrated that AD subjects show
reduction in cortical thickness compared with control subjects [4]. Nevertheless,
these methods were reliant on volumetric thickness analysis, despite there being
that AD alters the shape of cortical regions as well [5]. As a result, other studies
explored cortical thickness using surface-based methods involving spectral shape
description [6], or combining shape-derived features with voxel features [7]. How-
ever, these techniques only considered vertex-level morphological features. To
address these limitations, recent works [8–11] proposed cortical morphological
networks (CMN) derived from T1-w MRI and estimated using different cortical
attributes (e.g., cortical thickness) to model the co-regional changes in brain
morphology. Although CMN presents a higher order representation of brain
morphological changes in comparison with region-wise cortical measurements,
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it remains a shallow graph-based representation of the brain complexity as a
system.

Most of the existing studies overlooked the deep and hierarchical topolog-
ical properties of brain connectivity. In fact, traditional classification methods
use feature extraction from connectome vectorization and then train a classifier
(e.g., support vector machines (SVM)) for classification. These techniques rely
on mathematical transformations that do not take advantage of the topological
structure of the graph. Recently, new methods, especially in the emerging field of
geometric deep learning, such as Graph Convolutional Networks [12], attempted
to solve this issue by introducing a new type of convolutional and deconvolutional
layers, which operate directly on graphs, thus learning deep graph embeddings
that are more in line with the graph representation. In particular, more recently,
adversarially regularized graph autoencoder for graph embedding [13] was intro-
duced, which designs an autoencoder using graph convolutional layers to extract
latent codes (i.e., embeddings) combined with an adversarial regularization to
exploit the features. Inspired from [13], we propose Adversarial Connectome
Embedding (ACE), which learns a deep connectome representation via a graph-
based encoding and decoding steps. Specifically, ACE comprises stacked graph
convolutional layers and a discriminator network, normally included in adver-
sarial methods, in order to force the distribution of the learned latent embed-
dings to match the distribution of the input data. Next, we leverage the learned
connectome embeddings to train a linear SVM classifier using different CMNs.
Our method boosted LMCI/AD classification accuracy compared to traditional
methods such as connectome vectorization and using a Euclidean dimensionality
reduction technique (e.g., principal component analysis (PCA)).

2 Method

In this section, we elaborate over the details of our proposed method. In Fig. 1,
we display a chart of ACE classification pipeline. Our method is based on three
fundamental steps: (A) learning of latent connectome embedding, which con-
sists of an autoencoder with stacked graph convolutional layers, (B) adversarial
regularization of the distribution of the latent embeddings, which is achieved
by using a discriminator network, commonly used in generative adversarial net-
works (GAN) Networks (GANs), and (C) classification using linear SVM, which
is a commonly-known method for classification.

A- Connectome Embedding Learning. In this step, we root our framework
in the recently designed graph-based autoencoder network [13], which is an unsu-
pervised graph representation learning technique. The proposed ACE network
(Fig. 1) takes brain connectivity matrices as inputs and learns their correspond-
ing embeddings via a graph convolution-based encoder, which are next decoded
using a graph deconvolution based decoder for brain connectivity reconstruction.
Specifically, the encoding network operates as a Graph Convolutional Network
(GCN) and is created by stacking Graph Convolutional Layers. These Layers
introduce learnable filters utilized for feature extraction on graphs and they are
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constructed to adapt in a way that considers the topological construction of a
graph, rather than disregarding it completely such as filters used for Euclidean
data would normally do. GCN functions are defined using convolutions of graph
data in the spectral domain to learn a layer-wise representation expressed by a
spectral convolution function fφ(Z(l),A|W(l)).

The function fφ is specified as follows:

fφ(Z(l),A|W(l)) = φ(˜D− 1
2 ˜A˜D− 1

2Z(l)W(l))

Where φ is the activation function of the (l)th layer. ˜A = A + I, where I is the
identity of the adjacency matrix A, and ˜Dii =

∑

j
˜Aij . Concerning our problem,

we are more interested in learning topological features, since the elements of the
input connectivity matrices represent morphological dissimilarity between brain
regions of interest (ROIs) and our nodes contain no features. Graph convolutional
layers are suitable for this application. Specifically, in our encoding part of the
network we specify two layers as follows:

Z(1) = fReLU (Z,A|W(0)); Z(2) = flinear(Z(1),A|W(1)),

Where W is the weight matrix used to learn the graph convolution filter for each
layer. Z(1) and Z(2) are the learned embeddings of the corresponding layers l = 1
and l = 2. In addition, the activation function used in our network is a rectified
linear unit (ReLU (.)). On the decoding part of the autoencoder, we attempt to
reconstruct the image by computing each of the weights of the edges between
nodes i and j of the connectivity matrix, which is mathematically formalized as
follows:

Dec(Â|Z) = sigmoid(z�
i , zj)

Where z is the learned connectome embedding in the low-dimensional space,
zT denotes its transpose and Â is the reconstructed version of A. We apply
sigmoid function to obtain the reconstructed graph. The reconstruction error to
minimize is calculated by:

L0 = Eq(Z|X,A)[log P (˜A|Z)]

Where the graph convolutional encoder q(Z|X,A) = G(Z,A) encodes the rep-
resentation Z(2). Each connectome embedding is learned in such a way so that
the reconstructed connectome is as close as possible to the original connectome.
Nevertheless, this form of training can lead to the latent distribution deviating
immensely from the prior distribution. The usage of the autoencoder alone may
lead to overfitting and thus lower accuracy rates for our model. Consequently,
a form of regularization is required to mitigate the overfitting and boost the
accuracy rates.
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B- Adversarial Regularization. In the spirit of [13], we force the latent
embeddings to match the prior distribution by using adversarial regularization.
We achieve this by using a discriminator network, which is based on the mul-
tilayer perceptron (MLP) and is constructed from regular dense layers, where
the final layer consists of only one output. A discriminator is often employed in
GANs where it is trained to discriminate between the created samples provided
by the generator and real samples of the dataset, thus, forcing the constructed
samples to resemble the real ones. In our case, we are trying to force the latent
distribution to resemble the prior distribution. Therefore, the output of the dis-
criminator is used to distinguish whether a distribution comes from a latent
embeddings (fake) or a prior distribution (real). This regularizes the learned
embedding and aligns it better with the data prior distribution, which results in
lower reconstruction errors for the test set. This regularization step is based on
a general cross-entropy loss function, which is typically adopted in adversarial
models. The loss is computed as follows:

−1
2
Ez∼pz

[log D(Z)] − 1
2
EX [log (1 − D(G(X,A)))]

By combining the autoencoder with the discriminator, the training process
can be defined as:

min
G

max
D

Ez∼pz
[log D(Z)] + Ez∼pz

[log (1 − D(G(X,A)))]

Where G(X,A) denotes the generator, X is the node feature matrix, and D(Z)
is the discriminator. The combined losses produce a more refined and optimized
graph embeddings, providing a deep and more relevant representation of the
brain connectome.

C- Classification using SVM. Next, we train a linear SVM classifier to classify
the learned embeddings into two neurological classes: LMCI and AD, which are
difficult to disentangle. In the testing step, we use the trained SVM model to
predict the label for an input connectome embedding.

3 Results and Discussion

Dataset and Benchmarking: In our study, we evaluated our model over 77
subjects (41 AD and 36 LMCI) from ADNI GO public dataset, each with struc-
tural T1-w MR image [14]. Each subject has 3 cortical morphological networks,
each encoded in a symmetric adjacency matrix with size (35×35) [8] and derived
using a specific cortical attribute: (1) maximum principal curvature, (2) corti-
cal thickness, and (3) sulcal depth. We trained our classifier with only CMN
derived from the left hemisphere. ACE is trained sequentially over 5 epochs for
each graph. The model is benchmarked against two other methods which extract
features by vectorizing the brain connectivity matrices. One of the model uses
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plain SVM, whereas the other one leverages Euclidean feature reduction method
prior to SVM training by utilizing principal component analysis (PCA). In our
results, we report the best PCA+SVM performance by varying the number of
dimensions.

Training and Testing Randomization Strategy. We arbitrarily divide the
dataset into training and testing sets, where the testing set is roughly one fifth
of the total dataset. The models are trained and tested by continuously shuffling
and splitting of the dataset over 100 runs. In Fig. 2, the first three charts display
the average classification accuracy of each method over the 100 runs for each of
the 3 CMNs and in the final bar plots we report the average accuracy across all
CMNs.

Fig. 2. Comparison between ACE and vectorized connectomes + SVM –with or with-
out PCA. We display the average classification accuracy for each cortical morphological
network (CMN) and the average for the three models. ACE achieves the best classifi-
cation results in comparison with SVM and PCA+SVM.

Evaluation and Comparison: We compare our method with two other mod-
els: (A) vectorized connectome + SVM (B) vectorized connectome + PCA +
SVM. For connectome vectorization, we simply extract the connectivity values
in the off-diagonal upper triangular part of each symmetric connectivity matrix.
Next, we directly use the vectors for SVM training and classification or we per-
form PCA dimensionality reduction in order to extract relevant features. We
use PCA for dimensionality reduction after we tested it for different numbers
of components and compare our new method with only the highest performing
version of PCA + SVM. The latent embeddings from ACE are learned using
sequential learning. Then, we feed the latent embeddings as inputs for SVM
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training, which predicts the unknown class for the testing set. Clearly, ACE out-
performs the other two methods in two CMNs and matches PCA+SVM in one
CMN. On average, ACE achieves the best classification accuracy in comparison
with baseline methods. This paper is a first proof-of-concept connectome graph
embedding leveraging geometric deep learning outperforms typical Euclidean
data embeddings techniques such as PCA for improving brain state classifica-
tion results.

4 Conclusion

In this paper, we proposed an adversarial connectome embedding framework
rooted in geometric deep learning for late dementia states classification using
cortical morphological networks. Our framework includes an autoencoder, which
consists of graph convolutional layers and adversarial embedded distribution reg-
ularization. The usage of graph convolutional layers for deep graph embedding
allows the learning of deep representative features of the connectome without
discarding its topological properties. Our model outperformed the classical mod-
els which use connectome vectorization, resulting in a loss of the topology of
the connectome. Building on this work and inspired by graph convolution and
adversarial learning, we will further extend the designed architecture to handle
multi-view brain networks for joint embedding and classification.
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Abstract. The goal of functional connectome (FC) fingerprinting is
to uniquely identify subjects based on their functional connectome. In
recent years, interest in this problem has increased substantially with
efforts made to understand the factors that affect the accuracy of fin-
gerprinting and to develop more effective approaches. In this work, we
developed a novel machine learning framework for FC fingerprinting.
Specifically, while existing approaches match a query FC with a refer-
ence FC based on a correlation score between the two FCs, our frame-
work employed a machine learning model to determine if two FCs are
similar. This allowed us to capture more complex features from FCs and
also to capture non-linear similarities that may exist among FCs. We
explored multiple machine learning algorithms that include a Siamese
neural network and several classification algorithms. From our experi-
ments, we observed that the Siamese network outperformed other clas-
sification models, with an FC fingerprinting accuracy of 99.89%.

Keywords: Functional connectivity · Fingerprinting · Parcellation ·
Precision neuroscience

1 Introduction

Functional connectivity (FC) that captures similarity in the blood oxygen level
dependent (BOLD) signal, measured using functional Magnetic Resonance Imag-
ing (fMRI), in different brain regions has emerged as one of the popular frame-
works for analyzing fMRI data [4,5,8,13]. Despite the success of the FC frame-
work in discovering key principles of brain function and dysfunction consistently
at a group level [7,20,23], a major criticism is that there has been little success
in discovering subject-specific principles and in explaining the neural basis of
individual behavior [10,19]. A research direction that has emerged recently to
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address this concern is functional connectivity fingerprinting, where the goal is
to uniquely identify individuals using their FC [11]. Specifically, given a set of n
reference FCs, one from each subject, and an unlabeled ‘query’ FC from one of
these subjects, the goal of FC fingerprinting is to match the query FC with the
reference FC that is also obtained from the same subject.

In the recent years, this problem of FC fingerprinting has gained significant
attention in the neuroimaging community with numerous efforts to quantify FC
accuracy on different datasets [2,3,11,17,24], to study the impact of different
factors (e.g., sample size and granularity) on accuracy [16], to identify elements
of the FC that result in better accuracy [11], and to develop better approaches
for effective fingerprinting [2,3,17]. However, the common framework used by
all these methods involve identification of the matching FC based on correla-
tion between the query FC and the reference FCs. Correlation captures a linear
relationship between two data objects and is not suited to capture similarity in
higher-order transformations of features or to capture any non-linear relationship
that may exist.

In this study we developed a machine learning framework for FC fingerprint-
ing where we replaced the correlation-based matching with a machine learn-
ing (ML) model to determine if two FCs (a query FC and a reference FC)
belong to the same subject. In doing so our framework leverages the advances
in machine learning models to capture more complex scenarios that correlation-
based matching is not designed for. Moreover, we used a neural network frame-
work called a Siamese network, that is capable of learning models to automati-
cally capture similarity and dissimilarity between objects, to accurately perform
FC fingerprinting. We studied the performance of our Siamese network based
fingerprinting approach using fMRI data acquired from the 1200-subjects March
2017 human connectome project (HCP) data release [22]. In addition to using
a Siamese network, we also explored the utility of traditional classification algo-
rithms such as k-nearest-neighbor (kNN), decision trees (DT), and Naive Bayes
algorithm. We observed that our Siamese network outperformed other classifi-
cation models, with an FC fingerprinting accuracy of 99.89%.

The contributions of this work to advances in connectomics in neuorimaging
are multi-fold: 1. A suitable machine learning framework for FC fingerprinting
that can employ any of the traditional classification algorithms; 2. Use of Siamese
network, a neural network model, that is traditionally used for computing simi-
larity and dissimilarity between data objects by automatically constructing the
necessary higher-order features; 3. A systematic comparison of the performance
of our Siamese network with traditional classification models in our machine
learning framework.

The rest of the paper is structured as follows. The datasets used in this study
and the preprocessing steps involved are presented in Sect. 2. An introduction
to our new ML framework, the Siamese network and our experimental setup are
discussed in Sect. 3. Our results are discussed in Sect. 4. Concluding remarks are
presented in Sect. 5.
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2 Data

The fMRI data used in this study was acquired from the 1200-subjects March
2017 human connectome project (HCP) data release [22] which included prepro-
cessed resting state fMRI scans from 1003 healthy young adults (ages 22–35, 469
Male, 534 Female). Under the HCP protocol, all participants provided written
informed consent, and the HCP was approved by the Institutional Review board
at Washington University in St. Louis.

As part of the HCP, four resting-state fMRI scans were collected from each
subject over two days. Two approximately 15 min scans were obtained each day,
a left-to-right (LR) phase-encoded scan and a right-to-left (RL) phase-encoded
scan. For our study, we used the extensively-preprocessed node-timeseries data
made available in the HCP data release. This node-timeseries data was gener-
ated through the HCP preprocessing pipeline which included fMRI preprocess-
ing, artefact removal using independent component analysis (ICA), inter-subject
registration, group principal component analysis (PCA), parcellation through
group-ICA, and dual-regression to compute the time series for each independent
component (IC). Details of these steps are provided in the HCP documentation
[1]. As part of the group-ICA step of this pipeline, different number of ICs have
been derived and as a result node-timeseries are available at different granulari-
ties: 15, 25, 50, 100, 200, and 300. Based on prior studies which showed improved
FC fingerprinting performance at finer parcellation granularity, we used the per-
scan node-timeseries from the 300 ICs [2,16,17]. This data was used as is without
further processing.

3 Methods

3.1 FC Generation

To construct FCs from each subject’s fMRI scan, we computed the Pearson
correlation for each pair of node timeseries and generated a pairwise correlation
matrix. This resulted in 4012 FCs, four for each subject, i.e., one for each scan.

3.2 ML Framework for FC Fingerprinting

Unlike the traditional framework for FC fingerprinting, where the reference FC
with the highest correlation with the query FC is treated as a match, we propose
to use machine learning models to determine if two given FCs are from the
same subject. To this end, we first created a training dataset, where a pair
of FCs [FCa FCb] is treated as one training instance, with a label 0 if they
belong to the same subject and 1 otherwise. We ensured that our training set is
balanced with similar number of 0 instances and 1 instances. We then trained
machine learning models, including Siamese networks (described in Sect. 3.3) and
other traditional classification models (described in Sect. 3.6). We then tested our
models on test instances that comprised of pairs of FCs to predict if each pair
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is from the same subject or not. 5-fold cross-validation accuracy is computed
to assess the performance of our models. The advantage of this ML framework
over the traditional approach is that it leverages machine learning algorithms to
learn the best possible model for fingerprinting.

3.3 Siamese Networks

A Siamese network is a neural network model which allows for the automatic
computation of high-level features optimized for computing similarity or dis-
similarity between two objects (e.g., images or signatures). Siamese network was
originally designed for signature verification [6], later found applications in image
retrieval [18] and more recently for predicting mental illness from an fMRI scan
[14].

A Siamese network is comprised of two components: (1) the feature engineer-
ing component that learns the high-level features critical for assessing similarity
or dissimilarity, and (2) the similarity-computation component where similarity
is computed based on the features engineered by the first component.

In the original Siamese network that takes images as input, the feature engi-
neering component consists of two convolutional neural networks (CNNs) with
linked, identical weights where any change to one CNN is mirrored on the other.
CNNs are known for their ability to automatically learn features from images for
a variety of image processing tasks. To determine whether two input images are
from the same class, one input is fed into one CNN and the other into the other
CNN. Mirrored CNNs allow the same features to be extracted from the two input
images separately. The output features from both CNNs are then fed into the
similarity-computation component. The similarity-computation component can
consist of any function which can compute similarity between two vectors (e.g.,
an L2 norm) or with the help of more complex models (e.g., a fully connected
neural network).

With an appropriate loss function, this architecture trains a single CNN
to produce high-level features which are maximally different between classes
and minimally different within classes. As only a single CNN is trained to pro-
duce high-level features and the CNN is uncoupled from the similarity com-
ponent, a Siamese network can provide additional flexibility by allowing the
data to be pre-processed into high-level features in parallel before the similarity-
computation component and simplifies the prediction pipeline by being pair-
order-independent (i.e., [FCa FCb] and [FCb FCa] are indistinguishable from
one another).

Graph Convolution Networks (GCNs): In a traditional convolutional net-
work, localized features are learned as convolutional filters from 2D or 3D images.
These convolutional filters are activated when the values in a local region of the
image match with that of the filter, signalling that a desired feature is found
in the image. In this case, pixels have predefined relationships with neighboring
pixels, and such spatial relationships are consistent throughout the image, i.e.,
each pixel is adjacent to its neighbors.
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Fig. 1. Siamese network with a graph convolution network for feature engineering and
a fully connected layer for similarity computation. This is the network architecture we
used for fingerprinting in this paper.

In our case, we are interested in FC fingerprinting, i.e, computing similarity
between graphs. Graphs lack the regular structure that exist among pixels as
each node may have differing number of neighbors. Due to this difference, one
must first redefine the convolutional operation in the graph setting. Shuman et al.
[21] defined filters in the graph spectral domain. Utilizing the normalized graph
Laplacian (defined as L = IR −D1/2AD1/2 where IR is the identity matrix, D is
the diagonal degree matrix and A is the adjacency matrix), L can be decomposed
as L = UΛU , where U is the matrix of eigenvectors and Λ is the diagonal
matrix of eigenvalues. The graph Fourier transform of some signal c can then be
expressed as c = UT c. These two properties allow us to define the convolution on
a graph in the spectral domain as gθ�c = UgθU

T c, where gθ = diag(θ) and θ is a
vector of Fourier coefficients. As this method can result in excessive computations
and produce spectral filters outside the graph spatial domain, Hammond et
al. [12] proposed a polynomial parametrization of the filters directly on the
Laplacian. Defferrard et al. [9] then proposed approximating these polynomials
as Chebyshev polynomials, reducing computational complexity. Filtering signal
c with a K localized filter is then performed by:

y = gθ(L) � c =
K∑

k=0

θkTk(L̃)c

where L̃ = (2/λmax)L ∗ IR, λmax is the largest eigenvalue of L, and Tk(c) is the
kth Chebyshev polynomial for c. The output for the jth layer for a sample s in
a GCN is thus:

ys,j =
Fin∑

i=1

gθi,j(L)cs,i ∈ R
R

where cs,i is the input feature map. We use Defferrard et al.’s [9] version of GCNs
in this paper.
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Structure of the Siamese GCN: In this work, we use a Siamese GCN that is
similar to the one proposed by Ktena et al. [14]. Two GCNs with linked, identical
weights are fed into a fully connected neural network layer which computes the
distance between the two input graphs. This is shown in Fig. 1. Within each
GCN, each convolutional layer contains a rectified linear unit (ReLU) activation,
allowing for non-linear transformations when determining high-level features.

Defining Loss for Training: The global loss was proposed by Kumar et al.
[15] to improve robustness to outliers and to provide better regularization than
the commonly used hinge loss. The objective of the global loss is to maximize
the distance between the means of the two classes (0 and 1) while minimizing
the variance for the two classes to effectively distinguish between the two classes.
The equation for the global loss is:

Jglobal = (σ2
0 + σ2

1) + λmax(0,m − (μ0 − μ1))

where σ2
0, σ2

1 are the variances, μ0, μ1 are the means of matching and non-
matching pairs, respectively, m is the margin between the output values of
matching and non-matching pairs, and λ is a scaling parameter between variance
minimization or mean difference maximization.

3.4 Graph Generation

While an FC is a graph with nodes and edges, FC pairs [FCa FCb] cannot
be directly fed into a Siamese network with a GCN. For the GCN we defined
above, a graph needs to have attributes for each node. Another choice that
can influence the GCN is the choice of edges in the FC. Here we describe our
approach to transforming an FC into a graph that can be passed on to a GCN
in our Siamese network.

First, the attributes for a node is defined as the FC profile of that region,
that is, the vector of correlations between that region’s BOLD time series and
all other regions’ BOLD time series. This can be extracted from the FC simply
by taking all elements in that region’s row or column, excluding the diagonal
value.

Secondly, we defined the edges between nodes. One simple approach we used
is a fully connected graph where all nodes are connected to all other nodes. We
refer to this as the Complete graph. For the complete graph, any node can be
directly influenced by any other node. Alternatively, one can define neighboring
relationships selectively. In our case, we computed the group average FC from
all FCs to capture the common functional relationships among samples. From
the group average FC, we removed edges with the lowest magnitude correlation
from the fully connected graph until we could no longer remove an edge with-
out disconnecting the graph. By doing so, we created a connected graph which
retains only the strongest functionally connected edges. We refer to this as the
Functional graph. In contrast to the complete graph, by removing weak edges
we introduced functional locality to the graph, where only nodes functionally
connected can directly influence each other.
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3.5 Siamese GCN Implementation

Same-subject and different-subject pairs were generated for our experiments by
pairing different FCs with each other, resulting in 6018 (1003∗(

4
2

)
) same-subject

pairs and 8, 040, 048 (
(
1003∗4

2

) − 6018) different-subject pairs. Of these different-
subject pairs, 6000 were randomly selected to create a balanced 12, 018 FC-pair
dataset. In this dataset, same-subject and different-subject pairs were labeled 0
and 1, respectively. We evaluated the performance of the Siamese GCN model
using 5-fold cross validation. The model was trained using two different graph
structures: (1) the complete graph and (2) the functional graph, both described
previously in Sect. 3.4.

Two graphs and their feature vectors are passed separately to each of the two
GCNs that comprise our feature engineering component, where each graph con-
volutional layer is followed by a rectified linear unit (ReLU) activation function
to capture non-linearity. Following the GCNs, we compute the inner product
with a dropout of 20%. This dropout randomly sets the specified percent of
nodes to zero. After this dropout, the output is then passed to the similarity
learning network, a fully connected layer with linear activation that constitutes
our similarity computation component. The output layer of this fully connected
layer returns the similarity of the two input graphs which is then used to clas-
sify the pair. For training, we used the global loss function to calculate loss and
optimize weights.

We used different GCN architectures for the complete graph and the func-
tional graph. For the complete graph, we used a two layer GCN each with
64 features. We refer to this configuration as the Complete 64 64 network.
For the functional graph, we used two different GCN architectures: 1.Func-
tional 64 64, 2.Functional 64 16 4. Functional 64 64 is identical in structure to
Complete 64 64. For Functional 64 16 4, we used a three layer GCN with feature
sizes of 64, 16, and 4 for each layer respectively.

All networks were optimized using stochastic gradient descent with Adaptive
Moment Estimation (ADAM) optimizer. For training, we used a learning rate
of 0.001, a regularization parameter of 0.005, and global loss function parameter
values of λ = 0.35 and margin m = 0.6. We also used a filter order parameter of
k = 3, which allows filters to use node features from neighbors 3 hops away.

3.6 Traditional Classification Techniques

As part of our proposed ML framework for fingerprinting we used traditional
classification techniques such as k-nearest neighbor (kNN), decision trees (DT),
and Naive Bayes (NB). To train these models, we first generated vectorized
FCs by taking upper triangular values of the FC matrix. Same-subject and
different-subject pairs were then generated by concatenating vectorized FCs.
Once vectorized and concatenated, the FC-pair database was generated similarly
as described above for the Siamese GCN.

Our Siamese network setup was pair-order-independent, i.e., pairs [FCa FCb]
and [FCb FCa] are treated as the same. Whereas in the case of classification,
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each element of the concatenated vectorized FCs will be treated as features
and so an FC pair [FCa FCb] will be treated differently from [FCb FCa]. To
address this issue, for every pair [FCa FCb] in the dataset, we also added the
pair [FCb FCa] with the same label to the training dataset.

We evaluated the performance of kNN, DT, and NB classification for FC
fingerprinting by performing 5-fold cross validation as previously described
for our Siamese network. We used MATLAB’s fitcknn and fitctree to learn
kNN and DT classification models for k = 1, 3, 5 and MaxNumSplits =
5, 10, 15, unconstrained respectively using Euclidean distance. For our NB eval-
uation, we used scikit-learn’s GaussianNB to learn NB classification models.

4 Results

4.1 FC Fingerprinting Performance

We performed a comparative analysis of FC fingerprinting performance of our
ML framework with a Siamese network, kNN classification, DT classification,
and a Naive Bayes classification. The results for our comparative analysis are
shown in Table 1. We observed that the Siamese GCN performed extremely well
compared to all other methods, with the best performing Siamese GCN Func-
tional 64 16 4 achieving 99.89% accuracy. The worst performing Siamese GCN
is the Complete 64 64, achieving 99.56% prediction accuracy. The reason for
the superior (nearly 100% accuracy) performance of the Siamese GCNs is that
the network is able to construct suitable higher-order features that are highly
relevant for fingerprinting. We observed that the Complete model performed
marginally weaker than Functional models, which suggest that by limiting the
interactions between nodes to a functionally local neighborhood, the Siamese
GCN was marginally better at extracting key subject-specific information. Fur-
thermore, the Functional 64 16 4 model was able to perform better than the
Functional 64 64 model which did not use shrinking layers. This observation
suggests that the Siamese GCN is more able to produce better differentiating
higher-order FC features when the deeper layers are constrained in the number
of features.

Among the classification models, the best model, kNN, was only able to
achieve 76.16%, where the closest neighbor (i.e., k = 1) was used to classify an
FC pair. This configuration is very similar in flavor to traditional correlation-
based FC fingerprinting, where FCs are labeled based on the highest correlating
FC. The only difference is that in kNN we are predicting if a given pair of FCs are
from the same subject, whereas in traditional correlation-based matching we are
identifying the best matching subject based on the nearest match. Our DT and
Naive Bayes models performed poorly, with the best DT model only achieving
an accuracy of 55.51% that is close to what is expected of a random classifier
and the Naive Bayes model achieving slightly below the expected accuracy of a
random classifier with a 46.97% accuracy. One potential reason for the relatively
poor performance of the classification techniques is the high dimensionality of
the data, with 89, 700 features for each sample (i.e., an FC pair).
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Table 1. Fingerprinting performance of our machine learning based fingerprinting
framework.

Models Parameters Accuracy

Siamese GCN Complete 64 64 99.56%

Functional 64 64 99.73%

Functional 64 16 4 99.89%

kNN k=1 76.16%

k = 3 68.55%

k = 5 60.23%

DT Max nodes = 5 54.30%

Max nodes = 10 54.76%

Max nodes = 15 54.57%

No maximum 55.51%

Naive Bayes - 46.97%

4.2 Exploring the Similarity Computation Component of Siamese
Network

One of the criticisms against neural networks is that they are limited in pro-
viding interpretable models, particularly in the case of GCNs where higher-
order features are constructed. However, the fully connected layer within our
similarity computation component (Fig. 1) can be studied to determine which
region’s higher-order features are weighted more for computing the similarity.
The weights on the regions from the fully connected layer are shown in Fig. 2.
From this figure, it can be observed that the regions used by the fully con-
nected layer are symmetric across the two hemispheres. Specifically, para-central,
cuneus, superior frontal regions appear to have been preferred for assessing sim-
ilarity between FCs.

Fig. 2. Brain maps showing the weights for each region in the fully connected layer of
the Siamese network.

Shown in Fig. 3 is the distribution of similarity scores estimated by Siamese
GCN Functional 64 16 4 model for all matching and non-matching pairs in our
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Table 2. Confusion matrices for the (a) Complete 64 64, (b) Functional 64 64, (c)
Functional 64 16 4 model from the 5-fold cross validation on the full FC pair dataset.

(a) (b) (c)
Predicted Label Predicted Label Predicted Label

T
ru
e
L
ab

el 0 1

T
ru
e
L
ab

el 0 1

T
ru
e
L
ab

el 0 1

0 5991 27 0 6002 16 0 6012 6

1 26 5974 1 17 5983 1 7 5993

FC-pair dataset. From this figure, it can be observed that the two classes are well
separated by a similarity threshold of approximately −1.0. This suggests that
the Siamese GCN is able learn the key higher-order features from FC matrices
that reflect similarity between FCs from the same subject and further explains
the reason for Siamese GCN’s superior and nearly 100% fingerprinting accuracy.

To further illustrate the superior performance of the Siamese GCNs, the
confusion matrices from 5-fold cross validation experiment are shown in Table 2.
Here 0 indicates pairs of FCs from the same subject, and 1 indicates pairs of
FCs from different subjects. In line with the above reported fingerprinting per-
formance results, we observed very few false negatives (6 compared to 16, 27)
and false positives (7 compared to 17, 27) for the best performing Siamese GCN
model Functional 64 16 4 compared to Functional 64 64 and Complete 64 64
respectively. We observed that the number of false positives was very similar to
the number of false negatives for all models.

Fig. 3. Box plots of similarity scores for matching and non-matching pairs.

In summary, the Siamese GCNs resulted in nearly 100% fingerprinting accu-
racy owing to their ability to learn relevant higher-order features from the train-
ing data.

5 Conclusion

In this work, we introduced a new ML framework for effective FC fingerprint-
ing. In the context of this framework, we investigated the potential of Siamese
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GCNs in learning higher order FC graph features for effective FC fingerprint-
ing. We evaluated several models, including classification models and Siamese
network with different configurations of GCNs. We observed that Siamese net-
works outperformed traditional classification methods and achieved 99.89% FC
fingerprinting accuracy. While the GCN Siamese network was able to effectively
engineer the relevant higher-order features suited for fingerprinting, traditional
classification models were not able to handle the problem of high-dimensionality,
due to which many of these models resulted in an accuracy closer to that of a
random classifier.

While this work has uncovered various insights and observations previously
unexplored in the context of FC fingerprinting, there are several more aspects
which can be explored in more detail. One area of interest is in exploring the
different parameter settings, such as the number of layers, and their effect on
finding effective higher-order features of the FC. Another area of interest is
the computational complexity of GCN learning. Despite using the state-of-the-
art algorithms, GCN training for our experiments was slow, where each fold
required approximately 3–4 h of learning on a state-of-the-art desktop computer
with a 3.70 GHz AMD Ryzen 7 2700X eight core processor and 16 GB of memory.
Additionally, there have been many studies on the effect of the granularity of
parcellation and number of subjects on FC fingerprinting accuracy [2,16,17,24].
The impact the size of the training set or the granularity of parcellation has on
Siamese GCN FC fingerprinting performance could be investigated.
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Abstract. Brain parcellations play a key role in functional connec-
tomics. A set of standard neuro-anatomical brain atlases are in common
use in most studies. In addition, data-driven parcellations computed from
fMRI data using a variety of clustering algorithms have also been used.
Recent studies set out to determine the best parcellation in terms of
quality and reliability have remained inconclusive without a clear win-
ner. In this work, we investigated the utility of test-retest reliability of
functional connectivity as an evaluation metric for comparing parcella-
tions. Specifically, using data from the human connectome project, we
compared a data-driven parcellation and a geometric parcellation using
Intraclass Correlation Coefficient (ICC). We also investigated the impact
of parcellation granularity on the test-retest reliability. We observed that
the ICCs for geometric parcellation are better than those of a data-driven
parcellation, suggesting that the FCs computed using regular parcels in
the geometric atlases are more reliable than those computed using a
data-driven parcellation.

Keywords: Functional connectivity · Test-Retest reliability ·
Parcellation · Precision neuroscience

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) technology invented in the early
1990s was expected to have a significant impact on the diagnosis and treatment
of mental illness, in addition to having a scientific impact in enabling the dis-
covery of the governing principles of brain function [25]. Over the years many
extensive studies have been conducted [7,16,23,29], and data analysis tools such
as functional network analysis [18], dynamic functional network analysis [24], and
independent component analysis (ICA) [8] have been developed for discovering
insights from large fMRI datasets. After 25 years, one of the major criticisms on
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fMRI research is that only the group-level principles of brain function have been
discovered by averaging the signal across the group, with little success in discov-
ering subject-specific principles [13,25]. One direction that is pursued to address
this concern is to quantify the test-retest reliability of measures computed using
subject-level fMRI data [4,10,11,20,31]. Existing studies explored the reliability
of: (i) ICA components [31], (ii) graph theoretic properties [4,10,11], and (iii)
the default mode network [20].

On the other hand, a major quest in the neuroscience community since the
early 1900s [30] has been to identify distinct cortical regions in the human
brain, which is now conventionally referred to as a brain parcellation [14]. With
increased availability of fMRI datasets, a variety of clustering approaches such as
spectral clustering [12], Ward hierarchical clustering [9], k-means clustering [26],
hierarchical Dirichlet process mixture models [17], and von Mises-Fisher distri-
bution based clustering [27] have been used to group voxels with similar time
series or connectivity profiles to discover brain parcellations. Brain parcellations
play a key role in the functional connectome (FC) framework where functional
networks are derived from region-level time series computed by averaging the
voxel-level time series within each parcel or region [6]. Most studies either use
a neuro-anatomical atlas [28] or one of the data-driven atlases [12,15,27], often
without a consensus on the choice of parameters (e.g., granularity of parcella-
tion). This makes it challenging to compare results across studies, as the regions
implicated in different studies are defined as part of different brain parcellations.
In search of an ideal parcellation, a recent study [5] extensively evaluated differ-
ent parcellations in terms of their quality and reproducibility, and observed that
there was no one parcellation that outperformed others in both these criteria.

Considering the fact that reliability of the subject-level FC is a key require-
ment towards delivering the promise of fMRI technology in delineating the princi-
ples of brain function in individual subjects and the basis for individual behavior,
in this work we explored the role of test-retest reliability of FC for evaluating
brain parcellations. To the best of our knowledge, this is the first study that
explored the test-retest variability of FCs as a metric for evaluating brain par-
cellations. Specifically, we investigated the following two questions: 1. Does the
parcellation method affect test-retest reliability of resting-state FC? 2. Does the
granularity of parcellation affect reliability of resting-state FC?

To this end, we compared the test-retest reliability of FC constructed using
a data-driven parcellation with that of a geometric parcellation [26]. Note that a
geometric parcellation does not rely on fMRI data, but only groups voxels based
on their coordinates. We used Ward clustering algorithm to derive a data-driven
parcellation that clusters voxels with similar time series into parcels. We used
Intraclass Correlation Coefficient (ICC) to compute the test-retest reliability
between two FCs computed from the same subject. We used resting-state fMRI
data from the 1200-subject data release (S1200) [1] of the Human Connectome
Project (HCP) in this study.

We observed that the test-retest reliability for geometric parcellation that
does not rely on fMRI data is always higher than that of a data-driven par-
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cellation. We also observed that the ICC decreases as the granularity of the
parcellation increases, and this is likely to be the result of low signal-to-noise-
ratio.

This work contributes to the advances in connectomics in neuroimaging in
multiple ways. First, we introduced test-retest reliablity of functional connectiv-
ity as an evaluation metric for comparing parcellations. Second, we empirically
compared the reliability of FCs using a data-driven parcellation and a geometric
parcellation that does not take into account the fMRI data. Third, we studied
the impact of parcellation granularity on test-retest reliability.

The rest of this paper is organized as follows. The dataset used along with
the pre-processing steps are described in Sect. 2. Methods for computing data-
driven and geometric parcellations, along with the ICC for quantifying test-
retest reliability are discussed in Sect. 3. Our results are presented in Sect. 4.
Conclusions are provided in Sect. 5.

2 Data

In this study, we used fMRI data from the 1200-subject data release (S1200) [1]
of the Human Connectome Project (HCP). This release includes resting state
(rsfMRI) and task-related (tfMRI) data from 1,003 healthy subjects. fMRI data
was collected from each subject during two sessions, with two 15 min scans per
session. This data was minimally processed using a number of steps including
gradient distortion correction, motion detection, field map preprocessing, spline
resampling, intensity normalization, and mapping timeseries from volume to
CIFTI grayordinates standard space. More information about the data and the
preprocessing steps is available in the S1200 data release manual [2].

We restricted our analysis to rsfMRI data from 50 unrelated subjects to avoid
the effect of familial relationships on our analysis. For these subjects, we further
restricted our analysis to the two fMRI scans from the first session. The acquired
data was further processed using the following steps: 1. Band-pass filtering, 2.
Global signal regression, and 3. Normalization. Band-pass filtering with the range
[0.08 Hz 0.009 Hz] was performed to avoid the effect of non-neural dynamics on
our analysis. Global signal regression [22] was performed to remove the global
signal that is present in all or most of the voxels. Normalization was performed
to ensure that voxels with high magnitude of BOLD signal do not dominate the
computation of the region-level time series computed as the average of the voxel
time series within a region. At the end of this normalization step, all the voxel
time series have a zero mean and unit variance.

3 Methods

3.1 Computing Parcellations

In this section, we describe the two different types of parcellation we evaluated
in our study: 1. A data-driven parcellation, 2. Geometric parcellation. The data-
driven parcellation uses fMRI data to group voxels with highly similar Blood
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Oxygen Level Dependent (BOLD) time series. For grouping similar voxels, we
used Ward clustering which is a hierarchical clustering technique. For geometric
parcellation, we grouped voxels whose locations are in close proximity. This
merely groups contiguous locations into parcels. We used k-means algorithm for
geometric parcellation.

Note that, because Ward-based parcellation depends on BOLD signal, each
subject has a specific version of Ward parcellation. On the other hand, the
geometric parcellations are independent of BOLD signal and so they are not
subject-specific. The parcellations were computed at different granularities so we
can study the impact of granularity on test-retest reliability. The granularities
used are 200, 400, 600, 800, 1000, 2000, and 4000.

Below we describe the setup used for each of the two types of parcellation.

Ward-Based Parcellation. To compute Ward-based parcellation for each sub-
ject, we first temporally concatenated the two rs-fMRI scans from the first ses-
sion. The voxels in the left and right hemisphere were extracted, and a pair-
wise distance matrix for all the voxels in each hemisphere was computed using
Euclidean distance. The pairwise distance matrices were then separately passed
to the Ward’s clustering algorithm implemented in Julia language’s clustering
package [3]. Note that the spatial contiguity was not enforced during Ward clus-
tering, and so the voxels in resultant parcels are not necessarily bound to be
contiguous.

Geometric Parcellation. To compute a geometric parcellation, we first
extracted voxel coordinates from a standard-template surface files for the two
hemispheres. These voxel coordinates were used as features to derive the geo-
metric parcellation using the k-means algorithm implemented in Julia language’s
clustering package [3]. We used Euclidean distance metric for k-means cluster-
ing. Because the parcellations are only based on voxel locations, these parcels
are more regular in size compared to the Ward parcellation. Moreover, we chose
k-means clustering because we are likely to get a different parcellation on every
instantiation of the k-means algorithm. To assess the consistency of test-retest
reliability, we constructed and used 10 different Geometric parcellations for each
resolution.

3.2 Computing Test-Retest Reliability Using ICC

Test-retest reliability indicates the extent to which the measurements can be
replicated in two different instances. In our case, the measurements are the
values (correlations) in the FC matrix and the two instances are two rsfMRI
scans. The rest-retest reliability of the FC matrix was computed using Intraclass
Correlation Coefficient (ICC) [19]. Of the 10 different versions of ICC that are
available for quantifying replicability of measurements, we selected the ‘Two-
way mixed effects’ model, with ‘single measurement’ type, and a definition of
‘absolute agreement’, based on the flow-chart provided in [19]. This is because
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(1) we used all elements of the FC matrix that were computed from all two
scans (two-way mixed effects), (2) values of each FC matrix in two scans were
used separately instead of their across-scan mean (single measurement), and (3)
the across-scan absolute agreement was of interest to us. This version of ICC is
also referred to as ICC(2,1) (as in [10]), and the formula was defined in [21] as
follows:

ICC(2, 1) =
BMS − EMS

BMS + (k − 1)EMS + k
n (JMS − EMS)

(1)

where BMS is the between-targets (scans) mean square, EMS is the error mean
square, JMS is the between-subjects (edges in the FC) mean square, k is the
number of targets (scans), and n is the number of subjects. Interested readers
are referred to [21] for more information on the different versions of ICC and
to [19] for recommendations on which versions to use for different experimental
settings.

4 Results

4.1 Impact of Parcellation on Test-Retest Reliability

Results on One Subject: The ICC scores computed for data from one sub-
ject 100307 using Ward parcellation and 10 different geometric parcellations at
different granularities are shown in Fig. 1(a). It can be observed from the figure
that the ICC scores computed using the Ward parcellation for all granulari-
ties are lower compared to those of each of the 10 geometric parcellations. The
brain maps for the Ward and 10 geomertic parcellations are shown in Fig. 1(b).
From this figure, it can be observed that the geometric parcellations are more
regularly/circularly shaped compared to the Ward parcellation with arbitrary
shapes. Also, note that the geometric parcellations are oblivious to the bold sig-
nal. While Fig. 1 shows the ICC scores for only one subject, this is a trend that
we observed over all the 50 subjects used in this study. Some evidence for this
can also be seen in Figs. 3 and 4 as discussed below.

It is also interesting to note from Fig. 1(a) that the ICCs for higher granu-
larities are lower than those of lower granularities for both Ward and geometric
parcellations. This suggests that the FCs computed using coarser parcellations
are more reliable.

A comparison of the edges in FCs for subject 100307 computed from scan 1
and scan 2 is shown in Fig. 2 for Ward and geometric clustering separately. These
plots are showing densities in 2D. The ICC score for the FCs computed using
Ward clustering is 0.44 and that of geometric clustering shown in this figure is
0.55. While it is not markedly evident from the figure, the plot for geometric
parcellation is more elliptical compared to that of the Ward parcellation. As a
result the reliability for Ward clustering is somewhat weaker compared to that of
Geometric clustering. This indicates that the network edges between two scans
computed using Geometric parcellation are more in agreement compared to the
case of Ward parcellation.
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(a)

(b)

Fig. 1. (a) Test-retest reliability of FCs computed using data from subject 100307,
using Ward and Geometric parcellations at different granularities. (b) Brain maps of
the Ward and Geometric parcellations computed at different granularities (best viewed
in color and in a magnified version). (Color figure online)

Results on Multiple Subjects: To study the generality of our above obser-
vations, we present the ICC scores computed using data from 10 subjects in
Fig. 3. The figure shows ICC scores of FCs computed using Ward parcellation
at a granularity of 800 regions in red and the boxplot of ICC scores for geomet-
ric parcellation in blue. It can be observed from the Fig. 3 that the ICC scores
for FCs constructed using geometric parcellation are superior to that of Ward
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Fig. 2. 2D histograms showing the comparison between FCs in Scan 1 and Scan 2 com-
puted using Ward clustering (left) and geometric clustering (right) at the granularity
of 800 regions. The ICC score for the Ward clustering on the left is 0.44. The ICC score
for the geometric clustering on the right is 0.55.

parcellation, and are consistent across all 10 subjects. It is also interesting to
note that despite the large variability in ICC scores across subjects for each type
of parcellation, the ICC scores for FCs constructed using geometric parcellation
are higher.

The distribution of ICC scores computed for FCs from all 50 subjects using
Ward parcellation and one of the 10 geometric parcellations at the granularity of
400, 600, 800, and 1000 are shown in Fig. 4. It can be observed that the means of

Fig. 3. Comparison of ICC scores between Ward clustering (red) and geometric clus-
tering (box plot in blue) for 10 subjects when a parcellation granularity of 800 regions
is used. (Color figure online)



102 J. Zeng et al.

the distributions of Ward parcellation for all granularities are significantly lower
than the ones of the geometric parcellation. This further illustrates that across
all 50 subjects, the ICC scores computed using Ward parcellation at different
granularities are lower compared to those of the geometric parcellation. The
reason for overlap among the two distributions in Fig. 4 is the high variability in
ICC scores across subjects as seen in Fig. 3.

In summary, geometric parcellations that are indepedent of the data and
have more regular shapes, as seen in Fig. 1(b), result in more reliable FCs than
Ward parcellations that are data-driven.

4.2 Impact of Granularity of Parcellation on Test-Retest Reliability

To study the impact of granularity of parcellation on ICC scores, we compared
the ICC scores computed for data from subject 100307 using Ward parcellation
and 10 geometric parcellations for different granularities in Fig. 5. Not only does
the plot indicate that ICC scores computed using Ward parcellation are all
lower than the ICC scores computed using 10 geometric parcellations at each
granularity, but it also reinforces the observation we made in Fig. 1 that ICC
scores for higher granularities are lower than those of lower granularities for
both Ward and geometric parcellations. One reason for this decrease in ICC
with increase in granularity is likely to be the low signal-to-noise ratio with only
small number of voxels present in each region (approximately 10 voxels/region,
on average).

Fig. 4. Comparison of distribution of ICC scores when Ward and geometric parcellation
are used. Each of these distribution have ICC scores from 50 subjects. Each subplot is
for one granularity.



Test-Retest Reliability of Functional Networks for Evaluation of Parcellation 103

Fig. 5. Comparison of ICC scores between Ward clustering (red) and geometric clus-
tering (box plot in blue) for the subject 100307 for all granularities. (Color figure
online)

5 Conclusion

In this work, we investigated the role of test-retest reliability as an evaluation
metric for comparing different parcellations. Our results suggested that geo-
metric parcellations with more regular-shaped parcels are likely to yield better
reliability in FCs than data-driven parcellations with arbitrarily shaped parcels.
We observed that the reliability in FC decreases with increase in parcellation
granularity. This is likely to be due to low signal-to-noise-ratio, as there are only
a few voxels per region at high granularities.

One limitation of our study is that it was limited to one type of data-driven
clustering (Ward clustering). As part of future work, one could perform a more
extensive comparison of multiple data-driven parcellation approaches such a
spectral clustering, average-link hierarchical clustering, and hierarchical Dirich-
let process mixture models. Another limitation of this study is that it did not
investigate the reasons for reduced ICC scores for data-driven parcellations, and
it is a relevant topic for future research.
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Abstract. We propose a simple yet powerful extension for event-based
progression disease model by exploiting the Network Diffusion Hypothe-
sis. Our approach allows incorporating connectivity information derived
from diffusion MRI data in the form of an informative prior on event
ordering. This simple extension using a definition of transition proba-
bility based on network path length leads to improved reproducibility
and discriminative power. We report experimental results on a subset
of the Alzheimer’s Disease Neuroimaging Initiative data set (ADNI 2).
Though trained solely on cross-sectional data, our model successfully
assigns higher progression scores to patients converting to more severe
stages of dementia.

Keywords: Connectomes · Disease Progression Model · Alzheimer’s
Disease

1 Introduction

Imaging biomarkers of neurodegeneration have played an increasingly important
role in clinical trials and disease stage assessment in recent years [1,2]. At the
same time, as the trial design has grown increasingly complex, the very notion
of “biomarker” has evolved. Classical notions of biomarker efficacy, such as the
power under Normal assumptions [3,4], and classification accuracy [5] have given
way to temporally aware models of disease [6,7]. This more recent approach
to modeling disease, generally termed Disease Progression Modeling (DPM),
assigns a time-dependent disease score (or stage) to each patient as a well as
a canonical model of imaging and potentially non-imaging patient data as a
function of this score. Unlike traditional classification approaches, this approach
rests on the idea that different clinical and imaging features are discriminative
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at different stages of the disease: each marker has a specific finite time window
during which it is affected by the illness. One of the earliest such models used
with neuroimaging data is the Event-Based Model (EBM) [8]. Here, the disease
score is treated as a discrete variable to be identified with a neurodegenerative
“event” in each input phenotype, such as regional gray matter or the presence
of misfolded proteins as measured with MRI or PET. The canonical event order
is estimated by sampling from a Bayesian posterior formulation, generally using
specific parametric distribution assumptions for healthy and diseased subjects.
Variations on EBM include discriminative EBM [9], and simultaneous staging
and unsupervised subject subtype identification [10]. Models beyond EBM allow
for an explicit continuous-time reparameterization of each subject, effectively
modeling both the continuous canonical form of all phenotypes in concert as
well as individual “neurological reserve” of each patient. The fully longitudinal
DPM’s (LDPM), first proposed in [11] as a parametric sigmoidal progression
function, were later expanded for spatially dense imaging features with additional
spatial priors [12]. The parametric progression form was further relaxed in a
Gaussian process formulation in [13].

A noteworthy aspect of the above methods is the lack of informative priors
on the order in which specific phenotypes undergo degeneration. In fact, such a
prior is readily discernible from available MRI data and has been used elsewhere.
Specifically, Raj et al. proposed the Network Diffusion Hypothesis, whereby the
neurodegenerative process develops in a highly stereotyped manner, according
to the brain’s structural connectivity [14]. One recent work on DPM has indeed
fused these two ideas [15]. However, even there only a mean “standard” connec-
tivity is used for all subjects. Here for the first time, we propose a subject-specific
network prior to constrain DPM. We develop the idea in the context of EBM
and apply the model to the ADNI 2 dataset. Initial results indicate a better
longitudinal generalization compared to standard EBM, and better predictive
ability of the resulting progression score when applied to new subjects.

The remaining paper is structured as follows: Sect. 2 describes the EBM
model and introduces the connectivity prior. We explain our experimental
pipeline in Sect. 3. Section 4 summarizes the results of our experiments. Finally,
in Sect. 5 we discuss some possible enhancements of our approach and conclude.

2 Event-Based Models and the Connectivity Prior

2.1 The Event-Based Model

The idea of modeling disease progression in the form of distinct ordered events
goes back to [8]. The authors propose that disease development could be divided
into stages. Every stage is defined by an event, i.e. the moment when some
biomarker switches its state from normal to abnormal. Specifically, given a set
of M biomarkers X = {x1, . . . , xM} the EBM estimates order π (permutation of
indexes 1 . . . M) in which each biomarker becomes abnormal. The model then
takes the following form:
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p(k|X,π) :=
k∏

j=1

p(xj |Eπ(j))
M∏

j=k+1

p(xj |¬Eπ(j)). (1)

This formula defines the probability p(k|X,π) of being at progression stage k
given a set of biomarkers X and an order π. Here, p(xj |Eπ(j)) and p(xj |¬Eπ(j))
are likelihoods of a measurement xj given that event Eπ(j) has or has not
occurred. Given N subjects, the total likelihood of observing the data X =
{X1, . . . , XN} is the following:

p(X|π) =
N∏

i

M∑

k=0

p(k)p(k|Xi, π), (2)

where p(k) is the probability of being at stage k. p(k) is typically treated as an
uninformative (uniform) prior. Once (2) is maximized and an optimal π is found,
one could easily evaluate disease stage k for every patient using the expression
in (1). To find optimal π, one needs to maximize the posterior distribution, i.e.
find the optimal order π given X:

p(π|X) ∝ p(π)p(X|π), (3)

here p(π) denotes the prior probability of specific order, which is also typically
set to be uniform.

In the present paper, we suggest to use connectivity information obtained
from diffusion MRI, to get an informative, non-uniform p(π). This allows us
to use personal information more directly since both p(x|E) and p(x|¬E) are
estimated on groups of subjects, but p(π) could be computed for every subject
separately. The original EBM uses longitudinal data but treats each observation
as a separate. Here, we fit our model using exclusively cross-sectional data, which
allows as to remove the possible effect of overfitting since observations from
the same subject are highly correlated. Though our proposition could be easily
implemented in any EBM extension, here we decided to use the original EBM,
which allows us to isolate the effect of using the connectivity prior.

2.2 Connectome Prior via Path Probability

We now introduce some additional notation. As before we denote by X =
{x1, . . . , xM} the set of biomarkers, in our case the gray matter thickness for
M cortical regions. By G we denote connectivity matrix with exactly M nodes:
{v1, . . . vM}. Each node vj uniquely corresponds to a biomarker xj . We use the
subscript i to denote different subjects, so Xi means subject i, xij means j-th
biomarker of i-th subject and the same for Gi and vij . By p(va → vb) we denote
the probability of transitioning from node va to node vb.

We define the probability of a specific path πa,b,c = {va → vb → vc} as a
product of probabilities of every individual step:

p(πa,b,c) := p(va → vb) · p(vb → vc). (4)
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next, we define the individual transition probability to be proportional to the
shortest path between nodes:

p(va → vb) ∝ e−σ(va,vb), (5)

where σ(va, vb) denotes the shortest path between two nodes, thus transitioning
to closer nodes is more probable. We normalize an exponent in such a way that
all probabilities of transitioning from node va to all other nodes sum to 1, thus
p(va → vb) �= p(vb → va). Specifically, for every connectome, we compute square
(M × M) matrix of shortest paths S:

Sa,b = σ(va, vb), (6)

next we apply an exponent as in Eq. (5), finally, we divide each element in each
row by the sum over this row to make individual values sum to 1:

p(va → vb) =
e−Sa,b

M∑
b=1

e−Sa,b

. (7)

The intuition of Network Diffusion Hypothesis is the following: if some region
becomes abnormal, it will affect other regions that are structurally closer (in
terms of connectivity) faster than regions that are structurally farther. And the
structural closeness of two nodes is the length of the shortest path between them.

2.3 Optimizing π

To find the optimal order of events π we need to optimize (3):

π∗ = arg max
π

p(π)p(X|π)

= arg max
π

p(π)
N∏

i

M∑

k=0

p(k|Xi, π) = arg max
π

N∏

i

p(π)1/N
M∑

k=0

p(k|Xi, π)

= arg max
π

N∑

i

log

[
p(π)1/N

M∑

k=0

p(k|Xi, π)

]

= arg max
π

1
N

N∑

i

log p(π) +
N∑

i

log

[
M∑

k=0

p(k|Xi, π)

]
, (8)

One could compute p(π) based on the average connectome ((̂G) = 1
N

∑N
i Gi).

However, we find that using
∑N

i log pi(π) instead of
∑N

i log p(π) leads to much
better results. In other words, every pi(π) is computed from the corresponding
individual connectome; for every subject, the prior on the order of events π is
different.

As the Bayesian formulation with the connectome prior is identical in form,
the optimization of (8) can be done using the MCMC procedure exactly as in
[8].
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Fig. 1. Agreement results. Agreement between stages and visit order was measured
using Kendall tau. Under the assumption that abnormality is irreversible, we measure
Kendall tau between the vector of subject visits order and vector of subject disease
progression scores. This figure summarizes the distribution of Kendall tau over all
subjects.

Fig. 2. Selected ADNI participants. Progression scores using order obtained with indi-
vidual prior. Progression scores were computed using formula (1). Once we obtain
optimal order we compute progression score for every subject at each time point.

3 Experiments

3.1 Data

Our data consisted of 84 unique subjects from the ADNI 2 dataset: 32
Alzheimer’s patients, including 8 women (mean age 76.8 ± 7.6) and 24 men
(mean age 75.9 ± 7.8) (AD), and 52 cognitively normal controls, including 26
women (mean age 72.0 ± 4.9) and 26 men (mean age 73.6 ± 6.4) (NC). We used
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Fig. 3. Binary classification results. Classification was done based on subject stage.
Performance was measured in terms of ROC AUC. Classification uncertainty was mea-
sured using 200 independent MCMC runs. All models were trained on cross-sectional
data and performance was measured on longitudinal data (excluding training observa-
tions).

anatomical MRI data from 3 visits for each NC subject, and 2 visits for AD sub-
jects. Of the control subjects, 4 are known future converters to MCI. Regional
gray matter thickness was obtained using FreeSurfer 5.3, based on the Dessikan-
Killiany atlas. We used only the baseline visit diffusion MRI to construct indi-
vidual connectomes. Briefly, we used FSL’s eddie correction and ANTs SyN for
EPI artifact correction to T1 MRI. To extract streamlines, we used constrained
spherical deconvolution (CSD) with a probabilistic tractography algorithm, as
implemented in Dipy [16]. Finally, weighted connectivity matrices G have 0 on
a main diagonal and the weights of edges are inversely proportional to the log-
arithm of the number of streamlines:

Ga,b =

{
1

log(1+wa,b)
, if wa,b > 0

0, if wa,b = 0
(9)

where Ga,b is the edge between nodes a and b; wa,b is the number of streamlines
between corresponding regions. The idea behind this specific weighting scheme is
the following: firstly, we need the edges to be inversely proportional to number
of streamlines (so the weight on edges has notion of distance not similarity);
secondly, we do not want to penalize weak connections too much, so we take
logarithm; finally, for streamlines with weight 1 we want an edge in a resulting
connectome, so we add 1.
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Fig. 4. Event order stability. Uncertainty is measured over multiple MCMC runs, rows
are sorted according to best order (using individual prior)

3.2 Experimental Pipeline

We compare three different versions of the EBM:

1. The original EBM [8].
2. EBM with connectivity prior obtained from average connectome.
3. EBM with individual connectivity priors.

All models were trained on a first time point (cross-sectional data) observation
and tested on latter time points (longitudinal data). Recall that evaluation of
subject stage using formula (1) does not require p(π), but only subject feature
vector Xi = {xi1, . . . , xiM} and optimal π∗. Positional uncertainty of the orders
was measured over multiple (200) MCMC runs. As additional performance mark-
ers, we used ROC AUC in using the inferred disease stage to discriminate AD
and NC subjects.
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4 Results

The natural way to measure agreement between the predicted stage of a disease
based on anatomical features and each subject’s actual visit order is with an
ordinal correlation. Kendall’s τ is the simplest choice, which we use here. We
display the distribution of τ over all subjects in Fig. 1. Mean τ for standard
EBM was 0.34, for mean connectome prior 0.41, and for individual connectome
prior 0.49. Predicted disease stage for the subjects, including the 4 converters,
is displayed in Fig. 2.

Classification accuracy followed a similar progression, improving with the
mean connectome prior, and improving further with the individual prior (Fig. 3).
Mean (standard deviation) ROC AUC over 200 independent MCMC optimiza-
tions was 0.816 (0.008) for standard EBM, 0.83 (0.026) for EBM with mean
connectome prior, and 0.88 (0.046) for EBM with individual connectome prior.

Fig. 5. Event order stability. Uncertainty is measured over multiple MCMC runs, rows
are sorted according to best order (no prior)
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Fig. 6. Event order stability. Uncertainty is measured over multiple MCMC runs, rows
are sorted according to best order (using average prior)

Finally, in Figs. 4, 5 and 6 we display the region by order probability matrix
as an indicator of the stability of the canonical order computation. Unsurpris-
ingly, using additional individual prior information makes the canonical order
significantly less stable. This suggests that the overall EBM model with a single
canonical order may not be sufficient to capture true subject variability in the
way disease affects different brain regions over time.

Code reproducing all the results is published online.1

5 Conclusion

We have presented a direct way to incorporate the Network Diffusion Hypothesis
into an established disease progression model. The extension via an informative
prior improves several aspects of biomarker performance, including classification
accuracy, and conversion prediction. Importantly, the work highlight the need to

1 https://github.com/kurmukovai/ebm-connectivity-prior.

https://github.com/kurmukovai/ebm-connectivity-prior
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develop more sophisticated models of disease progression that take into account
individual differences in brain connectivity and the resulting manner in which
the disease and specific symptoms are likely to progress. This may include updat-
ing the longitudinal DPM models, for example by placing priors on sigmoidal
progression parameters, as well as entirely new formulations that replace the
notion of a canonical progression with a two-level stochastic process. Implica-
tions of the improved progression modeling include better subject stratification
for clinical trials, lower drug development costs, and more accurate prediction
of future cognitive decline.
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Michael Hütel1(B), Michela Antonelli1, Jinendra Ekanayake1,2,3,
Sebastien Ourselin1, and Andrew Melbourne1

1 School of Biomedical Engineering and Imaging Sciences, KCL, London, UK
michael.hutel@kcl.ac.uk

2 Wellcome/EPSRC Centre for Interventional and Surgical Sciences,
UCL, London, UK

3 Department of Neurosurgery, Leeds General Infirmary, Leeds, UK

Abstract. Neural activation causes a complex change in neurophysi-
ological parameters of the cerebral blood flow (CBF). Functional mag-
netic resonance imaging (fMRI) measures one of these neurophysiological
parameters, which is the blood oxygen level dependent (BOLD) response.
The general linear model (GLM) used in fMRI task experiments relates
activated brain areas to extrinsic task stimuli. The translation of task-
induced neural activation into a hemodynamic response is approximated
with a convolution model in the GLM design. There are major limitations
to the GLM approach. First, the GLM approach does not model intrinsic
brain activity. Second, the GLM assumes compliant task participation
matching the stimulus timing and duration in the corresponding task.
We propose hemodynamic matrix factorization (HMF), a data-driven
approach to model intrinsic and extrinsic neural activation in fMRI. By
contrast to the GLM, the HMF does not incorporate the original task
design. The neural activation is a latent variable and estimated from
fMRI data. Each component of the HMF consists of a neural activa-
tion time course and a spatial mapping. A linear filter translates neural
activation time courses into BOLD responses. We apply our HMF to a
motor localization task of an open source data cohort. We obtain neural
activation time courses that correlate with the original block design of
the task and whose corresponding spatial maps match individual areas
of the sensory-motor cortex known to be activated by either foot, hand
or tongue movement. We find HMF components whose neural activation
time courses correlate with the visual cue timings presented at the begin-
ning of each task block. HMF thus constitutes a novel tool to validate
if the actual task execution of a subject matches the intended execution
specified in the task design of fMRI experiments.
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1 Introduction

One of the most defining assumptions in task experiments is that neural activity
is an idealized variable that is either on or off following the exact timing of a
presented stimulus. This ‘idealized neural activity’ assumption has shaped the
task experiment literature for decades and constitutes the origin of hypothesis-
driven models in fMRI. The most prominent hypothesis-driven model is the
GLM [1]. The design of the GLM is based on the following assumptions: (a) the
stimulus presentation during a task experiment results in an immediate increase
in neural activation; (b) the increase in neural activity translates into a BOLD
signal change by a filter operation following the laws of a linear time-invariant
(LTI) system [2]. The impulse response function of this LTI system is referred
to as hemodynamic response function (HRF) in fMRI. The estimates of the
GLM result in a statistical parametric mapping (SPM) showing to what degree
individual areas of the brain are involved in the stimulus processing.

In contrast to the hypothesis-driven GLM, there are data-driven methods
such as spatial independent component analysis (ICA) [3] that factorizes fMRI
data into a set of timecourses and spatial maps by optimizing a proxy function
for spatial independence.

We propose HMF, a novel data-driven technique that decomposes fMRI data
into a set of components, where each component consists of a latent neural
activation time course and a spatial map. The neural activation time course
is translated into a BOLD time course with the canonical HRF. Blind to the
original stimulus timing, HMF recovers neural activation time courses that match
the idealized neural activation assumed in the motor task experiment and reveal
non-compliant subject behavior.

2 Hemodynamic Matrix Factorization

The proposed generative model is concerned with BOLD time courses of length T
for S subjects, measured on V voxels: {Ys ∈ R

T×V , s = 1 · · · S}. We assume that
the signal change observed in all time-concatenated subjects Y ∈ R

(T∗S)×V is
driven by C latent components that form depending on the performed task. Our
model assumes that each component consists of a BOLD time course bc ∈ R

T×1

and a spatial map hc ∈ R
1×V . The BOLD time course bc = nc �f is obtained by

convolving a neural activation time course nc with a canonical haemodynamic
response function (HRF) f . Given that multiple time courses are convolved
with the same filter f , the convolution operation can be rewritten as matrix
multiplication of a time course matrix N ∈ R

T×C with Töplitz matrix F ∈ R
T×T

of filter f such that B = FN. The proposed generative model for the data Y is
then obtained by C components such that

Y = FNH, (1)

where matrix N ∈ R
T∗S×C contains the individual neural activation time courses

per subject Ns ∈ R
T×C and matrix H ∈ R

C×V
+ contains a set of spatial maps

shared among all subjects.
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We minimize the error between the actual data Y and the approximated
data generated by the model FNH, resulting in the following cost function:

J =
1
2
‖M � (FNH − Y) ‖22 =

1
2
‖M � (

FNσ((FN)�Y + b) − Y
) ‖22, (2)

where the matrix M ∈ R
1×V weighs the importance of each individual voxels.

The regularization for the spatial map matrix H and neural activation matrix
N are introduced in the following.

Regularization of Spatial Maps H. To enforce sparse spatial maps, we
use the Kullback Leibler divergence between two exponential distributions
Δ(p||q(Hc)) = log(λ) − log(λ̂c) + λ̂c

λ − 1 between desired rate parameter λ and
estimated rate parameter λ̂c of an exponential value distribution approximat-
ing the value distribution in each spatial map Hc ∈ R

1×V , using the following
regularization term:

RIS =
1
C

C∑

c=1

Δ(p||q(Hc)). (3)

In addition to sparsity, we want to enforce smoothness of the spatial maps
using anisotropic total variation. Given that we can reshape spatial map matrix
H in a 4D tensor H(4D), we want to minimize the following regularization cost:

RH =
∑

c,i,j,k

∣
∣
∣H(4D)

c,i+1,j,k − H(4D)
c,i,j,k

∣
∣
∣

+
∣
∣
∣H(4D)

c,i,j+1,k − H(4D)
c,i,j,k

∣
∣
∣ +

∣
∣
∣H(4D)

c,i,j,k+1 − H(4D)
c,i,j,k

∣
∣
∣

(4)

The product of H = σ((FN)�Y + b) can be rewritten element-wise as
⎡

⎣σ((FN)�y1 + b) σ((FN)�y2 + b) . . . σ((FN)�yV + b)

⎤

⎦ , (5)

where σ((FN)�yv+b) constitutes a column vector for voxel v. All column vectors
taken together form the spatial maps H as depicted in Eq. 5. Furthermore, one
can rearrange the original data Y in individual matrices along either dimension
V 1, V 2 or V 3 of the three-dimensional Euclidean space. An approximation of
Eq. 4 can then be computed with the following term

RH =
V 2∑

i

V 3∑

j

‖σ((FN)�Y(1)
ij + b)D�

1 ‖1

+
V 1∑

i

V 3∑

j

‖σ((FN)�Y(2)
ij + b)D�

2 ‖1 +
V 1∑

i

V 2∑

j

‖σ((FN)�Y(3)
ij + b)D�

3 ‖1
(6)
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where Y(1)
ij ∈ R

T×V 1, Y(2)
ij ∈ R

T×V 2, Y(3)
ij ∈ R

T×V 3, D1 ∈ R
(V 1−1)×V 1, D2 ∈

R
(V 2−1)×V 2 and D3 ∈ R

(V 3−1)×V 3. The difference operator matrices Di have
the form

Di =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 1
−1 1

−1 1
. . .
−1 1

−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)

Regularization of Neural Activation N. The approximate anisotropic total vari-
ation proposed for spatial regularization in Eq. 7 can also be applied as temporal
regularization to the neural time course matrix N with corresponding cost func-
tion

RN = ‖ND4‖1, (8)

where D4 ∈ R
(T∗S−1)×(T∗S).

The overall cost Ω = J +RN +RIS +RH is optimized with respect to neural
activation time courses N.

3 Experiments and Results

3.1 Experimental Setup

We applied HMF to the motor task of the Midnight scan club (MSC) [4] open
source data1, which comprises 10 healthy adult subjects performing the same
motor task in 10 different sessions.

The motor task design consists of 5 repeated blocks, in which a subject per-
forms one of the 5 movement types, which are left or right foot, left or right
hand, or tongue movement. There is a visual cue at the beginning of each block
instructing the subject of what movement to conduct. For each fMRI scan, vol-
umes were aligned to the first volume to correct for head motion. The first
volume was linearly registered to its corresponding bias-corrected T1-weighted
anatomical scan. The intra-subject affine registration and non-linear registration
to the Montreal Neurological Institute (MNI) template were combined to map
all fMRI volumes with one re-sampling into the MNI space sampled in a 4mm
isotropic resolution. Time courses of voxels within brain tissue were extracted,
high-pass filtered (0.01Hz cut-off) to remove signal drifts from scanner instabil-
ities, centered and variance-normalized. The functional 4D volume set per scan
s was reshaped into a matrix Ys ∈ R

T×V with T time points and V voxels.
In the following section, we compare the neural activation time courses of

the HMF components to the stimulus timing of each task. We then compare the
corresponding BOLD time courses of these HMF components to the timecourses
obtained by spatial ICA. ICA decomposes the data Y = BH into a matrix of
1 https://openfmri.org/dataset/ds000224/.

https://openfmri.org/dataset/ds000224/
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BOLD time courses B ∈ R
T∗S×C and a matrix of spatial maps H ∈ R

C×V . For
both decompositions, we set the number of components C to either 20, 40, 60,
80, or 100 components.

3.2 Neural Activation

Figure 1 shows the spatial map and neural activation time course of the 5 most
correlated HMF components to the visual cues (decreasing top to bottom) when
C = 100. The spatial maps obtained by HMF match with anatomical areas that
are likely involved in the motor task processing. The spatial maps shown in the
first and fourth row of Fig. 1, are related to visual stimulus processing. Whereas
the second, third and fifth row show spatial maps that comprise anatomical areas
involved in motor planning and execution, such as supplementary motor cortex
and basal ganglia network.

Figure 2 depicts the five individual block timings (dotted lines) related to
the visual cue shown in Fig. 1. Each row corresponds to one of the 5 movements:
left foot (first row), right foot (second row), left hand (third row), right hand
(fourth row) and tongue (fifth row). The HMF decomposition provides a good
model for hand and tongue movements as the estimated neural activation time
course closely resembles the idealized neural activation assumed for the task. It
is evident from Fig. 2 that the noise level in subject 4, results in a poor model
fit, likely due to head motion.

Most importantly, HMF is able to detect that subject 6 performed a right
hand movement instead of a left hand movement and vice versa in the second
task block (red box in Fig. 2). Finally, the neural activation time courses for
the foot movement not always resemble the expected idealized neural activation
for all subjects. Indeed, the neural activation time course in subject 1 closely
resembles the task design whereas there is overlap between neural activation in
left and right foot HMF component for subject 2.

3.3 Comparison of HMF and ICA

We compare BOLD time course and spatial map of the HMF components to the
respective equivalents of ICA. Figure 3 depicts the distribution of correlation
values of the most correlated HMF component to each individual movement and
visual timing convolved with the canonical HRF (i.e., left and right toe, left and
right hand and tongue). Figure 4 shows the reproducibility of the spatial map
of the one component associated with an individual movement or visual cue in
each session. The reproducibility is defined by the pair-wise spatial correlation
between corresponding components of two distinct sessions.

HMF and ICA produced components with similar spatial and temporal struc-
ture as presented in the supplementary material in Figs. 6 and 7, respectively.
This is evident in Fig. 3 where the correlation between the BOLD time courses
and the task design increases with the increase of the number of components
C. HMF components presented with a higher median correlation than the com-
ponents obtained by ICA for all the task and all values of C except for the



122 M. Hütel et al.

F
ig
.
1
.

S
p
a
ti

a
l

m
a
p

a
n
d

n
eu

ra
l

a
ct

iv
a
ti

o
n

ti
m

e
co

u
rs

e
(c

o
n
ti

n
u
o
u
s

li
n
e)

o
f

th
e

5
m

o
st

co
rr

el
a
te

d
H

M
F

co
m

p
o
n
en

ts
to

th
e

v
is

u
a
l

cu
e

ti
m

in
g

(d
o
tt

ed
li
n
e)

fo
r

th
e

fi
rs

t
se

ss
io

n
o
f
ea

ch
su

b
je

ct
.
(S

M
C

=
S
u
p
p
le

m
en

ta
ry

M
o
to

r
C

o
rt

ex
)



Hemodynamic Matrix Factorization for fMRI 123

F
ig
.
2
.
S
p
a
ti

a
l
m

a
p

a
n
d

n
eu

ra
l
a
ct

iv
a
ti

o
n

ti
m

e
co

u
rs

e
(c

o
n
ti

n
u
o
u
s

li
n
e)

o
f
th

e
5

d
iff

er
en

t
m

ov
em

en
ts

,
n
a
m

el
y,

le
ft

a
n
d

ri
g
h
t

fo
o
t,

le
ft

a
n
d

ri
g
h
t

h
a
n
d

a
n
d

to
n
g
u
e

(f
ro

m
th

e
to

p
to

b
o
tt

o
m

),
o
f
th

e
m

o
st

co
rr

el
a
te

d
H

M
F

co
m

p
o
n
en

t
to

th
e

b
lo

ck
ti

m
in

g
o
f
th

e
m

ov
em

en
t

(d
o
tt

ed
li
n
e)

fo
r

th
e

fi
rs

t
se

ss
io

n
o
f
ea

ch
su

b
je

ct
.
T

h
e

re
d

d
o
tt

ed
b
ox

sh
ow

s
su

b
je

ct
6

co
n
fu

si
n
g

ri
g
h
t

a
n
d

le
ft

h
a
n
d

m
ov

em
en

t
in

th
e

se
co

n
d

ta
sk

b
lo

ck
.
(C

o
lo

r
fi
g
u
re

o
n
li
n
e)
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left and right foot when C = 80. Moreover, the spatial maps of HMF are more
reproducible than the spatial maps of ICA as shown in Fig. 3.
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Fig. 3. The distribution of temporal correlation of HMF and ICA components with
the corresponding task timing.
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Fig. 4. The distribution of spatial correlation between components of different task
sessions that relate to the same task timing.

4 Discussion

We proposed a novel data-driven technique called HMF that decomposes fMRI
data into components whose neural activation time courses resemble timings of
the respective visual stimulation and movement execution timing. Most impor-
tantly, the timing information of individual stimuli and task execution were not
known to HMF. For the visual stimulation, HMF identified 5 components that
were highly correlated with visual cue timings suggesting their involvement in
the processing of the visual cues as well as the contemplation of subsequent
motor execution in the movement blocks. Regarding the movement execution,
HMF identifies only one highly correlated component with the block timings (see
Fig. 5 in supplementary material) for each type of the 5 movements.

We compared HMF to ICA, which is the most common data-driven tool
to infer brain networks from spontaneous intrinsic neural activity. The results
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showed that both techniques produced task-related components whose BOLD
time courses and spatial maps are highly similar. However, HMF produced on
average more correlated components than ICA. This is likely due to the regu-
larization of HMF that relates adjacent points in time and space in fMRI data,
whereas there is no such regularization in ICA.

In contrast to data-driven techniques, hypothesis-driven techniques such as
GLM require assumptions of how the task design relates to neural activation
and subsequent change in BOLD. Although HMF did not use such task timing
information, it generated spatial maps that matched the spatial activation maps
presented in [4]. The GLM provides a statistical test framework to infer brain
activation maps involved in the task processing. However, in contrast to data-
driven techniques, the GLM cannot model intrinsic brain activity and relies
crucially on task participation to obtain correct statistical test estimates.

If task participation is different than expected, statistical inference within
the GLM framework will lead to a wrong statistical estimates. Tools such as
HMF are therefore needed to validate task participation, especially in particular
cohorts such as children that are likely to be less task compliant.

Data-driven techniques produce varying results depending on hyper-
parameters, i.e. the number of components or the strength of applied regulariza-
tion. Inferring neural activation from BOLD is an ill-posed problem given that
multiple neural activation patterns can produce the exact same BOLD time
course. We apply total variation regularization assuming that the most plausible
is likely the most variational simple solution. However, sensible hyper-parameters
can be found by finding a balance between reproducibility and explained vari-
ance.

We have developed a robust physiology-based methodology to analyze task-
based fMRI data at the individual level. Methods such as this will help us to
guide our future understanding of the processes of cognition.

References

1. Poline, J.B., Brett, M.: The general linear model and fMRI: does love last forever?
Neuroimage 62(2), 871–880 (2012)

2. Boynton, G.M., Engel, S.A., Heeger, D.J.: Linear systems analysis of the fMRI
signal. NeuroImage 62(2), 975–984 (2012)

3. Beckmann, C.F., Smith, S.M.: Probabilistic independent component analysis for
functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23(2), 137–152
(2004)

4. Gordon, E.M., et al.: Precision functional mapping of individual human brains.
Neuron 95(4), 791–807 (2017)



Network Dependency Index Stratified
Subnetwork Analysis of Functional

Connectomes: An Application to Autism

Ai Wern Chung1 and Markus D. Schirmer2,3(B)

1 Fetal-Neonatal Neuroimaging and Developmental Science Center,
Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA

2 Stroke Division & Massachusetts General Hospital,
J. Philip Kistler Stroke Research Center, Harvard Medical School, Boston, USA

mschirmer1@mgh.harvard.edu
3 Department of Population Health Sciences,

German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany

Abstract. Autism spectrum disorder (ASD) is a neurodevelopmental
condition impacting high-level cognitive processing and social behavior.
Recognizing the distributed nature of brain function, neuroscientists are
exploiting the connectome to aid with the characterization of this com-
plex disease. The human connectome has demonstrated the brain to be
a highly organized system with a centralized core vital for effective func-
tion. As such, many have used this topological principle to not only
assess core regions, but have stratified the remaining graph into subnet-
works depending on their relation to the core. Subnetworks are then uti-
lized to further understand the supporting role of more peripheral nodes
with respects to the overall function in the network. A recently proposed
framework for subnetwork definition is based on the network dependency
index (NDI), a measure of a node’s importance based on its contribution
to overall efficiency in the network, and the derived subnetworks, or Tiers,
have been shown to be largely stable across ages in structural networks.
Here, we extend the NDI framework to test its efficacy against a number
experimental conditions. We first not only demonstrated NDI’s feasibility
on resting-state functional MRI data, but also its stability irrespective
of the group connectome on which NDI was determined for various edge
thresholds. Secondly, by comparing network theory measures of transi-
tivity and efficiency, significant group differences were identified in NDI
Tiers of greatest importance. This demonstrates the efficacy of utilizing
NDI stratified subnetworks, which can help to improve our understand-
ing of diseases and how they affect overall brain connectivity.
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1 Introduction

Neurodevelopmental conditions impair the growth and/or development of the
brain. One such widely studied condition is autism spectrum disorder (ASD),
which affects about 1.7% of children in the US [1]. ASD describes a spectrum
of neurodevelopmental disorders characterized by atypical social behavior and
sensory processing, where patients also demonstrate deficits in mental flexibil-
ity and high-level cognitive function [11,16], and is currently diagnosed using
cognitive assessment. Investigations suggest that ASD is a distributed disease
and cannot be described by local effects, i.e. by specific brain regions, leading to
an increased interest in applying connectomics for identifying differences in the
autistic brain [11,13].

Brain connectivity, or connectomics, and its topology has been widely
studied, e.g., in healthy subjects [5,10,18,21,24], during early brain devel-
opment [2,6,17], and in disease [6,7,12,20]. In particular, studies have used
various ways to define subnetworks in the human connectome. These studies
stratify groups of nodes in a brain network by a network theoretical measure,
often relating it to the underlying network topology. Subsequent analyses often
compare “traditional” network measures between groups within the cohort or
between subnetworks [4,7,18,19]. However, most subnetwork stratification, after
the brain network has been estimated, relies on a user-defined parameter, which
can have significant impact on the subnetwork definition (e.g. k in rich-club anal-
yses [21]). A recent study investigated the use of the network dependency index
(NDI) to identify subnetworks in a data driven fashion and subsequently no user-
parameter needs to be defined. In their study, Schirmer et al. [19] utilized struc-
tural connectomes with 170 brain regions in the NKI-Lifespan cohort to inves-
tigate the stability of NDI across age groups, and compared their method with
subnetworks defined using the rich-club. NDI assigns a measure of “importance”
to each node in the connectome by quantifying the global effect of removing the
node on network efficiency. Subsequent subnetwork stratification groups nodes
automatically into Tiers based on this measure, identifying sets of nodes which
can be considered essential for network efficiency. Importantly, their NDI frame-
work demonstrated high reliability in determining a consistent set of regions to
belong to the same subnetworks, without having to specify a user-defined param-
eter. However, they did not investigate the feasibility of applying their framework
to functional data, or the utility of the identified subnetworks to identify group
differences in a patient-control setting.

In this work, we apply the NDI framework to a set of resting-state func-
tional connectomes in an ASD/control cohort based on the Automated Anatom-
ical Labeling (AAL) atlas. We demonstrate that the framework can directly be
applied to functional connectomes that are parcellated by a commonly used
atlas on which few regions are defined. We also investigate the effect of using the
cohort, control-only, and patient-only connectomes to derive NDI subnetworks.
Additionally, we investigate the consistency of nodal subnetwork assignment
by using different weighting schemes in the functional connectome, i.e. retain-
ing only edges with negative weights, positive weights, and lastly the absolute
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weights of both, while varying the threshold for noise removal. Finally, we com-
pare topological features in each of the subnetworks generated by all weight-
ing schemes between subjects diagnosed with ASD and typically developing
individuals.

2 Materials and Methods

2.1 Study Design and Patient Population

Data used in this study originates from the Autism Brain Imaging Data
Exchange (ABIDE) [8,9] initiative and was downloaded through the python
package nilearn [14]. ABIDE consists of data comprising ASD (patients) and
typically developing (controls) individuals [9]. Each individual underwent a mag-
netic resonance imaging protocol, including rsfMRI and MPRAGE sequences.
Details of acquisition, informed consent, and site-specific protocols are available
elsewhere1. The cohort characteristics are summarized in Table 1.

Table 1. Cohort characterization.

Cohort Control Patients

N 819 440 379

Age, years, mean (sd) 16.39 (7.12) 16.27 (6.74) 16.53 (7.54)

2.2 RsfMRI Preprocessing and Group Connectomes

Data were preprocessed based on the ABIDE Connectome Computation System
pipeline, which included slice timing and motion correction, removal of mean
CSF and white matter signals, and detrending of linear and quadratic drifts.
Subsequently, a temporal band-pass filtering was applied (0.01–0.1 Hz) and the
rsfMRI data registered to the MNI template. Regions for network analysis were
defined based on the AAL atlas and the pre-processed time series was demeaned.
Prior to network analysis, brainstem and cerebellar regions were removed, result-
ing in a total of 90 brain regions. Edge weights were computed as a covariance
matrix [22] and edges with an absolute weight less than a given threshold were
removed to reduce the effects of spurious signals. In this study, we investigate
edge weight thresholds of 0.01, 0.03, and 0.05. In this study, we investigate three
kinds of networks - by retaining only the positive weights (pos), only the abso-
lute values of negative weights (neg), and the absolute of all weights (abs) - as
there is no consensus on which of these are most discriminative.

Subnetworks may be determined on group-averaged connectomes. Such con-
nectomes have been used in multiple studies [18,19,21]. First, the binarized
1 http://fcon 1000.projects.nitrc.org/indi/abide/.
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connectivity matrices of all subjects within a group are summarized by only
retaining edges that are present in at least 90% of the subjects (group adjacency
matrix) with the goal to preserve connections which can be reliably identified.
To allow for weighted network analyses, weights are added to the edges of the
group adjacency matrix by averaging the edge weights from the contributing
subjects’ connectivity matrices. This process creates a weighted group-averaged
connectome Wgroup, which can be utilized for analyses.

In this study, we group our cohort in three different ways. First, we create
a cohort connectome, which utilizes information from all subjects within the
cohort. As our cohort contains patients and controls, we also generate a patient
connectome, as well as a control connectome for NDI analysis.

2.3 Network Dependency Index Subnetworks

A detailed description of the NDI framework is given elsewhere [19]. In brief,
given a connectivity matrix Wgroup = {wij} with n nodes, we first calculate the
full topological distance matrix D between all node pairs based on the Dijkstra’s
algorithm and using the inverse of the connection strength wij between nodes i
and j as an initial topological distance. Subsequently, we derive the information
measure Iij between nodes i and j given by 1/Dij . I is then normalized by the
maximum information measure. The NDI score of node m is then given as

NDIm = mean({Ii}i=1,..,m−1,m+1,...,n)

= mean({
∑

j

Iij − (I−m)ij}i=1,..,m−1,m+1,...,n),

where (I−m)ij is the information measure of all nodes in the connectome from
which node m has been removed. This analysis is then repeated for all nodes in
the network, resulting in an nx1 dimensional feature vector of NDI scores for
the network.

For each group connectome, we calculate its NDI scores. All nodes with
an NDI of 0 are assigned to Tier 4. Using the natural-log-transformed NDI
(excluding nodes with NDI = 0), we apply a Gaussian Mixture Model with 3
Gaussian distributions (GMM), where subnetwork assignments are based on the
halfway point between the Gaussian centers, resulting in three additional Tiers.
In total, the nodes in a network are differentiated into four Tiers (including the
NDI = 0 Tier), where nodes within a Tier are “similar” with respect to their
information measure.

2.4 Network Measures

We utilize the subnetworks defined on the group connectome to stratify the
nodes in each subject’s connectome. Subsequently, we characterize each subnet-
work’s topology by calculating two commonly used network measures describing
different aspects of the connectome organization, namely transitivity (T), and
global efficiency (E) [15].
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2.5 Statistical Analysis

First, we compare the ranking of the regions in the brain, defined by NDI,
between the different group connectomes. NDI assigns a measure of “impor-
tance” to each node in the connectome. According to this assignment, we can
subsequently rank the regions in the brain. In order to compare different assign-
ments from multiple group connectomes, we ultimately compare the resulting
ranked lists. Here, we use the ranked-biased overlap (RBO) measure to estimate
similarity of rankings, with higher weights for higher ranks [23]. In our setting
this means that a variation in the order of important nodes is penalized more
strongly, compared to the order among less important nodes. The closer the
RBO value is to 1.0, the greater the agreement in node ranking between the
three connectomes, with 1.0 representing complete similarity.

Subsequently, we calculate the network measures for each of the subnetworks
defined on each group connectomes. This allows us to investigate topological
differences between ASD patients and controls. We utilize the Mann-Whitney-
Wilcox test and statistical significance was set at p < 0.05.

3 Results

The log-transformed NDI scores with the fitted GMM model are shown in Fig. 1
for each group connectome and for abs and pos weighting schemes. In case of
retaining only negative weights, the population of calculated NDI value was so
restricted, that no Gaussian fit was possible on neg matrices for all group connec-
tomes. Therefore, for the remainder of this analysis, we restricted our analysis
to abs and pos weightings only. In general, NDI scores are stable across group
connectomes, with similar distributions and identified GMM centers within each
threshold/weighting combination.

Table 2 summarizes the comparison of nodal ranking according to the NDI
score. Firstly, for all combinations of threshold and weighting scheme, all three
group connectomes resulted in differences of RBO values of less than 0.005.
Secondly, RBO measures remained relatively consistent irrespective of threshold
but differed more with weighting - meaning that edge thresholding has less effect
on varying node rank across groups than weighting scheme. As node rankings
were the same for all group connectomes for all threshold/weighting combination,
we selected the Tier labels from the control connectome to stratify the nodes in
each subject’s network for the remainder of the analysis.

Figures 2 and 3 compare network topological measures in each of the subnet-
works between ASD and controls, for absolute and positive weighting schemes,
respectively. In the case of an edge threshold of 0.03 on the abs weighting, only
one node had a value of NDI = 0, which meant that the network measures com-
puted were ill-defined on this subnetwork (Tier 4). We observe significant dif-
ferences in both T and E in Tier 1 in the case of using the absolute weighting
for all thresholds, and in Tier 1 and Tier 2 in case of positive weighting, for a
threshold of 0.01 and 0.05, respectively.
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Fig. 1. Log-transformed NDI histograms for group connectomes based on absolute
(abs; left column) and positive (pos; right column) edge weights. A, B, and C, cor-
respond to edge thresholds of 0.01, 0.03, and 0.05, respectively. Each row of A, B,
and C, corresponds (from top to bottom) to the cohort, patient-only, and healthy-only
connectome. Centers of the three fitted Gaussians are indicated with a black diamond
and the corresponding value is given to its right.

For absolute weights only Tier 1 showed significant differences. Regions which
were consistently identified as Tier 1 regions across thresholds were the pre-
central gyrus, median cingulate and paracingulate gyri, cuneous, precuneous,
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Table 2. Summary of RBO measures calculated on all group connectomes and for
absolute (abs) and positive (pos) weights. Individual results of group connectomes are
summarized by a single number, as they resulted in RBO differences of less than 0.005.

Threshold Threshold 0.01 0.03 0.05

Weighting abs pos abs pos abs pos

0.01 abs 1.00 0.69 0.81 0.68 0.74 0.61

pos 0.69 1.00 0.72 0.85 0.79 0.76

0.03 abs 0.81 0.72 1.00 0.68 0.81 0.62

pos 0.68 0.85 0.68 1.00 0.73 0.78

0.05 abs 0.74 0.79 0.81 0.73 1.00 0.67

pos 0.61 0.76 0.62 0.78 0.67 1.00

superior occipital gyrus, fusiform gyrus, and the supramarginal gyrus, all in the
right hemisphere. Left hemisphere Tier 1 regions consisted of the orbital part
of inferior frontal gyrus and medial superior frontal gyrus. Only the insula was
identified bilaterally. For positive weights, we observed significant differences in
Tier 1 and Tier 2 for a threshold of 0.01 and 0.05, respectively. Regions that were
consistently identified in both tiers were the orbital part of middle frontal gyrus,
median cingulate and paracingulate gyri, and caudate. In the left hemisphere,
the regions consisted of the superior and inferior parietal gyrus, and the puta-
men. Additionally, the triangular part of inferior frontal gyrus was identified in
both hemispheres.

4 Discussion

In this study, we showed that the NDI framework for defining subnetworks can
be applied to resting-state functional connectomes and demonstrated its consis-
tency regardless of the group connectome used. Additionally, we demonstrated
that there are topological group differences in the subnetworks generated, when
comparing subjects diagnosed with ASD and typically developing individuals.

Applying NDI for subnetwork definition worked for functional networks, uti-
lizing an atlas with approximately half the number of regions, compared to the
original study (which employed the Craddock200 atlas with 170 regions [19]).
While it is possible that a reduction in the number of connectome regions can
increase the variation in the GMM fitted Gaussian centers, we observed stable
estimations for these centers for our three ABIDE group connectomes. In addi-
tion, we showed better agreement of nodal assignment, if weighting scheme is
held constant while varying the threshold, compared to varying weighting scheme
while holding the threshold constant. This further highlights the stability for the
reliable estimation of subnetworks using NDI. Importantly, we showed that by
stratifying the individual connectomes by subnetworks, we were able to find sig-
nificant group differences between individuals with ASD and controls in regions
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Fig. 2. Boxplot of topological network measures computed using absolute edge weights,
for both ASD and Control groups from Tiers 1 to 4. A, B, and C correspond to edge
thresholds of 0.01, 0.03, and 0.05, respectively. Statistical significance based on the
Mann-Whitney-Wilcox test is indicated above each boxplot for transitivity (T) and
efficiency (E). (ns: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001)
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Fig. 3. Boxplot of topological network measures computed using positive edge weights,
for both ASD and Control groups from Tiers 1 to 4. D, E, and F correspond to edge
thresholds of 0.01, 0.03, and 0.05, respectively. Statistical significance based on the
Mann-Whitney-Wilcox test is indicated above each boxplot for transitivity (T) and
efficiency (E). (ns: p > 0.05; *: p < 0.05; **: p < 0.01; ***: p < 0.001)
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belonging to Tier 1 or Tier 2, i.e. regions which are more important for efficient
information transport. The only region consistently identified across thresholds
and weighting schemes was the right median cingulate and paracingulate gyri,
which was recently highlighted in ABIDE using a neural network approach [3].
Subsequent analyses may use this information, along with other regions identi-
fied from the appropriate weighting scheme, as priors when aiming to investigate
specific regions.

There are general network analysis limitations, which may further affect our
study. Although it is quite common to threshold functional connectivity matri-
ces in order to reduce the effect of noise, there is no agreed upon method on
how to define this threshold. Therefore, studies commonly investigate different
thresholds with the aim to demonstrate consistency of results. Following this
reasoning, we investigated a variety of methods of thresholding, specifically by
using only the positive and only the negative edge weights, as well as the absolute
edge weight, and by thresholding each at levels of 0.01, 0.03, and 0.05. While we
show that the framework can still be utilized, except in the case of negative-only
weights, there are many more thresholds which can be investigated. This will be
the aim of future work. In our study, we analyze connectomes with 90 regions,
whereas the original publication was able to utilize 170. While the appropriate
atlas, or number of regions in the brain, remains an open question, a larger
number of regions results in more data on which the three Gaussians can be
estimated. In future work we aim to investigate agreement of NDI based Tier-
assignment by utilizing multiple atlases, and mapping our results back to the
brain template to identify spatial patterns of the regions in each Tier. In this
work we estimated NDI subnetwork definition based on average group connec-
tomes. However, it is possible to use the connectomes of each individual subjects
to determine the subnetworks, which may help to further differentiate subtypes
of diseases. While this is an interesting objective for future work, the primary aim
here was to demonstrate that the NDI framework can be utilized in functional
data and that it can identify group differences in case of disease.

In conclusion, we demonstrated that the NDI subnetwork framework can be
applied to functional connectomes and produces stable results, when modifying
the population from which the group connectome is generated (patients versus
control). In addition, we show that these subnetwork definitions can be utilized
to show group differences between individuals diagnosed with ASD and healthy
controls, where those differences are mainly located in nodes/brain regions with
highest importance.
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