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Preface

 Mixed Plantations of Eucalyptus and Acacia mangium

We indicate this book to foresters, entrepreneurs in forestry, producers of wood, 
cellulose or other forest sub-products, agricultural engineers, agronomists, biolo-
gists, people working in Environmental Conservation and Natural Life Preservation, 
as well as the graduate and post-graduate students in these areas and socio- economic 
planners.

Here, we present a compilation as complete as possible on research, themes 
regarding eucalypt plantations, especially when in consortia with leguminous tropi-
cal trees. Such mixed stands generally can be productive and economically viable 
and are ecologically sustainable and favorable for the social-economic guarantees 
of rural workers and entrepreneurs. Eucalypt is one of the most cultivated forest 
trees in Brazil. However, most of the time, it is produced as monoculture and needs 
continuous fertilizer applications, including nitrogenous compounds, to maintain 
productivity. These plantations, usually propagated by vegetative means, as clones, 
receive criticism from various sectors of society for their low genetic diversity. 
Among forest producers, the main concern is the high susceptibility of homoge-
neous stands to abiotic and biotic stress. In consequence, during the last decades, 
several research teams all over the tropical countries have been investigating changes 
in the eucalypt management system to provide a more attractive and sustainable 
activity, achieving economic gains and diminishing its environmental impacts. Our 
proposal is mostly restricted to the Brazilian research experience on this topic, with 
special consideration of the need to diminish the use of industrial products as 
 fertilizers and pesticides, but valuating soil health, biological gains, and ecosystem 
services.

Considering those prerequisites, it becomes easy to answer the main question of 
the first chapter: “Why mixed forest plantations?” Our response is as follows: 
“Because, when comparing all investigated management systems, this one is socially 
more advantageous and benefitting the rural entrepreneur economically, besides its 
high sustainability.”
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Considering some of these advantages, we want to present the main line of 
thought of the sequence of the book chapters. Thus, regarding growth and produc-
tivity of the trees, the most outstanding combination is Eucalypt in consortium with 
Acacia mangium, an exotic species, already known for its expressive productivity. 
Although, in biology, one always gets some variation, the best responses occur with 
mixed  plantations in deep and sandy soils of low fertility, with a hot and rainy cli-
mate, which corresponds to most of the Brazilian regions used for eucalypt 
production.

The main reason for these superior results is that most legumes present a natural 
association with soil bacteria, generically known as rhizobia, which nodulate the 
roots of these trees and have a high potential of fixing atmospheric nitrogen, trans-
forming it into ammonia in the root nodules. The forthcoming fixed nitrogenous 
compounds cycle throughout the whole tree and generally are exported and divided 
with other plants in their neighborhood. During litterfall, some of the fixed N 
reaches the soil causing its enrichement in N. The symbiotically fixed N can supply 
nitrogen needs of all plants, at the same time retaining nutrient reserves for the next 
tree rotation. Thus, the enriched soil in C and N turns the nutrient cycling much 
more dynamic.

Chapters 5–10 are all dedicated to discussing biological aspects of this kind of 
management, providing us with a constant increase in knowledge on the most 
 adequate strategies to be applied to better soil health and plant growth. The perfect 
functioning of the soil as producer correlates directly with the size and diversity of 
the soil bacterial community structure, with each plant recruiting in its rhizosphere 
the most helpful bacteria, with functions of mineralizing the soil organic matter, 
acting on enzymes related to plant nutrition and on biological control of pathogens, 
among others. Right thereafter, we present the processes inherent to biological N 
fixation (BNF), selection of the most adequate rhizobial strains, and the transfer 
from soil to plant or from plant to plant mediated by mycorrhizal fungi, having a 
synergic interaction with BNF. Mycorrhizal fungi transport all kinds of nutrients to 
plants but are more active regarding the ones with slow mobility in soil, as phospho-
rus (P). Here, it is important to highlight another trait of Eucalyptus and Acacia: 
both host plants form symbioses with both kinds of mycorrhiza, the arbuscular 
(AM) and the ectomycorrhiza (ECM), which is exceptional among plants, that nor-
mally associate only with one kind of mycorrhiza, if at all.

Following the chapters, we now come to the important contribution of insects 
and other soil invertebrates to soil health, nutrient cycling and organic matter 
decomposition, showing how they influence the plants and how they become 
affected, in numbers and diversity, besides the influence of the climate. Right 
 afterwards, there follows a chapter on bio-indicators of soil health, showing many 
recent results on the extreme relevance of the microbiological phenomena and the 
innumerable ecosystem services derived from the ecologically correct management, 
with benefits to soil, plants, and workers, still contributing to economic gains.

Chapter 11 discusses the problems that may derive from the introduction of 
exotic possible biological species into any ecosystem different from its origin, 
which resides in its invasiveness, sometimes causing severe ecological and 
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 economic problems, a phenomenon that has been occurring regarding specimens of 
plants and animals of most categories. Although most of our researchers did not 
perceive such behavior regarding A. mangium, we feel ethically compromised to 
tell what a few other researchers have reported, and it is always worthwhile to use 
prevention and caution in such situations. Generally, however, our experience says 
that the danger of this species becoming invasive should be neglected, when being 
used adequately. We belief that invasiveness may only occur in open lands and not 
when used in forests.

Chapter 12 presents the use of Brazilian leguminous trees to substitute A. man-
gium. So far, the best choice has always been this species (A. mangium), and it is the 
only one about which we have already compiled a great amount of experimental 
reports and practical experience, as well in Brazil as in many other countries. The 
approval of employing this species was almost unanimous by all researchers or 
farmers who had the opportunity of following its performance in the field, and for 
many decades.

Nevertheless, nothing impedes to test other species, as, for example, the national 
leguminous trees, which are available in great numbers. Maybe in the future, we can 
select some of them, which present the same advantages or are even better in such a 
consortium, as indicated by the author of this chapter, one of the very few scientists 
who worked in this area.

Finally, all this information is complemented by the last chapter, which describes 
the Brazilian legal structure and presents the regulations for the exploration of 
 forests, either Eucalypt plantations in monoculture or in consortia, which we hope, 
will help the interested people to make the best choices on this activity.

Piracicaba, SP, Brazil  Elke Jurandy Bran Nogueira Cardoso 
Piracicaba, SP, Brazil   José Leonardo de Moraes Gonçalves 
Rio de Janeiro, RJ, Brazil   Fabiano de Carvalho Balieiro 
Seropédica, RJ, Brazil   Avílio Antônio Franco 
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Chapter 1
Why Mixed Forest Plantation?

Ranieri Ribeiro Paula, Ivanka Rosado de Oliveira,  
José Leonardo de Moraes Gonçalves , and Alexandre de Vicente Ferraz

1.1  Introduction

Although relevant to Brazilian gross domestic product (GDP), forest plantations 
currently occupy only a small fraction of Brazilian land with 9.8 million hectares 
(Bacha 2008; IBGE 2017). Approximately 96% of these lands are occupied by 
monocultures of species of Eucalyptus (75.2%) and Pinus (20.6%), and only a few 
forest species occupy another 400,000 hectares (IBGE 2017). These plantations 
have expanded over the past 30–40 years on land abandoned by agriculture and 
livestock, especially in the Atlantic Forest (South, Southeast, Coastal area of Bahia), 
Cerrado (Southeast, Midwest, and North), and Pampa (South) (Gonçalves et  al. 
2013; IBGE 2017).

Pastures planted with “African” grass occupy at least 80 million hectares in tropi-
cal regions of Brazil, and at least half of those are considered degraded (Boddey 
et al. 2004). Additionally, current estimates by the Brazilian Government indicate 
that 4.5 million ha of permanent preservation areas of native vegetation need to be 
recovered throughout Brazil. In addition, approximately 7.2 million ha of legal 
reserve should be recovered mainly in the Amazon, 4.8 million ha in the Atlantic 
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Forest, and 3.7 million ha in the Cerrado—Brazilian savannah (Soares-Filho et al. 
2014; Brazil 2017). Public policies are foreseen in the National Plan for the 
Recovery of Native Vegetation for the recovery of at least 12 million ha until 2030 
(Brazil 2017).

The expansion of highly productive monospecific forest plantations faces several 
challenges. Species are recommended for a given site according to edaphoclimatic 
adaptation, productivity, quality of wood, and resistance to pests and diseases, 
among others. In the case of Eucalypt, higher wood yields (e.g., annual average 
increment >40 m3 ha−1 year−1) have been achieved by integrating improved genetic 
material, suitable edaphoclimatic conditions, and good silvicultural practices 
(Gonçalves et al. 2013). However, breeding programs exist only for a limited num-
ber of species, notably Eucalyptus, Corymbia, Pinus, and Hevea, and for commer-
cial fruit trees. Several potential native and introduced tree species for forest 
plantations with economic purposes have little or no level of genetic improvement 
(Carvalho 2003).

Most of the soils located in the tropical and warm subtropical portions are gener-
ally deep and well drained, with high acidity and low fertility, mostly classified as 
Oxisols and Ultisols (Gonçalves et  al. 2013; Guerra et  al. 2014). The chemical, 
physical, and biological characteristics of soils intended for forest plantations will 
be increasingly limiting as plantations occupy lands degraded by agriculture and 
livestock. The availability of water is in most cases the main limiting factor for for-
est production, since other edaphic factors can be overcome through mechanization 
and fertilization (Stape et al. 2010; Gonçalves et al. 2013). The availability of water 
may be a limiting factor for the expansion of highly productive forest plantations in 
the regions with predominance of the tropical and subtropical climates, whose dry 
season varies between 3 and 7 months. Moreover, the effects of climate change on 
forest plantations need better understanding. The mortality induced by lack of water 
in native and exotic trees has been detected in several regions of the world, includ-
ing Brazil (Laclau et al. 2013; Rowland et al. 2015). To minimize the risks of tree 
mortality due to water shortage, it is indicated to plant species that are adapted and 
efficient in the use of resources (Gonçalves et al. 2013). The impacts of highly pro-
ductive trees and plantations on water resources need to be well understood to pro-
mote the sustainable expansion of plantations (Christina et  al. 2011; Nouvellon 
et al. 2011).

Nitrogen is a nutrient commonly limiting the productivity of forest plantations 
with non-nitrogen-fixing species (Gonçalves et al. 2003; Rennenberg et al. 2009; 
Laclau et al. 2010; Bouillet et al. 2013; Gonçalves et al. 2013). Although N is natu-
rally available in the soil through the mineralization of organic matter, this is reduced 
in degraded soils because of the low content and quality of the organic matter 
(Gonçalves et al. 2003). And availability of N is conditioned by the microbial activ-
ity that is regulated by soil moisture content (Rennenberg et al. 2009; Voigtlaender 
et al. 2019). Nitrogen fertilizer application in forest plantation may be recommended 
according to organic matter concentrations in soil (Gonçalves 1995). For example, 
values of 60 kg ha−1 and 30 kg ha−1 of total nitrogen are indicated for commercial 
plantations of Eucalyptus and Pinus, respectively, when the concentration of soil 

R. R. Paula et al.
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organic matter is less than 1.5%. These amounts decrease to 20 kg ha−1 if the con-
centration of soil organic matter is higher than 4%. For native species of Brazil with 
a medium and high nitrogen demand 50 kg ha−1 of total nitrogen is recommended 
(Gonçalves 1995). The production and use of N fertilizers involve environmental 
risks of water pollution and greenhouse gas emissions, as well as being increasingly 
costly for Brazilian planters due to the fluctuation of the dollar and the influence of 
the value of oil (Galloway 1998; Dias and Fernandes 2006).

A growing scientific interest in the establishment of more biodiverse forest plan-
tations has been observed around the world and Brazil (Paquette and Messier 2010; 
Brancalion et al. 2012; Bouillet et al. 2013; Del Río et al. 2016; Dai et al. 2018; 
Marron and Epron 2019). These plantations may involve only trees and/or trees with 
agricultural crops and/or livestock pastures. The call for the establishment of mixed 
forests is mainly associated with the possibility of higher productivity and greater 
provision of products (e.g., wood for multiple uses, non-timber forest products, 
fibers, and proteins) and ecosystem services (e.g., soil and water conservation, car-
bon storage, wildlife feeding). Mixed forest plantations involving N2-fixing legume 
species and non-N2-fixing species such as eucalypt have been proposed to increase 
productivity and ecosystem services in regions with N-deficient soils (Balieiro et al. 
2002; Chaer et al. 2011; Bouillet et al. 2013; Santos et al. 2016; Voigtlaender et al. 
2019; Marron and Epron 2019). Tree legumes inoculated with specific bacteria can 
fix most of the N demanded for growth and transfer the fixed N to the soil and plants 
in companion, as detailed in Chap. 6. Results of research in Brazil testing inter-
cropped Eucalyptus sp. with Acacia mangium (Fig.  1.1) increased the nutrient 
cycling rate, contributing to the soil a large amount of N from the biological nitro-
gen fixation (FBN) in only one crop rotation (Santos et al. 2016; Voigtlaender et al. 
2019), as detailed in Chap. 3.

Fig. 1.1 Mixed forest of Eucalyptus grandis and Acacia mangium at spacing of 3 m by 3 m (pro-
portion 1:1): (a) 5 months and (b) 30 months after planting, at the Experimental Station of Forest 
Sciences of Itatinga, São Paulo, Brazil

1 Why Mixed Forest Plantation?



4

In a recent meta-analysis, Marron and Epron (2019) showed that mixed forest 
plantations involving at least equal proportions of N2-fixing and non-N2-fixing spe-
cies are generally more productive than monospecific plantations when established 
in sites with low productive capacity. In these sites, poorer in nutrients or water, 
positive interactions (e.g., facilitation and complementarity) over negative ones 
(e.g., intraspecific competition) are expected to prevail. Sites with lower growth 
resource limitations tend to favor fast-growing species more adapted, leading to 
greater intraspecific competition (Kelty 2006; Forrester et al. 2006; Bouillet et al. 
2013). Thus, the zoning of the productive capacity of the forest sites is a necessary 
measure for the best use of the sites destined to the mixed and monospecific planta-
tions. Even when yield is not increased the benefit of long-term sustainability and 
other ecosystem services should be considered (see the Chap. 10).

The choice of the right species to minimize the effects of site quality also is 
important. According to authors such as Gonçalves et al. (2003) and Kelty (2006), 
the success in terms of production and ecosystem service delivery is obtained more 
easily by combining species that differ in growth rates, in growth resource require-
ments, and in the form they obtain resources. The combination of these functional 
characteristics of the species is necessary to promote a better capture of the resources 
to maximize nutrient cycling and the recovery of degraded soils in Brazil (Gonçalves 
et al. 2003).

1.2  Socioeconomic Benefits

The increase in forest cover promoted by forest plantations with economic objec-
tives and recovery of ecosystem functions is an urgent need pointed out by several 
authors (Ab’Sáber et al. 1990; Machado and Bacha 2002; Bacha 2008; Brancalion 
et al. 2011; Chaer et al. 2011; Guerra et al. 2014; Soares-Filho et al. 2014; Brazil 
2017). There are numerous public and private actions in the Brazilian forestry pro-
duction and conservation program aimed at the sustainability of the development of 
this sector: for example, the ABC Plan (Low Carbon Emissions Agriculture), and 
the Native Vegetation Protection Law (Law 12.651, of May 25, 2012), which defines 
the proportions of areas for protection of native vegetation and for forestry, agricul-
ture, and livestock in rural properties, as well as the process of restoration of native 
vegetation in degraded areas. More recent legislation, called National Policy for the 
Recovery of Native Vegetation, was created to promote the revegetation of Brazilian 
biomes with mixed forest plantations and agroforestry. Moreover, other initiatives 
involving nongovernmental organizations, such as the Atlantic Forest Restoration 
Pact, bring new approaches to reconcile restoration of the biome with economic 
returns (Brancalion et al. 2011; Amazonas et al. 2018).

One of the great novelties of the Law 12.651 is the possibility, according to pre- 
established criteria, in mixing a 1:1 proportion of exotic and native species includ-
ing fruit trees, in the legal reserve area (i.e., forest area of rural property intended for 
forest management and biodiversity conservation). This mechanism allows the 
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formation of mixed multipurpose forests, as well as reduction of planting costs. 
Another relevant aspect is the legal reserve having a minimum area set at 20% in 
relation to the total size of the property for all regions of the country except the 
Amazon. In the Amazon region, legal reserve areas range around 80% (forest 
region), 35% (Cerrado region), and 20% (general field region). Chapter 13 details 
the Brazilian legal framework of multifunctional mixed forest plantations.

Mixed forest plantations provide a greater diversity of products and ecosystem 
services than monospecific forest plantations (Bouillet et al. 2013; Del Río et al. 
2016; Dai et al. 2018; Voigtlaender et al. 2019). The mixture of two species with 
high timber value, with one being a N-fixer, has been the model most studied and 
recommended by researchers working with forest for timber production (Forrester 
et al. 2006; Bouillet et al. 2013; Del Río et al. 2016; Marron and Epron 2019). Pairs 
of mixtures of fast-growing exotic species such as Eucalyptus sp. or Pinus sp. with 
legumes such as Acacia mangium or A. mearnsii have the potential to offer a wide 
range of products in the same area, including timber, firewood, coal, tannins, resins, 
and essential oils. Such mixtures also contribute with the addition of ecosystem 
services, including the reduction of surface runoff and consequent more water infil-
tration, carbon sequestration, and biological fixation of N, culminating in the reduc-
tion of nitrogen fertilization use (see also Chap. 10).

Forest plantations carried out by companies on their own area or via forest out 
grower schemes use high-technology equipment with variation of techniques in 
function of the terrain slope (Malinovski et al. 2006; Gonçalves et al. 2013). The use 
of heavy machinery (e.g., tractors and harvesters) during planting and harvesting 
has restrictions because of local topography, and the alternatives for harvesting 
machinery in steep areas are even more expensive. Among the main limitations for 
the establishment of mixed forests with high technology, we cite the increase in the 
operational cost during harvesting. This limitation may not occur in plantations car-
ried out in slope areas where cutting is done primarily by chainsaws. Moreover, the 
increase in the cost of harvesting in steep areas, in comparison to flat areas, may 
render unfeasible forest plantations with low value added (e.g., firewood and char-
coal). Under these conditions, the planting of mixed forests with species of higher 
value, such as fruit trees or trees for seed production, noble wood, resins, and latex, 
among others, would be an interesting alternative.

The increase in income generated by the supply of both timber and non-timber 
products and ecosystem services (e.g., water increase, conservation of plant and 
animal diversity) could be much higher with mixed plantations with a greater diver-
sity of species (Brancalion et al. 2012). Forestry production participated in the econ-
omy of 87% of Brazilian municipalities in 2017; 77.3% of revenue generation was 
derived from forestry (e.g., logs, firewood, and charcoal) and 22.7% from vegetable 
extraction (e.g., fruits, nuts, waxes, latex, resins) (IBGE 2017). Mixed forest planta-
tions are an alternative to land use by small- and medium-sized producers who are 
interested in obtaining multiple forest products, and to increase ecosystem services 
on their properties (Brancalion et al. 2012; Brazil 2017). Species of the families 
Fabaceae, Myrtaceae, Arecaceae, and Lecythidaceae, among many others, can 
function both as a source of income and as a source of food for the fauna. Mixed 
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plantation composed of groups of trees capable of producing wood, fruits, nuts, and 
extractives planted side by side allows to maintain a forest cover of sloping areas for 
a long term and, in this way, could reduce the surface runoff of water after rain 
events, and promote the infiltration of water into the soil (Gonçalves et al. 2003).

One of the main barriers to planting for restoration of native ecosystems is the 
high costs involved in establishment and maintenance. In some projects, high mor-
tality may occur due to the attack of ants and competition with grasses. For exam-
ple, the costs of establishment and maintenance during the first 2 years after planting 
native forests of the Atlantic Forest can exceed 5000 USD per hectare. These costs 
may be even higher if farmers request access to technical assistance, since seedlings 
and manpower are limited. Alternatives proposed to reduce costs of planting by 
generating more revenue include the mixing of Eucalyptus species for wood pro-
duction with a relatively high-diversity (about 20–30) native species (Amazonas 
et al. 2018).

1.3  History of Mixed Plantations

Since the 1940s, several native and exotic forest species have been tested to select 
the most suitable ones for monospecific plantations. In Brazil, monocultures of 
Eucalyptus and Pinus have stood out in relation to native species, showing faster 
growth and good wood quality for multiple uses. Mixed forest plantations have been 
planted mainly with the objective of recovering degraded areas and restoring eco-
systems (Kageyama and Castro 1989; Rodrigues et  al. 2009). These plantations 
were planned according to the logic of ecological succession observed in natural 
forests, mixing groups of native and exotic species each one with different require-
ments for growth resources and lifetimes. The species used have little or no genetic 
improvement and the productivity of these types of plantations is not an important 
factor to consider. The use of mixed plantations for timber production is not very 
common in the practice of forest companies and producers.

In the last 30  years, several experiments about mixed plantations have been 
established in Brazil. These plantations were tested in experimental fields installed 
in different regions of the country in partnership with national and international 
research institutes and universities. Mixed forest plantations with fast-growing spe-
cies with economic value, especially Eucalyptus × Acacia mangium, have recently 
been tested. The first experiment with A. mangium was set up in 1979 by EMBRAPA 
(Brazilian Agricultural Research Company) (Tonini et al. 2010). In 1985 the first 
plantation of Acacia mangium for genetic improvement was established and, in 
1993, EMBRAPA Agrobiology established the experimental plantations that later 
culminated in the pioneering research center in studies of recovery of degraded 
areas with fast-growing leguminous species (Franco and Faria 1997; Macedo et al. 
2008; Chaer et al. 2011).

From 1989 to 2000, there was a cooperation between Brazil and Germany in the 
studies of A. mangium in the North of Brazil with the project “Studies of Human 
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Impact on Forests and Floodplains in the Tropics.” In 1995, the project “Soil and 
Climate Zoning for the planting of fast-growing tree species in the Amazon” was 
created. This project was financed under the “Pilot Program to Conserve the 
Brazilian Tropical Forest.” The aim was to contribute to the reduction of  deforestation 
rates in the region supplying the market with timber from areas with less legal 
restrictions instead of using native forests (Balieiro et  al. 2018). The network of 
experiments was established in several units of EMBRAPA, in the states of 
Amazonas, Pará, Amapá, Acre, Rondônia, and Roraima. Different clones of 
Eucalyptus and Acacia mangium seedlings and several native species were tested.

In the last 10  years, Brazil, in cooperation with 34 countries, as France, the 
United States, Germany, Australia, Congo, the Netherlands, South Africa, China, 
Colombia, and Cuba, has developed studies specifically with Acacia mangium 
(Balieiro et  al. 2018). In cooperation with the research institute CIRAD UMR 
Eco&Sols (La Recherche Agronomique pour le Développement), the thematic proj-
ect “Ecological intensification of eucalypt plantations by the association with nitro-
gen fixing tree legumes” was approved by the Research Support Foundation of the 
State of São Paulo and its French counterpart, the “Intensification écologique des 
écosystèmes de plantations forestières. Modélisation biophysique et évaluation 
socio-économique de l’association d’espèces fixatrices d’azote,” which was 
financed by the French National Research Agency. This project included a network 
of experiments installed in the southeast region, covering three states of Brazil, 
Minas Gerais, Rio de Janeiro, and São Paulo. The results showed that there were 
gains of biomass in the mixed plantations compared to Eucalypt monoculture when 
under favorable climatic conditions (hot and humid climate) for the development of 
A. mangium, low soil fertility and low water restrictions (Bouillet et al. 2013). This 
network of experiments has been recently expanded (since 2015) in two other 
Brazilian states, Tocantins and Mato Grosso. Previous studies were conducted in the 
Congo with similar edaphoclimatic condition as observed in the northern part of 
Brazil, showing a great productivity of these plantations and indicating a high 
potential of the eucalypt-acacia association (Bouillet et al. 2013). Chapter 2 details 
the studies about mixed forest plantation growth at different sites and under diverse 
silvicultural management.

1.4  Major Combinations of Species Already Tested 
in Practice and Potential

There are only few studies testing the growth of native species in mixed plantations 
compared to monocultures with the same species (Carvalho 1998, 2003; Machado 
and Bacha 2002). Carvalho (1998 and 2003) indicated the success of some of these 
studies to minimize the risks of pest attacks, such as the mixture of species of the 
Meliaceae family, as Cedrela fissilis and Cabralea canjerana, with other native or 
exotic fast-growing species to reduce the attacks of the cedar borer (Hypsipyla 
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grandella). According to this author, species with reduced requirement of light at 
young age and with a large canopy when associated with fast-growing species gen-
erate stands with higher growth and straighter stem. For example, Aspidosperma 
polyneuron trees mixed with Grevillea robusta showed a straighter stem and 41% 
higher height growth than in monoculture after 16 years. Other timber species with 
good performance in mixed forest plantations, highlighted in Carvalho’s bibliogra-
phy, include the non-legumes Cordia trichotoma, Prunus brasiliensis, Talauma 
ovata, Laplacea fruticosa, Luehea divaricata, Patagonula americana, and Tabebuia 
heptaphylla, and the legumes Anadenanthera peregrina var. falcata, Parapiptadenia 
rigida, Peltophorum dubium, Piptadenia gonoacantha, Piptadenia paniculata, and 
Sclerolobium paniculatum. Additionally, potential species for timber indicated for 
mixed forest plantations are Apuleia leiocarpa, Caesalpinia leiostachya, 
Enterolobium contortisiliquum, Hymenaea courbaril, Machaerium scleroxylon, 
and Pterogyne nitens (Carvalho 1998). Planting of yerba mate (Ilex paraguariensis) 
in southern Brazil has been done in monoculture. In a literature review, Baggio et al. 
(2008) verified that there is great potential to associate this species with other natives 
of the southern region of Brazil, including leguminous N2 fixers, with relevant eco-
nomic gains in small properties.

The mixture of fast-growing species, including the N2-fixing ones, has been 
tested in recent years in Brazil (Balieiro et al. 2002; Coelho et al. 2007; Bouillet 
et al. 2013; Santos et al. 2016; Soares et al. 2018). Mixed-species plantations of 
Eucalyptus and N2-fixing Pseudosamanea guachapele with a 1:1 proportion were 
established in 1993 in the municipality of Seropédica, Rio de Janeiro state, Brazil 
(Balieiro et al. 2002). The authors showed that mixed stands had higher biomass 
production than pure plantations of each species, and despite the 10% less biomass 
of eucalypt in mixed than in pure stands, the efficiency of nutrient use of eucalypt 
increased in the consortium.

In São Paulo state, Brazil, a combination of five leguminous native trees, 
Peltophorum dubium, Inga sp., Mimosa scabrella, Acacia polyphylla, and Mimosa 
caesalpiniaefolia, and one exotic species, Acacia mangium, was tested with 
Eucalyptus grandis (Coelho et al. 2007). Each species was planted in monocultures 
and in consortium with E. grandis in commercial spacing (3 m × 3 m). The legumi-
nous trees were planted between the plants of E. grandis in alternating rows with a 
1:1 proportion. The study showed that interspecific competition between E. grandis 
and legumes is greater than intraspecific competition until the age of 24 months. 
Among the species studied, A. mangium was the one that best resisted to the com-
petition with E. grandis.

Studies have indicated that higher yields occur mostly in mixed plantations with 
species of Eucalyptus sp. and Acacia mangium, and in monospecific Eucalyptus sp., 
under tropical climate (Bouillet et al. 2013). In regions of subtropical climate, mixed 
forest plantations of E. grandis and A. mangium are less productive than pure plan-
tations of E. grandis. One of the main concerns of these authors is the high competi-
tion capacity of E. grandis on A. mangium in places where climatic conditions are 
optimal for the development of eucalypt and suboptimal for acacia. The same 
behavior was not observed in mixed plantations of the same species in an experiment 
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in Congo (Bouillet et al. 2013). In this case, mixed plantations produced more bio-
mass than eucalypt monocultures because they were embedded in areas character-
ized by nutrient-poor soils (e.g., sandy soils, deep soils, leachate), and warm and 
humid climates, but with low water limitation. These conditions are favorable for 
the growth of A. mangium but not optimal for eucalypt trees. Similar soil and cli-
mate conditions are found in the Brazilian Cerrado and transitional areas with the 
Amazon rainforest (e.g., Mato Grosso, Tocantins, and Roraima states). Santos et al. 
(2016) investigated the consortium between Eucalyptus grandis × E. urophylla and 
A. mangium in the municipality of Seropédica, Rio de Janeiro state, in a region with 
N-deficient soils and favorable climate for acacia. They also found a higher produc-
tivity of mixed plantings compared to pure eucalypt plantations.

The mixture with a 1:1 proportion of Eucalyptus spp. and Acacia mearnsii has 
been tested mainly in the southern part of Brazil. A. mearnsii has been more suc-
cessful than A. mangium in facing eucalypt competition in this region. For example, 
the wood production of A. mearnsii in mixed stands with E. globulus was 77% of 
the production found in monospecific stand. In contrast, eucalypt wood production 
in the mixture was only 36% of the production found in monocultures (Soares et al. 
2018). Mixed stands of A. mearnsii with Eucalyptus sp. presented similar produc-
tion to monocultures (Vezzani et al. 2001; Soares et al. 2018), besides improving the 
nutritional status of soil and eucalypt trees (Vezzani et al. 2001).

Recent studies have suggested the use of eucalypt in consortia with many native 
species (20–30), in order to promote the restoration of ecosystems linked to the 
economic return from the sale of timber (Amazonas et al. 2018). Native species, 
including N-fixing legumes, established in mixture between eucalypt lines had their 
growth affected by eucalypt regarding their growth rates in three experimental sites 
with tropical climate without a dry season. The authors highlight the high capacity 
of interspecific competition of eucalypt and native species, reaching 75% of the 
basal area of pure eucalypt plantations, although with only 50% of tree density.

The planting of N2-fixing trees is necessary for reclamation of degraded lands by 
agriculture and livestock or more severe situations such as mining. In a recent 
review, Chaer et  al. (2011) described several successful studies using N2-fixing 
legumes for land reclamation. The main objective of these plantings is the recupera-
tion of the soil or substrate to provide colonization of new species in the future. A 
major concern today is the degraded soils of the Cerrado and Amazon region. 
Studies have shown that pastures cover about 62% of the deforested area of the 
Brazilian Legal Amazon, representing 335,700  km2, and that the states with the 
highest incidence of pastures occur in Mato Grosso, Pará, and Rondônia (Almeida 
et al. 2016). According to EMBRAPA, half of this area is degraded, 30% is moder-
ately degraded, and only 20% is in good condition. An alternative to recover 
degraded areas and improve the region’s economy is through the insertion of inter-
cropped plantations with fast-growing N2-fixing legumes and eucalypt. The intro-
duction of mixed acacia and eucalypt plantations is an alternative for the recovery 
of degraded areas and can increase the economy of small- and medium-sized farm-
ers (Griffin et al. 2011).
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1.5  Final Remarks

Brazil has millions of hectares of lands where forest plantations should be used to 
promote both economic and environmental gains. Forest covers promote important 
ecosystem services with emphasis on soil protection against erosion, silting of 
watercourses, and improvement of water infiltration.

Monospecific forest plantations with non-N2-fixing species require higher fertil-
izer inputs and may have limited productivity on degraded soils with low nutrient 
and water availability. The environmental benefits of monospecific forest planta-
tions may be more limited in these regions.

Mixed forest plantations involving the mixture between N2-fixing and non- N2- 
fixing trees have been highlighted as the most promising to sustain and/or increase 
the productivity of forests in regions limiting for development of monocultures. 
These more biodiverse plantations may be composed of two or more species used 
for different purposes, such as timber and non-timber products, soil protection in 
steep land, and recharge area of the groundwater, besides the recovery of 
degraded soils.

The introduction of the N2-fixing species into eucalypt plantations, for example, 
is associated with improved nutrient cycling, especially nitrogen, with the addition 
of hundreds of kilograms of nitrogen via litterfall, root turnover, pruning of branches 
and leaves, and crop residues. Lower yields sometimes found in mixed forest plan-
tations relative to monocultures are balanced by the increase in long-term 
sustainability.

There is need to broaden the debate on the ecosystem benefits of mixed forest 
plantations in relation to monocultures. Several species are promising for the com-
position of these more biodiverse forests, but little is known about the combinations 
and the edaphoclimatic conditions that permit to maximize the gains of the mixture.
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2.1  Introduction

Associating biological nitrogen-fixing trees (NFT) with non-nitrogen-fixing trees 
can increase biomass production of plantations (Bouillet et al. 2013; Santos et al. 
2016). Nitrogen provided by biological fixation is likely the main reason for mixed- 
forest plantations with N2-fixing trees being more productive than non N2-fixing 
monocultures, since N plays an important role in the plant metabolism, soil- 
microbial activity, and cycling of other macronutrients that foster the forest growth. 
Hence, the introduction of N2-fixing species in fast-growing eucalypt plantations 
could be a management strategy in sites where eucalypt growth is limited by N 
availability (Stape et al. 2010; Koutika et al. 2017; Tchichelle et al. 2017).

Decades of eucalypt breeding in Brazil, associated with adequate fertilizer inputs 
and weed control, have made the seedlings and clones in Brazilian plantations much 
more productive than N2-fixing tree species. Therefore, the competition between 
eucalypt and N2-fixing species in this scenario has differed largely from patterns 
observed in less productive eucalypt plantations (Laclau et al. 2008).
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The management practice aiming to supply the nutritional demand for N fertil-
ization in eucalypt plantations has been achieved by the introduction of Acacia 
mangium in Brazilian forest plantations (Voigtlaender et  al. 2012; Voigtlaender 
et al. 2019). Future studies seek to consolidate the increase of the productive poten-
tial of acacia in order to improve its competitiveness in terms of wood production 
with eucalypt in mixed stands as well as conciliate both trees’ growths. Therefore, 
two issues are of great importance: (1) to find the best arrangements (additives and 
replacement designs) between trees and (2) to obtain improved acacia genetic mate-
rials that match the site conditions and woody product of interest.

Thus, it is necessary to consider that the productivity of tree plantations is a func-
tion of supply, capture, and efficiency of resources (Richards et al. 2010). In this 
sense, to unravel the competition for light, water, nutrients, and effects of intra- and 
interspecific competition on biomass partitioning between tree components (Le 
Maire et al. 2013) becomes fundamental, since these are the main processes influ-
encing tree growth in mixed-forest plantations.

Our objective in this chapter is to gather a large number of data obtained in the 
last decade regarding above- and belowground mixed-forest growth in Brazil and to 
give insights into the main drivers influencing the development of Eucalyptus and 
Acacia mangium, including soil and climate conditions, silvicultural management, 
and species interactions. Additionally, we intend to provide important information 
for a wide range of land managers, from small farmers producing firewood to large 
commercial forestry companies focused on timber or pulp production, looking for 
sustainable mixed-forest systems.

2.2  Soil and Climatic Conditions on Stand Growth 
of Mixed- Forest Plantations

Climatic characteristics play a key role on the aboveground biomass production of 
mixed-forest plantations relative to monoculture. Acacia is well suited for the hot-
test and most humid sites (Atipanumpai 1989; Krisnawati et al. 2011) and, for this 
reason, its productivity can vary greatly according to solar radiation intensity, vapor 
pressure deficit, and water availability. Acacia has not been studied thoroughly for 
breeding characteristics as has the eucalypt, and does not offer many genotypes 
(hybrids, clones, genetic material) that could better adapt to specific sites. However, 
eucalypt has a broad option of genetic material (species and hybrids) provided by 
several decades of eucalypt breeding, offering different kinds of genetic materials 
that can be chosen to match certain climatic and edaphic conditions of each site 
(Gonçalves et  al. 2013), in order to maximize the growth and yield of these 
plantations.

Although acacia has not yet achieved an exponential breeding potential, it has 
attracted great attention due to its physiological ability to fix atmospheric nitrogen, 
which benefits the soil-plant system. In the last decade, studies on the growth 
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dynamic of mixed-species plantations at different tropical and subtropical sites 
were carried out by a multidisciplinary thematic project entitled “Ecological 
 intensification of eucalypt plantations through association with nitrogen-fixing 
leguminous tree species.” The project was developed by French researchers from 
the Centre de Coopération Internationale en Recherche Agronomique pour le 
Développement (CIRAD), with the collaboration of Brazilian researchers from for-
estry companies, research institutes, and universities. A network of experiments was 
set up in several Brazilian soil and climatic conditions. Some of the obtained results 
were published by Bouillet et  al. (2013) and Santos et  al. (2016) (Table 2.1 and 
Fig. 2.1), where they evaluated Eucalyptus and Acacia mangium in pure and mixed 
plantations established in distinct regions of southeastern Brazil and in Congo, dur-
ing a complete rotation (~6 years).

The results from Bouillet et al. (2013) showed that there were gains of aboveg-
round biomass in the mixed plantations compared to eucalypt monoculture only in 
Congo. This result was attributed to the local conditions of hot and humid climate 
(annual averages of 27 °C and relative humidity of 80%), low soil fertility (espe-
cially with regard to N), and water restrictions. However, at the Brazilian sites, the 
global biomass production of the mixed plantations was not different and some sites 
showed inferior biomass production relative to eucalypt monoculture, which evi-
denced the suppression of acacia growth by the superior genotypes of Eucalyptus 
(Laclau et al. 2008; Bouillet et al. 2013). These results were attributed to the unfa-
vorable climatic conditions of the sites located at the southeast of Brazil for the 
development of acacia, specially the low temperatures (ranging from 19 to 24 °C, 

Table 2.1 Main edaphic and climatic characteristics from experimental sites in Brazil and Congo

Sites Soil type

Mean 
temperature 
(°C)

Mean air 
humidity 
(%)

Annual 
rainfall 
(mm)

Soil total 
N 
(g kg−1)

Soil 
organic 
matter 
(g kg−1)

Santana do 
Paraíso/
Brazil—Cenibra

Ferralsol 24.4 71 1240 1.7a 3.8a

Bofete/
Brazil—Suzano

Ferralsol 21.4 71 1420 0.84a 2.4a

Luiz Antônio/
Brazil—
International 
Paper (IP)

Ferralic Arenosol 23.3 65 1420 0.64a 1.7a

Itatinga/
Brazil—(USP)

Ferralsol 19 70 1390 0.91a 3.5a

Seropédica/
Brazil

Planosol 24 81 1370 0.38b 0.62b

Pointe-Noire/
Congo

FerralicArenosol 25.7 81 1130 0.46a 1.14- 
1.71a

Source: Bouillet et al. (2013) and Santos et al. (2016)
a[0–5 cm] layer
b[0–10 cm] layer

2 Growth Patterns at Different Sites and Forest Management Systems
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throughout the year, including frost in cooler periods), and equally due to the high 
competition for resources in these highly productive plantations.

Contrarily, Santos et  al. (2016) performed an experiment in the Southeastern 
Brazilian coast (in Seropédica, Rio de Janeiro state), where the climatic conditions are 
favorable for the development of acacia (average annual temperatures of ~25 °C, uni-
form rainfall distribution throughout the year, and relative humidity close to 80%). 
Additionally, the soil is sandy with low natural fertility, which could enhance the 
benefits of the biological nitrogen fixation (BNF) of A. mangium in consortium with 
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Fig. 2.1 The values of stemwood production were compared between the mixed-species 
Eucalyptus sp. and A. mangium 100%—E100A100 (a) and 50%—E50A50 (b) stands of the plant-
ing density composed by two species with the stemwood production of Eucalyptus monoculture 
without nitrogen fertilization (E100) in different tropical regions, site by site. Data compiled from 
the sites evaluated by Bouillet et al. (2013) and compared with the site in Seropédica (Santos et al. 
2016). ∗Indicates significant statistical difference in trunk/stem production relative to control 
(E100). Source: Extracted from Santos et al. (2016)
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E. urophylla x grandis, according to the stress gradient hypothesis (Forrester 2014). 
In this study the dynamics of aboveground biomass production in monospecific and 
mixed stands of eucalypt and acacia over 5 years were compared with those obtained 
by Bouillet et al. (2013) by relativizing the overall production of the arrangements 
(A. mangium + E. grandis) in relation to the pure eucalypt (E100) treatment (with 
1111 eucalypt ha−1) of each respective site. The mixed stands with the E100A100 
arrangement (with 1111 acacia +1111 eucalypt; totaling 2222 plant ha−1), in all sites, 
produced similar amounts of stem wood biomass relative to the E100 arrangement. 
However, the biomass production at the Seropédica site was approximately 40% 
greater than that of the E100 treatment. The low relative production of A. mangium 
stem wood biomass at the sites located in the São Paulo state (Suzano, USP, and IP) 
may explain why the production in the E100A100 arrangement did not surpass that in 
the E100 treatment. These sites have similar annual average temperatures below those 
of the Seropédica and Cenibra sites (Santana do Paraíso, Minas Gerais state), where 
the contributions of A. mangium to the overall stem wood biomass of the population 
in E100A100 were considerably greater relative to the other sites.

For the E50A50 arrangement (with 555 acacia + 556 eucalypt, totaling 1111 
plants ha−1) a site located at Pointe-Noire, in Congo, characterized with an ideal 
climatic condition, was also included in this comparison. The stem wood production 
of E50A50 stands only exceeded that of the E100 at the Congo and Seropédica sites, 
although the statistical differences in both studies were not significant at the 5% 
level. Proportionally, A. mangium was more productive in Congo, followed by the 
Santana do Paraíso and Seropédica sites in Brazil. These sites have similar annual 
temperatures, above 24 °C, whereas the Seropédica and Congo sites have the poor-
est soils in terms of nutrients and organic matter.

In the North of Brazil (Roraima state), where the weather is characterized by a 
higher annual temperature (27  °C) and precipitation (2000  mm) than in the 
Southeast, the average productivity was 25 m3 ha−1 year−1 (Tonini 2010). There are 
reports of wood productivity of Acacia mangium from 10 to 61  m3  ha−1  year−1 
obtained in the Southeast of Brazil (at the Vale do Rio Doce region), at 5.3 years of 
age (Silva et al. 1996), where the average annual temperature and precipitation are 
lower than in the Northeast of Brazil, such as in Roraima state. Plantations with 
adequate silvicultural management, at 3 years of age, can reach 15 m of height and 
40  cm in diameter at breast height (DBH), which represents an average annual 
increment of 45 m3 ha−1 year−1 (Souza et al. 2004).

It is worth noting that in mixed-forest plantations, if species or sites are not 
complementary and correctly chosen, one species may suppress the growth of the 
other, which may result in less productivity than in monocultures. The success of 
mixed-species plantations is greatly dependent on the selection of N2-fixing species 
depending on site attributes, relative growth rate of both species, and N limitation of 
tree growth at the site (Forrester et al. 2005; Laclau et al. 2008). It is difficult to 
predict which species combinations will lead to increases in productivity in mixed- 
forest plantations when no empirical information exists. This depends not only on 
the attributes of the species but also on the conditions of the site, mainly relative to 
water and nutrient availability, average annual temperature and precipitation, as 
well as weather through the year.

2 Growth Patterns at Different Sites and Forest Management Systems
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2.3  Silvicultural Management

Eucalyptus and Acacia species are chosen for their capacity to grow rapidly (the 
average rotation in Brazil is of ~7 years) and produce wood of excellent quality for 
cellulose, charcoal, and construction and fence posts. In some cases, a certain site 
can support high wood production with proper management, but in others, there 
may be serious problems.

The mixed eucalypt and acacia plantations can be established aiming at enhanc-
ing the productivity of lands that were degraded by deforestation and intensive agri-
cultural disturbances. The development of improved forest planning and operations 
can increase the utilization and minimize or avoid adverse environmental effects. 
Some principles, aims, strategies, and silvicultural practices must be followed to 
develop sustainable single- and mixed-species eucalypt and acacia stands.

The success of single- and mixed-species eucalypt and acacia plantations 
depends directly on the soil preparation. The great advances in the last 30 years in 
Brazil were the understanding and abolition of burning as a way to clean the land 
and the adoption of conservationist techniques for soil management, which culmi-
nate in the implementation of tillage systems with minimum soil disturbance 
(Gonçalves et al. 2008).

Concerns regarding the conservation of natural resources and the use of post- and 
preemergence herbicides were the factors predisposing and permitting the adoption 
of minimum tillage. Weed control with herbicides was a crucial factor, since the 
minimum tillage system uses no ploughed land inversion (unlike the conventional 
system), so the weed seed bank remains on the topsoil rather than buried, which 
favors the infestation of plants and makes manual control operationally and eco-
nomically unfeasible (Gonçalves et al. 2008). For the mixed-species eucalypt and 
acacia plantations, the minimum tillage has been considered as an important prac-
tice as well, since it decreases costs related to weed control, mainly because of the 
suppress effect of the forest residue on weed seed bank in the soil surface. A major 
limiting factor for plant productivity is the presence of weeds. Good practices can 
reduce weed infestation considerably by providing cover by crops, residues, and 
mulch, and by minimum soil disturbance. In forests, the problem of weeds is a great 
concern. The procedures for their elimination usually are carried out by combining 
mechanical and chemical methods, using total-action herbicides (nonselective), 
such as glyphosate. During the planting of forest stands, most production systems 
apply preemergence herbicides at a 1 m strip on the crop row. After planting, the 
postemergence control of weeds is performed by spraying postemergence herbi-
cides. During application, special care must be taken to avoid the drift to leaves and 
stems of the cultivated plants because this can cause phytotoxic effects of reduced 
growth (Salgado et al. 2011).

The water availability is a critical requirement in mixed eucalypt and acacia 
plantations (Nouvellon et al. 2012). Soil preparation can help overcome the limita-
tions of water resources for forest plantations in two ways. The first way is due to 
increased rainfall infiltration and reduced runoff, which augment the water reserve 
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in the soil profile. The second way refers to increasing the effective soil depth when 
there are soil layers with physical impediment (Gonçalves et al. 2002; Stape 2002). 
The large infiltration is favored when compacted or hardened soil layers are dis-
rupted, especially when forest residues are kept on the soil surface. The reduction of 
bulk density (resistance to soil penetration) through soil preparation in the planting 
row or hole facilitates root growth and, consequently, increases fertilizer use effi-
ciency through great use of water and nutrients by adjacent seedlings. In flat and 
slightly undulating terrain/relief, soil preparation may consist of ripping up to a 
depth of 30–40 cm. Regarding soil hardening and compaction, ripping-up depth is 
usually about 30–35 cm and the planting hole opening, either manually or mechani-
cally, is limited to 25–30 cm. These depths should sometimes be increased depend-
ing on the soil bulk density, for example, for soils that have a fragipan or hardpan 
between 50 and 80 cm, or above 80 cm, the ripping depth will be in the range of 
60–90 cm, or will reach 110 cm, respectively (Gonçalves et al. 2008).

The effect of soil compaction and other soil disturbances can be severe if opera-
tions are not managed properly. Inappropriate harvesting systems have the potential 
to severely and adversely affect soil conditions and water availability. The effects of 
planting, tending, and harvesting on the physical properties of the soils will be 
highly dependent on the characteristics of soil and equipment used. Delimbing and 
debarking the stem at the stump and avoidance of fire significantly reduce nutrient 
exports from the aboveground biomass and soil compaction (Gonçalves et al. 2000). 
Rotation length is another variable that affects soil quality, because longer rotations 
reduce the frequency of major disturbance during harvesting, besides the decrease 
in wood production per unit of nutrient exported with an increase in rotation length, 
since the average concentration of most nutrients decreases with tree age. Hence, 
overall nutrient-use efficiency measured as wood production per unit of nutrient 
accumulated can be increased by prolonging forest rotations and using practices 
that lead to nutrient and organic matter retention (Gonçalves et al. 2004).

Maintenance of forest residues on soil is undoubtedly important for sustaining 
long-term site productivity (Rocha et al. 2016). This requires residues from the pre-
vious rotation as the main resource. Retention of forest residues helps to reduce 
erosion, improves water infiltration as well as moisture conservation, maintains or 
increases soil organic matter levels and soil microbiology indicators, as well as 
contributes to the nutrient cycling in the long term (Gonçalves et al. 2013; Rocha 
et al. 2016).

When N2-fixing species are used to facilitate the growth of non-N2-fixing spe-
cies, they should be selected based on the rate at which they cycle nutrients in gen-
eral (Bachega et al. 2016; Pereira et al. 2018) through leaf and fine-root litter and 
only secondarily one should consider their ability to fix N. Tree species in mixtures 
must also have compatible height growth dynamics to avoid the suppression of 
shade-intolerant plants and to reduce competition for light (Forrester et al. 2005). 
Mixtures should only be planted on sites where the interactions between species 
will increase the availability of (through facilitative interactions) or reduce competi-
tion for (through competitive reduction interactions) one of the major growth- 
limiting resources at that site (see Sect. 2.4 of this chapter).

2 Growth Patterns at Different Sites and Forest Management Systems



22

Since investments in fertilizers are relatively high for most forest producers, fer-
tilization should be combined with other silvicultural practices (i.e., soil prepara-
tion, residue management, and weed control) to reduce fertilizer demands in the 
short and long terms (Nambiar and Kallio 2008). Adequate nutrient supplies and 
balance resulting from fertilization can also improve forest vigor, and reduce the 
incidence of disease and the need of fungicides (Almeida et al. 2010). There are 
significant yield gains in response to fertilization in most forest plantations 
(Gonçalves et  al. 2013). Regardless of weather conditions, the magnitude of the 
response depends on the nutritional demand of the genotype and on the availability 
of soil nutrients. Gains in productivity attributed to mineral fertilizers (macro- and 
micronutrients) are quite variable and high, but in general they represent at least 
30–50% on average (Gonçalves 2011).

Nutrient cycling reduces tree dependence on net nutrient supply from soil 
reserves. Mobile nutrients (N, P, and K) in the plant are redistributed from the older 
to younger tissue, increasing efficiency for biomass production. Nutritional stages 
of a forest stand can be divided into before, during, and after canopy closure 
(Gonçalves et al. 2014). Understanding these stages and nutrient cycling is essential 
for the adequate planning of fertilizer application (rate, method, and time). Fertilizer 
recommendation should be adjusted preferably at local level to the most representa-
tive species and soil types, based on field experimentation, and should allow optimi-
zation of financial returns. Fertilization should be performed during the initial stage 
of tree establishment, from the planting to canopy closure. The most frequent and 
most significant responses to fertilizers in Brazilian soils are to N, P, K, and 
B. Normally, for sandy and water-deficient soils, responses to fertilizers are more 
common (Gonçalves et al. 2008; Gonçalves 2011).

Regarding how much fertilizer to apply, especially for fast-growing species 
such as acacia and eucalypt, phosphorus doses can be applied at planting, since 
this nutrient has low mobility in the soil and relatively low solubility. The K doses 
should be divided into one or two surface applications (Gonçalves et al. 2008). 
Doses up to 50 kg ha−1 of K2O may be applied thoroughly in one single surface 
application, once risks of leaching are low (Maquère et  al. 2005; Laclau et  al. 
2010). The N contribution will be initially to acacia and later will be shared with 
eucalypt. Santos et al. (2017a) showed that A. mangium in mixed-species planta-
tions with eucalypt can provide ~30 kg of N ha−1 year−1, only through the leaf 
litter deposition over 5 years of rotation, while eucalypt contribution could reach 
15–20 kg N ha−1  year−1 at the same period, totalizing 45–50 kg N ha−1  year−1. 
Other studies have shown that mixed plantations of A. mangium and eucalypt have 
larger concentration of mineral N in the soil than monospecific eucalypt stands 
(Voigtlaender et al. 2012, Bachega et al. 2016; Tchichelle et al. 2017s; Voigtlaender 
et al. 2019). After mineralization of acacia litter, significant quantities of biologi-
cally fixed N become available for the eucalypt trees. This process may promote 
N nutrition in poor tropical soils when the fine roots of eucalypt and acacia are 
intermingled or are connected directly through common mycorrhizal networks 
(Paula et al. 2015; Pereira et al. 2018). The scenario which does not include resi-
due burning or removal (litter, slash, and bark) and includes fertilizer application 
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is a practical and economically proven strategy for sustaining production in the 
long term (Rocha et al. 2018).

Planting arrangements are one of the main factors that influence the tree growth 
and determine the quality and applications of the wood produced. The appropriate 
planting density promotes optimum growth rates and efficient plantation management.

Defining the initial spacing for forest plantations is essential because it determines 
the amount of resources (water and nutrients) available for each tree growth species. 
The planting spacing represents the number of trees in a given area and should be 
associated with the best way to manage and harvest the forest stand (Scolforo 1997). 
The recommended tree planting design is 3–4 m between rows and 1–3 m between 
trees, giving an initial stocking rate, usually of 1000–1800 trees per hectare.

The mixed-specie plantations can be arranged in varied designs (Figs. 2.2 and 
2.3). They can be in alternating rows of each species, or even with both species 
interplanted in the same row. The replacement and additive series are the most com-
mon types of arrangements (Forrester et al. 2006). In replacement series, the total 
number of trees per stand is constant; only the proportion of each species will be 
changed. For example, in an area with 1111 trees per hectare 50% of the stand will 
be composed by one tree species (555 trees) and 50% by another species (555 trees). 
Recent experiments have indicated that planting trees of each species in double 
rows instead of alternating plants may reduce competition between eucalypt and 
acacia as well as facilitate the harvesting of trees at different stages of development.

In additive series, the total number of the main species of interesting (e.g., 
Eucalyptus) will be the same, while the density of the other species will vary: for 
example, 100% of eucalypt and 25% of another species or 100% of eucalypt and 
50% of another species. These types of series allow the evaluation of the effects of 
the stand density and the interactions between species. Replacement and additive 
series have been used in mixed-species experiments to analyze the growth and the 
productivity of eucalypt and leguminous trees.

Based on the published mixed-species trials utilizing the replacement series 
design, and where mixtures were more productive than monocultures, 1:1 mixtures 
were one of the most productive arrangements (Binkley et al. 2003; Forrester et al. 
2004). These density and proportion between two species encourage the canopy to 
close rapidly, reducing weed problems and improving the tree form and branching. 
If the goal is to produce solid timber for sawmills this density of planting is high 
enough to allow trees with exceptional form and vigor to be selected in a thinning 
plan of the stand.

During the pre-closure phase, trees tend to be more responsive to cultivation, 
fertilizers, and weed control. After canopy closure, intra- and interspecific competi-
tion for resources becomes strong. The density and the design of plantations directly 
influence the processes of facilitation, competition, and consequently tree growth 
(Medhurst et al. 2001). An important issue for the design of mixed plantations is the 
definition of the optimal spatial arrangement depending on localization (e.g., cli-
mate and type of soil) to better understand inter- and intraspecific interactions and 
also to facilitate the management. Wide spacing may also be used in water catch-
ments to increase water yield in the site (Lima et al. 2012).
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100E:25A 100E:50A

100E:100A 50E:50A

Eucalyptus grandis
Acacia mangium

100A

30 m
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Fig. 2.2 Scheme of the 
different planting designs 
with additive and 
replacement series 
(adapted from Laclau et al. 
2008)

50A:50E33A:67E

Eucalyptus
Acacia mangium

Fig. 2.3 Scheme of Eucalyptus and Acacia trees in one or double rows instead of alternating 
plants with two lines of Eucalyptus trees with one (33A:67E) or two (50A:50E) lines of Acacia 
trees
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There are many different ways to manage the interactions in mixed-species plan-
tations. These involve different designs, delayed planting of certain species, varying 
plant densities, or early removal and thinning of some species. Therefore, mixed- 
species plantations can be used to meet a wide range of economic, silvicultural, and 
sustainability objectives.

2.4  Intra- and Inter-specific Interactions (Competition 
and Facilitation Processes) in Stand Growth

In the tropics, eucalypt plantations are predominantly established in monocultures 
throughout successive short rotation cycles (6–8 years) (Gonçalves et al. 2013) that 
can result in substantial changes in soil quality and biogeochemical cycles of nutri-
ents (Chaer and Tótola 2007; Gonçalves et al. 2004; Stape et al. 2010; Rocha et al. 
2018). One of these important changes concerns the soil nitrogen balance, which 
generally becomes negative with multiple rotations due to combinations of high N 
exports from timber harvests and low doses of N fertilizers that are typically applied 
(Corbeels et al. 2005; Laclau et al. 2010; Rocha et al. 2018). Hence, the establish-
ment of mixed-species plantations of eucalypt with N2-fixing trees has been pro-
moted due to the increase in the availability of N for eucalypt trees, making it 
possible to dispense the use of N fertilizers (Laclau et al. 2008; Voigtlaender et al. 
2012; Voigtlaender et al. 2019). We can show other benefits of these mixtures, as 
increase of soil fertility and recycling of micro- and macronutrients (Balieiro et al. 
2004; Forrester et  al. 2005; Santos et  al. 2017b), intensification of above- and 
belowground biomass production (Bouillet et  al. 2013; Laclau et  al. 2008), and 
increase of soil carbon (Balieiro et al. 2008; Forrester et al. 2006; Resh et al. 2002) 
and nitrogen stocks (Voigtlaender et  al. 2012; Voigtlaender et  al. 2019). In fact, 
these benefits have been seen in studies in which mixed plantations with legumi-
nous trees were more productive than in monospecific forest plantations (Binkley 
et al. 2003; Forrester et al. 2006; Laclau et al. 2008; Bouillet et al. 2013; Santos 
et al. 2016). However, other studies showed productivity of mixed plantations not 
different from eucalypt monoculture in the same stock density (Forrester et al. 2006; 
Firn et al. 2007; Bouillet et al. 2013).

The benefits and processes influencing the mixed-forest growth must be better 
understood through concepts regarding ecological interactions between tree species 
in mixed-forest stands, such as competition, competitive reduction, and facilitation. 
The balance between competition and facilitation will cause a strong impact on the 
productivity and the biomass accumulation in mixed plantations.

Competition occurs when two or more species are interacting and seeking the 
same sources of light, water, and nutrients until a given species exerts a negative 
effect, such as a decrease in the growth rate or mortality of the other species, less 
adapted to the environmental dynamics created by the mixtures (Forrester et  al. 
2006; Vandermeer 1989). The competition among plants can be through the aboveg-
round compartments when they seek light to keep photosynthetic activity (Austin 
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et al. 1997; Hunt et al. 2006) or by belowground compartments when they are in a 
limiting water and nutrient uptake environment (Boyden et  al. 2005; Silva 
et al. 2009).

When species in mixed plantings present contrasting traits the competitive reduc-
tion normally is expressed, which allows for a more efficient use of the site resources 
through complementary niche exploitations. This condition generally occurs 
through canopy and root stratification that are benefits associated to an increase in 
light-use efficiency and higher soil resource (i.e., water and nutrients) uptake, 
respectively (Vandermeer 1989). When two species with similar traits are mixed, 
the interspecific competition may be equal to the intraspecific competition of the 
same species in monoculture. However, when the species present complementary 
traits, the interspecific competition may be smaller relative to the intraspecific com-
petition (Kelty 2006). The complementarity of resource uses between species is a 
trait that can benefit the mixed-forest productivity, which can lead to a more effi-
cient capture of resources when compared to monocultures, as well as the reduction 
of competition through the niche partitioning by stratification of the canopy of two 
species (Hunt et  al. 2006; Laclau et  al. 2008). Thus, it may result in better soil 
exploitation without stratification of the root systems of species (Laclau et al. 2013).

Facilitation typically occurs when at least one species acts positively on the other 
species increasing the availability of a resource for another species, such as N2- 
fixing trees increasing the availability of organic and inorganic forms of N in the 
ecosystem, through biological nitrogen fixation (BNF) (Vandermeer 1989; Forrester 
et al. 2006). Thus, when a N2-fixing species is planted with non-N-fixing species, it 
is possible to improve the nutritional status of the non-fixing species and to increase 
the growth rates in response to transferring of biologically fixed N (Bouillet et al. 
2008; Paula et  al. 2015). Indirect facilitation can also happen, when the plant 
changes the environment, such as the faster closure of the canopy that reduces light 
availability for weeds (Little et al. 2002; Le Maire et al. 2013). Sometimes partial 
shading of a fast-growing species may be beneficial to some species.

The ecological interactions (competitive reduction and facilitation) that are 
favorable for the success of mixed plantations occur at the same time. However, in 
practice, it becomes very difficult to distinguish one from the other. Hence, they are 
collectively described as “complementarity” (Forrester 2014). This is particularly 
relevant because a more efficient capture of limiting resources may alleviate 
 competition and contribute to enhance above- and belowground production of the 
mixed-species plantations (Forrester et al. 2006).

Therefore, the correct choice of species is highly important, which should be 
based on contrasting morphological and physiological traits, especially with respect 
to shade tolerance, growth rate, crown structure (i.e., leaf area density), and effec-
tive depth of the root system (Forrester et al. 2006). In addition, the spatial arrange-
ment of species has also been defined as a key strategy for the occurrence of 
complementarity (Kelty 2006). Thus, the success of mixed plantations is reached 
when the biomass production becomes significantly higher or at least equal to that 
of monocultures (Forrester et  al. 2005). When it happens, the complementarity 
effects stand out from those of interspecific competition. These factors could even 
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contribute to an overyielding effect, in which biomass production in species mix-
tures exceeds the productivity of the contributing species when grown in monocul-
ture (Bauhaus et al. 2000).

2.4.1  Ecological Interactions Change Throughout a Single 
Rotation

The stress-gradient hypothesis (SGh), proposed by Bertness and Callaway (1994), 
correlates the frequency of ecological interactions along a biotic or abiotic stress 
gradient. The theory predicts that under conditions of low environmental stress 
competition plays a more relevant role than facilitation. However, under high-stress 
conditions the facilitation interactions prevail in the sense of improving the neigh-
boring habitat. This hypothesis becomes an excellent theoretical basis to explain the 
behavior of mixed eucalypt plantations with legume trees, especially during a com-
plete rotation, since the balance between these interactions can be modified with the 
dynamics of tree growth and environmental conditions of the site (Forrester 2014).

The complementarity index represents a measure of the occurrence of ecological 
interactions favorable to the success of mixed plantations (competitive reduction 
and facilitation). This index is based on the differences between the growth (or pro-
duction) at the level of the stand (Eq. (2.1)) and/or of each species (Eq. (2.2)) in the 
mixed stands relative to the monocultures, according to the following equations 
(Loreau and Hector 2001):
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where growth is expressed through diameter at breast height (DBH), in centimeters 
and yield is expressed by total aboveground biomass, in Mg ha−1.

This index also allows inferring if these interactions change spatially or over 
time and what are the possible factors that are controlling these changes (see also 
Forrester et al. 2014).

In this chapter, we used experimental data from 5-year-old mixed and monocul-
ture stands of Eucalyptus urophylla x grandis and Acacia mangium established in 
southeastern Brazil. The results revealed that complementarity interactions changed 
as the stands developed (Fig. 2.4). With the advancement of age, changes in the 
availability and uptake of water, light, and nutrients for the species occur. In the 
E100A100 mixture, instead of the greater competition among the trees caused by 
the high densification, an increase in the complementarity index was expected based 
on the stress-gradient hypothesis, which presupposes that facilitative interactions 
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increase, while the competition decreases with the increase of the abiotic/biotic 
stress, and vice versa. However, the opposite occurred because, at the stand level, 
complementarity decreased by almost 200% from the younger phase to the end of 
rotation in the E100A100 stands.

Forrester et al. (2014) reviewed studies with mixed plantations and monocultures 
using the same methodology and found results similar to the present study. These 
authors consider that complementarity may decrease as nutrient availability increases, 
which may explain the decrease in complementarity in the E100A100 arrangement. 
Thus, at the beginning of planting, the litter stock was still incipient but, with the 
advancement of age, there was larger deposition and release of nutrients through litter 
decomposition, in comparison with E. urophylla × grandis monocultures.
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Fig. 2.4 Complementarity index at stand level (a) and at tree/species level (b) within the stand at 
30 and 60 months after planting
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In contrast to E100A100, the E50A50 mixture showed a small increase in the 
complementarity index throughout the growth cycle. This behavior demonstrates 
that under this arrangement the competition between the two species was less 
intense. Eucalypt at E50A50 increased its complementarity index by 20%, probably 
due to the better growth conditions for this species, such as greater intraspecific 
spacing and better light utilization (i.e., greater leaf area index (LAI) than acacia, 
see Santos et al. (2016)). These factors may have led to increased leaf projection in 
the canopy and greater growth in stem diameter of eucalypt in comparison to acacia 
trees, which resulted in a greater allocation of C in the aboveground biomass 
(Forrester et al. 2014). This fact may explain why 50% of eucalypt trees, planted 
with 50% acacia, produced equivalent amounts of stem wood in relation to the E100 
monoculture.

2.5  Aboveground Biomass

In the last decade, many studies have been carried out with different designs between 
eucalypt and leguminous trees, especially with A. mangium plantations in the south-
east of Brazil (Tables 2.2 and 2.3). The following studies contributed to a better 
understanding of the dynamics of aboveground biomass production, as well as the 
main drivers and interactions for production responses (Balieiro et al. 2002; Coelho 
et al. 2007; Laclau et al. 2008; Nouvellon et al. 2012; Bouillet et al. 2013; Laclau 
et al. 2013; Le Maire et al. 2013; Epron et al. 2013; Germon et al. 2018; Santos et al. 
2016; Paula et al. 2018).

Nitrogen fixed by A. mangium during the initial growth phase (up to 30 months) 
has been the key to the superior performance of the mixed stands cycle/rotation in 
terms of growth, stemwood biomass production, and net primary production in rela-
tion to E. urophylla x grandis monoculture (E100) (Santos et al. 2016). The mixed 
stands contributed nearly 200 kg N ha−1 to the soil, almost twice that of the E100 
monoculture at 60 months. This great contribution can be explained mainly by the 
larger N richness of the acacia leaf litter (~17 g kg−1 for A. mangium vs. ~10 g kg−1 
for E. urophylla x grandis), which corroborated the high BNF rates observed for 
acacia at the beginning. This early increase in the N levels resulted in a greater 
decomposition rate of eucalypt litter, as well as the biogeochemical cycling, which 
persists up to the mature growth phase.

In addition, canopy stratification in mixed-species stands may increase light 
interception as well as make them more productive than monocultures. However, 
this complementarity niche that occurs aboveground may not lead to an increase in 
stem wood biomass, if another important resource is strongly limiting tree growth. 
Le Maire et  al. (2013), for instance, highlighted that in the Eucalyptus grandis 
W. Hill ex Maiden and Acacia mangium Willd. mixed-species plantations before 
canopy closure, the N2-fixing trees allocated their assimilated C mainly to vertical 
growth in an effort to compete with E. grandis trees for light, because eucalypt grew 
faster in height. Thereafter, when A. mangium trees were completely dominated by 
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the E. grandis canopy, they invested relatively more biomass into their resource- 
capturing organs (i.e., leaves and fine roots) and less into stemwood production. 
Finally, the authors stated that A. mangium likely suffered from greater water stress 
(than in monocultures) due to competition with E. grandis trees.

Greater stemwood biomass production in mixed stands (E100A100) compared 
with the monoculture (E100) can also be explained by the improved utilization of 
light by two species as a function of the canopy stratification in the mixed stands 
(Santos et al. 2016). In this case, E. urophylla x grandis trees occupied the upper 
stratum and acacia capturing the light underutilized by E. urophylla x grandis, as 
well as by the higher density of the stand. This argument is supported by the leaf 
area index (LAI) of the mixed E100A100 stand in relation to that of the E100 stand, 
which explains the greater biomass production of the E100A100 stand. An increase 
in the leaf area index and the capture of photosynthetically active radiation (PAR) in 
mixed stands were previously reported by Nouvellon et  al. (2012) for stands of 
E. grandis with A. mangium. The authors found that the total LAI (considering both 
species) was almost twice that of the eucalypt monoculture (E100); however, the 
increased LAI did not cause an increase in the gross primary production or wood 
production of mixed stands compared with the monoculture, and this result was 
attributed to water limitations at the site.

A net of experiments regarding replacements and additive series were replicated 
in three sites in the southeast of Brazil, Bofete and Luiz Antônio in São Paulo state, 
and Santana do Paraíso in Minas Gerais state (Bouillet et al. 2013). In the first years 
after planting eucalypt trees had a negative effect on acacia tree growth in all sites, 
as also was shown in a previous study conducted in Itatinga, located in São Paulo 
state (Laclau et al. 2008). However, the interspecific competition was less in São 
Paulo sites than in Minas Gerais probably because of more suitable climatic condi-
tions (temperature and precipitation) in Santana do Paraíso, Minas Gerais state, for 
A. mangium development. The 50A:50E mixed stand evidenced greater eucalypt 
circumference growth, 52.1 cm in Santana do Paraíso, 56.8 cm in Bofete, 65.5 cm 
in Luiz Antônio, and 61.5  cm in Itatinga, respectively, compared to eucalypt in 
monocultures, either non-fertilized (47.8, 49.4, 53.4, and 50.7 cm, respectively) or 
fertilized with N (47.6, 48.8, 53.3, and 52.3 cm, respectively). Other replacements 
and additive series along the rotation at all sites evaluated in this study also showed 
greater growth for eucalypt (Tables 2.2 and 2.3). However, the eucalypt mean annual 
increment in 50A:50E was lower than in the additive series (25A:100E, 50A:100E, 
and 100A:100E) due to 50% less stocking density.

The same growth pattern was observed for tree growth in mixed (50A:50E and 
100A:100E) and monospecific stands at Seropédica site, located in Rio de Janeiro 
state (Santos et al. 2016). Acacia evidenced limited competitive ability with euca-
lypt, with minor height and circumference growth found in the replacement treat-
ments with greater density of eucalypt trees (Table  2.2). Eucalypt had a greater 
circumference growth (56.2 cm) in the replacement 50A:50E stand than in mono-
cultures fertilized with nitrogen (51.8 cm). Even with a lower number of eucalypt 
trees, this arrangement resulted in an overall biomass production equal or less than 
the eucalypt monocultures with or without nitrogen. At both ages evaluated (30 and 
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60 months), the stemwood biomass production was lower in monocultures without 
nitrogen fertilization of both species (100A and 100E). The replacements 50A:50E 
and 100A:100E and eucalypt monocultures with nitrogen fertilization (100E+N) 
showed the highest increases in annual net primary production in comparison with 
monocultures of acacia and eucalypt.

These results showed the potential growth and productivity of the acacia and 
eucalypt mixed plantations as a result of the arrangement 50A:50E that had a better 
development compared to the other treatments, although with one half of the euca-
lypt population.

2.6  Belowground Biomass

Interactions occurring in the plant community root system can interfere with species 
diversity through competitive exclusion, niche partitioning, and facilitation (Schenk 
2006). Some experiments have shown that plant roots interact with their biotic and 
abiotic environments using mechanisms that influence the availability of resources, 
exchange of various types of signals, and allelochemical interactions (Callaway 
2002; Hierro and Callaway 2003; Semchenko et al. 2007). Some roots may detect 
other roots, or inert objects, and can distinguish between proper and non-proper 
roots. This has provided new experimental challenges to evaluate the effects of root 
competition on plant development (Semchenko et al. 2007). However, information 
on these mechanisms controlling root growth in forest environments is very limited 
(Kueffer et al. 2007), even more regarding belowground competition and fine-root 
density in mixed-species forests (Silva et al. 2011).

It is very important to understand the effects of inter- and intraspecific competi-
tion on root development to improve, e.g., the control of invasive tree species, and 
to model the forest dynamics (Leuschner et al. 2001; Kueffer et al. 2007) which can 
contribute to recommend sustainable management practices.

As shown previously, acacia growth is expected to be suppressed by eucalypt 
trees, depending on the region in Brazil (Bouillet et al. 2013; Santos et al. 2016). 
The mixtures may exploit site resources more completely through the development 
of a stratified canopy and soil niche separation by fine roots (Germon et al. 2018; 
Laclau et al. 2013; Kelty 2006; Forrester et al. 2006). In mixed plantations, the dom-
inant species containing more fine roots, located closer to the soil surface, will have 
a competitive advantage over the dominated species, excluded from the resource- 
rich upper soil layer (Laclau et al. 2013).

Soil resources are localized along a strong vertical gradient of nutrient and water 
availability provided by rainfall and fertilizer application over the early growth and 
then throughout the biological cycle of nutrients after canopy closure. Most of the 
available nutrients are in the topsoil layer, particularly for forest plantations estab-
lished in highly weathered tropical soils and transported by gravitational solutions 
(Laclau et al. 2003, 2010).
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Fig. 2.5 Dynamics of fine root biomass accumulation in different additive and replacement stands 
between Acacia (A, Ac) and Eucalypt (E, Euc). Different letters at each age indicate significant 
differences in dry matter amounts (P < 0.05). Modified figure from Laclau et al. (2008)

Belowground competition has been studied through the dynamics of the distribu-
tion of fine roots, but other factors that play an integral part of the interactions 
among species have been less studied yet, such as mycorrhizal associations (Pereira 
et al. 2018), which interfere in the availability of resources with low mobility (Zobel 
et al. 1997). Mixed plantation with eucalypt and acacia (50E50A) presented a sig-
nificant increase in root colonization by arbuscular mycorrhizal fungi (Glomus 
genus) at the 0–20 and 20–50 cm soil layers, indicating a possible stimulation at 
superficial soil layers of the symbiosis in eucalypt roots when in consortium (Pereira 
et al. 2018).

Interspecific competition between E. grandis and leguminous trees (Peltophorum 
dubium, Inga sp., Mimosa scabrella, Acacia polyphylla, Mimosa caesalpiniaefolia, 
and Acacia mangium) was larger than intraspecific competition up to 24 months of 
age (Coelho et al. 2007). The E. grandis root system distribution relative to the dis-
tribution of the M. scabrella and A. mangium roots (the most resistant leguminous 
tree species to competition) in the soil profile indicated that there were different root 
exploration niches between species. Laclau et al. (2008) also verified that Eucalyptus 
grandis (Hill ex Maiden) and Acacia mangium (Willd.) tree roots occupied different 
niches of soils when in additive or replacement stands (Fig. 2.5).

Besides the diversified soil exploitation, fine roots showed overyielding of 27% 
down to 2 m of soil depth in 50A50E (445.3 g m−2), when compared with 100A 
(352.0 g m−2) and 100E (346.9 g m−2) at 5 years after planting. In 50A:50E, eucalypt 
fine root biomass per tree was 72% greater than in 100E, whereas the opposite was 
found for acacia with fine root biomass per tree 17% lower than in 100A (Laclau 
et al. 2013). After 4 years of the replanting of the same experiment conducted by 
Laclau et  al. (2013), total fine root biomass in 50A50E (1127  g  m−2) was 44% 
higher than in 100A (780 g m−2) and 58% higher than in 100E (714 g m−2) (Germon 
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et al. 2018). These results suggest that mixing acacia and eucalypt might lead to a 
strong fine root overyielding at very deep soil layers, increasing fine root explora-
tion at deep soil layers compared to their respective monospecific stands, which is 
likely to enhance the uptake of soil resources. The authors found impressively 
higher concentrations of fine root biomass below 2 m of soil depth, with 50, 45, and 
35%, respectively, for 100E, 50A50E, and 100A.

The reduction in acacia fine root density in 50A100E (addictive stand), when 
compared to the monospecific 100A0E acacia stands, in the upper soil layer at age 
6–12 months after planting (Fig. 2.6), showed that belowground competition started 
roughly at the same time in the 50A100E treatment, due to a strong competition 
imposed by genetically improved eucalypt trees, relative to acacia (Bouillet et al. 
2008), and because of the environmental conditions, cold for acacia trees. The high-
est fine root density of eucalypt in the upper soil layers occurred at 18 months of age 
and subsequent decreases indicated a decrease in intraspecific competition (Silva 
et  al. 2011). Competition between eucalypt and acacia species occurred in the 
50A100E stand through the horizontal distribution of the fine roots, with strong 
decreases of acacia roots at greater distances from the tree, whereas the eucalypt 
roots were not influenced by the presence of acacia. However, root competition 
among species in mixed treatments shifted root growth to non-favorable depths. The 
monospecific stands explored the soil similarly (Silva et al. 2011).

Whatever the tree stock density of eucalypt (50A100E vs. 50A50E), all authors 
reported a competitive exclusion of acacia fine roots from the upper soil layer 
(Laclau et al. 2013; Germon et al. 2018; Silva et al. 2009). According to Silva et al. 
(2009) and Laclau et al. (2013), the facilitation processes were weak because of the 
lack of aboveground transgressive overyielding in 50A50E (when the consortium 
production is greater than the most productive monoculture). Other factors involve 
the lack of influence of acacia trees on eucalypt distribution of fine roots in 50A:100E 
stands, besides N concentrations in eucalypt tree components, which were not sig-
nificantly different from those of the 100E and 50A100E stand (Bouillet et al. 2008). 
However, in general, increases in soil N availability in mixed plantations of eucalypt 
trees planted with acacia (Tchichelle et al. 2017; Voigtlaender et al. 2012) explained 
the greater soil exploration by eucalypt fine roots in 50A:50E relative to 100E stands 
(Germon et al. 2018).

In this context, the recommendation is that comparative studies should be carried 
out mostly in areas highly depleted in N, where acacia trees should improve the 
growth of eucalypt trees through complementarity and facilitation mechanisms 
(Laclau et al. 2013).

2.7  Final Remarks

In this chapter we showed that mixed eucalypt plantations with acacia can increase 
biomass production in relation to eucalypt monocultures, especially in highly 
weathered soils (that are especially very poor in N) and with climatic conditions 
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in 100A:0E close to A. mangium trees (a); P1 position in 0A:100E close to E. grandis trees (b); A. 
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favorable to acacia (average annual temperatures higher than 24 °C and annual rain-
fall above 1000  mm). In mixed plantations, Acacia mangium can compete with 
eucalypt on equal terms or at least similar growth rates. However, for the facilitation 
process to occur between both species, it is necessary to develop strategic programs 
of A. mangium breeding similar to those developed for eucalypt in the last years.

Further studies should be developed to evaluate different spacing or planting 
arrangements that minimize interspecific competition in mixed plantations and, 
consequently, promote better growth and biomass production. For example, plant-
ing trees of each species in double lines instead of alternating plants could not only 
decrease the competition of eucalypt over acacia, but also facilitate the harvesting 
of trees. In addition, other questions should be answered to foster the understanding 
of mixed plantations in tropical conditions, such as the following: (1) What are the 
silvicultural practices (e.g., thinning, pruning, complementary fertilization) to 
ensure greater productivity? (2) Are there other legume tree species, specially native 
from Brazil, with productive potential that could be evaluated in the mixed planting 
system with eucalypt?

It is important to note that, in addition to the positive responses on growth and 
biomass production, mixed plantations can also result in several indirect benefits 
that can improve the long-term sustainability of the production system, such as 
increase in soil C sequestration, increase in soil N concentrations which will impact 
directly the dynamics of nutrient cycling, and increase in biodiversity and protec-
tion against pests and diseases, besides creating the diversification of timber and 
non-timber forest products, which are discussed in several chapters in this book.
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Chapter 3
Nutrient Cycling in Mixed-Forest 
Plantations

José Henrique Tertulino Rocha, José Leonardo de Moraes Gonçalves , 
and Alexandre de Vicente Ferraz

3.1  Introduction

Nutrient cycling in forests was defined by Attiwill and Adams 1993 as the range of 
natural processes that govern the availability of nutrients for the forest trees, as well 
as the interactions between plants and soil in the uptake and return of nutrients, 
microbial interactions in which nutrients are transformed between organic and inor-
ganic forms, and balance between input and output of nutrients. Thus, nutrient 
cycling is a term used to cover all the pathways and processes by which nutrients 
enter, leave, and move within forest ecosystems.

In planted or managed natural forest for wood production the nutrient cycle is 
open once a large amount of nutrients is removed with harvest and in some places 
large amounts of nutrients are applied through fertilizers. The magnitude of the 
nutrient output and, consequently, the dependence on fertilizer application increase 
with the management intensity. In Brazil, most of the wood consumed and exported 
comes from planted forest managed in short rotation (5–7 years) with high produc-
tivity (from 20 to 80 m3 ha−1 year−1). The main genus planted is Eucalyptus. This 
system of production is highly efficient and highly productive, but highly dependent 
on fertilizer application. This dependency is intensified because of highly weathered 
soils, poor in nutrients or plantation established at steep sites susceptive to soil 
 erosion. As commented in other chapters an alternative to reduce the dependence of 
fertilizer is the introduction of nitrogen-fixing trees (NFT) into eucalypt plantations.
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In natural ecosystems, the wood productivity is lower and there is no dependence on 
fertilizer application; on the other hand, in eucalypt plantation, the high wood produc-
tivity increases the dependence in terms of fertilizer application. As  suggested in this 
book, perhaps the sustainable alternative is somewhere in between the natural forest 
and the traditional monospecific eucalypt plantation. Thus, the main goal of this chap-
ter is to compare the nutrient cycling in mixed forest (mainly Acacia with Eucalyptus) 
with monospecific plantation and natural forest (Atlantic Forest and Cerrado—
Brazilian savannah). Nutrient cycling can be divided into six main stages, as suggested 
by Attiwill and Adams (1993). They are (1) inputs of nutrients by rain, dust, biological 
fixation, and parental rock weathering; (2) uptake and accumulation of nutrients by 
trees; (3) outputs of nutrients by leaching and gaseous forms and in harvested material; 
(4) internal redistribution of nutrients within and among plants; (5) return of nutrients 
from plant to soil; and (6) decomposition of the forest floor and nutrient mineralization. 
Some of these subjects are presented in more details in Chaps. 4 and 6.

3.2  Nutrient Inputs

In tropical planted forest, fertilizer application is frequently the main nutrient input 
into the system, but atmospheric deposition, biological N2 fixation, and parental 
rock weathering can also play an important role. Biological N2 fixation (BNF) is 
discussed in another chapter. In this chapter, we discuss the role of atmospheric 
deposition and parental rock weathering.

3.2.1  Atmospheric Deposition

In forest plantations the importance of atmospheric deposition increases with the 
annual deposition rate and with the length of the rotation (Ranger and Turpault 
1999; du Toit et al. 2014). The main sources of nutrients contributing to atmospheric 
deposition are mineral and marine aerosols, wildfires, industrial activity, combus-
tion of fossil fuel, and agricultural activity (Wieder et al. 2016; Lequy et al. 2014; 
Nyaga et al. 2013).

The amount of nutrients deposited is highly dependent on the source, and highly 
variable in the spatial and temporal scale. In the literature, we found references to 
annual depositions of N, P, K, Ca, Mg, and S ranging from 1 to 10, 0.1 to 5, 1 to 25, 
1 to 30, 0.3 to 3, and 1 to 10 kg ha−1 year−1, respectively (Table 3.1). The deposition 
reduced exponentially with the distance from the emission center. Unlike N and S 
deposition, the K, Ca, and Mg depositions occur more concentrated around the 
emission center (Wieder et al. 2016; Nyaga et al. 2013). Wieder et al. (2016) found 
small Ca and Mg deposition rates 69 km from the emission center, while for N and 
S a small deposition rate was present even in the most distantly assessed point 
(251 km).
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3.2.2  Rock Weathering

Rock weathering rates are difficult to be quantified and frequently low in relation to 
the rotation scale. Many methods have been proposed, and despite the good rela-
tionship among the results, the accuracy of absolute data is uncertain (Hodson and 
Langan 1999; Klaminder et  al. 2011; Koseva et  al. 2010; Ouimet and Duchesne 
2005; Whitfield et al. 2006, 2011). Generally, in highly weathered soils, with low 
levels of primary minerals, nutrient inputs by weathering are effectively negligible 
(Melo et al. 2005).

In young and shallow soils, rich in primary minerals and where trees are grown 
in long rotations, this nutrient input can be important for nutrient supply to the 
stand. Starr and Lindroos (2006) assessed the rate of Ca and Mg released by weath-
ering in a soil chronosequence ranging from 340 to 5279 years of age in Finland 
with the same parent material under Pinus sylvestris forests. They found releases of 
around 2.0 and 0.6 kg ha−1 year−1 of Ca and Mg, respectively, in the youngest soil, 
and releases of 0.4 and 0.2 kg ha−1 year−1 of Ca and Mg in older soil. There was a 
drastic reduction in the Ca and Mg release up to soil ages of 1000 years followed by 
stabilization thereafter. Under an 80-year-old P. sylvestris forest in Finland, Starr 
et al. (2014) found weathering rates (1.8, 0.5, and 0.7 kg ha−1 year−1 of Ca, Mg, and 
K, respectively) which almost equaled the leaching rate. They reported that the 
quantities of exchangeable cations at the 0–40  cm soil layer are equivalent to 
approximately 30 years of weathering and the quantities accumulated in the aboveg-
round biomass are equivalent to almost 50  years of weathering. These data sets 
indicate that in some sites weathering on its own is sufficient to supply the K, Ca, 
and Mg requirements of the trees. However, in Oxisols in tropical climate, the 
release of K, Ca, and Mg is very close to zero (Melo et al. 2005).

3.3  Nutrient Uptake and Accumulation

The nutrient uptake and consequent accumulation in the biomass are linearly related 
with the growth rate in planted forest, but are also related with the site nutrient avail-
ability (Gonçalves et al. 2014; Rocha et al. 2019). In natural unmanaged forest on 

Table 3.1 Nutrient deposition by rainfall (kg ha−1 year−1)

Location N P K Ca Mg S Source

Alberta, Canada 1.2 0.1 9.0 2.0 5.0 Wieder et al. (2016)
Northeastern France 0.5 1.1 0.8 0.3 Lequy et al. (2014)
West coast of South Africa 3.9 0.1 3.0 15 5 Nyaga et al. (2013)
São Paulo, Brazil 4.1 3.6 9.3 1.5 Laclau et al. (2010)
Kondi, Congo 5.4 6.2 7.3 3.1 Laclau et al. (2010)
São Paulo, Brazil 4.2 4.4 7.4 2 Vital et al. (1999)
Rio de Janeiro, Brazil 15.5 de Souza et al. (2017)
Average 3.8 0.2 3.7 8.1 2.3 5.0

3 Nutrient Cycling in Mixed-Forest Plantations
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steady state, the uptake rate is equal to the nutrient return to soil and the amount of 
nutrients accumulated in the biomass is proportional to the biomass stock.

The amount of nutrients accumulated in the biomass is equally affected by the 
species composition. Santos et al. (2017), comparing mixed-species and monospe-
cific plantations of Acacia mangium and Eucalyptus (hybrid between E. urophylla 
and E. grandis), found 354 t ha−1 of aboveground biomass and 268 kg ha−1 of N 
accumulated in this biomass in monospecific eucalypt at 5-year-old stands. At the 
same site and age, these authors found, in the monospecific acacia plantation, 
107 t ha−1 of aboveground biomass and 186 kg ha−1 of N accumulated. The overall 
N concentration of the aboveground biomass of eucalypt was 2.19 g kg−1 and of 
acacia was 2.44 g kg−1. If the productivity of both stands were the same, the N accu-
mulation in the acacia aboveground biomass would be 11% bigger than in the euca-
lypt plantation. When we look at the overall P concentration in the aboveground 
biomass for the same productivity, the eucalypt monospecific plantation accumu-
lates around 33% less P than acacia monospecific plantation. Due to genetic differ-
ences among the species, when we mix acacia and eucalypt in a plantation, there is 
an increase in the N, P, K, Ca, and Mg content per ton of biomass produced (Santos 
et al. 2017).

The mixture of A. mangium with Eucalyptus plantation increases the fine root 
biomass and consequently the soil exploration, especially in deep soil layers (see 
also Chap. 2). Germon et al. (2018) studying soil exploration by fine roots down to 
a depth of 17 m found an increase of 58% in the root biomass when eucalypt was 
mixed with acacia (50%E 50%A), when compared with monospecific Eucalypt 
plantation. Beyond the root biomass, they also found an increase of 50% in the root 
specific area (cm2 g−1) of acacia in mixed plantations when compared with acacia in 
monospecific plantation. In this study, the root of eucalypt dominated the upper soil 
layer and “forced” acacia to increase the root density in deeper soil layers. The root 
front of the monospecific acacia plantation was down to 12 m while under mixed 
plantation acacia roots reached 17 m.

3.4  Nutrient Outputs

The harvest output increased linearly with stand productivity and with harvest 
intensity. Rocha et al. (2019), based on 45 stands, estimated the nutrient harvest 
output for three levels of productivity and two levels of harvest intensity for mono-
specific eucalypt plantations (Table 3.2). Santos et al. (2017) assessed the harvest 
outputs of 5-year-old monospecific and mixed plantations of eucalypt with acacia in 
Rio de Janeiro state, Brazil. The productivity of plantations was 110, 50, and 
80 t ha−1 of stem wood, when comparing monospecific eucalypt, acacia, and mixed 
plantation, respectively. The nutrient harvest outputs of the monospecific eucalypt 
plantation were higher than those in the mixed plantation due to the higher produc-
tivity (Table 3.3).
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Beyond harvest outputs, other nutrient losses can be significant in forest planta-
tion. The soil loss by erosion under eucalypt plantation managed by minimum 
 tillage is low, ranging from 0 to 2 t ha−1 year−1 and being influenced by the age and 
management of the plantation (Martins et al. 2003; Silva et al. 2011). The soil loss 
under acacia plantation is also low, around 1 t ha−1 year−1 (Barros et al. 2009). Due 
to the depth of the root system and the low deep-water drainage, nutrient leaching 
under forest plantation is negligible (Laclau et  al. 2013; Christina et  al. 2017). 
Ammonia volatilization in forest plantations in Brazil is also negligible, because 
these plantations are established normally on acidic soils.

Table 3.2 Nutrient outputs by harvestinga in eucalypt plantations (with and without bark) in 
rotations of 7 years and mean annual increment (MAI) ranging from 30 to 50 m3 ha−1 year−1

Nutrient

MAI (m3 ha−1 year−1)
30 40 50
kg ha-1

Wood with bark

N 198 264 330
P 41 54 67
K 116 155 194
Ca 202 270 338
Mg 23 31 39
S 37 49 61
Wood

N 168 224 280
P 32 42 53
K 66 88 110
Ca 83 110 138
Mg 12 16 20
S 34 45 56

aAdapted from Rocha et al. (2019)

Table 3.3 Biomass and nutrient outputsa by harvest of a monospecific eucalypt plantation (hybrid 
between E. urophylla and E. grandis—100E), a monospecific Acacia mangium plantation (100A), 
and a mixed eucalypt with acacia plantation (50E50A), all 5 years old, harvested in the system of 
only stem and full tree

Biomass/nutrient
Stem Full tree
100E 100A 50E50A 100E 100A 50E50A

Biomass (t ha−1) 110 50 80 123 63 95
N (kg ha−1) 120 62 92 269 187 232
P (kg ha−1) 13 10 12 23 23 24
K (kg ha−1) 98 43 74 189 135 165
Ca (kg ha−1) 84 56 76 130 125 137
Mg (kg ha−1) 19 13 17 40 39 41

aAdapted from Santos et al. (2017)
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3.5  Nutrient Redistribution Within and Among Plants

Nutrient redistribution or biochemical nutrient cycling is a well-known process in 
deciduous trees as well as in evergreen trees. The nutrients differ greatly in their 
mobility. Calcium, for example, is considered immobile, because it is a structural 
element, while K is highly mobile due to being a nonstructural element.  
Some authors found that under conditions of high nutrient availability, the retrans-
location tends to be reduced (Boerner 1984; Pugnaire and Chapin 1993; Andrews 
et al. 1999), but others found no nutrient retranslocation (Millard and Proe 1993).

Among species, the N retranslocation rate is higher in eucalypt trees, K and P 
retranslocation rate is higher in acacia trees, and the Mg retranslocation rate is equal 
in both species (Santos et al. 2017). These authors found no difference in the retrans-
location rate of both species, when comparing mixed with monospecific plantations. 
Since the K and P retranslocation rates are higher in acacia trees, the introduction of 
this species in monospecific eucalypt plantations can increase the nutrient retranslo-
cation (Table 3.4).

Beyond the nutrient retranslocation within the trees, the nutrient retranslocation 
among trees can play an important role in the nutrition of mixed plantations, espe-
cially when there are NFTs. Paula et al. (2015), using 15N, found transference from 
acacia to eucalypt trees 5 days after application among trees 6 m away from each 
other in a mixed plantation located in Itatinga, Brazil. These authors concluded that 
the transference belowground may provide a significant amount of N requirement of 
the tree close to NFT. This transference may be direct, when roots of eucalypt and 
acacia are connected by mycorrhizal network, or indirect, by root exudation of N 
compounds (See also Chap. 6).

3.6  Return of Nutrients from Plants to Soil

Monospecific eucalypt plantation returns to soil on average 5.6 t ha−1 year−1 of litter 
(Table 3.5). The litterfall rate normally increases until 3 to 4 years of age and stabi-
lizes or shows a little reduction afterwards (Rocha 2017). This litterfall rate results 
in a return to the soil of around 45, 2, 16, 40, 12, and 5 kg ha−1 year−1 of N, P, K, Ca, 
Mg, and S, respectively. When compared with the native Atlantic Forest these 
amounts are markedly lower, especially for the nutrients, which indicates a lower 
nutrient concentration in the eucalypt litterfall (Table 3.5).

In mixed plantations, there is an increase in the total amount of nutrients  deposited 
on the soil, especially N and P. This higher nutrient deposition is a result of higher 
nutrient concentration in the litter and of a higher litterfall rate (Table 3.5). These 
findings indicate that the introduction of acacia into monospecific eucalypt planta-
tion accelerates and increases the nutrient cycling as also evidenced by Binkley 
(1992) and Forrester et al. (2005).
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Table 3.4 Nutrient retranslocation ratea of Eucalyptus (hybrid between E. urophylla and E. 
grandis) and Acacia mangium trees at 30 and 60 months after planting

Age (month)
N P K Mg
%

Eucalyptus

30 77 68 61 34
60 51 70 70 43
A. mangium

30 62 84 74 46
60 45 83 81 37

aAdapted from Santos et al. (2017)

Table 3.5 Litterfall rate and amount of nutrients deposited on the soil by litterfall in monospecific 
eucalypt plantation, Natural Forests, and in a trial which compares monospecific eucalypt 
plantation (100% eucalypt) with mixed-species plantation (50% eucalypt, 50% acacia)

Species
Age 
(year)

Mass 
(t ha−1 year−1)

N P K Ca Mg S
Source akg ha−1 year-1

Monospecific eucalypt plantation
E. grandis 
and 
hybridb

1–9 5.6c (3.8–7.8) 
[14]

44.0 
(24.0–
83.5) 
[14]

1.9 
(0.9–
5.1) 
[14]

15.8 
(4.4–
44.2) 
[14]

39.4 
(11.2–
84.0) 
[14]

11.7 
(7.0–
16.2) 
[13]

4.9 
(2.5–
8.1) 
[6]

1, 2, 3, 
4, 5, 6, 
7, and 8

Eucalypt with acacia trials
100% 
Eucalypt

2–6 8.5 (5.0–11.5) 
[8]

49.5 
(30.0–
62.0) 
[8]

5.3 
(1.8–
8.8) 
[4]

15.6 
[1]

30.0 
[1]

8.8 [1] – 9, 10, 
11, and 
12

50% 
Eucalypt
50% 
Acacia

2–6 8.7 (6.1–11.0) 
[8]

70.7 
(63.0–
80.0) 
[8]

6.2 
(1.7–
10.7) 
[4]

18.8 
[1]

33.2 
[1]

9.0 [1] – 9, 10, 
11, and 
12

Natural Forest
Atlantic Forest 9.1 (6.3–13.0) 

[10]
169.6 
(122–
218.9) 
[10]

5.9 
(1.6–
11.6) 
[10]

44.3 
(11.7–
67.7) 
[10]

148.2 
(88.9–
231.1) 
[9]

25.8 
(11.0–
38.7) 
[9]

13.6 
(13.5–
13.6) 
[2]

6, 13, 
14, 15, 
16, 17, 
18, and 
19

Cerrado 3,8 (2,1–7,8) 
[4]

34.4 
(12.7–
64.7) 
[4]

2.1 
(0.4–
4.7) 
[4]

6.3 
(2.3–
12.5) 
[4]

14.6 
(4.7–
26.5) 
[4]

5.2 
(1.9–
10.9) 
[4]

0.7 
[1]

19 and 
20

a1—Gonçalves et al. (2000), 2—Zaia and Gama-Rodrigues (2004), 3—Cunha et al. (2005), 4—
Ferraz (2009), 5—Silva (2006), 6—Gama-Rodrigues and Barros (2002), 7—Silva et al. (2013), 
8—Rocha (2017), 9—Voigtlaender et  al. (2019), 10—Koutika et  al. (2014), 11—Santos et  al. 
(2016), 12—Santos et al. (2017), 13—Vital et al. (2004), 14—Pinto et al. (2009), 15—Pimenta 
et al. (2011), 16—Godinho et al. (2013), 17—Domingos et al. (1997), 18—Pereira et al. (2008), 
19—Toledo et al. (2002), 20—Nardoto et al. (2006)
bHybrid between E. grandis and E. urophylla
cAverage, followed by the amplitude between parentheses and followed by the number of sites plus 
the number of years assessed between brackets
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3.7  Decomposition of Forest Litter

We will discuss litter layer decomposition in detail in the next chapter. In this topic, 
we will be comparing only the litter decomposition in eucalypt stands with the 
 natural vegetation. Under monospecific eucalypt plantation the litterfall and litter 
layer rates are around 5.5 t ha−1 year−1 and 11.6 t ha−1, and, under Atlantic Forest, 
8.6  t  ha−1  year−1 and 6.0  t  ha−1, respectively. The decomposition rate (k) of the 
Atlantic Forest litter is 2.4 times greater than the k of eucalypt plantation (Table 3.6).

When NFTs are mixed with eucalypt despite an increase in the litter N and P 
concentration and a reduction in the concentration of phenol, the k does not neces-
sarily increase (Bachega et al. 2016). A large increase in the N mineralization under 
NFT in monospecific or mixed plantations was detected (Voigtlaender et al. 2012, 
2019). On the other hand, as discussed in Chap. 4, changes in decomposition rates 
could be site specific.

3.8  Conclusion

The introduction of NFT, such as Acacia mangium, at monospecific eucalypt stands 
can improve the capacity of the trees in obtaining nutrients, mainly due to the atmo-
spheric N2 fixation and by the wider soil exploration. The NFT also accelerates and 
increases nutrient cycling and contributes to a large return of nutrients to soil by 
litterfall, increasing the topsoil nutrient availability. The N mineralization increases 
greatly. Thus, the dependence of mixed plantations on nitrogen fertilizer application 
is lower. More studies need to be incentivized, encompassing other NFT species.

Table 3.6 Litterfall, litter layer, decomposition rate (k), half lifetime, and decomposition time of 
95% of the litter in monospecific eucalypt plantation and in Natural Forests

Species
Age 
(year)

Litterfall

k

Decomposition time

Sourceat ha−1 year−1

Layer 
(t ha−1)

50% 95%
year

Monospecific eucalypt plantation
E. grandis 
and hybridb

1-9 5.6b 
(3.8–7.8) 
[10]

11.6 
(3.9–
23.7) [10]

0.63 
(0.23–
1.2) [10]

1.46 
(0.58–
2.97) [10]

6,31 
(2,50–
12,84) 
[10]

1, 2, 3, 4, 
and 5

Natural Forest
Atlantic Forest 8.5 

(6.3–10,6) 
[8]

6.0 
(3.4–
10.1) [8]

1.53 
(0.93–
2.45) [8]

0.49 
(0.28–
0.74) [8]

2.10 
(1.22–
3.22) [8]

5, 6, 7, 8, 
9, and 10

a1—Zaia and Gama-Rodrigues (2004), 2—Cunha et al. (2005), 3—Ferraz (2009), 4—Gonçalves 
et al. (2000), 5—Gama-Rodrigues and Barros (2002), 6—Vital et al. (2004), 7—Morellato (1992); 
8—Pinto et al. (2009), 9—Pimenta et al. (2011), 10—Godinho et al. (2013)
bAverage, followed by the amplitude between parentheses and followed by the number of sites plus 
the number of years assessed between brackets
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The concentration of some nutrients in the acacia biomass is higher than that in 
eucalypt biomass. If mixed plantations reach the same productivity of monospecific 
eucalypt plantation, an increase in the nutrient harvest output can occur.
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4.1  Introduction

Increased demand for forest products around the world has contributed to the growth 
of planted forest areas over the last few decades (FAO 2015). The annual growth 
rate of planted forests in the tropics has been 2.5% per year, corresponding to an 
increase of around 20 million hectares from 1990 to 2015 (Payn et al. 2015). In 
Brazil, the planted forest generates and offers a huge diversity of products,  especially 
pulp, paper, charcoal, sawn wood, and plywood, among others. Brazil  currently has 
7.84 million hectares of planted trees and its planted tree industry is responsible for 
91% of the wood produced for industrial purposes in the country and 6.2% of the 
Brazilian gross domestic product; it is one of the industries with the greatest poten-
tial to help build a green economy (IBA 2017). Most of these planted forests are 
monocultures of Eucalyptus spp. (72%) and Pinus spp. (20%), but other species can 
also attend the internal and external market, such as Acacia mangium and Acacia 
mearnsii that together occupy 2.0% of the planted forest area. Other species include 
Hevea brasiliensis (2.9%), Schizolobium amazonicun (1.1%), and Tectona grandis 
(1.1%) (IBA 2017).

Despite the success of the Brazilian forestry agribusiness, most of these forest 
plantations occupy extensive areas of marginal soils, previously managed soils 
with low fertility or at some stage of degradation (Gonçalves et al. 2013). The sus-
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tainability of these plantations could be compromised in the medium and long 
terms, because they have been managed under short rotations and a fertilization 
regime, often far from high nutrient exports due to timber harvests, especially for 
P, K, and N (Santana et al. 2008; Laclau et al. 2010; Bouillet et al. 2013; Gonçalves 
et al. 2013).

Soil organic matter (SOM) in tropical planted or native forests has many func-
tions that affect soil properties and processes. It plays a role of the nutrient reserve, 
and energy source for animals, plants, and microorganisms since its soil minerals 
are not great suppliers of mineral nutrients due to the high degree of weathering 
(Sanchez 1979; Maquere et al. 2008; Quesada et al. 2010). In addition, SOM fea-
tures the greatest cation exchange capacity (CEC) of these soils (Senesi and 
Loffredo 1999; Oorts et al. 2000; Motta et al. 2002), which prevents essential nutri-
ents from being easily lost by leaching and, consequently, not utilized by forests. 
Instead, the SOM allows such nutrients to be exchanged easily with the soil solution 
and to be taken up by plants. SOM participates in soil aggregation and consequently 
in soil pore space formation (Tisdall and Oades 1982; Denef et al. 2001; Denef and 
Six 2005). With an expressive and balanced pore space (i.e., macro- and micro-
pores) the roots exploit the soil profile much better, water infiltration is facilitated, 
and plants get benefit from increased soil water storage (Doran and Parkin 1994; 
Franzluebbers 2002).

Poorly managed planted forests stimulate decomposition of SOM and C loss. 
This poor management includes excessive use of machines, with high traffic inten-
sity in soil preparation or harvesting, in addition to removing or burning crop 
 residues from the harvested area and excessive soil disturbance during preparation, 
which comprises the provision of numerous soil ecosystem services and the sustain-
ability of these forests (Chaer and Tótola 2007; Dominati et al. 2010; Gonçalves 
et al. 2013; Jesus et al. 2015; and Chap. 10).

The rates of SOM and litter decomposition are clearly influenced by many 
 factors, including temperature, air humidity, soil moisture content, soil microbial 
community, and litter quality. The last one may be described by lignin, polyphe-
nols, carbon, and nutrient concentrations (especially N and P) or ratios of these 
(Attiwill and Adams 1993; Hättenschwiler et al. 2011). The N2-fixing species often 
have higher N concentrations and decompose more rapidly. Thus, mixtures of 
Eucalyptus litter with more readily decomposable and more nutrient-rich litter 
may enhance the litter decomposition rates (Briones and Ineson 1996). Gartner and 
Cardon (2004) in a meta-analysis found synergistic effects in the majority of 
mixed-litter decomposition studies (47.5%), while antagonistic effects (19.1%) 
were less frequent. However, some expected improvements due to the introduction 
of N2-fixing trees in litter decomposition, such as microbial activity and nutrient 
release (especially N), seem to be conditioned by the structural quality of the resi-
dues, the N:P ratio of litter, and the integration with microorganisms, driven by the 
increase in diversity of the plant community (Forrester et al. 2006; Rachid et al. 
2015; Santos et al. 2018).

This chapter presents and discusses some data about changes in key soil pro-
cesses, litter decomposition, and C stabilization (i.e., humification) arising from the 
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introduction of N2-fixing legumes in mixed Eucalyptus spp. plantations. We must 
emphasize the dynamics of C in tropical soils, especially Brazilian soils, and of the 
understanding of the main drivers of C stock in mixed-forest soil. Many researchers 
believe that one of the legacies of mixed plantations is the increase of soil C stocks, 
and at the end of this chapter, some of the practices and challenges to overcome 
obstacles of C storage will be introduced.

4.2  Carbon Assimilation and Partitioning in Forest 
Plantation

Understandings of carbon dynamics in forests involve knowledge of the biotic and 
abiotic factors that interfere in the growth of species that colonize a particular site, 
as well as where assimilated C is allocated (Cannell 1989; Davidson and Hirsch 
2001). According to Cannell (1989), the CO2 conversion efficiency in forest 
 biomass is variable and associated with factors such as earth geometry, geographic 
location of the plantations, CO2 diffusion rate for chloroplasts, canopy interception 
capacity (Io), respiration rate, and proportion of the different aboveground tree 
compartments.

Carbon accumulation in a forest occurs in several aboveground and belowground 
compartments. In the case of woody tissues such as stem, thick roots, and branches, 
this accumulation may last for years or decades. On the other hand, in labile tissues 
such as leaves, flowers, and fine roots, after the senescence C will return to the 
atmosphere in days or weeks via decomposition (Landsberg and Gower 1997; 
Fearnside 2000; Schlesinger and Lichter 2001; Nouvellon et  al. 2012; Bachega 
et al. 2016).

In general, about half of all CO2 annually fixed in terrestrial biomass via photo-
synthesis (~120 Pg C y−1) is respired by plants (~60 Pg C y−1) and the other half is 
respired heterotrophically (Janzen 2004). In other words, if not disturbed, the C 
reservoirs shall remain constant in these environments, including the soil compart-
ment. Because soil is the largest active C compartment of the terrestrial ecosystem 
(~1500–2000 Pg) and is in direct connection with other environmental components 
(i.e., atmosphere, hydrosphere, pedosphere, and biosphere), land use and climate 
changes have led to the loss of soil capacity to provide varied ecosystem services 
associated to SOM loss.

The net primary production (NPP) of forests increases with the reduction of lati-
tude because there is a higher incidence of global radiation, higher evapotranspira-
tion, and, consequently, higher cloud formation and rainfall in tropical regions 
(Ometto 1981). Reducing the vapor saturation deficit in these regions increases sto-
matal conductance and rate of carbon fixation of plant species (Sands and Mulligan 
1990; Novais and Barros 1997; Whitehead 1998). Recent papers with Eucalyptus in 
Brazil have shown that NPP of the genus is determined preferentially by local water 
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availability and, to a lesser extent, by soil fertility (Reis et al. 1985; Stape et al. 
2004, 2010; Rigatto et al. 2005; Balieiro et al. 2008). The importance of water 
supply for Eucalyptus grandis and E. urophylla was highlighted by Stape et  al. 
(2004), when evaluating 14 sites with a significant productivity gradient 
(9.7–39.1  Mg  ha−1  year−1). According to the authors, the NPP of the sites with 
 intermediate productivity (i.e., average of 16 Mg ha−1 year−1) was 46% higher than 
NPP of the sites with low productivity (i.e., average of 11.9 Mg ha−1 year−1), where 
32% of this variation was related to the site of water supply. Although the productiv-
ity difference between the high and medium productivity sites was 72%, one-third 
of this difference was related to the availability of soil water.

Similarly, when measured by the average monthly increment of the stem, the 
productivity of eucalypt was directly related to precipitation in the Rio Doce 
Basin, in Minas Gerais (Souza et  al. 2006). According to the authors, for each 
increase of 100 mm in the total precipitation within a year, there was an average 
increase of 0.45 m3 ha−1 month−1, while 100 mm reduction affects this increase in 
0.64  m3  ha−1  month−1. Rigatto et  al. (2005) also found very high correlations 
between the height of Pinus taeda plants and the available water in eight different 
forest sites. Stape et al. (2010) across a large edaphoclimatic gradient (~1000 km) 
and eight regions found that fertilization beyond the current operational rates did 
not increase the growth of clonal Eucalyptus plantations, whereas irrigation raised 
growth about 30% (to 30.6 Mg ha−1 year−1).

At mixed-forest plantations in Brazilian and Congolese conditions, where the set 
of trials with Eucalyptus and Acacia mangium (Acacia) were developed, the com-
plementary interactions in the mixed stands of acacia and eucalypt led to significant 
biomass production. However, the NPP was higher than in monocultures without N 
fertilization only where appropriate climate conditions (i.e., temperature, high 
humidity, and rainfall) for Acacia and poor soil occur (Bouillet et al. 2013; Santos 
et al. 2016; Voigtlaender et al. 2019). Under milder and drier climate, Acacia cannot 
compete with Eucalyptus. For E50:A50 arrangement, and comparing six different 
sites (five in Brazil and one in Congo), Santos et  al. (2016) after Bouillet et  al. 
(2013) found that stemwood production only exceeded E100 ones at the Congo and 
Seropédica sites, although the differences in both studies were not significant at the 
5% level (Santos et al. 2016).

Using the C budget approach to quantify growth, C uptake, and C partitioning in 
pure and mixed plantations with the same stocking density of E. grandis and A. man-
gium plantations, Nouvellon et  al. (2012) developed an interesting work with C 
allocation of mixed plantation in São Paulo state. According to the results, the pro-
duction in mixed plantation is lower than in Eucalyptus due to the lower gross pri-
mary production and net primary production values, as well as shifts in C allocation 
from above- to belowground and from growth to litter production. However, the 
pattern seems to be site specific due to the two contrasting tropical site environ-
ments (i.e., Brazilian and Congolese). Epron et al. (2013) compared Brazilian and 
Congolese site, and found that mixed-species plantations at the Brazilian site had a 
lower stand of wood biomass and aboveground net primary production (ANPP) 
without change in total belowground C fluxes (TBCF). In contrast, the mixed-species 
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plantations overyielded the monocultures at the Congolese site, which led to higher 
standing wood biomass at the harvest. The NPP  partitioning of the mixed planta-
tions shifted towards aboveground growth at Kissoko (Congo site) and towards 
belowground growth at Itatinga (Brazil).

4.3  Litterfall and Nutrient Deposition in Pure 
and Mixed- Forest Plantations

As Chap. 3 explores this subject, we briefly discuss the main nutrient cycling 
 alterations during the presence of N2-fixing trees in Eucalyptus plantations.

In general, the amount of litter deposited by a given species or forest follows the 
same pattern of NPP (Fraser et al. 2015). Studies of litterfall are essential for the sus-
tainability of planted forests since litter management significantly changes the bio-
geochemistry of these ecosystems and has already known consequences on plant 
growth, soil quality, and climate (Bowen and Nambiar 1984; Bonan 2008; Ponge 
2013; Berg 2018). The C accumulation pattern and partitioning in the different tissues 
of plants, including the litterfall per unit area, depend on the density, arrangement, 
and interaction between the species (Reis et al. 1985; Leite et al. 1998; Nouvellon 
et al. 2012; Epron et al. 2013; Laclau et al. 2013).

The amount and quality of the material deposited on forest soils are related to not 
only genetics (i.e., planted species), structural, and aging factors of the plantation, 
but also climatic variables and soil type (Bernhard Reversat 1996; Landsberg and 
Gower 1997; Laclau et al. 2010; Voigtlaender et al. 2019). Soil fertility and climate 
significantly shape these two variables (i.e., quantity and quality of leaf litter) (Reis 
and Barros 1990; Negi and Sharma 1996; Stape et al. 2010). In soils with low fertility, 
it is natural for species to use nutrients more efficiently than nutrient-richer areas 
(Novais and Barros 1997; Malhi et al. 2006; Laclau et al. 2010). Therefore, it is com-
mon to find more nutrients being recycled in litter in soils of better fertility or without 
nutritional limitation. However, if there is water deficit during forest development, the 
water deficit induces stomata closure and, consequently, reduction in carbon fixation; 
that is, the plant will not succeed to express its potential and efficiency of nutrient 
use (Novais and Barros 1997; Epron et al. 2009; Stape et al. 2010).

Based on some studies about N deposition via litterfall in pure and mixed planta-
tions, it was found that the litterfall in N2-fixing leguminous plantation is 65% 
higher (in average) than that in the monocultures of Eucalyptus (without N). In 
addition, combining such legumes with Eucalyptus can promote significant increase, 
even 42% higher, which evidences the N input increase with the introduction of a 
leguminous in a mixed plantation (Fig. 4.1).

The presence of A. mangium in adult mixed plantations (i.e., >5 years) of five 
sites in Brazil also intensified the contribution of N via litterfall (Table 4.1), although 
the deposition pattern was different in the sites analyzed. In four sites, Acacia 
showed higher deposition in comparison to Eucalyptus without N fertilization, 

4 Litter Decomposition and Soil Carbon Stocks in Mixed Plantations of Eucalyptus…



62

while the other one showed similar deposition. This trend correlated with the cli-
matic adaptation of the A. mangium.

In Brazilian sandy soils, the addition of 120 kg ha−1 of N via fertilizer in the 
Eucalyptus monoculture increased the N via litterfall around 10 kg ha−1 above the 
monoculture without N fertilization (final phase of the first rotation). On the other 
hand, in mixed plantations with half of the plant density replaced by Acacia man-
gium (E50:A50) and double density (E100:A100), the contributions were 110 and 
79 kg ha−1 higher than in the monocultures without N fertilization, respectively. In 
younger plantations, the contribution of N inputs via litterfall was lower. But in the 
first and second rotations and up to 33 months, the contributions for pure Acacia or 
mixed plantations are significantly higher than in the Eucalyptus monocultures 
(without N fertilization) (Santos et al. 2016; Tchichelle et al. 2017).

Most studies referred in Table 4.1 do not provide information about deposition of 
other nutrients, so it is not possible to imply whether mixed plantations improve the 
contributions of these elements. On the other hand, since litterfall in mixed planta-
tions is superior to monocultures, it is believed that the overall contribution is higher, 
as observed for N (Fig. 4.2a). The variability of P and N deposition data (Fig. 4.2) 

Fig. 4.1 Scatterplot between litterfall dry mass and N aboveground litterfall (Kg ha−1) among N2- 
fixing, non-N2-fixing, and mixed plantations. Data from n = 53 selected studies (see Tables 4.1 and 
4.2). The black line represents the mean regression line independent of plantations, that is, the 
overall regression line (R2 = 0.60, p < 0.001). The regression line for red (circle) for non-N2-fixing 
species, blue (square) for mixed plantations (E50:A50), and green (triangle) for N2-fixing species 
are given. The shadows represent the standard error around lines for non-N2-fixing, N2-fixing, and 
mixed plantations only

F. de Carvalho Balieiro et al.
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is mostly due to the evaluated species, age of plantations, and variations in the soil 
types studied that present different mineralogy and fertility, as well as different pat-
terns of growth and accumulation in plants.

4.4  Litter Decomposition Under Pure and Mixed-Forest 
Plantation

The logic of non-N2-fixing and N2-fixing species’ mixed plantations is to promote 
forest sustainability through complementarity and competitive reduction interac-
tions among species. The “extra” supply of N provided by legume trees via biologi-
cal nitrogen fixation and its redistribution offer throughout the system an 
intensification of leaf litter decomposition, N mineralization, and transferring 
between fixing and non-fixing species. Collectively, they are key processes to 
improve the growth and yield of the mixed forests, eliminating or using less N fertil-
izers (Forrester et al. 2006; Kaye et al. 2000; Koutika and Richardson 2019).

In general, decomposition of forest residues is driven by the litter chemical attri-
butes, environmental conditions, and surface area/volume ratio of the residue 
(Landsberg and Gower 1997; Gholz et al. 2000; Laclau et al. 2010). Although the N 
deposition is high in pure and mixed plantations with N2-fixing trees (Fig. 4.1), this 
chemical characteristic is not a guarantee of higher litter decomposition, especially 
under tropical conditions. For instance, A. mangium in sandy and loamy  textured 

Fig. 4.2 Box plots of N (a) and P (b) in aboveground litterfall (Kg ha−1) under N2-fixing and 
 non- N2- fixing monocultures and mixed plantations of both. Data from n = 58 selected studies 
(see Tables 4.1 and 4.2). Black points represent outliers

F. de Carvalho Balieiro et al.
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soils shows lower leaf and fine root decomposition in comparison to Eucalyptus, 
although it has high N leaf concentration (Balieiro et al. 2004; Bachega et al. 2016; 
Doughty et al. 2018). Besides, A. mangium has high internal cycling of P (Balieiro 
et al. 2004; Bachega et al. 2016; Doughty et al. 2018), providing a litter with low P 
concentration. Furthermore, A. mangium has a more recalcitrant leaf litter, lignin 
rich with low contents of nonstructural carbohydrates or low- molecular- weight phe-
nols and P concentration (Santos et al. 2017). Thus, the microbiota faces a harsh 
condition to decompose its residues. The concept of “decomposer starvation,” pro-
posed by Hättenschwiler et al. (2011), reveals a syndrome of poor C litter in tropical 
rainforests which could be applied to pure A. mangium plantations in oligotrophic 

Table 4.2 Changes in soil C stocks (Mg ha−1) under plantations of Eucalyptus spp. in comparison 
to native vegetation as a function of rotation, soil texture, and biome evaluated

Depth
n observations; 
comments Max Min Median SD Mean*

Carbon stock budget in pure stands of Eucalyptus related 
to natural vegetation
Mg ha−1

0–20 cm 50 20.0 −20.9 −1.8 10.0 −1.5
20–40 cm 39 42.0 −25.0 −1.9 15.9 0.3

Carbon stock change induced by time rotations
Mg ha−1

0–20 cm 13; 1st rotation 19.0 −20.7 1.2 11.6 −2.3
15; 2nd rotation 20.0 −20.9 3.0 11.5 2.3
21; not reported 14.0 −18.2 −4.0 7.3 −3.8

20–40 cm 9; 1st rotation 24.0 −21.2 5.0 16.3 −1.0
14; 2nd rotation 42.0 −25.0 −0.6 20.6 3.1
14; not reported 20.0 −21.0 −1.8 10.0 −1.5

Carbon stock change induced by soil texture
Mg ha−1

0–20 cm 10; sandy 7.8 −10.0 −1.6 6.9 −1.0
17; clayed 19.0 −18.2 0.0 11.5 1.2
22; not reported 20.0 −20.9 −2.2 9.9 −3.9

20–40 cm 12; sandy 24.0 −12.0 −1.5 10.7 2.5
13; clayed 32.8 −21.0 1.0 15.5 2.6
12; not reported 42.0 −25.0 −9.1 20.3 −4.4

Carbon stock change induced by biome
Mg ha−1

0–20 cm 13; Cerrado 19.0 −10.0 1.0 8.7 3.5
22; Atlantic rainforest 15.0 −21.0 −6.5 10.3 −5.2
12; Pampa 20.0 −13.0 −3.5 9.4 −0.3

20–40 cm 10; Cerrado 33.0 −12.0 2.5 13.6 6.4
18; Atlantic rainforest 14.0 −23.0 −4.5 12.1 −5.3
9; Pampa 42.0 −25.0 10.0 21.6 5.6

Adapted from Fialho and Zinn (2012); * In average, Eucalyptus spp. plantations do not affect the 
soil organic carbon stocks in Brazil (t-test at p < 0.05 were used in all comparasions)
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soils (e.g., Arenosol). According to these authors “in the neotropical rainforest, 
natural selection favored a leaf litter trait that leads to starvation- inhibition of 
decomposers, thereby increasing the tree ability to compete for the uptake of highly 
limiting nutrients, P in particular, via mycorrhizal associations.” Other authors who 
have also observed a decrease of P in the soil in areas in mixed plantations claim 
that this decrease comes from the P uptake by Eucalyptus to maintain the N:P stoi-
chiometry of their leaves (Koutika et al. 2014).

It is worth noting that legume trees have a different demand for P as a function 
of symbiosis with diazotrophic bacteria (Giller and Cadisch 1995; Vadez et  al. 
1995). Therefore, different strategies are required for capturing this element, such 
as acidification of the rhizosphere that improves the solubilization of less soluble 
forms of P (Raven et al. 1990) and root exudation of acid phosphatases and organic 
acids that leads to PO4 desorption from the soil matrix and improves P availability 
(Vance 2001; Venterink 2011). These strategies are paramount in tropical soils since 
they are mainly able to fix P by ligand exchange and occupation of P sorption sites 
(Bhatti et al. 1998; de Campos et al. 2016). This is possibly due to the high content 
of aluminum and iron oxides in the Oxisols and Ultisols typically found in moist 
tropical sites (Leal and Velloso 1973; Lloyd et al. 2001).

Land-use history may also affect the litter decomposition. Under Ferralsols, pre-
viously managed with Eucalyptus (for 60 years), Bachega et al. (2016) detected that 
early decomposition of leaves and fine roots of Acacia mangium was markedly 
slower than that of Eucalyptus residues, despite higher N and P concentrations in 
both tissues of Acacia (respectively, 1.9 and 1.5 times higher for leaves and 2.9 and 
3.3 times for roots). The lower values of C:N and C:P ratios were associated to litter 
decomposition rates of Acacia, but the authors did not confirm the home field 
advantage (HFA) that states which plants create a specialization of local decom-
poser communities of their litter. For Acacia, authors claim that the time since the 
start of the first rotation was not long enough to allow the decomposers to become 
specialized for its residues. In contrast, several researches have demonstrated that in 
the short term the litter and soil bacterial and fungi communities are very specific 
for both (Rachid 2013; Rachid et al. 2015; Bini et al. 2013).

As was pointed out in the perspective of the HFA theory, our research group 
studied the litter leaf decomposition of both species (i.e., Acacia and Eucalyptus) in 
a sandy soil. Our team observed a distinct HFA for decomposition litter from Acacia 
and Eucalyptus, with Acacia decomposing in the home stands faster than under 
Eucalyptus stands. In contrast, litter from Eucalyptus decomposed faster under 
Acacia stands. Additionally, the litter of each material showed very distinct fungal 
communities and did not change in function of time, and the local of incubation did 
not influence the microbial community (Rachid 2013). Higher diversity and lower 
dominance of fungi were reported in litter from Acacia and mixed plantations dur-
ing the decomposition period (180d), regardless of the place at which they were 
established (Rachid 2013). By using infrared spectroscopy, it was found that 
Eucalyptus litter during the decomposition under Acacia stands remain more pro-
teinaceous material than the initial residue, and the migration of N to Eucalyptus 
litter may be considered. On the other hand, the Acacia litter did not change its 
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chemical composition during the incubation (Novotny et al. 2013). These results 
demonstrate the importance of biological N2 fixed for the Eucalyptus litter decom-
position, and suggests that the most diverse fungi community is essential for mixed 
litter decomposition allowing N mobility. Nonetheless, it is interesting to note that 
the higher P concentration in Eucalyptus litter acts simultaneously and synergisti-
cally with the decomposition process in the mixed plantation (Santos et al. 2017). In 
addition, the C:N ratio alone seems not to be the main predictor of soil organic and 
litter decomposition (Cotrufo et al. 2013; Lehmann and Kleber 2015; Berg 2018). 
Some predictors such as N:P, lignin:N, and lignin:P, when possible, should be ana-
lyzed collectively.

The N:P ratio of the litter trait is often cited as an essential drive of litter decomposi-
tion (Güsewell 2004; Bakker et al. 2011). However, differences in the N:P ratio observed 
in aboveground biomass and leaf litter usually reflect even more significant changes in 
the available N:P ratio of soil (Güsewell 2004). Figure 4.3 demonstrates the broad range 
of the N:P ratio (mass) of the litter in the papers analyzed and, consequently, about 
edaphic conditions of the studies. Also, there is a trend towards increasing this relation 
in mixed plantations: non-N2-fixing (N:P–14) < N2 fixing (N:P–25) < mixed (N:P–32). 
Although the contribution of N via litterfall is higher for leguminous plantations, fol-
lowed by mixed plantings compared to Eucalyptus plantations, for P there is a lower 

Fig. 4.3 Box plots of N:P relationship in aboveground litterfall (Kg ha−1) among N2-fixing, non- 
N2- fixing, and mixed plantations. Data from n = 58 selected studies (see Tables 4.1 and 4.2). Black 
points represent outliers
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recycling trend in mixed planting conditions (Fig. 4.2b). This finding corroborates the 
productivity of these plantations and the accumulation of P in the aboveground biomass 
of the species, besides the edaphic limitations in the P supply. In other words, although 
P is being absorbed more efficiently in these plantations, the plants begin to drain this P 
for internal use. This process decreases the availability of P for the soil in the medium 
and long terms (Sanchez 1979; Binkley et al. 2000) and requires attentive management 
with phosphate fertilization in future rotations.

Climate change and especially temperature rise may also affect the chemical char-
acteristics of leaf litter with effects on decomposition. Trees growing in high- 
temperature environments have a reduction in the N content of the leaves and an 
increase in the rate of carboxylation, which results in increased structural and 
 nonstructural carbon levels in the leaves (e.g., glucose, sucrose, fructose) (Güsewell 
2004; Pandey et al. 2015) and a recalcitrant leaf litter. These effects can be intensified 
in the tropics, where the soils are acidic and poor (i.e., with minerals with high 
adsorption capacity of P). In addition, the presence of leguminous species with high 
internal P recycling, such as A. mangium (Balieiro et al. 2005; Inagaki et al. 2011; 
Santos et al. 2017), may impair the decomposition process with unfavorable stoichio-
metric ratios in the leaf litter (e.g., C:N, C:P, or N:P) (Güsewell 2004). Therefore, 
changes in leaf litter quality may be reflected by changes in soil  enzymatic activity 
(Fanin and Bertrand 2016; Santos et al. 2017), stabilization of C stocks (Fisk et al. 
2015; Castellano et al. 2015), emission of CO2 through microbial  respiration (Zhou 
et al. 2013, 2015), and nutrient mineralization rates (e.g., P, N, and S) (Marklein et al. 
2016; van Huysen et al. 2016). All these aspects are  feedbacks of climate change and 
productivity of forest systems (i.e., plantations or natural forests) (Bonan 2008).

4.5  Are Soil Carbon Stocks Really Higher in Mixed 
Plantations than in Monocultures?

In general, soils present several mechanisms related to the protection of organic 
matter that is associated with chemical complexation (e.g., polymerization, humifi-
cation, organic synthesis, and organo-mineral interaction) and physical protection 
(e.g., complexation with mineral fractions and degree of aggregation) (Feller and 
Beare 1997; Sollins et al. 1996; Roscoe and Machado 2002). In planted forests, crop 
residue management, machine traffic, planting structure, climate, and planted and 
understory species all were identified as determinants for nutrient dynamics and 
degree of C storage in soils (Bernhard Reversat 1996; Binkley et al. 2000; Kaye 
et al. 2000; Resh et al. 2002; Qiao et al. 2014; Jesus et al. 2015). With the possibility 
of managing the communities of soil bacteria and fungi in mixed Eucalyptus and 
A. mangium plantations (Rachid et al. 2013, 2015; Bini et al. 2013), it is also reason-
able to think about changes in belowground interactions (i.e., belowground compe-
tition for nutrients and water). These consequences are still poorly studied in soil C 
dynamics, although Sokol and Bradford (2019) have claimed that belowground 
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inputs provided by the microbial formation pathway form mineral-stabilized soil C 
are more effective than aboveground inputs, partly due to the higher efficiency of 
formation by the rhizosphere microbial community relative to the bulk soil com-
munity. In mixed plantations of A. mangium and Eucalyptus, there might be a more 
favorable environment for soil C stabilization, because we observed a complemen-
tarity in terms of nutrient deposition (e.g., N and P deposition) (Santos et al. 2017, 
2018), soil bacterial and fungi communities (Rachid et al. 2013, 2015), and fine root 
growth (segregated) in soil profile (Silva et al. 2009; Laclau et al. 2013).

The dynamics of soil organic matter from natural and planted forests, including 
mixed plantations, have been studied from the viewpoint of the “priming effect” by 
several authors (Resh et  al. 2002; Balieiro et  al. 2008; Hoosbeek and Scarascia- 
Mugnozza 2009; Forrester et al. 2013; Koutika et al. 2014). The priming effects 
were defined by Kuzyakov et al. (2000) as the “strong short-term changes in the 
turnover of soil organic matter caused by comparatively moderate treatments of the 
soil.” Such changes might be the input of organic or mineral fertilizer to the soil, 
exudation of the organic substances by roots, and simple mechanical treatment of 
soil or its dry and wet cycles. Figure 4.4 presents the schematic representation of the 
priming effect. Under an ecological point of view, the negative priming effects have 
a much greater significance than positive ones, but the direction of these changes 
depends mostly on the nutrient status of the soil and the C:N ratio of the active SOM 
pool (i.e., labile organic matter) (Kuzyakov et al. 2000).

Fig. 4.4 Schematization of the priming effect—nonadditive interactions between decomposition 
of the added substrate and of soil organic matter (SOM): (+) acceleration of SOM decomposi-
tion—positive effect; (−) retardation of SOM decomposition—negative priming effect (adapted 
from Kuzyakov et al. (2000))
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4.5.1  Soil Carbon Stocks in Pure Plantations of Eucalyptus

The impacts of Eucalyptus on soil carbon stocks vary according to many factors, 
including the land-use history, previous crop, post-logging residue management, 
climate, and spatial variability of soil attributes (Forrester et al. 2006; Chaer and 
Tótola 2007; Balieiro et al. 2008; Gonçalves et al. 2013). Under a broader point of 
view, in a recent meta-analysis, Fialho and Zinn (2014) compiled data on the organic 
soil C stocks using 50 observations for depths between 0 and 20 cm and 39 between 
0 and 40 cm of studies in Brazil in paired plots (i.e., plantations and natural forests) 
aiming to evaluate the impact of native vegetation conversion on plantations of 
Eucalyptus. The authors verified that, on average, the net effect of the conversion is 
null; that is, it does not damage the original C stocks of the soil, although losses and 
gains are related to local site conditions (Table 4.2). The authors conclude that this 
null effect, even after considering the rotation time, texture, and biome, suggests 
that other factors may control the direction and intensity of changes in soil C stocks 
in Eucalyptus plantations and point to the productivity, techniques of soil prepara-
tion, soil type, and management as essential factors in this evaluation.

Cook et al. (2016) studied the effects of Eucalyptus plantations on soil carbon 
stocks, 0–30 cm deep, over two decades, in 306 operational eucalypt plantations 
across a 1200 km gradient in Brazil. The study included two tropical states (Bahia 
and Espírito Santo) and one subtropical state (São Paulo), and resulted in the find-
ings that the size and rates of change in soil C stocks were due to different factors. 
These factors include the history of the site, soil order, clay content, seasonal 
 precipitation (especially dry season), and mean annual temperature. In general, 
across all sites, the soil C showed a slight decrease (−0.22 ± 0.05 Mg ha−1 year−1) 
from the original sampling that ranged in approximately 3–4 rotations, but in sub-
tropical regions the stocks remained the same (0.06 Mg ha−1 year−1).

Maquere et al. (2008) studied the impact of different land uses (i.e., savanna, pas-
ture, and Eucalyptus saligna plantations) and a management (i.e., 60 years under 
short rotation vs. 60 years under continuous growth) on soil carbon and nitrogen 
stocks. The authors found significant soil carbon increases (approximately 25%) 
with Eucalyptus under short rotation management when compared to Cerrado native 
vegetation, whereas soil carbon stocks in the continuous forest plantation increased 
by 15% in relation to Cerrado vegetation. In the same biome and in degraded  pastures 
Lima et al. (2006) reported that afforestation of former degraded pasture land leads 
to increased C storage in the soil in the short term (30 years). They observed carbon 
sequestration rates up to 0.57 Mg C ha−1 year−1 by Eucalyptus afforestation.

Finally, it is evident in the studies that pure Eucalyptus plantations present a 
potential for soil C increase, especially if preceded by degraded pastures. However, 
local abiotic conditions and forest management seem to be the significant con-
straints to the effective increase of C in soil. On the other hand, the introduction of 
legume trees associated with diazotrophic bacteria to Eucalyptus monocultures has 
gained expression in recent years. The increase of soil C stocks so far had always 
been related to these plantations but, as will be seen below, this phenomenon cannot 
be generalized, mainly for the Brazilian tropics.

F. de Carvalho Balieiro et al.
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4.5.2  Soil C Stocks Under Mixed Plantations of N2-Fixing 
and Non-N2-Fixing Plantations

Several authors reported higher soil C accumulation of N2-fixing species over 
 non- N2- fixing ones (Binkley et  al. 1992; Kaye et  al. 2000; Resh et  al. 2002). 
However, when a small or no variation is detected in soil C stocks, changes in soil 
morphological and molecular levels of soil organic matter have also been observed 
(Kindel et al. 2003; Voigtlaender 2012; Koutika et al. 2014; Santana et al. 2015; 
Voigtlaender et al. 2019), and this may have consequences for the nutrient cycling 
in these plantations.

Resh et  al. (2002), using isotopic techniques, detected that 55% of the soil C 
enriching the N2-fixing plantations came from the retention of native C, in a compari-
son between the C soil stocks of N2-fixing species, as Albizia falcataria, Leucaena 
leucocephala, and Casuarina equisetifolia, and the soil C stocks of Eucalyptus 
saligna in four tropical soils, two Andisols and one Vertisol and Entisol. They 
reported that the native C stock was derived from old sugarcane plantations and pas-
tures with metabolic assimilation of C4, while the other 45% came from C stabilized 
and derived from recently allocated C3 from the trees, showing a clear negative prim-
ing effect. In addition, 62% of the explanation of the stabilization of native C (C4) 
occurred due to the accumulation of N in the soil of the legume trees and Casuarina 
plantations. Very similar results were reported by Kaye et al. (2000) in Andisols from 
Hawaii, where Albizia monocultures had 2.3 Mg ha−1 more N and 20 Mg ha−1 more 
C than Eucalyptus monocultures in the 50 cm topsoil. In Acrisols (Brown Dermasols) 
from Australia, Forrester et al. (2013) reported a difference greater than 15 Mg ha−1 
between N2-fixing and non-N2-fixing trees in the first 30 cm topsoil. However, in 
Arenosols from Congo and Brazil, a lower gain in soil carbon storage was detected 
in the N2-fixing Acacia mangium plantations at 7 and 5 years after planting in com-
parison to monocultive of Eucalyptus, respectively (Koutika et al. 2014; Rocha et al. 
2019). In the Pseudosamanea guachapele plantations, the C storage was even much 
lower than that found under Eucalyptus grandis plantations in southeastern Brazil, in 
the same soils (Balieiro et al. 2008), a fact that was justified by the authors by high 
contribution of N (~250 kg ha−1 y−1) and other nutrients cycled through litterfall, 
resulting in a rapid decomposition of the litter and SOM. In is worth mentioning here 
that the pure legume tree stands studied in Brazil (Acacia mangium and 
Pseudosamanea guachapele) had no similar growth in comparison to Eucalyptus, 
contrary to the plantations of Falcataria moluccana (Albizia falcataria) in Hawaii 
that present higher aboveground biomass than Eucalyptus saligna (Kaye et al. 2000).

Climate and soil characteristics can control soil C stocks, but the aboveground 
biomass and NPP are also drivers of C stocks in various environments (Lal 2005; 
Cornwell et al. 2008; Qiao et al. 2014; Nottingham et al. 2015; Lange et al. 2015). 
With the literature data consulted, it is not possible to state that C stocks are a func-
tion of aboveground biomass production since the soil C augmentation pattern is not 
very different between monocultures and mixed ones.

Under mixed plantations and Brazilian conditions, mixed plantations presented 
aboveground biomass higher than monocultures only in sites with poor soils (for 

4 Litter Decomposition and Soil Carbon Stocks in Mixed Plantations of Eucalyptus…
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Acacia mangium and Pseudosamanea guachapele) (Santos et  al. 2017; Balieiro 
et al. 2010). However, despite the soil C stocks in N2-fixing plantations did not differ 
statistically from Eucalyptus monocultures (without N) (Balieiro et al. 2008; Rocha 
et al. 2019), under mixed plantations were detected higher rates of C sequestration 
(up to 1.44 Mg ha−1 y−1), in comparison to Eucalyptus monocultives (without N 
 fertilization), demonstrating that for oligotrophic soils the mixed plantation is an 
great alternative to improve soil quality.

In Australia, Forrester et  al. (2013) studied mixed plantations of Eucalyptus 
globulus and Acacia mearnsii. They detected a linear relationship between aboveg-
round production and soil C, but not at an N2-fixing proportion, as found by Kaye 
et al. (2000), who observed higher aboveground biomass production in mixed plan-
tations and lower in monocultures. In both papers, the increase in C soil stocks in 
mixed plantations is justified by the negative priming effect of the mixed litter, that 
is, the maintenance of the C originated from previous crops (sugarcane) and by the 
addition and stabilization of C derivatives from the trees.

A significant contrast found among these plantations seems to be the pattern of 
C allocation in the belowground biomass, because Hawaiian monocultures accumu-
lated more C in the belowground than mixed plantations, contrary to what was 
observed in Australia (Forrester et al. 2013; Binkley and Ryan 1998). In Hawaii, 
intraspecific competition intensified the use of soil resources, while interspecific 
competition in Australia further pressured soil resources, culminating in below-
ground investments to compensate for distinct constraints. In monocultures, the 
accumulation patterns of the species can lead to the storage for the aboveground 
biomass of critical elements for soil C storage; in contrast, and because of the com-
plementarity of niches and facilitation (in both directions), mixed plantations can 
more efficiently cycle nutrients and better use available water. As previously men-
tioned (Sokol and Bradford 2019) and pointed out by other authors (Schmidt et al. 
2011; Nouvellon et al. 2012), the change in the pattern of C allocation in plantations 
may be due to the large C stock drive to the soil.

The differential input of N by N2-fixing species appears not to be the major rea-
son for increasing soil C storage (Forrester et al. 2013). The complementarity of 
niches (above- and belowground) (Tilman 1999; Tilman et al. 2001; Forrester et al. 
2006), soil microbial sharing and increased fungal richness (Rachid et  al. 2013, 
2015), and stimulus to grow and microbial activity (Bini et al. 2013; Pereira et al. 
2017; Santos et al. 2017) seem to prove that belowground dynamics commands soil 
C storage (Sokol and Bradford 2019), but studies in this sense need to be performed 
for mixed plantations.

The difference in the magnitude of C stocks of soils has a great association with 
mineralogy and texture (Feller and Beare 1997; Hassink 1997), hence the variations 
presented in Table 4.3. In general, Andisols from Hawaii have high specific surface 
phyllosilicate clays and naturally higher SOM contents due to the complexes formed 
with Al (i.e., noncrystalline Al hydroxide and Al-insoluble organic complexes) and 
allophanes (Feller and Beare 1997). Even in soils with a recognized SOM stability, 
the biologically fixed N input was responsible for a significant increase of the C and 
N stocks, showing the benefit of the N2-fixing species in that environment, which 
presents a nonexistent water deficit (i.e., 4500  mm of annual precipitation).  

F. de Carvalho Balieiro et al.
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Thus, the feedback effect of the N input and NPP (Kaye et al. 2000), associated with 
the fact that N favors, in consonance with high fertility and humification of soil 
organic matter (Kirkby et al. 2011) justifies such results for Hawaii. On the other 
hand, the Ferralsols, in which the Brazilian plantations were established, are highly 
weathered and acidic and have low fertility, which contrast with the high physical 
aggregate stability that confers protection of soil C (Feller and Beare 1997; Silva 
et al. 2013). Thus, even under tropical conditions, plantings associated with N2-fixing 
species can store significant amounts of C in the soil. It is interesting to note that even 
under a single soil class (Ferralsols), large variations in soil C stocks occur in planta-
tions, due to variations in soil clay content and climate (Voigtlaender 2012; Bouillet 
et  al. 2013; Voigtlaender et  al. 2019). The Arenosols of Brazil and Congo, from 
which the main results of this class originated, are in turn naturally lower in amounts 
of C due to accelerated biochemical dynamics and reduced SOM protection, as well 
as poor structure and aggregation (Feller and Beare 1997; Zinn et al. 2002). However, 
it is a fact that even among the Arenosols, small variations in the clay contents of 
these soils can confer significant changes in the C stocks, as well as capping of the 
quartz grains by kaolinite and hematite or goethite type clays that increase the forma-
tion possibilities of organo-mineral complexes and C storage of these soils 
(Scheidegger et al. 1993; Donagemma et al. 2008).

The storage of C in the soil of mixed plantations is also due to the rate of decom-
position of the deposited residues, which determines how fast the C is incorporated 
into the mineral phase. By comparing monocultures, Kaye et al. (2000), Resh et al. 
(2002), Forrester et  al. (2013), Koutika et  al. (2014), and Pereira et  al. (2017) 
detected greater incorporation of C in soil under N2-fixing species. However, con-
sidering the literature on mixed plantations the C stock in soil was higher but do not 
show differences in relation to monocultures of Eucalyptus and legume trees 
(Fig. 4.5) due to higher variability of data. In addition, C stocks occur preferentially 
in the more labile compartments of SOM fractions (Bini et al. 2013; Koutika and 
Mareschal 2017; Pereira et al. 2017).

These authors compared the C content of the microbial biomass as well as C and 
N of the soil organic fraction (physically fractionated between 2000 and 75 μm) 
and found that, in the four treatments, Eucalyptus without N fertilization, 
Eucalyptus + N fertilization, Eucalyptus + Acacia mangium (E50:A50), or pure 
A. mangium plantations, they differed and were significantly higher in plantings of 
Acacia or in mixed plantations, confirming positive changes in microbial indica-
tors and increases in concentration and nutrient cycling in Ferralsols. When ana-
lyzing Table 4.3, it is possible to detect that, with the exception of allophanic soils, 
the storage of C in poor soils follows the N:P ratio up to a certain limit. This 
implies that the management of these plantations in oxidic soils with high P adsorp-
tion capacity (Lloyd et al. 2001) or sandy soil with low SOM and P reserves should 
require, in the short and medium terms, a special attention to the management of P 
fertilizer.
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4.6  How to Improve the Soil C Stocks in Mixed-Species 
Plantations Under Tropical Conditions?

Based on the reviewed literature and data collected, it can be suggested that soil C 
stocks in planted forests can be increased with improved management practices to 
overcome environmental restraints and with a broader logic of available biological 
resources.

Planted forests in the tropics and mainly in Brazil occupy marginal soils, with a 
history of intense use. Thus, these soils present low fertility, high acidity, Al satura-
tion, and adsorption capacity of P and S (Leal and Velloso 1973; Motta et al. 2002). 
However, huge differences in these attributes occur within the tropical climatic 
zone (Sanche 1997), and may partially justify changes in species responses under 
monoculture and mixed conditions described in this chapter. Although the responses 
of the forest plantations to liming and fertilization of the soil are small, the non-
replacement of the exported nutrients leads to a decrease in the nutritional capital 
of the soil and the future commitment of these forests. The focus of foresters shall 
be on the construction of soil fertility under planted forests, with the adoption of 
practices and technologies that potentiate the above- and belowground growth of 

Fig. 4.5 Mean (●) and SD (whiskers) of carbon stock differences (%) of N2-fixing and mixed 
plantations relative to non-N2-fixing species plantations (Eucalyptus) (n = 29)
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species. For the P case specifically, although most are in the non- labile form in soil, 
considered reserves exist in labile and moderately labile fractions (up to 7.7 and 
15.5 Tg, respectively) (Withers et al. 2018) in areas under higher fertilizer regimes. 
Especially when combined with no till, correction of acidity, and adoption of the 
4R principles of nutrient management (right rate, right time, right place, and right 
form) (INPI 2012) the stocks of soil natural capital related migth be at least 
maintained.

In Brazilian Eucalyptus plantations, accumulation in the aboveground biomass 
of N, P, K, Ca, and Mg in 100 Mg is in the range of 238–298 kg for N, 16–29 kg for 
P, 123–236 kg for K, 176–590 kg for Ca, and 40–92 kg for Mg. From these totals, 
35% of N, 29% of P, 36% of K, and 21% of Ca and Mg are potentially exportable 
by wood (Santana et  al. 2008). In the average 7-year rotations for Eucalyptus, 
Gonçalves et al. (2013) recommend up to 2 Mg ha−1 of lime, 60–80 kg ha−1 of N, 
60–80 kg ha−1 of P2O5, and 140–160 kg ha−1 of K2O. For trace elements around 
1–5 kg ha−1 of B are applied, depending on the local water deficit, and 1 kg ha−1 of 
Cu and Zn. Roughly, the natural nutritional capital of the soil (Sanche 1997; 
Dominati et al. 2010) seems to be compromised, with detrimental consequences to 
the organic and inorganic nutrient reserves of these forests.

Managing mixed plantings or rotations with legumes that associate with bacteria 
that fix N2 from the atmosphere will lead to substantial changes in fertilizer manage-
ment given the changes in biogeochemical cycles of nutrients and differentiated 
nutrient exports (Chap. 3). Legumes have a differentiated demand for P in relation 
to non-N2-fixing species (Vadez et al. 1995; Inagaki et al. 2009, Venterink 2011). 
Acacia mangium, the species most studied under Brazilian conditions, presents high 
absorption of P in the seedling and adult phase (Inagaki et al. 2011; Santos et al. 
2017), and it is very efficient in recycling internally this absorbed P, so that it depos-
its litter with a high N:P ratio (Inagaki et al. 2010; Santos et al. 2018). Since plants 
and microorganisms compete strongly for soil P, affecting key soil biological 
 processes and growth of tropical forests (Wieder et al. 2009; Hättenschwiler et al. 
2011), strategies to reduce species competition for soil P or to increase complemen-
tarity in recycling due to P deposition should be pursued jointly with the adoption 
of management practices that favor the permanence of crop residues on the soil 
and SOM.

The recommendations of crop fertilization in Brazil are based on response curves 
of crop production (shoot biomass or stem in the case of Eucalyptus or its productiv-
ity) in relation to the applied fertilizer dose or its availability (i.e., concentration) in 
the soil (Cantarutti et al. 2007). Little or no attention has been given to changes in 
the C allocated to roots by planted forests and their relationship to fertility manage-
ment and soil C stocks. Based on current hypotheses that the belowground inputs 
provided by the microbial formation pathway form mineral-stabilized soil C more 
efficiently than aboveground inputs partly due to the greater efficiency of formation 
by the rhizosphere microbial community relative to the bulk soil community (Sokol 
and Bradford 2019), it can be considered that, by managing the soil chemical limita-
tions (i.e., acidity, P, N, S, Zn concentration, among others), there will be higher 
plant growth and consequently root growth, which together will increase soil C 
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stocks. Recent works (Kirkby et al. 2011, 2014) also demonstrate the possibility of 
altering the potential for soil C accumulation and sequestration of soils from the 
introduction of nutrients to the soil, correcting the stoichiometry among C, N, P, and 
S of the heavy fraction of organic matter (i.e., humidified). The formation of a “new- 
fine fraction of soil organic matter,” the most stable C component in soil, increased 
threefold by increasing the residues with supplementary nutrients, which in other 
words implies to say that we can manipulate the nutrients in favor of C sequestration 
and restoration of the fertility. In other words, although Eucalyptus or Acacia (or 
other leguminous species) is tolerant to acidity and high saturation of Al, it does not 
mean that the practice of soil fertilizing and correction shall not be stimulated. On 
the other hand, gains in productivity in oxidic soils under the correct management 
of soil fertility are always accompanied by increased biomass and microbial activity 
(i.e., basal respiration and enzymatic activity) and, consequently, increases in 
SOM levels.

4.7  Final Considerations

As shown in this chapter, it seems clear that the establishment of mixed plantations 
of Eucalyptus and Acacia mangium represents an alternative to increase soil C 
stocks in marginal lands. However, the success of these plantations is not the guar-
antee to increase C stocks. It is necessary to take into account the climatic and soil 
conditions of the site for the intercropped species, to perform conservationist prac-
tices of soil preparation, residue management, and conservative harvesting prac-
tices. Better results were obtained where exist appropriated climate condition for 
Acacia and oligotrophic soils (e.g. sandy soils).

Finding a new set of other species (including N2-fixing and non-N2-fixing) that 
have ecological and economic interest seems to be the main future challenge, 
although this is not such a simple task. It could begin through a list of priority 
legume tree species with litter traits that, together with eucalypt, can promote the 
increase of the global stand biomass production (and also belowground) and 
improvements in soil properties and functions. It is interesting to note that C seques-
tration is only an ecosystem service that the soil can provide and that the mix of 
non-N2-fixing with N2-fixing trees may provide many other ecosystem services, 
such as flood mitigation; greenhouse gas regulation; filtration and recycling of 
 nutrients; and biodiversity preservation among others. In Chap. 10, these services 
are presented and discussed.

New researches should also elucidate under which arrangements and trees den-
sity could provide positive ecological interactions (complementarity and competi-
tive reduction) that can increase the biomass production (above- and belowground) 
and accelerate litter decomposition and soil C sequestration.

Finally, due to the close relationship between the N and C cycle, it has been 
reported that as a result of the presence of N2-fixing trees in Eucalyptus plantations 
positive changes in soil N stocks are more pronounced than for C (Bernhard Reversat 
1996; Voigtlaender 2012; Rachid et al. 2013; Voigtlaender et al. 2019; Rocha et al. 
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2019). These general results confirm that the presence of legumes in Eucalyptus 
plantation might contribute to reducing the need for mineral N fertilization in the 
long term and increasing the soil nutritional capital. New mixtures of species and 
arrangements of mixed plantations in combination with nutrient management could 
enhance C sequestration and produce a more stable organic matter (humus).
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Chapter 5
Soil Bacterial Structure and Composition 
in Pure and Mixed Plantations 
of Eucalyptus spp. and Leguminous Trees

Caio Tavora Coelho da Costa Rachid

5.1  Introduction

It is in the first centimeters belowground that the most diverse and rich biodiversity 
of our planet can be found. In fact, a single soil sample can harbor billions of organ-
isms assembling thousands to millions of species of bacteria, archaea, and fungi 
(Whitman et al. 1998; Lozupone and Knight 2007). In this environment, they form 
very complex communities with a highly branched network of ecological interac-
tions (Bonfante and Anca 2009; Fuhrman 2009).

Bacteria populations far exceed fungi and archaea in numbers (Rachid et  al. 
2013; Siles and Margesin 2016), and they play important roles, such as in nutrient 
turnover, phytohormone production, and biocontrol that affect soil functioning and 
plant productivity (Chaparro et al. 2012).

Obviously, such rich and diverse community poses a challenge to be studied and 
understood. In a scale of an average bacterium, 1 cm can represent a huge distance, 
with very different environmental conditions in terms of atmosphere, pH, and quan-
tity and quality of organic and inorganic matter, among others. All these factors, 
along with temperature, water, and biological interactions, will affect the structure 
of the bacterial community (Fierer 2017).

However, what exactly bacterial community structure means? It means all the 
abundance and composition of bacteria in a given environment. Still more spe-
cifically, how many species it encompasses (bacterial richness, alpha diversity), 
who they are (bacterial composition), how many they are (bacterial abundance), 
and how they vary among sites from the same environment (beta-diversity). All 
these factors together compose the bacterial structure and show all aspects of the 
bacterial diversity (Konopka 2009).
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How bacterial community structure is modulated is still in debate in literature. 
Many studies have shown that there are some factors with very strong effects over 
the bacterial community. Among them, the pH, salinity, and organic matter content 
(Fierer and Jackson 2006; Lozupone et al. 2006; Lozupone and Knight 2007; Ding 
et al. 2015) are the strongest modulators. Some authors argue that the bacterial com-
munity suffers very little influence of the plant coverage (Fierer 2017). However, the 
impact of the plant on the soil bacterial community, especially in the rhizosphere 
zone (soil region very close and under influence of the plant roots), has also been 
very well documented (Berg and Smalla 2009; Mitchell et al. 2010; Rachid et al. 
2013). In this context, mixed plantations are one of the best models to demonstrate 
how plants can influence the soil microbial community, and how it can cause impact 
on the system’s ecology and functioning.

Regarding soil and plant characteristics, previous studies have shown that 
Eucalyptus stands intercropped with leguminous trees affect positively a series of 
soil attributes increasing soil organic matter and other attributes. Soil nitrate con-
centration, biomass productivity, and water use efficiency, among others, are also 
increased, when compared to pure Eucalyptus plantations (Forrester et  al. 2005, 
2006; Laclau et al. 2008; Balieiro et al. 2008; Voigtlaender et al. 2012; Rachid et al. 
2013; Koutika et al. 2014). Soil’s available P in mixed plantations has increased at 
the beginning of the rotation but decreased at the end, especially in sandy soils 
(Rachid et al. 2013; Koutika et al. 2014), leaving to an apparent P (and N, of course) 
control over the litter decomposition (Santos et al. 2017).

Behind most of these soil changes, there is the essential role of the microorgan-
ism associated with the forestry system. The co-cultivation efficacy relies, among 
other factors, on the ability of the legume trees to establish symbiotic relationships 
with nitrogen-fixing bacteria, which, in turn, can increase soil N levels and improve 
nutrient cycling (Rachid et al. 2013; Bernhard-Reversat 1988; Santos et al. 2017; 
Tchichelle et al. 2017; Voigtlaender et al. 2019). Additionally, the introduction of 
another plant species can change bacteria, archaea, and fungi communities associ-
ated with soil, altering the complex biological network responsible for nutrient turn-
over and soil health. Changes in the microbial community, therefore, could lead to 
changes in litter decomposition and soil nutrient balance, which in turn will reflect 
in plant productivity (van der Heijden et al. 2008; Chaparro et al. 2012).

In this chapter, we present briefly the role of the bacterial community in forestry 
ecosystems and its response from the resulting interaction of mixing different tree 
species in a co-cultivation system. Finally, we explore the biotechnological poten-
tial of the microorganisms to improve the sustainability of wood production.

5.2  Soil Bacterial Functioning

The soil microbiome (all microbes of a given site) can cause impacts on the plant 
productivity by many ways. For example, symbiotic nitrogen-fixing bacteria, such 
as Rhizobiales, Azospirillum, and Frankia, among others, can improve soil N levels, 
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and bacteria and archaeal nitrifiers, such as Nitrosomonas, Nitrosococcus, and 
Nitrososphaera, can change the predominant form of inorganic nitrogen. Many 
microbial groups including the bacteria Bacillus and the fungi Aspergillus can 
increase P availability and acquisition by plants by exudation of organic acids. 
Additionally, microorganisms can interfere in competitive interactions, helping or 
suppressing the growth of a given plant group by phytohormone production or 
inhibiting a pathogen by the production of antimicrobial substances (van der Heijden 
et al. 2008). These are some examples of specific functions played by well-described 
organisms. In nature, many other microorganisms, most of which are still unknown, 
play these and many other roles, in highly diverse communities forming a very 
complex network of interaction.

5.3  Soil Bacterial Communities in Pure and Mixed 
Eucalyptus Plantations

The soil bacterial community of Eucalyptus plantations has been described for a 
number of sites in different locations around the globe. In a broader view of soil 
bacterial composition, Eucalyptus plantations do not differ from other cultivations, 
with most of the studies showing predominance of the Proteobacteria phylum, fol-
lowed by Acidobacteria, Actinobacteria, Planctomycetes, and Firmicutes among 
others, as evaluated in Brazil (Silveira et al. 2006; Pereira et al. 2017; Cuer et al. 
2018; Rachid unpublished) and China (Li et al. 2018). However, each study showed 
special aspects of the community when compared to native forests or other plant 
species cultivated in the same area.

In a Brazilian traditional forest-producing region, located in Minas Gerais state, 
Cuer et  al. (2018) studied two adjacent Eucalyptus urograndis plantations—a 
recently logged site that harbored new seedlings and an adult plantation—and com-
pared them to a site hosting native vegetation. They showed that plant harvesting 
and implementation of a new rotation can significantly change the soil bacterial 
community in a short term, mainly by reducing the relative abundance of 
Acidobacteria and increasing Actinobacteria. When comparing with an adjacent 
field with native forest, it was shown that Eucalyptus plantations had a distinct bac-
terial community structure. The authors suggested that the main driver of the 
observed differences in microbial community structure was land use type, as 
opposed to management practices (i.e., plantation, logging, and initiation of new 
rotations) or soil characteristics. Surprisingly, the Eucalypt plantation showed 
higher bacterial diversity compared to the fragment of native rainforest. This result 
was confirmed in an independent sampling, 9 months after the first (Monteiro et al. 
unpublished data). Higher bacterial diversity in Eucalypt compared to a secondary 
forest has also been demonstrated in China (Lan et al. 2017). Harboring a higher 
diversity is frequently associated with an indication of higher stability in the ecosys-
tem. However, the authors argue that in this case it is probably correlated with 
higher primary productivity in young forests.
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The development of Eucalypt plantations was also associated to increases in bac-
terial community biomass. The proposed mechanisms are diverse. In Eucalyptus 
grandis, it has been associated with increased inputs of C from residues or roots 
(Zhang et al. 2012), and in Eucalyptus urophylla it was suggested that it could be 
caused by the decrease of the dissolved organic carbon (DOC) of the soil. The 
reduced DOC would give a competitive advantage to bacteria compared to fungi 
and would increase the ratios of bacteria:fungi along the chronosequence (Wu et al. 
2013). Contrastingly, the opposite was also suggested in which E. camaldulensis 
could negatively impact the microbial community, reducing the microbial biomass 
and catabolic diversity, mainly due to soil acidification and accumulation of pheno-
lic compounds (Soumare et al. 2016). Evaluating soil microbiological attributes in 
pure and mixed forest plantations of Acacia mangium and Eucalyptus grandis at the 
end of a second rotation, Zagatto et al. (2019) did not observe any change among 
treatments for Cmic, CO2-C, dehydrogenase, and Cmic/Ct, but only for qCO2-
 C. The qCO2-C was lower for Acacia plantations than in pure and mixed Eucalyptus. 
On the other hand, at the beginning of this rotation (27 and 39 months after plant-
ing) Pereira et al. (2018) detected a significant higher microbial C content in Acacia 
and mixed plantations than in monoculture of Eucalyptus.

The general pattern shows the prevalence of increased bacterial biomass or activ-
ity in this forestry system. This is often considered a good indicator of soil health. 
An active microbial community is important to keep nutrient cycling and soil fertil-
ity, which will direct influence crop productivity and sustainability.

However, these studies were based on indirect measurements, mostly in micro-
bial biomass and phospholipid fatty acid (PFLA) contents. Few studies used more 
precise techniques to quantify bacterial communities, such as real-time PCR 
(qPCR). The qPCR can provide a measurement of copies of a given gene per gram 
of soil. Usually, bacterial communities are quantified through the quantification of 
the gene coding for the subunit of the 16S rRNA, a molecular marker for bacteria. 
Studies in three different locations in Brazil showed no change in bacterial abun-
dance comparing Eucalyptus to native forests or to Acacia mangium plantations in 
upper layers of soil (Rachid et  al. 2013; Pereira et  al. 2017; Cuer et  al. 2018). 
Therefore, it is very likely that most of the impacts caused by Eucalyptus on the soil 
bacterial community are qualitative and not quantitative.

In recent years, studies of soil microbiology under Eucalypt plantations shed 
light on different management regimes, on which we will focus from now on to 
describe the intercropping systems. The first report on soil bacterial community 
in mixed Eucalypt plantations arose in 2013 and was based on the association of 
Eucalypt with Acacia mangium. Using indirect measurements of the community, 
such as microbial respiration, dehydrogenase activity, Cmic, and Nmic, Bini et al. 
(2013) showed that these attributes present high variation in the initial stage of 
development of the mixed stands (from 2 to 20  months). The high variability 
poses a challenge on data interpretation, without a clear pattern, but considering 
all attributes with other variables in multivariate analysis, they showed that 
mixed stands are different from monocultures starting at month two. According 
to the authors, despite the high variability of the data within treatments, the co-
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cultivation  established a new microbial status, with synergistic effects on the two 
plant species in maintaining and stimulating biogeochemical cycling with bene-
ficial effects over the system.

Later, this analysis was repeated with older stands (27 and 39 months) (Pereira 
et al. 2018). The study confirmed that nutrient cycling in pure Eucalypt systems is 
different from when Acacia is present, with changes in enzymatic and metabolic 
activity. While some enzymes, such as urease, amidase, and dehydrogenase, tend to 
present higher activity in pure Eucalypt plantations, the intercropped system tends 
to present higher microbial biomass C and increased C and N concentrations in soil 
organic matter, which was interpreted as a gain in soil health by the authors.

Direct measurements were also performed to assess how mixed plantations inter-
fere in the bacterial structure. Using DGGE and qPCR for bacteria (16S rRNA), and 
genes involved in nitrogen cycling (nirK, amoA, nifH), Rachid et al. (2013) showed 
that mixed plantation resulted in the integration of the bacterial community present 
in the monocultures. Additionally, they showed that acacia stands presented higher 
amounts of nitrifiers and lower amounts of denitrifiers in the soil, and this could be 
directly linked to the higher levels of nitrate found in acacia monocultures and 
mixed plantations, which is an indication of better nutrient status of the soil.

Using high-throughput DNA sequencing, the bacterial community of Eucalyptus 
and Acacia monoculture and mixed plantations was studied with taxonomic detail 
in the superficial soil layer. The results showed that the soil bacterial community 
integration occurred, but with higher influence of Acacia on the structuring of the 
soil bacteria, compared to Eucalyptus, especially in the first 3  m belowground 
(Pereira et al. 2017).

Very few studies addressed the soil bacterial community in mixed plantations of 
Eucalypt with legume trees, other than Acacia. Among the exceptions, there is one 
study of Eucalypt with Sesbania, in which the plant consortium was evaluated for 
its capacity for reforestation of degraded lands. The study measured the microbial 
respiration and the hydrolysis of fluorescein diacetate (FDA) in monospecific and 
mixed systems, and showed that mixed systems present less seasonal variation and 
higher microbial activity (de Oliveira Paulucio et al. 2017).

We are still far from really understanding completely how plants modulate the 
soil microbial community. However, altogether, these studies leave no doubt about 
the influence of the plant on the soil microbiome. While there are some authors who 
argue that Eucalypt plantations can cause negative impact on the soil microbial 
community, recent studies have shown no basis for this affirmation. Still, they have 
also shown that the metabolic potential of the soil microbial community can be 
improved when Eucalypt is associated with a leguminous tree. In fact, the relation-
ship between these plants is so intimate that the presence of one plant can interfere 
in the endophyte colonization of the other plant, as previously demonstrated with 
Eucalypt and Acacia (Fonseca et al. 2018).

Obviously, the decision whether Eucalypt should be or not be mixed with other 
plants cannot be taken only under the soil microbial perspective. Productivity, logis-
tics, and economy are factors to be analyzed, and other factors could be incorpo-
rated in this decision, depending on the ecosystem services expected by the mixed 
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planted forest (see Chap. 11). However, the soil microbial community should always 
be considered, since the microbial community is the foundation of soil fertility, 
health, and sustainability and, in an ultimate analysis, these will turn back into pro-
ductivity and economy.

Despite the numerous questions, there is a strong indication that the consortium 
of Eucalypt with a legume tree can integrate the soil bacterial community, increas-
ing microbial activity and system stability with direct benefits to soil biogeochem-
istry, as discussed in other chapters of this book.

5.4  Plant Growth-Promoting Endophytic Bacteria 
and the Potential for Eucalyptus 

It has been proposed that each one of 300,000 species of superior plants harbor 
endophytic bacteria inside their tissues (Strobel et al. 2004). In fact, studies have 
shown that inside plant leaves, stem, and roots it is possible to find a rich bacterial 
community (Gottel et al. 2011; Bodenhausen et al. 2013; Akinsanya et al. 2015). 
During the evolution, plants and endophytic bacteria developed a symbiotic rela-
tionship, with mutual benefits (van der Heijden et al. 2008; Rout 2014). Plants pro-
vide shelter and organic compounds for bacterial nutrition, while bacteria can play 
many positive roles for plants.

The benefits of endophytic bacteria for plants include nutritional improvement 
through biological nitrogen fixation, phosphorus bioavailability, and iron uptake 
(Hallmann et  al. 1997); growth promotion through phytohormone production, 
which can promote plant rooting and stem development (Bent et al. 2001); and also 
fitness improvement through defense against pathogens and hydric stress among 
others (Sala et al. 2007; Ferreira et al. 2008).

Eucalypt endophytic bacteria have been studied by culture-dependent and -inde-
pendent techniques. Ferreira et al. (2008) showed that seeds from many Eucalypt 
species harbor endophytic bacteria. Among the bacterial genera found in seeds and 
seedlings were Bacillus, Paenibacillus, Enterococcus, and Methylobacterium. The 
vertical transmission (from one generation to another) of a given bacterium is sug-
gested as an indicator that symbiotic relationships of the plant with the transmitted 
microorganisms are of great importance for the species fitness (Zilber-Rosenberg 
and Rosenberg 2008).

Miguel et al. (2016) showed using DGGE—a molecular typing technique—
that Eucalyptus leaves harbor a complex endophytic microbial community, how-
ever, with a very similar profile among different plants and over different stages 
of development. They also showed the occurrence of diazotrophic bacteria 
inside the leaves. Among the cultured microbial community, they reported the 
isolation of Pantoea, Stenotrophomonas, Massilia, Paenibacillus, Terrabacter, 
Rhizobium, Agrobacterium, Novosphingobium, Micrococcus, Streptomyces, 
Pseudoxanthomonas, Caulobacter, and Ochrobactrum. More recently, the first 
study using high-throughput DNA sequencing technology to understand the 
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endophytic microbial community associated with Eucalyptus roots was pub-
lished (Fonseca et al. 2018). The authors reported an unprecedented biodiversity 
living inside Eucalyptus roots, with the occurrence of approximately 360 differ-
ent bacterial genera with the most abundant ones being Mycobacterium, 
Bradyrhizobium, Streptomyces, Bacillus, Actinospica, and Burkholderia. They 
showed that many of these genera were associated with nitrogen- fixing bacteria 
and also that environmental factors can change the community structure inside 
the roots.

The occurrence of large amounts of diazotrophic bacteria associated with 
Eucalyptus leaves and roots is surprising. This is not because these bacteria do not 
colonize trees. For instance, Acacia has promiscuous nodulation, being capable to 
symbiotically associate with Rhizobium and Bradyrhizobium among other nitrogen- 
fixing bacteria (Galiana et al. 1990, 1994; Le Roux et al. 2009; see Chapter 6), and 
these associations are of great importance in plant nutrition and nutrient cycling. 
However, Acacia is a legume tree, and it is a common knowledge that this family of 
trees developed symbiotic association with nitrogen-fixing bacteria. However, 
Eucalyptus has never been considered a plant which benefits from this association. 
Only recently we learned that nitrogen-fixing bacteria are highly abundant also in 
Eucalyptus (Miguel et al. 2016; Fonseca et al. 2018), and despite the fact that they do 
not form nodules, we cannot disregard their potential to improve Eucalyptus nutrition.

Due to the ability to improve plant development, there is a great interest in the 
selection of microorganisms as plant inoculum. In general, these studies include the 
cultivation of endophytic bacteria in culture medium, followed by in vitro tests to 
evaluate the capacity of the bacteria to perform specific functions, such as phospho-
rus solubilization and indole acetic acid (IAA) production, to grow in the absence of 
nitrogen (indication of biological nitrogen fixation), to produce siderophores, or to 
inhibit a given phytopathogen. The best bacterial lineages usually are identified and 
tested in vivo, with inoculation of seed or micro-propagated plants.

Paz et al. (2012) tested seven selected endophytic Bacillus sp. lineages regarding 
their ability to improve plant rooting and growth. When tested in vivo they found 
that only one of them significantly increased the growth of the root and aerial parts 
of Eucalyptus plantlets. Mafia et  al. (2009) evaluated effectiveness of ten plant 
growth-promoting rhizobacteria (including the genera Pseudomonas, Bacillus, 
Stenotrophomonas, and Frateuria) for the control of mini-cutting rot of Eucalyptus 
caused by Cylindrocladium candelabrum and Rhizoctonia solani. They showed that 
one lineage of Pseudomonas fulva reduced the incidence of mini-cutting rot, under 
nursery conditions, by 33% compared to the control, and by 27% compared to a 
fungicide treatment. Teixeira et al. (2007) evaluated the rooting effect of 107 lin-
eages of bacteria isolated from Eucalyptus rhizosphere on seedlings propagated by 
mini-cuttings. They found ten isolates with promising results, based on rooting effi-
ciency and root biomass improvements. The best lineage was affiliated to Bacillus 
subtilis and induced a 219% increase in rooting frequency and a 223% increase in 
root biomass compared to the control.

It is very common, during the development of a bacterial inoculum, to get frus-
trating results when testing the effects in vivo. The main reason is that the in vitro 
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conditions are quite different from the in vivo ones. It is impossible, with the actual 
methods, to cultivate most of the microorganisms living associated with the plants. 
In general, the ones selected are those fast-growing microorganisms with high affin-
ity to the culture conditions. However, very frequently they are not part of the domi-
nant microbial community, and because they cannot thrive in a highly competitive 
natural environment, they fail to colonize the plant and, therefore, fail to develop 
growth-promoting activity. For this reason, it was proposed that a bacterial consor-
tium for plant inoculation should be developed on some naturally abundant bacterial 
genera (Fonseca et al. 2018).

In recent research (unpublished data), Fonseca and colleagues got a deeper eval-
uation of plant growth-promoting capacity of some bacterial lineages isolated from 
Eucalyptus roots. They contrasted the list of the most abundant genera found in 
Eucalyptus with the list of bacterial lineages with the best capacity in inorganic 
phosphorus solubilization, phytate mineralization, IAA production, and nitrogen 
fixation capacity. From these, they selected four lineages, belonging to genera 
Paraburkholderia, Methylobacterium, Paenibacillus, and Mesorhizobium, to for-
mulate a bacterial consortium. The results showed that the inoculation of mini- 
cutting propagated seedlings can significantly improve seedling survival, below- and 
aboveground biomass, and average plant height.

5.5  Final Comments

The use of plant growth-promoting endophytic bacteria represents a great tool for 
improving Eucalyptus and other forestry species cultivation. Still, it is a highly 
unexplored world for forestry companies with many gain opportunities. Despite the 
costs and time associated with the selection and tests of bacterial lineages for this 
application, the use of biotechnology has very low costs, with the capacity to be 
applied to any size production and with minimal changes in the seedling production 
workflow. The development of this strategy should be encouraged and understood 
as a low-cost green technology, which beneficial effects include nutrient optimiza-
tion, higher survival rates, and better plant fitness.
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Chapter 6
Biological Nitrogen Fixation (BNF) 
in Mixed-Forest Plantations

Sergio Miana de Faria, Fabiano de Carvalho Balieiro, Ranieri Ribeiro Paula, 
Felipe Martini Santos, and Jerri Edson Zilli

6.1  Introduction

The emergence of symbiosis between leguminous plants and bacteria of the 
Rhizobia group (bacteria able to induce nodules and fix nitrogen) remains clouded 
in mystery and speculation (Sprent 1994; Brockwell et  al. 2005; Doyle 2016; 
Parniske 2008). However, because the legume plants also possess the ability to take 
up N from soil, it is assumed that they were associated with diazotrophic bacteria 
(nitrogen-fixing bacteria) primitively in a parasitic mode, later evolving to infection, 
nodulation, and fixation patterns (Faria et al. 1987; Sprent 1994, 2007). It is impor-
tant to realize that symbiosis is not obligatory for the plant or bacteria, but when 
associated both symbionts have ecological advantages of survival and competition 
(Sprent 2007).

The reason why some legume species do not nodulate, even though different 
leguminous species are capable of similarly accumulating N in the tissue, is not 
fully understood. For example, the genus Cassia comprises about 30 tree species, in 
which nodulation and nitrogen fixation remain unconfirmed. On the other hand, the 
genus Chamaecrista (closely related to Cassia genus) with more than 250 species 
that are herbs, shrubs, and arboreal types is an exclusive nodulant (de Faria et al. 
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2010; Sprent 2007, 2009; de Faria et al. 1999; Moreira et al. 1992). It is intriguing, 
however, that these two leguminous genera with similar capability to accumulate N 
in their tissues vary in their nodulation features.

Is it possible that the ability of some legumes to accumulate N may have exerted 
a selection pressure driving towards symbioses, being a way of legumes adapting to 
the increasing demand for N in a limiting environment? If so, and given that the 
biological nitrogen fixation (BNF) event in prokaryotes is so old, it is questionable 
why plants would not have acquired the ability to form a structure (“rhizoplast”), 
resembling an organelle. Moreover, why most plants do not nodulate, including 
some legumes, is unclear. It is probable that the selection pressure was not strong 
enough for the plants to acquire nif genes (genes found in all diazotrophs required 
for structure, biosynthesis, and regulation of nitrogenase, the enzyme responsible 
for fixing N) and the plant-bacteria relationship is still evolving (Postgate 1992; 
Coba de la Peña et  al. 2018). Probably, some groups of plants (especially the 
Papilionoideae subfamily and Mimosoideae clade) shared a close relationship with 
bacteria that had this enzymatic apparatus and took advantage of this association 
(Polhill et al. 1981; Sprent 2007).

BNF is the primary N intake form in agroecosystems, promoting equilibrium 
between atmospheric N2, being the reactive forms incorporated in soil and organ-
isms. For a number of reasons (such as the cost of production and environmental 
impact of synthetic fertilizers), BNF has become indispensable for sustainable agri-
culture on the planet (Crews and Peoples 2004), with Brazil being an excellent 
example of leveraging this process in annual crops, such as soybeans, beans, and 
others (Hungria and Mendes 2015).

Besides, BNF has also been useful in the restoration of degraded areas, part of 
the recovery technologies, which are based on the introduction of pioneering, fast- 
growing N2 -fixing legumes (Franco et al. 1995; Chaer et al. 2011; Balieiro et al. 
2018). In this case, the inoculation of legume seeds with rhizobia supplies plants 
with nitrogen often scarce on severely degraded lands, improves soil quality, and 
supports plant growth and ecological succession (Parrota et al. 1997; Franco and 
Faria 1997; Batterman et al. 2013).

Tropical soils, like most in Brazil, are highly weathered and poor in nutrients and 
organic matter, which require the supply of nutrients for adequate plant growth. 
Forest plantations, whether pure or mixed, depend on external inputs for adequate 
growth, although water availability exerts substantial control over growth and bio-
mass accumulation (Stape et al. 2010; Moraes Gonçalves et al. 2013). This is espe-
cially important when it comes to fast-growing species, such as eucalyptus, which 
can accumulate about 155 kg ha−1 of N in biomass during the first year after planting 
(Laclau et al. 2010). It has been shown, however, that the introduction of N2-fixing 
legumes in a consortium with fast-growing non-N2-fixing species may be a strategy 
to promote gains in biomass production (wood), decrease the dependence on chemi-
cal nitrogen fertilizer by companion species (Chap. 1), and contribute to several soil 
processes, especially those dependent on the soil organic matter (see Chaps. 4 
and 10).
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This chapter addresses the biological fixation of N2 as a critical ecological facili-
tation strategy in mixed-forest plantations, allowing N fixation to act positively on 
the development of non-N2 -fixing species. The mixture of fast-growing N2-fixing 
species is capable of improving the quality of soil organic matter, improving N sta-
tus in the system and crop productivity (Forrester et al. 2005; Voigtlaender et al. 
2012; Rachid et al. 2013; Santos et al. 2018). A compilation of information, without 
the commitment to exhaust the literature, was made by trying to give numbers to the 
benefits of nodulating bacteria. The potential use of the plant microbiome and 
growth-promoting microorganisms in forestry is still incipient, but very promising. 
This subject is discussed in Chap. 5.

6.2  Nodulating Bacteria and Symbiosis Establishment

Into the plant kingdom, members of the family Leguminosae have the ability to 
interact with diazotrophic bacteria and form nodules (Fig. 6.1). The nodules can be 
located in the roots of major legume species and in the stem of a few, as seen in the 
genera Aeschynomene, Sesbania, and Neptunia that grow in the flooded regions 
(Fig. 6.1).

The term “rhizobium” has always represented a group of gram-negative, obligate 
aerobic, non-endospore-forming alpha-proteobacteria that induce plants to form 
nodules through highly complex molecular signaling (Parniske  2008; Doyle 2011, 
2016; Clúa et  al. 2018). The taxonomy of nitrogen-fixing bacteria that associate 
with legumes has been frequently reviewed, especially as they have been identified 
as nodulating (Chen et al. 2006; Peix et al. 2015; Andrews and Andrews 2017).

Nowadays, rhizobia represent several lineages within the alpha-proteobacteria, 
and hence the term “rhizobia” does not represent a single taxon but refers to a poly-
phyletic cluster of bacterial lineages having similar functions. Most known rhizobia 

Fig. 6.1 Spherical stem nodules of Aeschynomene sp. (approx. 3  mm in diameter); spherical 
radicular nodule of Dalbergia nigra (approx. 2 mm in diameter) and branched root nodules of 
Andira nitida (approx. 5–10 mm in length)
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still belong to the family Rhizobiaceae [Rhizobium, Ensifer (Sinorhizobium), 
Allorhizobium, Parahizobium, Neorhizobium, Shinella], Phyllobacteriaceae, 
Mesorhizobium, Aminobacter, Phyllobacterium, Brucellaceae (Ochrobactrum, 
Methylobacterium, Microvirga), Bradyrhizobiaceae (Bradyrhizobium), 
Xanthobacteraceae (Azorhizobium), and Hyphomicrobiaceae (Devosia), but some 
others belong to beta-proteobacterial genera in the family Burkholderiaceae 
(Paraburkholderia, Cupravidus, and Trinickia) (Andrews and Andrews 2017; Peix 
et al. 2015; Sprent et al. 2017).

For the establishment of a mutual symbiosis, as is usual in the symbiosis between 
rhizobia and nodulating legumes, it is necessary that a series of physical, biochemi-
cal, physiological, and environmental factors complement each other. Several 
authors (Moreira and Siqueira 2006; Parniske  2008; Doyle 2011, 2016) describe 
that the fundamental stages for the establishment of symbioses are (1) preinfection, 
in which symbionts are recognized and interactions occur between surface bacteria 
and plant; (2) plant infection by the bacteria and formation of nodules; and (3) func-
tioning of nodules, i.e., nitrogen fixation. According to the authors, several dozen 
genes are involved in the process of N2 fixation in nodule-fixing bacteria, which 
influence everything from the recognition of the host plant by the bacteria to the 
transport of carbon from the plant to the bacteroid (the active form of nitrogen- 
fixing bacteria).

The pink color inside the nodule indicates the effectiveness of nodulation and the 
efficiency of nitrogen fixation. It shows the presence of active leghemoglobin, 
which is needed to supply oxygen at low tension for the nodules to function. The 
oxygen tension inside the nodules, which is usually low, is necessary because nitro-
genase (the enzyme responsible for nitrogen fixation) is irreversibly inhibited in the 
presence of high O2 concentration (Raymond et al. 2004). The efficiency of nodula-
tion can be measured by the benefits of symbiosis to the host and the system as a 
whole, such as higher production of plant biomass, significant accumulation of 
nutrients (including N), and even transfer, directly or indirectly, of N to non-N2- fix-
ing plants.

Among the principal genera of nodulating bacteria of native forest legumes stud-
ied from the Amazon, Cerrado, Caatinga, and Brazilian Atlantic Forest 
Bradyrhizobium, Rhizobium, Ensifer, Mesorhizobium, and Paraburkholderia are 
the most common (Moreira and Siqueira 2006; Bournaud et al. 2013; da Silva et al. 
2014; Zilli et al. 2014; Reis Jr et al. 2010).

The induction of nodules of forest legumes occurs through several bacterial gen-
era; however, there is a certain specificity of response in terms of efficiency in nitro-
gen fixation (de Faria et al. 1999). This specificity appears to increase as symbionts 
coevolve in the same geographic region. For example, the species Mimosa pudica 
and even other members of Mimosa tribes are efficiently and almost exclusively 
nodulated by bacteria of the genus Rhizobium in Central America, whereas, in the 
Brazilian Cerrado, nodulation is almost exclusively by Paraburkholderia (Bontemps 
et al. 2016). Local climate conditions and specifically edaphic (pH) factors contrib-
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ute to the emergence of this specificity (Bontemps et al. 2016; Pires et al. 2018; Reis 
Jr et al. 2010). Patterns relating to strains of Rhizobium nodulating species  originated 
in Central America and Paraburkholderia in South America have also been observed 
in the Calliandra genus (tribe Ingae) (Silva et al. 2018).

Species of the Acacia genus, commonly used in mixed plantations, are nodulated 
by both Rhizobium and Bradyrhizobium and less frequently by Ensifer, 
Mesorhizobium, and Paraburkholderia (Lawrie 1981; Barberi et al. 1998, Sakrouhi 
et al., 2016). However, there are important differences in the nodulation efficiency 
and N2 fixation even within a genus and species to which the strains belong (Galiana 
et al. 2002).

6.3  The Ability of the Forest Legumes to Nodulate and Fix 
Nitrogen

The family Leguminosae was recently reviewed and classified into six subfamilies: 
Duparquetioideae, Cercidoideae, Dialioideae, Detarioideae, Papilionoideae, and 
Caesalpinioideae, with the latter also encompassing the traditional subfamily 
Mimosoideae, which became a clade of Caesalpinioideae (LPWG 2017). The nodu-
lation is mostly concentrated in the subfamily Papilionoideae, in which about 97% 
of the investigated species can nodulate. In this subfamily, only some tribes and 
genera do not nodulate, such as Dipteryxeae, part of the Dalbergieae (Vaitarea and 
Vataereopsis), Swartzieae (only some species of the genus Swartzia nodulate), and 
some genera of Sophoreae. Similarly, in the subfamily Papilionoideae, the Mimosoid 
clade within the subfamily Caesalpinioideae, 95% of the species fix nitrogen associ-
ated with rhizobia. For the other members of the old subfamily Caesalpinioideae, 
until recently, only 25% were associated with rhizobia-producing nodules and these 
are concentrated in some genera of the Cassieae (Chamaecrista), Caesalpinieae 
(Melanoxylon, Moldenhawrea, Tachigali, Dimorphandra, and other genera in this 
tribe) (Allen and Allen 1981, de Faria et al. 1989).

Nodulation and consequently the BNF benefits usually occur when nitrogen is 
scarce in the environment, and therefore in mature forests it is rare to find nodules 
in the species capable of associating with rhizobia (de Faria et al. 1984; Winbourne 
et  al. 2018; Piotto  et  al. 2009), with reduced BNF contributions  (Nardoto et  al. 
2014). Likewise, nitrogen fixation will occur at a higher intensity when the species 
requires more nitrogen, that is, during its exponential growth phase. Although the 
majority of soils have native bacteria capable of nodulating tree species typically 
used in mixed plantations, significant gains in establishment, growth, and produc-
tivity can be obtained when seedlings are inoculated with selected strains (Franco 
and de Faria 1999; Galiana et al. 2002).
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6.4  Brazilian Rhizobia Selection Program for Leguminous 
Trees

Embrapa Agrobiologia is a pioneer and internationally recognized for its work in 
the selection and maintenance of diazotrophic bacterial germplasm associated with 
native and introduced leguminous trees. Since 1960, this research center isolated 
over 5000 strains of rhizobia from different regions of Brazil. More than 2600 
botanical specimens were investigated for nodulation capacity, which includes more 
than 80 genera and 400 forest species reported for the first time as nodulants or non- 
nodulants. It is worth remembering that the pioneering work developed with tree 
species was performed by Dr. Döbereiner and her group in the 1960s, including the 
preliminary studies on host specificity of the sabiá (Mimosa  caesalpiniifolia) 
(Campelo and Döbereiner 1969). Native of the Caatinga biome, this legume origi-
nated from Caatinga (Brazilian Northeast), and is widely distributed throughout the 
country as it has several uses such as live fences, charcoal, firewood, erosion con-
trol, forage, honey flowers, and others.

A program to obtain and select strains of rhizobia for legumes initially requires 
the confirmation of the ability of the isolate to induce nodulation in a host, but in 
Brazil, given the large diversity of legume species and the limited knowledge of the 
flora it is often necessary first to evaluate nodulation capacity.

Roots of individual plants can be examined directly in the field for the presence 
of nodules. If present, the nodules can be collected for bacteria in the laboratory. 
Subsequent purification and selection of the most efficient isolates for nitrogen fixa-
tion in the target plant species can be performed. The presence of nodulation can 
also be confirmed in the greenhouse by inoculating seed collected in the field where 
a target legume grows with a set of several bacteria from different groups. The 
inoculation with a mixture of rhizobia strains of different origin along with the soil 
from the native location where the legume grows is another strategy.

After confirmation of nodulation in specific species, the selection of most effi-
cient strains for biological N2 fixation is the next step. It is important to note that 
some specific responses exist in terms of nitrogen fixation efficiency by a particular 
group and/or several bacterial strains, and that due to such preferences it may be 
necessary to select the most efficient strain for each forest species.

Embrapa develops trials that are divided into three phases and follow the official 
rules of the Ministry of Agriculture, Livestock and Food Supply—MAPA (Brazil 
2011). In the first phase, each legume species is tested aseptically in “Leonard jars” 
containing a mixture of sand and vermiculite (Vincent 1970), with strains of several 
different origins. In this phase, the nature of the isolates (if they are rhizobia) is 
confirmed, besides the N2 fixation potential. The best strains are tested in soil, and 
unsterilized conditions (second-phase test). This phase evaluates the competitive-
ness and efficiency of bacteria in comparison to those in the native soil. Nursery and 
field conditions are part of the third phase.

Studies developed over the last decades by Embrapa Agrobiologia have led to the 
selection of several rhizobia strains for different legume species. These strains were 
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selected for approximately 90 forest species belonging to 38 genera (Fig. 6.2). For 
most legume genera studied (60%), among 57 species, strains of the genus 
Bradyrhizobium were selected (Fig. 6.2), followed by the genera Rhizobium and 
Paraburkholderia. It is clear, therefore, that the Bradyrhizobium genus not only is 
the most common symbiont of native and introduced legumes growing in Brazil, but 
also tends to be the most efficient for N2 fixation among most genera (Fig. 6.2). 
However, this cannot be generalized as plant-microbe specificity involving another 
bacteria genus that can be important. For example, within Mimosa, 16 species that 
were identified and selected strains all are members of the genus Paraburkholderia 
(Fig.  6.2). The same has also been observed for the plant genera Piptadenia, 
Parapiptadenia, and Anadenathera that probably only are nodulated by 
Paraburkholderia strains (Fig. 6.2).

For 24 of these legumes, there is at least one strain authorized by MAPA for the 
production of inoculants (Brazil 2011). Other forest legumes, for which although 
currently there is at least one strain already selected, are not yet included in the 
official MAPA list, which still requires significant efforts, including support from 
the industry to validate the efficiency for registration (Fig. 6.2). This is the case of 
the introduced forest legume such as some Acacia species, and most of the native 
species already tested or with potential for use in mixed planting, such as the species 
within the genera Enterolobium, Inga, Erythrina, Mimosa, Dalbergia, Tachigali, 
and others.

Fig. 6.2 Legume tree genera and respective rhizobia genera with strain efficient in the BNF sym-
biosis. The numbers in parentheses indicate the number of legume species within each genus for 
which strains of rhizobium have already been selected
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6.5  Dependence of Biological N2 Fixation on Mycorrhization

Several microorganisms colonize the rhizosphere, which include bacteria, actino-
mycetes, and fungi. These microbes perform activities that are related to the physi-
ology and nutrition of plants. In this sense, the decomposition of soil organic 
compounds, their mineralization, BNF, release of substances that stimulate growth 
or antagonism to pathogens, as well as availability of nutrients are important for 
plant growth (Grayston et al. 1997; Andrade et al. 2000; Kuiper et al. 2004; Moreira 
and Siqueira 2006).

As N and P are usually the most limiting nutrients for plant growth in the tropics, 
more attention has been paid to research on these elements and to alternatives for 
the use of biological inputs, such as inoculation with rhizobia and mycorrhizal 
fungi. Inoculation of tree legumes with rhizobial strains and mycorrhizal fungi can 
meet all the N and P requirements for plant growth, taking into account the other 
factors that are not limiting (Oliveira Júnior et al. 2016; Patreze et al. 2004; Moreira 
and Siqueira 2006).

Several tree species, including A. mangium, have the ability to associate with 
arbuscular mycorrhizal fungi as well as ectomycorrhizal fungi, in addition to estab-
lishing efficient nodulation with rhizobia. Mycorrhizal fungi can help increase the 
biological nitrogen fixation, by enhancing P availability that is in demand for the 
BNF process, as well as the nitrogen-fixing bacteria tend to influence mycorrhizal 
colonization. This pattern of synergistic response is commonly observed in the 
Mimosoid clade that responds to both types of symbioses (Oliveira Júnior et  al. 
2016; Bournaud et al. 2017).

In fact, there are complex interactions between legumes with their symbiotic 
partners, which is the result of an old coevolution leading plants and microsymbi-
onts to respond more or less effectively to this interaction (Parniske 2008). Variations 
in responses by both mycorrhizal fungi and rhizobial inoculation are typical, 
because they are also associated with plant genetics and microsymbiotic perfor-
mance (Monteiro 1990a; Patreze and Cordeiro 2004). Monteiro (1990a) studied the 
interaction between Mimosa  caesalpiniifolia and M. scabrella with rhizobia and 
arbuscular mycorrhizal fungi and concluded that the microsymbionts acted syner-
gistically for the production of biomass and nutrient accumulation in plants, with 
biomass production exceeding 400% compared to the treatment without the micro-
organisms even with nutrient addition. In the same way Founoune et  al. (2002) 
evaluated the influence of two isolates of the ectomycorrhizal fungi, Pisolithus sp. 
(COI 007, COI 024), and one isolate of Scleroderma dictyosporum (Sd 109) on the 
growth of A. mangium and the synergy with rhizobium inoculation. Compared to 
the control treatment that lacked inoculation with both the symbionts, A. mangium 
plants treated with COI 007 and Sd 109, respectively, had significantly higher bio-
mass of roots and leaves. In addition, treatment with COI 007 resulted in a higher 
number of nodules per plant. In the case of Acacia holosericea, however, the highest 
number of nodules was present when inoculated with the COI 024 isolate.
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These results show that, although symbiosis with mycorrhizal fungi is a rule 
among higher plants, there may be additional benefits from certain isolates (Moreira 
and Siqueira 2006; Shiavo and Martins 2002; Diagne et al. 2013).

The vast majority of the tree legumes can benefit from the association with 
mycorrhizal fungi and through this association the BNF is improved as well. 
However, certain groups of legumes not only benefit from this tripartite association, 
but are also highly dependent on the mycorrhization to establish efficient nodula-
tion, even when supplied with phosphorus (Jesus et al. 2005). For example, recent 
studies have shown that Piptadenia gonoacantha is only capable of inducing the 
formation of inefficient nodules in the absence of mycorrhiza, and in this case, the 
color and shape of the nodules formed are different (Bournaud et al. 2017; Oliveira 
Júnior et al. 2016).

The importance of field-level and nursery studies with mycorrhizal fungi (mycor-
rhizal fungi and diazotrophic bacteria) is essential to evaluate their efficiency. 
Laboratory and greenhouse conditions often do not represent the tougher field con-
ditions, even though nursery conditions for seedling production can be similar to 
those in the greenhouse. For practical purposes inoculation with rhizosphere soil of 
plants growing in the field will provide well-adapted AMF.

6.6  The Contribution of BNF in Mixed-Forest Plantations

N2-fixing trees, mainly species from the Leguminosae family, have been widely 
used to improve N status of non-N2-fixing species in agroforestry systems 
(Mafongoya et al. 1998) and mixed-forest planting for timber production (Binkley 
and Giardina 1997; Richards et al. 2010) and for recovery of degraded lands (Franco 
and Faria 1997; Chaer et al. 2011). However, the contribution of BNF (percentage 
of N derived from the atmospheric fixation—% Ndfa) to tree and shrub species 
under field conditions is not easy to evaluate, mainly due to the difficulties in esti-
mating the amount of N accumulated in the above- and belowground plant compo-
nents (Khanna 1998; Boddey et al. 2000). Interactions with the abiotic (climate and 
soil in particular) and biotic factors (inter- and intraspecific interaction of mixed 
plantations) also complicate these estimations, since they affect competition and 
facilitation between plants and species, especially in mixed plantations (see Chap. 2).

6.6.1  Measuring the Biological Nitrogen Fixation (BNF) 
in Woody Perennial Species

Determining the BNF contribution in trees and shrubs, both in planted forests and 
agroecosystems or in the native forests, has been the subject of several studies and 
reviews (Boddey et al. 2000; Galiana et al. 2004; Gehring and Vlek 2004; Gehring 
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et al. 2005; Bouillet et al. 2008; Chalk 2016; Paula et al. 2018). Among the method-
ologies developed for the quantification of BNF and its applicability to woody 
perennial species either under greenhouse (pots) or field conditions, Peoples et al. 
(1989) cited acetylene reduction analysis (ARA), determination of relative abun-
dance of ureides in plant sap, and use of 15N (isotopic enrichment and natural abun-
dance) isotope dilution (ID) techniques. The N balance and nitrogen accretion 
method can also be used to estimate the total N input (kg ha−1) via BNF (Peoples 
et al. 1989; Forrester et al. 2007; Voigtlaender et al. 2018) in different ecosystems. 
It should be noted, however, that each of these methodologies mentioned has speci-
fications and limitations (see Boddey et al. 2000; Unkovich et al. 2008; Chalk 2016).

The ARA method uses the activity of the nitrogenase enzyme because under high 
acetylene concentration, it can be used as a substrate to be reduced to ethylene. This 
analysis represents a qualitative evaluation of BNF as a point analysis of the nitro-
genase activity in the nodules from the plant. The evaluation of the abundance of 
ureides (allantoins and allantoic acid) in the xylem relies on the ability of the spe-
cies to transport these compounds preferentially, to the detriment of nitrate and 
other amino compounds, such as asparagine and glutamine (Peoples et al. 1996). 
For example, plants from the genus Acacia, the most transported BNF products, are 
asparagine and glutamine (Brockwell et al. 2005).

Isotopic dilution (ID) using the natural abundance of 15N is currently a good 
option to determine the proportion of N derived from the BNF from the air (% Ndfa) 
under field conditions (Boddey et al. 2000). This method relies on the fact that under 
the same natural condition plants that fix some or all of their nitrogen will have 
lower 15N signal than plants that obtain their entire N from the soils, which are 15N 
enriched.

For the method based on 15N enrichment (E), the soil is enriched with a labeled 
fertilizer and paired plots—one containing the legume and the other an N2-fixing 
reference plot—are used for the application. However, the ID (NA or E) technique 
presents some limitations as plant selection, tissue sampling, unpredictability in the 
levels of 15N, N available to plants from organic matter decomposition, quality and 
quantity of organic matter, and selective absorption of N sources by ecto- and endo- 
mycorrhizal fungi (Högberg 1997; Natelhoffer and Fry 1988; Boddey et al. 2000; 
Gehring and Vlek 2004).

For the N balance and N accretion method, the BNF rate is estimated as the dif-
ference in accumulated N in the plant biomass (aerial and root), in the litter depos-
ited in the soil, or in the soil between plots of the non-N2-fixing species and plots 
containing the N2-fixing species (monocultures or mixed species). Thus, it is 
assumed that the differences (in kg ha−1) in N in the treatment are mainly due to the 
biological process. The amounts of N2 fixation could be underestimated if the N in 
the belowground area is not considered, especially in planted forests (Forrester 
et al. 2007).

In addition, Chalk (2016) suggested that the uncertainty in BNF rate could be 
attributed to the B-value (the relative isotopic abundance of legumes growing in 
N-free medium). The reasons are as follows: (1) it is not usually determined simi-
larly in the field or pot experiments; (2) it is dependent on the rhizobial strain used 

S. M. de Faria et al.



113

as the inoculant; and (3) it depends on the part of the plant tissue sampled. Differences 
in the root density among the plants in each treatment (monocultures and mixed 
plantation) of the topsoil, and variations in nitrate and ammonium availability, were 
reported by Bouillet et al. (2008) as factors contributing to uncertainty in N2 fixation 
estimates. These can lead to differences in ™15N of mineral N uptake (NH4

+ is less 
depleted in 15N than NO3

−) by both plant species from soil or from fertilizer applica-
tion. The costs of the enriched fertilizer and the isotope analyses also restrict the use 
of these two techniques (NA or E).

6.6.2  Higher Nitrogen Fixation in Mixed Plantations

The rate of the BNF estimates (% Ndfa) in tree species under mixed planting condi-
tions is scarce in Brazil, especially when dealing with native flora. Increased atten-
tion was paid to Acacia mangium because of the increased growth seen in degraded 
lands and low-fertility soils in the 1980–1990s of the last century (Franco and Faria 
1999; Coelho et al. 2007), additionally to the interest of forestry companies in stud-
ies of silvicultural performance and interaction of the species with eucalyptus at the 
end of the twentieth century (Harwood and Nambiar 2014; Parrota and Knowles 
1999), and the growing demands in Southeast Asia (Harwood and Nambiar 2014; 
Balieiro et al. 2018).

A few reports estimating the %Ndfa in pure and mixed plantations with legumes, 
using the NA or E techniques, across the Brazilian states of São Paulo and Rio de 
Janeiro, showed a significant contribution of BNF to mixed plantations (Balieiro 
et al. 2004, Paula et al. 2018), thus corroborating the work performed in other loca-
tions, such as Puerto Rico (Parrotta et al. 1996) and Ivory Coast (Tchichele et al. 
2016). However, Forrester et al. (2007) studied mixed plantations of Acacia mearn-
sii and E. globulus, but observed opposite results. The higher BNF in mixed planta-
tions was attributed to the elevated N requirement of eucalyptus under mixed 
plantation regimes. This requirement led to a strong competition for soil N by the 
plants and a consequent elevation of the N demand in the system (Balieiro et al. 
2004; Paula et al. 2018), by the high litter decomposition rate (Santos et al. 2016) 
and soil N mineralization (Voigtlaender et al. 2019). Table 6.1 contains the %Ndfa 
estimates for tree legumes in mixed and pure plantations in Brazil and other coun-
tries, using natural abundance (NA) and enrichment of 15N (E) techniques.

The results in Table 6.1 corroborate the work of Brockwell et al. (2005), who 
reported that the biological nitrogen fixation rates observed under the field condi-
tions for Acacia, shrubs, and tree species occur in the 2–90% range. The authors 
further describe that this range denotes the genetic variability within the genus 
Acacia, the efficiency of strains and different species of rhizobia, and the different 
estimation techniques of BNF.

In general, BNF contributions are higher when the planting is younger (Parrotta 
et al. 1996; Paula et al. 2018; Balieiro et al. unpublished date; Balieiro et al. 2002 
—Tables 6.1 and 6.2) and with local infertile soil (Bernhard- Reversat et al. 1996; 
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Table 6.2 N2 fixed (kg ha−1) by woody perennial legumes in pure and mixed plantations based on 
difference in aboveground N accumulation using the accretion method

N2-fixing species 
(A)

Reference 
species (B) Country

Age 
(months)

N 
acumulated 
(kg ha−1)

N 
accretion 
(A−B or 
(A+B)-B Reference

Acacia mangium 
(A100)

Eucalyptus 
grandis 
(E100)

Brazil 39 204.6 −19.6 Paula et al. 
(2018)

A. mangium 
(E50:A50)

E. grandis 
(E100)

Brazil 39 444.7 +220.5 Paula et al. 
(2018)

E. grandis 
(E100)

Brazil 224.2 Paula et al. 
(2018)

Acacia mangium 
(A100)

E. urograndis 
(E100)

Brazil 60 186.3 +17.6 Santos et al. 
(2018)

A. mangium 
(E50:A50)

E. urograndis 
(E100)

Brazil 60 231.8 +63.1 Santos et al. 
(2018)

A. mangium 
(E100:A100)

E. urograndis 
(E100)

Brazil 60 285.5 +116.8 Santos et al. 
(2018)

E. urograndis 
(E100)

Brazil 60 168.7 Santos et al. 
(2018)

Mimosa scabrella 
(mixed, 50:50)

E. grandis Brazil 24 317.7 +170.9 Coelho 
et al. (2007)

Mimosa 
caesalpiniaefolia 
(mixed, 50:50)

E. grandis Brazil 24 149.6 +2.8 Coelho 
et al. (2007)

A. mangium E. grandis Brazil 24 188.4 +41.6 Coelho 
et al. (2007)

E. grandis Brazil 24 146.8 Coelho 
et al. (2007)

A. mangium 
(A100)

Brazil Balieiro 
et al. (2004)

E. grandis 
(E100)

Brazil 60 410.5 Balieiro 
et al. (2002)

Pseudosamanea 
guachapele 
(G100)

E. grandis 
(E100)

Brazil 60 756.8 −57.0 Balieiro 
et al. (2002)

P. guachapele 
(E50:G50)

E. grandis 
(E50:G50)

Brazil 60 467.5 +289.3 Balieiro 
et al. (2002)

E. grandis 
(E100)

Brazil 60 410.5 Balieiro 
et al. (2002)

Acacia mangium 
(A100)

Eucalyptus 
grandis 
(E100)

Ivory 
Coast

24 30.1 +23.8 Tchichele 
et al. (2017)

A. mangium 
(E50:A50)

E. grandis 
(E100)

Ivory 
Coast

24 23.5 +17.2 Tchichele 
et al. (2017)

E. grandis 
(E100)

Ivory 
Coast

24 6.3 Tchichele 
et al. (2017)

(continued)
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Galiana et al. 2002, Balieiro et al. 2004). Both factors are related to the upregulation 
of N2 fixation depending on the soil N status (Vitousek et al. 2002; Galiana et al. 
2002). Galiana et al. (2002) observed the spatial variability in %Ndfa for A. man-
gium as a result of soil fertility variation between plots. The %Ndfa reached 64 and 
67% in blocks II and III, respectively, versus 27% in block I, following a parallel 
increase in N and P soil content.

Table 6.2 (continued)

N2-fixing species 
(A)

Reference 
species (B) Country

Age 
(months)

N 
acumulated 
(kg ha−1)

N 
accretion 
(A−B or 
(A+B)-B Reference

A. mearnsii 
(A100)

E. globulus 
(E100)

Brazil 120 496 +358 Forrester 
et al. (2007)

A. mearnsii 
(A50:E50)

E. globulus 
(E100)

Brazil 120 480 +342 Forrester 
et al. (2007)

E. globulus 
(E100)

Brazil 120 138 Forrester 
et al. (2007)

A. mangium 
(A100)—Itatinga

E. grandis 
(E100)

Brazil 72 2050 +413 Voigtlander 
et al. (2018)

A. mangium 
(E50:A50)—
Itatinga

E. grandis 
(E100)

Brazil 72 1836 +199 Voigtlander 
et al. (2018)

E. grandis 
(E100)

Brazil 72 1637 Voigtlander 
et al. (2018)

A. mangium 
(A100)—Bofete

E. grandis 
(E100)

Brazil 72 2242 +348 Voigtlander 
et al. (2018)

A. mangium 
(E50:A50)—
Bofete

E. grandis 
(E100)

Brazil 72 2111 +217 Voigtlander 
et al. (2018)

E. grandis 
(E100)

Brazil 72 1895 Voigtlander 
et al. (2018)

A. mangium 
(A100)—Luiz 
Antônio

E. urograndis 
(E100)

Brazil 72 1622 – Voigtlander 
et al. (2018)

A. mangium 
(E50:A50)—Luiz 
Antônio

E. urograndis 
(E100)

Brazil 72 1848 +84 Voigtlander 
et al. (2018)

E. urograndis 
(E100)

Brazil 72 1764 Voigtlander 
et al. (2018)

A. mangium 
(A100)—Santana 
do Paraíso

E. urograndis 
(E100)

Brazil 72 3258 +367 Voigtlander 
et al. (2018)

A. mangium 
(E50:A50)—
Santana do Paraíso

E. urograndis 
(E100)

Brazil 72 3168 +277 Voigtlander 
et al. (2018)

E. urograndis 
(E100)

Brazil 72 2891 Voigtlander 
et al. (2018)
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The total N accumulated in the biomass, litterfall, and soil-derived BNF is calcu-
lated as the difference in total N found in N2-fixing species and reference species 
(non-fixing) (Parrotta et al. 1996; Forrester et al. 2007). From some previous work, 
the additional amount of N introduced by tree legumes in mixed and pure planting 
conditions is estimated, in order to measure the benefits of introducing legumes in 
these systems. As shown in Table 6.2, the total N accumulated in the aerial parts of 
the plants at a given stage is underestimated, as much of the N2 fixed may be related 
to the roots (coarse and fine) and the litter (deposited and on the ground). Although 
the N2-fixed N by the legume in the plantation is proportional to its capacity to com-
pete in a specific local, the BNF contribution is always higher in the mixed planta-
tion than in the eucalyptus monocultures. It is expected to contribute up to 
60  kg  ha−1  year−1 under mixed-forest plantations. These values corroborate with 
previous reports on plantations under field conditions, with Acacia spp. in Africa 
and Australia, with up to 50 kg ha−1 year−1 of fixed N (Sprent 1993; Sutherland and 
Sprent 1993). As much as BNF contribution of leguminous species depends on its 
adaptability and growth in  local edaphoclimatic conditions, it is imperative that 
breeding and selection of these species be carried out for different Brazilian condi-
tions, as it has been done in Southeast Asia (Griffin et al. 2015).

Likewise, the new mixed planting arrangement using Brazilian native species 
may offer some benefits, especially for the biological conservation and the associ-
ated ecosystem services (see Chaps. 10 and 12). Silvicultural management of these 
plantations needs to be better understood as the pruning, thinning, or proper clean-
ing and maintenance of the plants are activities that could disturb the system and 
affect BNF in the legumes.

6.6.3  Nitrogen Transfer between Plants in Mixed Plantations

Although N transfer between plants occurs in both directions, i.e., from N2-fixing 
tree to non-N2-fixing and vice versa, the magnitude of the transfer is greater from 
N2-fixing tree to non-N2-fixing species (see review by Chalk et al. 2014). Several 
studies show that 0–50% of N contained in plants associated with N2-fixing trees 
could be derived from such transfers. Due to the transfer, non-N2-fixing trees grow-
ing in a consortium of N2-fixing trees sometimes accumulate more N in their bio-
mass than the individually growing trees. This additional N is assumed to derive 
from the transfer (Chalk et al. 2014).

The N present in the N2-fixing trees can be transferred directly or indirectly to 
non-N2-fixing species growing within a consortium (Munroe and Isaac 2014) 
(Fig. 6.3). Low-molecular-weight nitrogen compounds, such as nitrate, ammonium, 
and amino acids, are transferred directly between the plants without transforming, 
from the root exudates or by the action of mycorrhiza. The decomposition of the 
vegetative tissue, above- and belowground, and its mineralization by soil microor-
ganisms lead to the indirect transfer of N between plants. These N transfer rates vary 
in speed and significance, and are poorly understood, as well as the limiting or 
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facilitating factors of this transfer (Mafongoya et al. 1998; Munroe and Isaac 2014; 
Chalk et al. 2014; Peoples et al. 2015).

Among the main source of N potentially transferable in the mixed plantation, the 
branches and green leaves of litterfall and the fine roots and nodules represent the 
major sources of N in quantitative terms. It is important to notice however that the 
amount of N accumulated in the fine roots is still poorly understood (Mafongoya 
et al. 1998; Munroe and Isaac 2014; Peoples et al. 2015). The biomass of these roots 
(diameter <2 mm) at a depth of 17 m was estimated for pure and mixed plantations 
of acacia and eucalyptus at 4 years of age in Itatinga, Brazil (Germon et al. 2018). 
Acacia trees produced approximately 4.2 tons ha−1 of fine roots in the mixed planta-
tion up to a depth of 12 m. Using an average of 2.3% N content in fine acacia roots 
(Paula 2015), the N content in the fine roots was 98.3 kg ha−1.

Fig. 6.3 Schematic showing pathways of N transfer between trees in mixed-species plantation 
with non-N2-fixing and N2-fixing trees. Direct transfer of N begins with an N compound with low 
molecular weight without undergoing transformation by (a) ammonium volatilization, (b) stem-
flow, (c) throughfall, (d) soluble N in litterfall and pruning residues, and (e) root exudates, soluble 
N in nodule and roots, and mycorrhiza network. Indirect transfer of N occurs after transformation 
of N substance by (d) decomposition and mineralization of litterfall and pruning residues, (e) root 
and nodule decomposition and mineralization, and by mycorrhizal network (both ectomycorrhizal 
and arbuscular fungi)
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Living tissue derived from pruning or harvesting is an important source of N 
since the total and soluble N content is higher than that in the senescent tissues. 
Paula (2015) used crop residues (i.e., leaves, branches, and bark) of 15N-enriched 
A. mangium and E. grandis in eucalyptus seedlings to trace the path of the residue- 
derived N in the soil-plant system. Three months after the application of these resi-
dues, young leaves of eucalyptus seedlings were significantly enriched with 15N 
when they received A. mangium residues, which was not the case when the plants 
received E. grandis residues or unlabeled residues. This result shows rapid transfer-
ability of a large fraction of soluble N from the legume to other plants.

Direct N transfer from legumes through root exudation and mycorrhizal repre-
sents a substantial source of N during tree growth (Munroe and Isaac 2014). This 
transfer is important because it occurs in the short term (e.g., hours, days), and even 
trees distant from the source can benefit from the transferred N (Paula et al. 2015). 
Paula et al. (2015) applied potassium nitrate enriched with 15N to the stem of A. man-
gium trees and observed values of 15N above natural abundance in eucalyptus tissues 
located within a radius of up to 6.2 m around the acacia plants marked for 60 days 
after the application. N transfer between plants is facilitated by the presence of both 
arbuscular mycorrhizae and ectomycorrhizas associated with the vast majority of 
plant species and can be modulated by source and drain relationship (He et  al. 
2003). These organisms are able to absorb mineral and organic forms of N derived 
from N2-fixing species and assimilate N as needed before transferring to plants 
growing in a consortium (He et al. 2003; Munroe and Isaac 2014). Ectomycorrhizae 
can also act on the transfer of N between plants, as they can break down complex 
organic compounds present in the soil and transform them into forms that are assim-
ilated by plants (He et al. 2003). Estimates of N transfer through mycorrhizae from 
legumes to non-legumes vary between 20 and 50% of accumulated N (He et al. 2003).

Direct approaches to estimate N transfer involve the application of a nitrogen 
source enriched with 15N to the nitrogen-fixing tree, and subsequent isotope tracing 
in the tissues of the reference species (Chalk et al. 2014). The N2-fixing tree can be 
labled with 15N via foliar absorption, via injection in the branches and stem, and by 
root absorption, each one with its particularities (Yasmin et al. 2006; Chalk et al. 
2014). Paula et al. (2015) used the 15N values observed in the fine roots of E. grandis 
and A. mangium to calculate the N ratio of E. grandis derived from A. mangium and 
concluded that the average N transfer reached values of approximately 43%. Based 
on mass balance, the authors calculated the proportion of 15N injected into the stem 
of A. mangium that was transferred to E. grandis trees within a radius of 6.2 m 
around the acacia, which reached an estimate of N transfer of approximately 3%.

Other potential high-throughput N transfer routes involve leaf leaching, foliar 
ammonia gas release, root leaching, and herbivory of nodules (Peoples et al. 2015). 
The first two routes were studied by Paula (2015). At different dates after 15N appli-
cation in A. mangium trees, 15N was determined in the stemflow and throughfall 
samples collected below the labled acacia, as well as samples derived from collec-
tors installed above the acacia to capture ammonia. The researcher observed that 
there was no enrichment of these sources of N with 15N above the natural one, and 
that both sources of N had negative values of δ 15N.
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Although many advances are being made to understand the facilitation and the 
ecological relationships involving the transfer of N between plants (mainly N2- 
fixing to non-N2-fixing species), it is also urgent that studies with key nutrients for 
the process of decomposition, growth, and biological stabilization of N2 and stabili-
zation of soil organic matter, such as P, are initiated.

6.7  Brazilian Native Legume Tree Species with Potential 
for Mixed Plantations

In this section, we present some Brazilian legume tree species with potential for 
mixed planting with Eucalyptus spp. The N2-fixing legume tree species were cate-
gorized into two groups: “fertilizer” and “timber” species. The former one included 
fast-growing species that have high rates of N2 fixation, which can be used to 
increase the N and other nutrient levels through aboveground biomass pruning, litter 
deposition, and/or root exudates and decomposition. In addition, they are species 
that generally produce light to moderately heavy wood with lower commercial- 
value timber. The second group included the species which present longer rotation 
than Eucalyptus spp. and produce wood for multiple uses with high commer-
cial value.

6.7.1  Fertilizing Legume Trees

The genera Enterolobium, Erythrina, Inga, and Mimosa include tree species with 
high levels of nodulation in natural environments or under controlled conditions (de 
Faria et al. 2006; Canosa et al. 2012; Lorenzi 1992). They can be suggested as spe-
cies of the Brazilian flora with the potential to be introduced in mixed plantations 
with Eucalyptus spp. Table 6.3 lists some of these species.

In the genus Enterolobium, popularly known as “tamboril,” it is possible to dis-
tinguish E. maximum and E. contortisiliquum as potential species to be introduced 
in the mixed plantations with Eucalyptus spp. E. maximum, an Amazonian species, 
has wood with easy workability and good finishing, for use in boats, toys, household 
utensils, and plates (Souza et  al. 2002). E. contortisiliquum is seen along the 
Brazilian east-coast, including the Atlantic rainforest and Caatinga biomes. It has 
lightwood (density of 0.54 g cm−3 at 12% of moisture content), which can be used 
in the manufacture of boats and crates. The flowers are mellifluous, and the fruits 
contain saponin, a substance used in the manufacture of soap.

Inga and Erythrina are commonly used as arboreal components of the agrofor-
estry systems with banana, cocoa, and rubber trees in the state of Bahia and the 
Amazon. Frequently, both genera have also been planted under different arrange-
ments of agroforestry systems in Latin America (Bolivia, Peru, and Colombia). 
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Table 6.3 Species of “fertilizer” tree legumes of Brazilian flora suggested for mixed plantations 
with Eucalyptus spp.

Genus Species
Geographic distribution 
(Brazilian statesa)

Phytogeographical 
domains (Brazilian 
biomes)

Erythrina E. verna Vell. North (AC); Southeast (ES, 
MG, RJ, SP)

Amazon, Atlantic 
rainforest

E. poeppigiana 
(Walp.) O. F. Cook

North (AC, AM, PA, RO) Amazon

E. fusca Lour. North (AC, AM, AP, PA, RO) 
Midwest (MT)

Amazon, Cerrado

Inga I. edulis Mart. North (AC, AM, AP, PA, RO, 
RR); Northeast (BA, PB, PE); 
Midwest (MT); Southeast (ES, 
MG, RJ, SP) South (PR, SC)

Amazon, Caatinga, 
Cerrado, Atlantic 
rainforest

I. laurina (Sw.) Willd. North (AC, AM, PA); 
Northeast (BA, CE, MA, PB, 
PE); Midwest (DF, GO, MS, 
MT); Southeast (ES, MG, RJ, 
SP) South (PR)

Amazon, Caatinga, 
Cerrado, Atlantic 
rainforest

I. cinnamomea Spruce 
ex Benth.

North (AC, AM, AP, PA, RO) Amazon

Enterolobium E. maximum Ducke North (AC, AM, PA, RO, RR); 
Midwest (MT)

Amazon

E. contortisiliquum 
(Vell.) Morong

Northeast (BA, CE, PB, PE, 
PI, RN); Midwest (DF, GO, 
MS, MT); Southeast (MG, RJ, 
SP); South (PR, RS, SC)

Caatinga, Cerrado, 
Atlantic rainforest

Anadenanthera A. colubrina var. cebil 
(Griseb.) Altschul

Northeast (BA, CE, PB, PE, 
PI, RN, SE); Midwest (DF, 
GO, MS, MT); 
Southeast (MG)

Caatinga, Cerrado, 
Atlantic rainforest

A. colubrina (Vell.) 
Brenan var. colubrina

Northeast (BA); Southeast 
(MG, RJ, SP); South (PR)

Caatinga, Cerrado, 
Atlantic rainforest

A. peregrina (L.) Speg. 
var. peregrina

North (AM, PA, RR); Midwest 
(DF, GO, MS); Southeast 
(MG)

Amazon, Cerrado

A. peregrina var. 
falcata (Benth.) 
Altschul

Northeast (BA, PB); Midwest 
(MS, MT); Southeast (MG, 
RJ, SP); South (PR)

Caatinga, Cerrado, 
Atlantic rainforest

Mimosa M. scabrella Benth. Southeast (MG, RJ, SP); South 
(PR, RS, SC)

Atlantic rainforest

M. caesalpiniaefolia 
Benth.

North (AM, PA, RO); 
Northeast (AL, BA, CE, MA, 
PB, PE, PI, RN); Midwest 
(DF, GO, MS); Southeast (ES, 
MG, RJ, SP); South (PR, SC)

Amazon, Caatinga, 
Cerrado, Atlantic 
rainforest

aBrazilian states abbreviations: AC Acre, AL Alagoas, AM Amazonas, AP Amapá, BA Bahia, CE 
Ceará, DF Distrito Federal, ES Espírito Santo, GO Goiás, MA Maranhão, MG Minas Gerais, MS 
Mato Grosso do Sul, MT Mato Grosso, PA Pará, PB Paraíba, PE Pernambuco, PI Piauí, PR Paraná, 
RJ Rio de Janeiro, RN Rio Grande do Norte, RO Rondônia, RR Roraima, RS Rio Grande do Sul, 
SC Santa Catarina, SP São Paulo, SE Sergipe
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There are several species of Inga in the Brazilian flora that are generally adapted to 
hot and humid climates. Many of them are responsive to pruning in the aerial part, 
where all green biomass generated can be enclosed along the planting lines of 
Eucalyptus spp. The trees of Inga spp. produce lightwood that can be used for coin-
age and energy. The fruits are edible and can be commercially exploited for the 
regional markets. Similarly, the genus Erythrina also has trees with light- and soft-
wood, used mainly for crates, furniture linings, shoes, and toys.

Mimosa has smaller trees (varying from 5 to 15 m) distributed in several biomes. 
M. scabrella, for example, is a species found in cold places or altitudes in the south 
and southeast of Brazil. The wood from this genus has an average density of 
0.67 g cm−3, and is widely used in interior finishes, in the manufacture of plywood 
and packaging and for energy. M. caesalpiniaefolia however adapts well to warm, 
dry, or humid climates. In the Brazilian Northeast, it is commonly cultivated. It is a 
spiny tree, even though with non-spiny variants, that produces multiple stems, 
requiring significant maintenance. Some of the tree characteristics are helpful, as 
living fences. The wood is suitable for firewood, charcoal, cable tools, and external 
uses such as wood posts. Its wood is long lasting under external conditions, even 
without chemical treatment.

6.7.2  Timber Species

Among the trees of this group, we highlight the following genera: Anadenanthera, 
Bowdichia, Centrolobium, Dalbergia, Hymenolobium, Plathymenia, and Tachigali 
(Table 6.4).

Some species of Anadenanthera are known as “angicos” in Brazil. These are 
fast-growing plants and can be found in several Brazilian regions. A. colubrina has 
heavy woods (density ranging from 0.80 to 1.00  g  cm−3) suitable for building 
(indoor), planks, packaging, firewood, and charcoal. A. peregrina has a dense wood 
(0.70 to 0.97 g cm−3) and is suitable for the manufacture of pieces of rafts, frames, 
roof slats, rural constructions, and outdoor construction materials such as sleepers, 
stakes, fence posts, and posts. In addition to the wood uses, the mixed plantations of 
Anadenanthera with Eucalyptus offer honey from the flowers.

Species of the genus Bowdichia are popularly known as “sucupira” in Brazil. 
B. nitida is an Amazonian species with the potential to reach heights of up to 35 m 
in natural conditions. The most common uses include the timber for making furni-
ture, decorative laminates, bridges, and civil and naval constructions (Souza et al. 
1997). The wood is very dense (exceeding 0.96 g cm−3) and dark brown in color. 
B. virgilioides is distributed in the different Brazilian biomes and generally reaches 
heights of about 20 m. The wood is of high density (0.91 g cm−3), is long-lasting, 
and is used in construction (outdoor areas) and furniture.

The genus Centrolobium has some of the important timber species such as 
C. tomentosum, C. robustum, and C. paraense, known in Brazil as “putumuju” or 
“araribá.” The woods of these species are heavy, dense (over 0.75 g cm−3), and easy 
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to work. The wood colors range from brown to yellow, with veins or orange spots. 
The wood is employed typically in luxury carpentry and fine furniture, but it is also 
used in civil and naval constructions, and in hydraulic work.

Dalbergia nigra, known as “jacarandá-da-Bahia,” produces one of the most 
beautiful and premium woods of the Atlantic rainforest. Consequently, it happens to 
be one of the threatened species facing extinction in the Brazilian forests. In Brazil, 

Table 6.4 Timber species legumes with late rotations of Brazilian flora suggested for mixed 
plantations with Eucalyptus spp.

Genus Species
Geographic distribution 
(Brazilian statesa)

Phytogeographical 
domains (Brazilian 
biomes)

Plathymenia P. reticulata 
Benth.

North (PA); Northeast (BA, CE, 
MA, PI); Midwest (DF, GO, MS, 
MT); Southeast (ES, MG, RJ, 
SP); South (PR)

Amazon, Caatinga, 
Cerrado, Atlantic 
rainforest

Dalbergia D. nigra (Vell.) 
Allemãoex Benth.

Northeast (AL, BA, PB, PE, SE); 
Southeast (ES, MG, RJ, SP); 
South (PR)

Atlantic rainforest

Tachigali T. vulgaris 
L. G. Silva & 
H. C. Lima

North (AM, PA, TO); Northeast 
(BA, CE, MA, PI); Midwest (DF, 
GO, MS, MT); Southeast (MG, 
SP)

Amazon, Caatinga, 
Cerrado

Centrolobium C. robustum 
(Vell.) Mart. ex 
Benth.

Northeast (BA); Southeast (ES, 
MG, RJ, SP)

Atlantic rainforest

C. tomentosum 
Guillem. ex 
Benth.

Northeast (BA); Midwest (DF, 
GO); Southeast (ES, MG, RJ, 
SP); South (PR)

Caatinga, Cerrado, 
Atlantic rainforest

C. paraense Tul. North (RR) Amazon
Hymenolobium H. modestum 

Ducke
North (AM, PA) Amazon

H. petraeum 
Ducke

North (AM, AP, PA); Northeast 
(MA)

Amazon

H. excelsum 
Ducke

North (AM, PA) Amazon

Bowdichia B. virgilioides 
Kunth

North (AM, AP, PA, RO, RR, 
TO); Northeast (AL, BA, CE, 
MA, PB, PE, PI, RN, SE); 
Midwest (DF, GO, MS, MT); 
Southeast (ES, MG, SP)South 
(PR)

Amazon, Caatinga, 
Cerrado, Atlantic 
rainforest, Pantanal

B. nitida Spruce 
ex Benth.

North (AC, AM, AP, PA, RO, 
RR)

Amazon

aBrazilian states abbreviations: AC Acre, AL Alagoas, AM Amazonas, AP Amapá, BA Bahia, CE 
Ceará, DF Distrito Federal, ES Espírito Santo, GO Goiás, MA Maranhão, MG Minas Gerais, MS 
Mato Grosso do Sul, MT Mato Grosso, PA Pará, PB Paraíba, PE Pernambuco, PI Piauí, PR Paraná, 
RJ Rio de Janeiro, RN Rio Grande do Norte, RO Rondônia, RR Roraima, RS Rio Grande do Sul, 
SC Santa Catarina, SP São Paulo, SE Sergipe, TO Tocantins
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there are other timber species of the same genus, for example, D. spruceana, which 
is found in the Amazon. These species produce heavy (ranging from 0.80 to 
1.00 g cm−3), smooth, fine-textured, natural-toned, dark-colored (sometimes blasted) 
wood that offers an excellent finish to luxury furniture and interior decoration. It is 
one of the well-known Brazilian woods and used in the manufacture of musical 
instruments (piano, violin, and others).

Species of the genus Hymenolobium are known commercially as  “angelim”, 
although this vernacular name has also been attributed to other Amazonian legume 
tree species, such as Dinizia excelsa Ducke (“angelim-vermelho, angelim pedra”), 
Vatairea paraensis Ducke, Vatairea sericea (Ducke) Ducke, Vataireopsis speciosa 
Ducke (“angelim-amargoso”), and Pithecellobium racemosum (Ducke) Killip 
(angelim-rajado). However, only Hymenolobium and Pithecellobium species are N2 
fixing. Some Hymenolobium species reach heights up to 40 to 50  m and 80 to 
100 cm of diameter at breast height (DBH) in their natural habitats, with rectilinear 
and cylindrical shafts up to 25 m in length. The wood has a reddish-brown core, 
with darker brown spots due to oil-resin exudation and pale-brown sapwood. The 
wood is of medium to high density (0.71 g cm−3), with easy workability, and offers 
a good finish. It is currently one of the largest woods used in the Brazilian domestic 
market, and commonly used in the manufacture of furniture and civil construction 
(beams, rafters, frames, linings, and others).

Plathymenia foliolosa, popularly known as “vinhático,” is widely distributed in 
Brazil. The vinhático trees reach a height between 15–30 m and 40–70 cm of DBH 
under natural conditions. A striking feature of the adult trees is that the bark emerges 
from the trunk as large plaques. The wood is light (density of 0.50 g cm−3) and has 
easy workability and longer durability. The color of the wood ranges from yellow- 
gold to yellow-brown, and is therefore commonly used in luxury articles, furniture 
and civil construction (decorative interior panels), and internal ship finishing.

Tachigali vulgaris, known as “tachi-branco or tachi-dos-campos,” has been 
widely cultivated for over two decades in monoculture stands in northern Brazil 
and has shown good silvicultural potential. Castro et al. (1990) found annual mean 
increments (AMI) in height, DBH, and volume of 2.2 m year −1, 2.9 cm year−1, and 
9.2  m3  year−1, respectively, when evaluating 3.5-year-old monocultures, estab-
lished with a spacing of 3 m × 3 m. Narducci (2014) found AMI of 2.53 m year−1 
and height of 2.05 cm year−1 at DBH in 7.5-year-old monocultures planted with a 
spacing of 4  m  ×  4  m. T. vulgaris presents a medium to high wood density 
(0.60 g cm−3 to 0.74 g cm−3) which can be suitable for the production of sawwood 
and roundwood, especially posts, beams, and civil construction, and for energy 
purposes. It is considered to be moderately dense wood (0.65 g cm−3 to 0.81 g cm−3) 
(Carvalho 2005).
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6.7.3  Other Introduced-Potential Species (Trees and Shrubs)

In Brazil, some legume trees were introduced and have been cultivated/domesti-
cated by farmers and foresters. Such species could also be tested in different 
arrangements of mixed-species plantations with Eucalyptus and/or other native spe-
cies, including the cultivation of shrubby legumes for green manure production. All 
these species are listed in Table 6.5.

6.8  Final Considerations

In recent years, studies on nitrogen-fixing tree species have been intensified, includ-
ing in mixed-forest plantations. The ability to fix nitrogen and accumulate large 
amounts of N as part of their biomass confers adaptive characteristics to the legumes 
that excel over other species. There is a large diversity of legume trees, such as the 
early and fast growers, and some which are slow growers but produce better qual-
ity timber.

Most studies on mixed-species plantations seem to be focused on Acacia and 
Eucalyptus. From these studies, many technical recommendations are readily avail-
able for the productive sector, although its large-scale use is challenging. A. man-
gium and A. mearnsii seem to be the main N2-fixing species studied (Forrester et al. 
2005; Bouillet et  al. 2013). These species have shown great adaptation to South 
American edaphoclimatic conditions and other tropical and subtropical countries. 
Furthermore, both species have been widely cultivated in their native regions (i.e., 
Southeast Asia and Oceania). This is due to the multiple wood uses, which can be 
applied to the production of cellulosic pulp, firewood, and charcoal. In Indonesia 
and Vietnam, the branches and dead leaves are used as fuel and the leaves as fodder 
for cattle due to their high protein content (Krisnawati et  al. 2011). Some non- 
timber uses still include the production of honey (due to apiculture flowers and the 
presence of extrafloral nectaries) (Tonini et al. 2010), glue, and tannin extraction 
from the bark (mainly for A. mearnsii). The barks of A. mangium additionally pro-
vide a good substrate for edible mushrooms (Lim et al. 2011).

However, in Brazil, A. mangium behaves as a aggressive and invasive species, 
which in part seems to be due to its broad N2-fixing capability even in marginal soils 
with low nutrients (Souza et al. 2018; Le Maitre et al. (2011) Delnatte and Meyer 
2012, Aguiar et al. 2014, Morais and Montagner 2015, see Chap. 11). Its capacity to 
absorb P and the highly efficient nutrient recycling within the plants make it a strong 
competitor for this element. Therefore, silvicultural programs must consider the 
phosphate fertilization management in successive rotations that include these acacia 
species.

In this context, we stimulate the test with native legumes from Brazil and in neo-
tropical region, in general, in order to generate information on optimal growth con-
ditions of these legumes. In Brazil, despite the high diversity of woody species, 
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Table 6.5 Other introduced-potential species (trees and shrubs) with potential to use in forest 
planting

Genera Species Origin Habit

Potential 
invasion 
risk 
reported in 
Brazila Uses

Acacia A. auriculiformis Ex 
Benth.

Southeastern 
Asia, Australia, 
Papua New 
Guinea

Woody YES+ Fertilizer/
timber

A. mangium Willd. Indonesia, 
Australia, 
Papua New 
Guinea

Woody Yes+ Fertilizer/
timber

A. mearnsii Willd. Australia, 
Papua New 
Guinea, 
Tasmania

Woody Yes Fertilizer/
timber

Acaciella A. angustissima (Mill.) 
Kuntze

Central 
America, 
Colombia

Woody Yes Fertilizer

Albizia A. lebbeck (L.) Benth. Southern Asia, 
South Africa, 
Australia

Woody Yes+ Fertilizer/
timber

Cajanus C. cajan (L.) Millsp. Probably from 
India

Shrubby No Fertilizer

Crotalaria C. grahamiana Wight & 
Arn.

Probably from 
India

Shrubby No Fertilizer

C. juncea L. Asia Shrubby No Fertilizer
C. spectabilis Roth Asia Shrubby No Fertilizer

Falcataria F. moluccana (Miq.) 
Barneby and Grimes

Southeastern 
Asia, Papua 
New Guinea

Woody No Fertilizer

Gliricidia G. sepium (Jacq.) Steud. Central 
America

Shrubby/
woody

No Fertilizer

Leucaena L. leucocephala (Roxb.) 
Benth.

Central 
America

Woody Yes+ Fertilizer

Pithecellobium P. dulce (Roxb.) Benth. Mexico, 
Central 
America and 
northern of 
South America

Woody Yes Fertilizer

Pseudosamanea P. guachapele (Kunth) 
Harms

Central 
America, 
Colombia, 
Ecuador, Peru, 
Venezuela

Woody Yes+ Fertilizer

(continued)
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there are few long-term experiments on silviculture and management of native spe-
cies under mixed plantations. One of the pioneering works was conducted by Dr. 
Renato de Jesus and his collaborators at the Reserva Natural Vale (Linhares, ES, 
Brazil) since the 1970s (Rolim and Piotto 2018). In general, results have shown that 
many native species (including N2-fixing trees) present great potential for reforesta-
tion and agroforestry systems, increasing the supply of high-quality timber and 
reducing the pressure on remnants of the Atlantic Forest. Clearly, several barriers 
must be overcome because many of the native species mentioned above require 
further characterization and knowledge for their domestication, especially for peo-
ple relying on timber for their livelihood. Other barriers include the identification of 
species adapted to the different Brazilian edaphoclimatic conditions, responses to 
silvicultural treatments (i.e., thinning or pruning regimes), and need to ensure ade-
quate seed availability.

As for the benefits of BNF, it can be a major factor to enhance the productivity 
and sustainability of a forest plantation. What we still need is the increased adoption 
of inoculation of legume seeds during the seedling production and transplanting 
stages. Selecting the appropriate strain and inoculating during these two stages have 
been improving the symbiosis.

It is recommended that the species discussed in this chapter be prioritized in 
future studies of Eucalyptus plantations mixed with N2-fixing legumes. At the time 
of species selection, the farmer should opt for the availability of seeds and seedlings 
in the region, as well as check for compatibility to the local climate.

This is an activity involving multilocation field trials and selection of genetically 
superior material with the desired phenotype suitable for forest stands and for tim-
ber yield; particularly, the shape and size of the trunk may be key considerations. 
Besides, additional studies are needed to understand the behavior and interaction of 
these species in mixed plantations with Eucalyptus spp. and others non-N2-fixing 
species in diverse Brazilian soil and climate conditions. A series of experiments, 
collaborations by different institutions, and participation of forestry experts from 
different regions would be immensely valuable.

Table 6.5 (continued)

Genera Species Origin Habit

Potential 
invasion 
risk 
reported in 
Brazila Uses

Sesbania S. grandiflora (L.) Pers. From 
southeastern 
Asia to 
northern 
Australia

Woody No Fertilizer

S. sesban (L.) Merr. Africa, Asia Woody No Fertilizer
Tephrosia T. vogelii Hook. f. Tropical Africa Shrubby No Fertilizer

a“+” means high
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Chapter 7
Mycorrhiza in Mixed Plantations

Maiele Cintra Santana, Arthur Prudêncio de Araujo Pereira, 
Bruna Andréia de Bacco Lopes, Agnès Robin, Antonio Marcos Miranda Silva, 
and Elke Jurandy Bran Nogueira Cardoso 

7.1  Introduction

The mutualistic association between plant roots and soil fungi, which results in the 
enhancement of plant health, is denominated mycorrhiza. The term mycorrhiza 
originates from Greek and was proposed by the German botanist Albert Bernhard 
Frank, in 1885, in which “myco” means fungus and “rhiza” means root (Frank and 
Trappe 2005). In this interaction, the plants, through photosynthesis, provide energy 
and carbon for the survival and multiplication of symbiotic fungi (Smith and Read 
2008; van der Heijden et  al. 2015). In addition, the mycorrhizal hyphal system 
increases the area of root exploration in the soil, being important mainly for the 
efficient absorption of nutrients and water by plants (Cardoso et al. 2010; Smith and 
Smith 2011).
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Mycorrhizae are classified into seven types: arbuscular mycorrhiza (AM), 
 ectomycorrhiza (ECM), ericoid mycorrhiza and orchidoid mycorrhiza, ectendomy-
corrhiza, arbutoid mycorrhiza, and monotropoid mycorrhiza (Harley and Smith 
1983; Brundrett 2004). Most groups of vascular plants are able to form mycorrhizae, 
while only a few families, such as Brassicaceae, Cyperaceae, and Proteaceae, do not 
develop this association (Souza et al. 2006). Specifically, AM and ECM are the most 
studied in forests due to their important role in the maintenance of biodiversity and 
ecosystem productivity in agriculture and forestry (Berbara et al. 2006). Normally, 
most plants associate only with one mycorrhizal type; however studies regarding the 
occurrence and diversity of mycorrhizas in Brazil have shown that plants from the 
genera eucalyptus and acacia are able to form, either alone or simultaneously, both 
AM and ECM (Pereira 2015; Santana et al. 2016; Santana 2017). It has been assumed 
that mycorrhizal colonization is restricted to the topsoil, considered the arable part 
of the soil, and the mycorrhizal association in deeper regions of the soil profile is 
poorly understood. However, recent research has shown that this type of coloniza-
tion can occur in deep soil layers, down to 8 m, as will be detailed below (Pereira 
2015; Pereira et al. 2018; Robin, A. personal data).

Currently, in addition to conventional techniques, such as spore morphology and 
root colonization rates, molecular technology has been widely used for the taxo-
nomic classification and characterization of mycorrhizal communities (Anderson 
and Cairney 2004; Gasparotto et  al. 2010; Clasen et  al. 2018). Starting with the 
extraction of nucleic acids from the fungi, it is possible to get information regarding 
the structure of the fungal community, which can be accessed through analysis and 
construction of cloned libraries, sequencing, and fingerprinting techniques (Lambais 
et al. 2005; Gasparotto et al. 2010). These techniques have helped to understand the 
diversity and ecology of mycorrhizal fungi and their impact on plant development.

Thus, our main objective of this chapter is to describe succinctly the most impor-
tant structures of arbuscular mycorrhiza and ectomycorrhiza, and to detail these 
associations in pure and mixed eucalyptus and acacia plantations, highlighting the 
main results obtained in Brazil. We hope that this information contributes to the 
understanding of the interactions that occur in these planting systems, in order to 
assist forest production and environmental sustainability.

7.2  Arbuscular Mycorrhizal Fungi (AMF)

The arbuscular mycorrhizal symbioses result from the association of arbuscular 
mycorrhizal fungi (AMF), belonging to the phylum Glomeromycota with the root 
system of more than 90% of the vascular plants (Wang and Qiu 2006; Willis et al. 
2013). These fungi present an obligate biotrophic behavior because they depend on a 
living host to fulfill their biological cycle. In this association, the host plant supplies 
the fungus with more than 10% of the photosynthates produced and, in return, the 
plants are benefited by improving their nutritional status, especially in soils where the 
nutrient supply is low or unbalanced (Smith and Read 2008; Cardoso et al. 2010).

M. C. Santana et al.



139

An interesting point is that AMF are not very selective with regard to their host 
plants; that is, they show almost no host specificity (Santos et al. 2006; Smith and 
Read 2008). Nevertheless, there is a great variability in the outcome or in the 
 effectiveness of different host plant-AMF combinations, influenced by both the host 
plant and the fungus, and modulated by edaphoclimatic conditions, especially P 
(Cardoso et al. 2017). Thus, the growth-promoting effect of an AMF depends on the 
level of available P in the soil. The more P, the less will be the positive effect of 
AMF inoculation. This is doubtless one of the causes for AMF being extremely 
effective in P-depleted tropical soils, much more than in soils of greater fertility. On 
the other hand, even in the presence of mycorrhizas, a minimum of available phos-
phate in soils is required to result in satisfactory plant growth, and this minimum 
varies according to the plant, endophyte, and soil characteristics. Mycorrhizal endo-
phytes colonize the roots much more extensively under low-P conditions. As soil P 
concentrations increase, the root colonization decreases strongly (Nogueira and 
Cardoso 2006; Cardoso et al. 2017).

The formation of AMF mycorrhiza starts with the exchange of signals between 
the host plant and the AMF propagules, with the exudation by the roots of com-
pounds that stimulate the branching of the fungal hyphae. These hyphae, when they 
enter in contact with the surface of the roots, differentiate into appressoria, and 
penetrate through the epidermis (Lambais 2010). Within the roots, the hyphae may 
grow inter- and intracellularly in the cortical tissue, not ever invading the meriste-
matic region and vascular tissues. These hyphae differ in arbuscules or hyphal coils, 
structures that morphologically describe the two types of AM, Arum type and Paris 
type (Gallaud 1905). The Arum type is the most common, identified by the growth 
of inter- and intracellular hyphae and the production of intracellular arbuscules in 
the cells of the root cortex. The Paris type is defined by cell-to-cell growth of intra-
cellular hyphal coils (Smith and Smith 2011).

A prominent feature of the Arum-type morphology is the intercellular growth of 
hyphae in a longitudinal manner through the root. Arbuscules arise on short side 
branches from these intercellular hyphae, typically at right angles to the main root 
axis (Smith and Smith 2011). Coils of the Paris type of mycorrhiza often, but not 
invariably, become arbusculate; that is, they develop arbuscule branches from one 
or more loci on the coil (Gallaud 1905; Smith and Smith 2011; Dickson 2004; 
Requeña et al. 2007). Arbuscules and hyphal coils are extremely important struc-
tures in the process of exchanging metabolites and nutrients between the symbi-
onts, but the mechanisms controlling their development and functioning are little 
known (Lambais 2010).

Other characteristic components of some AM are vesicles, lipid-rich structures 
whose function is a nutrient reserve (Moreira and Siqueira 2006), but they do not 
occur in all AMF species. In AMF genera as Gigaspora and Scutellospora, that do 
not present such structures, normally one can find extraradical organelles with an 
equivalent function, called secondary cells. Besides, AMF produce extraradical 
 fungal spores present in the soil and, in some cases, in the roots (Smith and Read 
2008). AMF spores vary in size from 22 to 1050 μm (Stürmer 2012), and it is 
through their descriptions that the identification of AMF species traditionally is 
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 carried out (Schenck and Perez 1990; INVAM (http://invam.caf.wvu.edu)). The MA 
does not produce macroscopic morphological alterations in the host roots, so that it 
is  necessary to treat them by means of clarification and dyeing processes and to 
examine them under the microscope (Siqueira et al. 2002).

Another feature is the presence of a minimum number of spores in the substrate 
to result in root colonization, the infection potential. This potential likewise depends 
on the biotic and abiotic conditions, which modulate the colonization intensity 
(Santana 2017; Steffen et al. 2010; Moreira and Siqueira 2006; Smith and Read 2008).

7.3  Ectomycorrhizal Fungi (ECMF)

Ectomycorrhiza is a symbiotic relationship that occurs between fungi belonging to 
the phyla Basidiomycota and Ascomycota (Clasen et al. 2018), with roots of various 
species of Gymnosperms and Angiosperms (Brundrett 1991). We estimate that there 
are more than 5000 fungal species that form ECM, predominantly with tree species 
of temperate climatic regions (Futai et al. 2008). In tropical regions, most tree spe-
cies form AM; however, the study of ECM in these regions is driven by the exten-
sive use of exotic species in reforestation programs such as Pinus, Eucalyptus, and 
Acacia (Kasuya et al. 2010).

In ECM symbioses, fungi also use energetic organic compounds, and in turn 
promote the mineralization of organic forms of the nutrients and solubilize minerals 
through the production of organic acids, making these elements available for absorp-
tion (Shah et  al. 2016). The formation of ECM changes the environment of the 
 rhizosphere, which becomes unfavorable for most pathogens of the root system 
(Garbaye 1991). ECM symbiosis is characterized by presenting a fungal mantle, a 
hyphal layer formed externally to the root epidermis, and a Hartig net, with growth 
of the hyphae in the intercellular spaces of the root cortex (Agerer 1995; Vesk et al. 
2000; Brundrett 2002). Extending from the mantle there are fungal rhizomorphs, 
similar to plant roots, essential for the connection of the fungus with the soil to 
produce fruiting bodies (Smith and Read 2010).

The fungal mantle helps in the transfer of nutrients to the plants and acts as a 
mechanism of protection against pathogens (Peterson and Bonfante 1994). In the 
mantle, there also occurs the synthesis of reserve compounds such as glycogen, poly-
phosphates, and proteins (Peterson and Bonfante 1994). Starting at the rhizomorphs 
the hyphae extend outwardly in all directions through the soil, forming a dense net-
work connecting different plants, conducive to the exchange of organic and inorganic 
nutrients. It also helps the roots to assess an increased soil volume for water and 
nutrients (Brundrett 2002; Shah et al. 2016). The Hartig net growing in between the 
cortex cells has a great contact interface with the plant and is the site of nutrient 
exchange between the symbionts. In angiosperms, the Hartig net is generally limited 
to only a few more external plant cell layers in the cortex, whereas in gymnosperms 
it may comprise the intercellular spaces of all cell layers, though never surpassing the 
outer limit of the cortex imposed by the root endodermis (Kasuya et al. 2010).
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Unlike AMF, ECMF are not obligate biotrophs and can be cultivated on some 
culture media. ECM modifies the morphology of the plant roots and may inhibit the 
formation of root hairs, which are replaced by fungal hyphae (Kasuya et al. 2010). 
The ECM roots can take different forms, as nodular, pyramidal, bifurcated, and 
coralloid, among others, with a highly variable color spectrum of the fungal myce-
lium (black, red, yellow, brown, white, etc.), which will equally define the external 
coloration of the root mantle (Agerer 2001; Tedersoo and Brundrett 2017). Variations 
in mantle structure, surface ornamentations, staining, and presence of rhizomorphs 
are used, along with chemical and immunological tests, to characterize the ECM 
and for identification of the associated fungus (Clasen et al. 2018), although nowa-
days there is opening up of the opportunity of molecular technology for the taxo-
nomic classification of these fungi (Suz et al. 2008).

7.4  AM and ECM Symbiosis in Pure and Mixed Plantation 
of Eucalyptus sp. and Acacia sp.

The occurrence of mycorrhiza in eucalyptus species was mentioned for the first time 
in 1917 by van der Bijl (Barros et al. 1978), but the interest in this association began 
to gain prominence with the first attempts to classify and describe the structure of 
mycorrhiza in eucalyptus by Chilvers and Pryor (1965). The work of these research-
ers complemented by others, such as Levisohn (1958), shows that apparently all 
species of eucalyptus are able to form mycorrhiza. From this period on, the study of 
the effect of mycorrhizal fungi on eucalyptus growth and survival has been addressed 
in the literature. Researchers have shown that symbiosis provides a great success of 
these plants in forest plantations (Chen et al. 2007, 2014; Futai et al. 2008; Souza 
et al. 2008; Chiquete 2011; Bini et al. 2018).

Similar to eucalyptus, acacia plants also associate symbiotically with mycorrhizal 
fungi (Pereira 2015; Santana 2017). Besides that, acacia species with few exceptions 
nodulate and fix nitrogen with root nodule bacteria in the range of 20 to 
300 kg ha−1 year−1 (Dommergues 1987). Mycorrhiza enhances nutrient absorption, 
particularly P, and water uptake by acacia species and improves their nitrogen fixation, 
which enables them to establish in marginalized lands in the tropics (Requeña et al. 
2001). These associations contribute to their tolerance to drought, and induce resis-
tance against soil pathogens (Smith and Read 2008). These associations, in general, 
enable many of the acacia species to perform well in degraded soils with high acidity, 
high salinity, high aluminum saturation, and low soil fertility (Craig et al. 1991).

As we have seen, the roots of Eucalyptus and Acacia can be colonized by 
mycorrhizal fungi and there have been reports that these plants can be colonized 
by both types of mycorrhiza, AM or ECM either alone or together. Pereira (2015) 
and Santana (2017), through morphological characterization, reported coloniza-
tion of AM and ECM in both eucalyptus and acacia roots in pure and mixed planta-
tions in Brazil. While eucalyptus and acacia roots can establish symbioses with 
both AMF and ECM fungi, several studies show a succession in the establishment 
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of the two fungal communities. Symbiosis with AMF fungi is predominantly pres-
ent when trees are young, followed by symbiosis with ECM fungal communities 
(Bellei et  al. 1992; Oliveira et  al. 1997). The two symbioses can, however, be 
observed at the same time. This ability to form both types of symbiosis is very 
interesting from a nutrient acquisition point of view, with the AMF symbiosis 
being especially recognized for their assimilation of P, and the ECM symbiosis 
may play a more important role in the assimilation of N (Read 1991).

Bini et al. (2018) studied the root colonization rates by AMF in Eucalyptus gran-
dis and Acacia mangium, in monocultures and consortia, at 7, 14, and 20 months 
after planting, and found that there was a medium-to-high AMF colonization rate 
(above 34%), especially at 14 months. In monocultures of A. mangium (A) there 
were the highest colonization rates in all sampling times, although at 14 and 
20 months there was no significant difference between monocultures and consortia 
(A. mangium + E. grandis (A + E) and E. grandis + A. mangium (E + A)). In pure 
E. grandis (E) plantations, there was a lower AMF colonization rate. When evaluat-
ing the same treatments, however, at 48 months, Pereira et al. (2018) found lower 
AMF colonization rates, with mean percentages varying between close to 0 and 
10%. In A. mangium, at this time, there was a still greater decline in AMF root colo-
nization although high percentages of ECM were observed. At 48 months, however, 
the root colonization of Acacia by AMF regressed strongly, while ECM showed 
high colonization rates (Table 7.1).

In a different field experiment, similar to that of Bini (2012) and Pereira (2015), 
Santana (2017) showed that, at 24 months, the ECMF colonization rate is higher 
(49% in the 0–10 cm layer of soil and 12% in the 20–50 cm) when compared to the 
colonization rate by AMF (30% in the 0–10 cm layer and 10% in the 50–100 cm 
layer) (Fig. 7.1). These data are similar to those reported by Pereira (2015), who 
found higher ECM values in relation to AMF in all evaluated plants. This difference 
in symbiotic fungal communities according to the age of eucalyptus and acacia 
plantations could have consequences also in the carbon cycle. Indeed, recent studies 
have shown a difference in rate of decomposition between tree species associated 
with AMF fungi or ECM fungi, with the litter of the AMF trees decomposing faster 
(Midgley et al. 2015; Taylor et al. 2016). Variations of exudation rates have been 
detected, and trees associated with ECM exude more carbon than AMF trees (Yin 

Table 7.1 Percent root colonization by AMF or ECMF in pure or mixed plantations of Eucalyptus 
grandis (E) and Acacia mangium (A) at different times after transplanting of seedlings

Treatments

Months after transplantation
AMF ECM
7 14 20 48 48

A. mangium (A) 51 aA 53 aA 45 aB 7.1 bC 33.3 bB
E. grandis (E) 35 cB 45 bA 38 bB 9.3 aC 52.3 aA
A. mangium in consortium (A + E) 42 bB 52 aA 44 aB 2.0 cC 34.6 bB
E. grandis  in consortium (E + A) 43 bB 50 abA 42 abB 0.7 dC 33.0 bB

Here we summarize the data obtained by Bini (2012) and Pereira (2015)
Adapted from Bini (2012) and Pereira (2015), cited by Cardoso et al. (2017)
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et al. 2014; Liese et al. 2018). The differences in traits between AMF and ECM 
fungi (such as the amount of rhizomorphs and the presence of pigments) (Aguilar- 
Trigueros et al. 2014; Churchland and Grayston 2014) can have important impacts 
on soil carbon storage and a better understanding of the impact of associations 
between the two mycorrhizal communities is an important issue.

Despite the fact that AMF colonization was found in eucalyptus roots planted in 
a consortium with acacia, Santana (2017) did not find arbuscular mycorrhiza in 
Acacia mangium plants in this forest system (neither in pure nor in mixed stands 
with eucalyptus) (Figs. 7.1 and 7.4c). A. mangium, besides forming symbiosis with 
AMF, also associates symbiotically with nitrogen-fixing bacteria (NFB), forming a 
tripartite symbiosis: AMF–plant–NFB (Carvalho and Moreira 2010). As both 
microorganisms of this symbiosis depend on the C sources offered by the plant for 
their survival, the costs of maintaining the tripartite symbiosis for the plant are 
 considerable (Mortimer et al. 2008). In this way, the plant needs mechanisms that 
allow it to control both symbioses according to its needs. In a study with plants 
inoculated with AMF or NFB, in which inoculation with the second symbiont was 
done 20 days after inoculation with the first symbiont, it was possible to observe 
that the pre- establishment of NFB suppressed subsequent formation of AMF and 
vice versa (Bethlenfalvay et al. 1985).

In the experiment performed by Santana (2017), we reported the formation of 
NFB nodules formed, in addition to ECM in roots of A. mangium (Fig.  7.2). 
Furthermore, it was found, through chemical and multivariate analyses, that N and 
P concentrations in the root correlated negatively with AMF root colonization, and 
acacia plants presented high mineral nutrient concentrations when compared with 
Eucalyptus roots. These data may be the explanation for the absence of mycorrhiza, 
probably indicating that there was no need for AMF colonization at this stage of 
acacia development. However, when in optimal conditions the tripartite leguminous 
symbiosis corresponds to a maximal return in growth and productivity of the plant, 
as occurred in an experiment with soybeans as test plants (Cardoso 1985), which 

Fig. 7.1 Colonization by AMF in a mixed plantation (E+A) (a) and ECMF (b) in Eucalyptus 
growing in consortium (CE), Acacia in consortium (CA), Eucalyptus (E) and Acacia (A) in mono-
culture along a soil depth gradient (cm) (Santana 2017)
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corroborated the results of a previous study with a similar outline of Bethlenfalvay 
et al. (1985).

Analyzing the total number of AMF spores and colonization of A. mangium 
roots, Santana (2017) observed that the presence of spores in the soil did not 
 correlate with the intensity of root colonization. This result is in agreement with the 
data of Steffen et al. (2010), who observed that the number of spores in the substrate 
did not correspond to the degree of colonization of E. grandis roots. According to 
Moreira and Siqueira (2006) and Smith and Read (2008), the presence of mycor-
rhizal spores in the soil or substrate will result in nutritional and adaptive benefits to 
the host plant, if the biotic and abiotic conditions of the site allow colonization. 
Through the morphological analysis of AMF spores, Santana (2017) found the 
fungi Glomus macrocarpum, Acaulospora mellea, Racocetra sp., and Gigaspora 
sp. (Fig. 7.3). These fungi were considered of common occurrence in areas with 
eucalyptus plantations (Gomes and Trufem 1998) and A. mangium (Caproni et al. 
2005). Cavagnaro et al. (2007) found, in an experiment with plants of Lycopersicon 
esculentum, that different species of the genus Glomus can form either Arum- or 
Paris-type mycorrhiza, and reported that the genera Gigaspora and Scutellospora 
formed mycorrhiza of the Paris type in this experiment.

Santana (2017) demonstrated the formation of Paris-type mycorrhizae in roots of 
E. grandis in monoculture or in a consortium with A. mangium (Fig. 7.4). Complete 
absence of arbuscules or of coils in eucalyptus roots was also reported by Campos 
et al. (2011) in another survey, while Pereira et al. (2018) reported the presence of 
Paris-type mycorrhizae in eucalyptus roots. However, Malajczuk et  al. (1981) 
observed the presence of both types of mycorrhizae, with hyphal coils and arbus-
cules in another plantation, in Eucalyptus diversicolor and Eucalyptus marginata. 
Since there is still a great knowledge gap regarding the functional aspects involved 
in both types, we suggest that, in future studies, the morphotype of the fungus and 
eventual successional stages should also be reported and not just the presence or 
absence of the symbiosis (Berbara et al. 2006).

Fig. 7.2 Root colonization by ectomycorrhizal fungi (A) ECM associated with roots of Acacia 
mangium involving the fungus Cenococcum sp., (B) ECM associated with Eucalyptus grandis 
probably involving Pisolithus sp. fungi. Photo A taken by photo camera and photo B taken by 
binocular stereoscopic microscope with 40-fold magnification. NOD Nitrogen-fixing bacterial 
nodule (Santana, M.C., personal data)
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Many ECM fungi have a broad host range while others are more specific and 
colonize certain hosts or host genera (Molina et al. 1992). For AM fungi, so far no 
convincing evidence was presented demonstrating that these are host specific, 
although host preferences and host selectivity have been widely reported (Helgason 
et al. 1998; Vandenkoornhuyse et al. 2003; Torrecillas et al. 2012). A high- throughput 
sequencing study (using the technology 454) carried out on pure eucalyptus or 
 acacia plantations in the Congo (Pointe-Noire) on the AMF fungi community 
revealed the predominant presence of the genus Rhizophagus associated with the 

Fig. 7.4 Arbuscular mycorrhizal colonization. In a–c there are hyphae (h), vesicles (v), and spores 
(e) although no arbuscules. In d–f the presence of hyphal coils (hc), g shows a root without colo-
nization. A and G with 10-fold magnification; b–f with 40-fold magnification (optical microscope) 
(Santana 2017)

Fig. 7.3 Spores of arbuscular mycorrhizal fungi. (a) Gigaspora sp. spore found in a consortium 
of Eucalyptus and Acacia, in the 0–10 cm soil layer (20×). (b) Glomus macrocarpum spores, found 
in the same plantation, in the 10–20 cm soil layer (10×) (Photos: Denise de Lourdes C. Mescolotti 
(USP-ESALQ) Santana (2017))
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roots of acacia (approximately 80% of Rhizophagus sequences associated with 
 acacia roots against 18% of sequences associated with eucalyptus roots). In opposi-
tion, the genus Gigaspora was mainly associated with eucalyptus roots (approxi-
mately 60% of Gigaspora sequences associated with the roots of eucalyptus against 
8% of these sequences associated with acacia roots) (Robin A., personal data).

When the same ECM fungus colonizes the roots of both species, a different colo-
nization of root tissues was observed between the roots of Eucalyptus and Acacia. 
A study made in controlled conditions showed that the same strain of Pisolithus sp. 
45 could colonize both Eucalyptus and Acacia roots. However, interestingly, a 
microscopic cross section clearly showed a difference in colonization. Pisolithus 
penetrates only the first few layers of the epidermis of the eucalyptus roots whereas, 
for the acacia, the fungus reaches the endodermis (Fig. 7.5).

7.5  Mycorrhiza in Deep Soil Layers

Few studies were conducted on mycorrhizal fungi associated with roots in deep soil 
layers, despite the growing interest in studies of microbial communities in deep 
soils (Li et al. 2014; Gocke et al. 2017; Pereira et al. 2017; Zheng et al. 2017), with 
studies in mixed plantations being even rarer. A recent survey demonstrated the 
presence of AMF fungal spores in deep soil layers down to 8 m in pure and mixed 

Fig. 7.5 Colonization of E. grandis and A. mangium roots by the strain Pisolithus sp. 45, after 
90 days of inoculation. Microscopic images from the transversal root cuttings show the Hartig 
nets. For acacia roots, fungal cells appear in blue (Uvitex fluorescent dye to stain the intercellular 
cortex cell spaces). Photos: Yves Prin (Cirad, UMR LSTM, France) and Ranieri Ribeiro Paula 
(USP-ESALQ) (Robin A., personal data)
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Eucalyptus grandis and Acacia mangium plantations in Brazil (Pereira et al. 2018) 
and in the rhizosphere of Faidherbia albida in Senegal, where the AMF spores were 
detected as deep as at 34 m below soil level (Dalpé et al. 2000). Pereira et al. (2018) 
showed AMF root colonization of Eucalyptus and Acacia for the 0–100 cm soil with 
colonization rates between 6 and 25%; however they found only about 10% below 
1 m and 5% or 6% below 3 m. This weak AMF colonization may be partly due to 
the plants being already over 1 year of age, a period in which commonly the AMF 
are substituted gradually by ECMF in Eucalyptus. Nevertheless, these results 
 indicate that one should take into account mycorrhizal symbiosis in the deeper 
 layers of soil, and not only in the first 30 cm, as is most commonly done. The pres-
ence of ECMF propagules in deep soil has also been described (Santana et al. 2016), 
as well as the presence of typical ECM structures in Eucalyptus roots down to 6 m 
deep (Lambais et al. 2017).

The minirhizotron method is well suited for root observations and has already 
been used to study the dynamics of ECMF (McCormack et  al. 2017), but it has 
aroused some doubts about the method itself perhaps being the reason for this find-
ing on deep soil mycorrhization, due to contamination of deeper regions by surface 
soil. Recently, a new sampling method for deep soil layers was developed by 
 sampling fine roots and ECM root tips during the digging of pits, layer by layer, to 
avoid contaminations between two continuous layers. This research demonstrated 
for the first time the presence of already well-developed ECM symbioses on deep 
roots (Robin A. personal data). In this study, the authors showed the mycorrhizal 
presence of Pisolithus on eucalyptus at a depth of 4 m. Visual observations were 
confirmed by molecular sequencing. The diversity study (by ITS Illumina sequenc-
ing) showed a strong impact of the depth on the intraspecific diversity of the fungus 
Pisolithus, with the presence of a reservoir of biodiversity associated with the 
deeper roots. The observation of ectomycorrhizal Acacia roots (by Pisolithus or 
Scleroderma) down to 1 m deep (Santana 2017) highlights the importance of evalu-
ating deeper layers equally for acacia mycorrhizal colonization. The stratification 
between eucalyptus and acacia roots as a function of depth found in mixed planta-
tions (Laclau et  al. 2013; Germon et  al. 2018) possibly could detect deep root 
mycorrhization, perhaps with different mycorrhizal communities when evaluating 
pure or mixed plantations between these two tree species.

7.6  Understanding the Concept of Common Mycorrhizal 
Networks (CMN) in Mixed Plantations of Eucalyptus 
and Acacia: Prospects for Future Research

The concept of mycorrhizal networks, defined as a common mycorrhizal mycelium 
linking the roots of at least two plants (Simard et al. 2012), is perfectly applicable 
in mixed plantations of eucalyptus and acacia. Common mycorrhizal networks 
have been shown to facilitate the transfer of carbon (Simard et al. 1997), nitrogen 
(He et  al. 2009), and water (Egerton-Warburton et  al. 2007; Prieto et  al. 2016). 
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Concerning the nitrogen cycling by CMN, normally we find an overwhelming 
occurrence of the transfer of N compounds from the leguminous N-fixing tree to the 
non-fixing eucalyptus. This has also been studied for annual plants (Moyer-Henry 
et  al. 2006; Jalonen et  al. 2009), although nitrogen transfers were demonstrated 
between Casuarina cunninghamiana and Eucalyptus (He et al. 2005), highlighting 
its great value for eucalyptus, one of the most outstanding species in forestry world-
wide. Transfers through CMN between Acacia and Eucalyptus have been studied 
involving AMF (Meng et al. 2015) or ECMF (He et al. 2005). Many studies were 
conducted under controlled conditions, for example in the greenhouse, while in situ 
in the field direct demonstrations of transfer are more difficult. An in situ study 
using fungicides showed 15N transfer via mycorrhizal networks (Montesinos- 
Navarro et al. 2016). In eucalyptus and acacia plantations, N transfer was demon-
strated in situ (Paula et al. 2015). An interesting experiment with a leguminous tree 
from the Mimosa group in the Atlantic Forest, nodulated by the beta-Rhizobium 
Burkholderia and inoculated by AMF, also demonstrated the synergic action of 
these two agents together (Lammel et al. 2015).

Mendes Filho et al. (2010) set up a pot experiment in a greenhouse, with exotic and 
native leguminous trees using cassiterite mine spoil as substrate. The substrate was 
very poor in microorganisms and even poorer in energetic organic matter, since it 
showed an almost absence of respiration when tested using a direct soil respiration 
test, but still somewhat more when applying the glucose-induced respiratory test. To 
this substrate, distributed in 2 L pots, we applied two main treatments, with or without 
organic compost (OM), and all pots were inoculated with a Rhizobium or Burkholderia 
strain with specificity for the corresponding leguminous tree. Then, each one of those 
main treatments was subdivided into four sub-treatments, i.e., inoculation of AM 
fungi, fertilization with P, or application of both, besides a control without any further 
treatment, resulting in eight treatments altogether (AMF, P, AMF + P, and control 
(OM+) and AMF, P, AMF + P, and control (OM−)), with four replicates. Right after-
wards the seeds of the corresponding tree were planted in each pot.

After 1 month of growth under a constant watering regime, we took photos of the 
experiment, which demonstrate that some growth only occurred in the presence of 
compost. Acacia mangium (exotic) grew vigorously in AMF (OM+) and AMF + P 
(OM+) and showed a much poorer growth in control and P (OM+). In the treatments 
without compost (OM−) A. mangium showed only a little growth in the  sub- treatment 
AMF + P and still less in AMF. Mimosa caesalpiniaefolia (native tree) responded in 
a similar way, but a real satisfactorily growth pattern only appeared in AMF (OM+) 
and in AMF + P (OM+), with a little growth in P (OM+). The minimal growth in 
some other sub-treatments should be neglected because the seedlings will never 
develop satisfactorily (Fig. 7.6).

These results show that in a soil of low fertility, especially when highly eroded, 
decapitated, or containing residues of heavy metals, organic matter would be the 
most fundamental ingredient for the development of such trees, but we only detected 
a real adequate development when they also were provided with AMF. In the case 
of A. mangium, even when P was not given, the mycorrhiza alone scavenged all 
necessary P from the depleted substrate. Nevertheless, an incipient growth was 
observed when growing with compost and receiving P fertilization, as well as in the 
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substrate without compost, but when receiving P and AMF inoculation. The Mimosa, 
however, seems to be more sensitive to negative soil conditions, with real adequate 
development only in the presence of AMF + P or AMF (OM+). In the absence of 
mycorrhiza, but in the presence of P (OM+) growth was just incipient.

Obviously, trees of the family Fabaceae will only develop satisfactorily when 
 inoculated with the right rhizobia. Since this fact is well known already for a long 
time by microbiologists, we did not use rhizobial inoculation as a treatment. 
Instead, the adequate rhizobial strain was inoculated together with the seeds in 
each pot, since this is by far the most fundamental condition for legume growth, 
especially in poor  substrates. In this study, however, we proved that mycorrhizae 
are also an indispensable factor for the rhizobia, because they cannot nodulate 
plant seedlings in the absence of P. Yet OM acts simultaneously as a chemical, 
physical, and biological  factor of soil fertility. It acts as a chemical factor, contrib-
uting with some macro- and micronutrients for the plants and regulating the pH; 
as a physical factor, providing a more adequate structure of the substrate; and 
finally as a biological factor, furnishing the energetic substances necessary for the 
nutrition and multiplication of microorganisms, since these are also indispensable 
for soil and plant health, breaking down the complex molecules, and providing 
mineral nutrients for the plants.

Fig. 7.6 The legumes A. mangium (exotic) and M. caesalpiniaefolia (native), inoculated with the 
respective rhizobia, were planted on a very poor and exhausted mine spoil with or without organic 
compost (OM), AMF, P or both, and a control (Mendes-Filho et al. 2010; Cardoso and Andreote 
2016; Cardoso et al. 2017)
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7.7  Final Remarks

The study of mycorrhizal fungi in pure and mixed eucalyptus and acacia plantations 
is still incipient; however the results have been promising, especially for mixed 
plantations with both species. We have shown that the mycorrhizal root colonization 
of these plants differs when in intercropping. These effects are also dependent on 
several edaphic-climatic factors and can be affected by plant age, since their type 
and intensity are variable from site to site. Likewise, we have yet an important 
knowledge gap regarding the functional aspects involved in the mycorrhizal 
 symbiosis, mainly for nutrient transfer between trees. For example, although Paula 
et al. (2015) showed the N transfer from acacia to eucalyptus roots, it would be 
 difficult to guarantee its mediation through the mycorrhizal hyphal system, and the 
mechanisms remain to be studied to know if a part of this transfer could be due to 
mycorrhizal networks. For the future, we suggest a major focus on the fungus 
 morphotype analysis for ECM symbiosis, as well as on the eventual successional 
processes from AM to ECM in the later stages of forest plantations. We also need to 
go beyond diversity approaches and to study more the functional aspects of these 
symbioses, and not only taking into account the first few centimeters of soil, with 
researches in the total depth of the soil profile. Implementing a holistic view of the 
mycorrhizal community in pure and mixed Eucalyptus and Acacia plantation will 
help the producers to get a more effective and sustainable production, reducing 
agrochemicals and other external inputs.
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Chapter 8
Mesofauna and Macrofauna in Soil 
and Litter of Mixed Plantations

Maurício Rumenos Guidetti Zagatto, Luís Carlos Iuñes Oliveira Filho, 
Pâmela Niederauer Pompeo, Cintia Carla Niva, Dilmar Baretta, 
and Elke Jurandy Bran Nogueira Cardoso 

8.1  General Introduction

The soil fauna comprises the invertebrate community that lives permanently or at least 
in one of their development stages in soil or litter (Zagatto et al. 2017). These inverte-
brates may be classified according to the body diameter as microfauna, mesofauna, 
and macrofauna (Swift et al. 1979; Baretta et al. 2011). The soil microfauna comprises 
those invertebrates with body diameter smaller than 0.2 mm, while mesofauna lies 
between 0.2 and 2.0 mm, and macrofauna comprises the larger invertebrates with 
body diameter between 2 and 20 mm (Lavelle 1997; Oliveira Filho et al. 2018).

The soil macrofauna comprises the larger invertebrates, called “ecosystem engi-
neers,” since they affect the soil structure, building galleries and enlarging pores, as 
the earthworms and termites, while many of them mix organic matter with the min-
eral superficial layers of the soil profile. Still others move tons of soil while building 
their nests sometimes connected by kilometers of underground galleries, as ants and 
termites (Bardgett and Van der Putten 2014; Brown et al. 2015; Pereira et al.  2017b).

The soil mesofauna comprises mainly mites and springtails, besides several 
insects, myriapods, oligochaeta, crustacea, and others, which live mainly in the lit-
ter or on the soil surface. These small invertebrates actively participate in the initial 
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fragmentation of organic matter and, consequently, favor microbial decomposition, 
nutrient cycling, and soil aggregation (Barbercheck et al. 2009; Lavelle et al. 1997). 
They also may be fungivorous, vegetarian, coprofagous, predators, parasitic, etc.

Soil fauna abundance and diversity are modulated by vegetation, weather, mois-
ture, temperature, and agrochemical and fertilizer inputs, among other factors. 
These characteristics make them excellent bioindicators, since the presence or 
absence of several invertebrate groups and their quantity may reflect soil health or 
environmental degradation (Anderson 2009; Cardoso et al. 2013). The native eco-
systems present great diversity and low dominance and, consequently, higher resis-
tance and resilience than agricultural ecosystem (Zagatto et al. 2019b). In natural 
ecosystems, certain species present a greater tolerance to environmental stress and 
the higher species diversity in such ecosystems increases the functional redundancy 
(McCann 2000).

Due to the several functions performed by the invertebrates in soil, they are 
related to ecosystem processes and services as C sequestration, greenhouse gas 
mitigation, pest and disease control, and soil water storage. These aspects modify 
plant production, the habitat function of soil for other organisms, and the air and 
water flows in soil (Van Der Putten et al. 2004; Wagg et al. 2014; Creamer et al. 2016).

Eucalyptus cultivation is favored by tropical climate and this genus is planted in 
many regions of the world because of its rapid growth cycle and production of 
multipurpose wood (Ibá 2015). However, intensive cultivation leads to the deple-
tion of N and other soil nutrients, requiring a high input of mineral fertilizers to 
avoid a decrease in the production rates (Gonçalves et al. 2008). Thus, the consor-
tium of Eucalyptus with N-fixing trees allows for a decrease in fertilizer use, 
enriching the soil with N due to high biological nitrogen fixation (Forrester et al. 
2006; Laclau et al. 2008, Chap. 6). Recently, in Brazil, intercropped plantations of 
Eucalyptus grandis (Eucalyptus) and Acacia mangium (Acacia) demonstrated high 
sustainability in comparison with Eucalyptus monocultures, favoring the microbial 
community, especially the phylum Proteobacteria, which contains most species 
involved in biological nitrogen fixation, as Rhizobium with A. mangium (Pereira 
et al. 2017a).

Moreover, mixed plantations of E. grandis and A. mangium deposit great amounts 
of litter on the soil surface (Chap. 3), which may serve as habitat and food for 
microorganisms and soil fauna. The formation of a litter layer helps to avoid soil 
heating and soil erosion and consists of a great organic reservoir that releases sev-
eral nutrients to the soil solution, modulated mainly by weather, soil fauna, and 
microorganisms (Bachega et al. 2016).

Therefore, this chapter intends to clarify the effect of N-fixing tree introduction 
in Eucalyptus monocultures (especially of the mix E. grandis and A. mangium), on 
the soil faunal community. To our knowledge, there are no studies on soil and meso-
fauna in Brazil, especially not in mixed cultures of Eucalyptus and Acacia.
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8.2  Effect of Forest Plantations on Soil Macrofauna

In forest management, some specific practices can cause changes in soil invertebrate 
biodiversity and consequently in the ecosystem performance, because they partici-
pate in ecosystem processes at different scales, both temporal and spatial, including 
organic matter decomposition, regulation of soil and nutrient losses, or bioturbation. 
Different forest management systems influence the soil macrofauna, which is 
important to maintain soil properties, because they are responsible for the creation 
of biogenic structures that promote changes in soil physical characteristics, as well 
as the availability of resources to other organisms (Brown et al. 2015; Pereira et al. 
2015). Similarly, tree plantations may vary in structure and composition, and these 
variations may alter soil macrofauna communities (Warren and Zou 2002).

Forest and agricultural practices can have profound effects on population levels 
and species composition of various groups of organisms. Among the most affected 
by plantations of exotic species are insects such as beetles and ants, given their high 
sensitivity to changes in ecosystems (Aliaga et al. 2017). In this sense, many studies 
have evaluated these and other groups of soil macrofauna in different forest and 
agricultural land-use systems and demonstrated how land use and soil management 
impact these communities.

Warren and Zou (2002) evaluated the abundance and biomass of soil macroinver-
tebrates in Leucaena leucocephala, Casuarina equisetifolia, and E. robusta plants, 
being 9 years old, at a degraded site in Puerto Rico. The nutrient concentrations and 
the permanent litter stocks on the forest floor were also determined to examine the 
relationship between litter chemistry and soil macroinvertebrates. Leucaena planta-
tions had greater abundances and biomass of millipede species than Casuarina and 
Eucalyptus. The biomass of the earthworms did not differ between the plantings. 
Millipede biomass was highly correlated with the N concentration and C/N ratio of 
the litter. The results found by the authors suggest that plantations of tree species 
differ in their influence on soil macrofauna, and the biomass and abundance of soil 
fauna can be regulated through the careful selection of tree species for planting in 
degraded tropical lands.

Rosa et al. (2015), studying the Plateau region of Santa Catarina (Brazil), aimed 
to evaluate the effect of land-use systems on the distribution of soil macrofauna and 
its relationship with soil chemical and physical attributes. In that study, native for-
est, Eucalyptus plantation, and perennial pasture favored edaphic biodiversity and 
were considered more stable than the crop-livestock integration and no-tillage sys-
tems with greater anthropogenic intervention, which reduced the macrofauna groups 
of the soil. The authors collected the fauna using soil monoliths (area 0.25 m by 
0.25 m), which were excavated following the standard Tropical Soil Biology and 
Fertility (TSBF) sampling protocol (Anderson and Ingram 1993), using a sampling 
grid with nine points in each area and three true replicates of each land-use system. 
The fauna group that contributed the most to separate the eucalyptus plantation 
from the crop-livestock integration and no-tillage was Isoptera (termites) and from 
the native forest was Formicidae. The diversity measured by the Shannon-Wiener 
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index was higher in the native forest, followed by the eucalyptus plantation, both in 
winter and summer.

Souza et al. (2016) carried out a similar study with the soil macrofauna in the 
Eastern region of Santa Catarina and found similar results, where they evidenced the 
eucalyptus plantation as a system with greater stability for the biodiversity of the soil 
fauna, together with the native forest and perennial pasture, when compared to sys-
tems with annual crops. As a result, greater densities of individuals in eucalyptus 
plantation and perennial pasture (in summer) were found than in other systems, 
resulting in higher values of diversity. The most important groups of soil macrofauna 
to differentiate land-use systems were Formicidae, Coleoptera, and Oligochaeta.

Kamau et al. (2017) evaluated the soil macrofauna at sites after different periods 
of conversion of primary forests to cropland, considering dominant tree species in 
the region (Croton megalocarpus, E. grandis, and Zanthoxylum gilletii), in 
Kapchorwa, Uganda, and demonstrated the importance of the diversity of tree cover 
in agricultural landscapes for soil macrofauna conservation. The authors sampled 
the fauna by the soil monolith method to verify if the spatial variation in the soil 
macrofauna abundance is affected by the age of cultivation, tree species, and dis-
tance from the trunk of the tree. The results showed a greater abundance of macro-
fauna in the soil after 16–62 years of cultivation than in the first 10 years, although 
this varied with the tree species and macrofaunal group. The abundance of earth-
worms was higher below the canopy of Z. gilletii; beetles were found in higher 
numbers under E. grandis and C. megalocarpus than under Z. gilletii; higher num-
bers of termites and centipedes were found under E. grandis after 16 years of culti-
vation. The quality of organic residues from trees has shown an important effect on 
macrofauna abundance and spatial distribution, indicating that the increasing diver-
sity of tree species in agroecosystems can play an important role in maintaining 
biodiversity and ecosystem services (Kamau et al. 2017).

As observed in these studies, some groups of the soil macrofauna present greater 
contribution to demonstrate changes in the environments, in spite of seasonal effects. 
When evaluating families of Coleoptera they found low abundances in eucalyptus 
plantations; however, higher values of the diversity index of Shannon-Wiener were 
found in this system (Pompeo et al. 2016). The authors sampled Coleoptera using the 
same sampling technique in five agricultural and forest systems in the Plateau region 
of Santa Catarina. As seen in Fig. 8.1, some families were more associated with the 
eucalyptus plantation, and in winter the eucalyptus and native forest systems were 
related to a larger number of families, with Curculionidae and Chrysomelidae being 
the most associated ones. The families Staphylinidae and Phalacridae were related to 
the native forest. In summer, the native forest system was different from the other 
systems, and showed relations with a greater number of families, especially 
Staphylinidae, Chrysomelidae, and Leiodidae; in the eucalyptus plantation system, 
there was an association with Tenebrionidae, Phalacridae, and Curculionidae.

Bartz et al. (2014) studying the same land-use systems in municipalities of the 
West and Plateau regions of Santa Catarina evaluated the richness of earthworm 
species collected by soil monoliths and qualitative random samplings using allea-
tory excavations. In all systems, 24 species were identified, with 19 native species, 
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including several ones that were new to science. Considering both regions together, 
native species accounted for 90%, 89%, and 80% of the species richness in native 
forest, eucalyptus plantation, and perennial grassland systems, respectively, while 
in annual cropping systems native species accounted for 65% and 60% of the total 
wealth in crop-livestock integration and no-tillage. In the western region, native 
forests and no-tillage assemblages were composed exclusively of native species, 
while in grazing and crop-livestock integration they represented 75% and 58%. The 
Plateau assemblies were composed of 100% native species in eucalyptus plantation 
and pasture, 88% in native forest, and only 67% and 54% in crop-livestock integra-
tion and no-tillage. These results highlight the importance of systematic surveys 
because prior to this study little was known about the impacts of forest and agricul-
tural land use on earthworm populations in this region of Brazil.

8.3  Mesofauna Community in Mixed Plantations 
of Eucalyptus and Acacia: Effects of Soil and Litter 
Quality

The soil and litter samples for mesofauna assessment in pure and mixed plantations 
of E. grandis and A. mangium were collected at the Experimental Station of Forest 
Sciences located in Itatinga, São Paulo state, Brazil (23°02′01”S and 48°97′30”W). 

Fig. 8.1 Principal component analysis of Coleoptera families distinguishing land-use systems in 
winter (left) and summer (right), and environmental variables, used as explanatory variables, in the 
Southern Santa Catarina Plateau (Pompeo et al. 2016). NF native forest, EST Eucalyptus stands, 
PA perennial pasture, CLI crop-livestock integration, NT no-tillage, OM organic matter, TP total 
porosity, MWD mean weight diameter, Bio biopores, Anobi Anobiidae, Carab Carabidae, Scydm 
Scydmaenidae, Curcu Curculionidae, Chrys Chrysomelidae, Phala Phalacridae, Staph 
Staphylinidae, Dryop Dryopidae, Leiod Leiodidae, Scara Scarabaeidae, Psela Pselaphidae, Silva 
Silvanidae, Teneb Tenebrionidae, Chelo Chelonariidae, Ptilo Ptilodactylidae
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The soil was classified as a Geric Rhodic Ferralsol (FAO) with a texture of 84% 
sand, 4% silt, and 12% clay (Bini et al. 2013). The climate in this region is Cfa 
(Köppen classification), with an annual rainfall of 1350 mm, mostly (75%) concen-
trated between March and October (Laclau et al. 2008).

In soil under mixed plantations of Acacia mangium and Eucalyptus grandis, we 
can find the coexistence of some organisms originally belonging exclusively to 
Acacia mangium or to Eucalyptus grandis, as is the case of Enchytraeidae, Isopoda, 
and Thysanoptera (Zagatto et al. 2019a). This finding suggests that pure plantations 
of Acacia mangium and mixed plantations of Acacia and Eucalyptus present better 
soil conditions for soil fauna. The order Thysanoptera for example comprises some 
predators which require a well-established food chain for their development (Blasi 
et al. 2013; Melloni and Varanda 2015; Mound 2005). Enchytraeidae and Isopoda, 
on their turn, actively comminute the organic matter and stimulate the microbial 
activity and, consequently, the nutrient release to the soil solution (Paoletti and 
Hassall 1999; Van Vliet et al. 2004; Filser et al. 2016).

Recent research shows that soil moisture is one of the main abiotic factors 
responsible for the development of those invertebrates. In periods of severe water 
scarcity, a positive correlation was found between the abundance of soil mesofauna 
groups and soil microbiological attributes under pure and mixed Eucalyptus grandis 
and Acacia mangium plantations. In the period of higher rainfall, a great indepen-
dence of the microbiological, mesofauna, and soil chemical variables was the rule 
(Fig. 8.2). Therefore, we postulate that periods of water scarcity provide a profound 
interaction between soil mesofauna and microorganisms, which favors their 
survival. During water stress there is also a great feeding difficulty because the 

Fig. 8.2 Principal component analysis for soil quality variables based on microbiological, physi-
cochemical, and mesofaunal attributes in pure and mixed plantations of Acacia mangium and 
Eucalyptus grandis under lower soil moisture (left—water soil content = 4.8%) and higher soil 
moisture (right—water soil content = 8.6%)
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decomposition of soil organic matter and the metabolic activities become much 
slower than in periods of water abundance.

Microorganisms and fauna in the soil probably build up important interactions for the 
ecosystem functioning; however little is known about this relation (Creamer et al. 2016), 
when studying the network of biotic interactions in the soil of several land-use systems 
in Europe. The authors found strong correlations between nematodes and arbuscular 
mycorrhizal fungi (AMF) in arable soils, between nematodes and Archaea and Archaea 
and bacteria in grasslands and between enchytraeids and AMF in forests. They also 
reported changes in these synergic relations due to changes in soil organic carbon con-
tents and pH. Thus, in acid soils with less than 2% of organic carbon enchytraeids, col-
lembolans and archaea showed strong connections, while in soils close to neutrality 
(pH 5–7) there was a greater correlation among mycorrhizae, archaea, and bacteria.

In periods of severe water scarcity, a higher density of mesofauna was present on the 
soil surface, below the litter layer, while in the moist period a much higher density of 
invertebrates inhabited the litter itself in forest plantations of Eucalyptus grandis and 
Acacia mangium (Fig. 8.3). These data suggest the preference of the mesofauna for soil 
below the litter where there is some moisture preservation during drought while the 
litter is already straw-dry. The litter however is chosen whenever it contains enough 
moisture. In periods of drought and high solar irradiation, the litter covers and protects 
the soil against excessive desiccation and maintains soil temperature in suitable ranges 
for the invertebrates’ development in soil (Choi et al. 2006; Derpsch et al. 2010; Peña-
Peña and Irmler 2016). In addition, our data suggest that there is a great interaction 
between soil mesofauna and microorganisms in soil during a drought season (under 
low soil and low litter moisture) (Fig. 8.2). This condition allowed higher mesofauna 
abundance in soil than in litter at this same sampling period (Fig. 8.3). We were sur-
prised that such a small difference in moisture, with very low values, made a huge 

Fig. 8.3 Mesofaunal density in soil and litter. Values followed by different letters indicate differ-
ences between soil and litter at the same sampling date (Tukey’s test at 5% significance)
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difference in the soil mesofauna habitat preference. Apparently, these invertebrates are 
extremely sensitive to weather conditions, since the values for soil moisture typify a dry 
soil in both cases.

The litter of Eucalyptus grandis and of Acacia mangium show deep differences 
in their chemical constitutions (Pereira et al. 2018), with Acacia litter presenting a 
lower C/N ratio and higher contents of several other nutrients, making it more ade-
quate and palatable for the mesofauna (Kaneda and Kaneko 2011) (Fig.  8.4). 
Conversely, the higher C/N ratio and Mn contents of Eucalyptus litter correlate 
negatively with all groups of fauna sampled. Therefore, the more easily decompos-
able organic material of Acacia litter favors the soil faunal community, considering 
also that coprophagy between the different faunal groups is very intense (Kautz 
et al. 2002; Teuben and Verhoef 1992).

The rhizosphere of Eucalyptus grandis can exude some volatile compounds, which 
result in toxic effects for soil fauna (Zhiqun et al. 2017). In the Eucalyptus rhizosphere, 
many such chemical groups were identified, as 2,4-dimethyl heptane, 2,2,4,6-pentam-
ethyl heptane, and 2,4-di-tert-butylphenol, which cause changes in the acetylcholines-
terase (enzyme related to neuronal synapses); superoxide dismutase (related to 
superoxide radical changes in H2O2 and O2); and glutathione-S transferase (related to 
tissue protection against oxidative stress) (Zhiqun et al. 2017). Hence, it is possible that 
these compounds are also responsible for the lower mesofauna abundance and diversity 
found in pure Eucalyptus grandis plantations (Fig. 8.3). Nevertheless, more studies are 
necessary in order to verify if such compounds are also emitted in the rhizospheres of 
mixed plantations and in pure plantations of Acacia mangium.

Fig. 8.4 Redundancy analysis (RDA) between response variables (biological litter attributes—
grey vectors) and explanatory variables (chemical litter attributes—black vectors) in pure E. gran-
dis (E) and A. mangium (AC) plantations, and a mixed system between them (M)
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8.4  Springtails and Beetles in Forest and Agricultural 
Systems: An Approach to Morphotypes

Springtails or collembolans are small arthropods belonging to the class Hexapoda. 
These organisms usually are less than 2 mm wide and live in moist habitats, eating 
fresh organic matter, especially in the topsoil layers. On the other hand, beetles are 
larger organisms, much related to chemical and physical soil attributes, since they 
mix organic matter with soil clay particles (Filho et al. 2016; Brown et al. 2015).

Springtails and beetles are good bioindicators, since these faunal groups are con-
ditioned by management, weather, and soil chemical, physical, and biological attri-
butes. In addition, these organisms comminute the plant wastes and the soil organic 
matter, accelerating the decomposition processes. Therefore, they are considered 
soil quality indicators due to their capacity to modify the soil properties and due to 
their great sensitivity to changes in the soil (Nichols et  al. 2008; Korasaki et  al. 
2012; Filho and Baretta 2016).

The predominant use and management of the soil in Brazil involve a drastic 
modification of the native forest by its fragmentation and conversion into agricul-
tural production systems and forest residues. Consequently, after intervention, the 
functions of soil organisms and ecosystem services (as nutrient cycling, water qual-
ity, biodiversity maintenance, food production, among others) are affected.

An assessment of the functional and structural biodiversity of some of the soil 
fauna groups, considering the impact of different management systems, is neces-
sary, in the interest of biodiversity preservation and ecosystem services provided by 
organisms (Van Capelle et  al. 2012). Considering the growing interest in under-
standing the ecosystem functions where springtails and beetles act, a major limita-
tion is the lack of taxonomists available. The differentiation of organisms using 
specific traits can be useful, especially due to the lack of taxonomists able to iden-
tify the biodiversity, constituting an opportunity to minimize the taxonomic insuf-
ficiency of these taxa in Brazil.

Thus, an alternative approach is morphotyping, which analyzes morphological 
traits and has been adapted for soil invertebrates (Oliveira Filho et al. 2016; Pey 
et  al. 2014; Pompeo et  al. 2017; Santos et  al. 2018). The objective is to group 
 organisms of each species according to their degree of adaptation to the soil, clas-
sifying the eco-morphological groups according to their habitat (edaphic, 
hemiedaphic, and epigeic) (Fig.  8.5) and morphotypes (life form) within each 
group. Due to the difficulties imposed by the lack of knowledge, an approach using 
functional characteristics has great possibilities of helping to understand both the 
functional role in the ecosystems and the effects of habitat modifications on the 
community structure (Fountain-Jones et al. 2015).

Thus, several studies have been carried out with this type of approach in Europe 
involving different land-use systems and soil fauna groups (Gardi et al. 2008; Menta 
et al. 2018a, b; Parisi 2001; Parisi et al. 2005). In Brazil, this approach has been used 
to verify differences between forests and agricultural systems (Machado et al. 2019; 
Pompeo et al. 2017; Santos et al. 2018).
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According to Machado et  al. (2019) and Santos et  al. (2018), evaluating the 
springtail communities by monitoring their morphological traits was efficient for 
the comparison of the different land-use systems in two regions of Santa Catarina 
state (Brazil), showing correlations between their communities and physical and 
chemical soil properties. These two studies presented 16 edaphic morphotypes, 25 
hemiedaphic, and 5 epigeic, totaling 46 morphotypes collected in the two regions.

Fig. 8.5 Change of eco-morphological groups of springtails and beetles living inside the soil or 
living on the soil surface (modified from Filho and Baretta (2016)). Colored bars indicate the exact 
habitat (or depth of the soil) to which epigeic (green bar), hemiedaphic (dark brown), and edaphic 
(light brown) specimens are best adapted. Although the specimens have a preferred depth that best 
fits their needs, they may sometimes migrate vertically in the soil profile for some abiotic factors 
(e.g., humidity and temperature) and biotic factors (e.g., lack of prey or other food)
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In general, both studies showed that the eucalyptus plantation presented the low-
est values of abundance and richness of morphotypes when compared to areas of 
native forest, pasture, integrated crop-livestock, and no-tillage systems. Higher 
springtail abundance and richness were determined in the land-use systems without 
anthropological actions and soil management due to better ecological equilibrium, 
with increases of the food sources due to a higher diversity of plants. Thus, the low 
quality of the litter and the exudates of the Eucalyptus rhizosphere can be an impor-
tant factor that limits the abundance and richness of morphotypes (Machado et al. 
2019; Santos et al. 2018).

These studies show that soil attributes may explain the presence of several mor-
photypes in the areas (as determined by pH and potential acidity (H + Al), biopores, 
bulk density, C/N, Ca/Mg and Mg/K ratio, metabolic quotient, micro- and macropo-
rosity, microbial biomass carbon, microbial basal respiration, organic matter, soil 
moisture, total organic carbon, and total porosity). However, only on the plateau, 
microporosity did explain the abundance of the morphotypes in eucalyptus planta-
tions. In this case, this correlation may account for the identified morphotypes being 
mainly edaphic and hemiedaphic. This variable is important to explain the activity 
and establishment of the various hemiedaphic and epigeic morphotypes at this site.

Pompeo et al. (2017), when carrying out a study with the soil coleopteran mor-
photypes in forest and agricultural land uses in the Santa Catarina Plateau, in areas 
of Mixed Ombrophylous Forest (Atlantic Forest), evaluated the diversity of 
Coleoptera and their relationships with the land-use systems and edaphic properties 
in winter and summer. In this case, the native forest presented greater richness and 
abundance of morphotypes, as well as greater diversity in summer, proving to be the 
most stable among the studied land uses. This system was associated with a greater 
amount of morphotypes, and the soil properties related to carbon dynamics contrib-
uted to explain this distribution.

The Eucalyptus stands (EST) presented lower diversity and abundance of cole-
opteran morphotypes than native forest (Fig. 8.6). Though presenting smaller values 
than the other land-use systems, they did not differ significantly from pasture, crop- 
livestock integration, and no-tillage (Pompeo et al. 2017). Thus, the authors corre-
late the low density of beetles in EST to the lower plant diversity of these sites, since 
Eucalyptus is an exotic species, usually grown in monoculture. Eucalyptus stands 
also provide forest litter of lower quality than that of native forests, as already dis-
cussed above, therefore providing a less attractive environment for some beetles.

8.5  Enchytraeids in Forest and Agricultural Sites: 
The Dramatic Difference Between the Dataset 
Among Tropical and Temperate Regions

Enchytraeids are close relatives of the earthworms but not as well known world-
wide. They live in all types of soils as long as they have a minimum of moisture, 
organic matter, and oxygen (Schmelz et al. 2013). Their small body size, generally 
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not more than 4 cm, and their whitish semitransparent body make them not so evi-
dent to be seen in soil with the naked eyes. When in high abundance in crop soils it 
is not rare that unsuspected farmers take enchytraeids as a pest, confounding them 
with nematodes, leaving them highly concerned about the health of their crops. 
However, their roles in soil are correlated with specific attributes of their larger rela-
tives (earthworms), contributing to the decomposition of organic matter, building up 
of soil porosity and soil formation, mixing of organic matter, and regulation of 
microbial activity (Didden 1993), though in a lower scale because of the small body 
size, at least when in low abundance (Pelosi and Römbke 2016).

These small organisms play key roles in some particular natural ecosystems, such 
as coniferous forests, peatlands, moorlands, and inselbergs whose soils are acidic, 
rich in organic matter, and generally humid, either in the Northern or in the Southern 
hemisphere (Vaçulik et al. 2004; Schmelz et al. 2013; Carrera and Briones 2013). In 
these ecosystems, they may show extremely abundant populations reaching hun-
dreds of thousands of individuals per square meter. The few data available on enchy-
traeids in the tropics suggest that their abundance can be much lower (>10,000) than 
in temperate regions (Römbke 2007; Schmelz et al. 2013). Conversely, some studies 
showed enchytraeid abundance reaching 44,000 individuals per square meter in a 
mixed Araucaria forest in Southern Brazil and a maximum average of 12,000, when 
determined by wet extraction (Schmelz et al. 2013; Niva et al. 2015).

The high abundance of enchytraeids reported in temperate regions is often associated 
to a community dominated by Cognettia sphagnetorum, a species, which proliferates 
rapidly with asexual reproduction by fragmentation of the body and regeneration of the 

Fig. 8.6 Coleoptera density (individuals per m2) and abundance (individuals per trap) in native 
forest (NF), Eucalyptus stands (EST), perennial pasture (PA), crop-livestock integration (CLI), and 
no-tillage (NT) in winter (left) and summer (right) on the Southern Santa Catarina Plateau (Pompeo 
et  al. 2017). Mean values followed by the same letter are similar by the Kruskal-Wallis test 
(p < 0.05; n = 135); ns: nonsignificant difference
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lost parts (Nurminen 1967; Huhta et al. 1986; Schlaghamerský 2013). These forests 
with acidic soil very often present low occurrence of earthworms (Huhta 1984; Graefe 
and Beylich 2003) and may harbor enchytraeid communities composed in a habitat with 
more than 90% of Cognettia (Huhta 1984). The data available from South America so 
far show that the community of enchytraeids is quite different from the ones in the 
Northern hemisphere. For example, the genus Cognettia, which is common in European 
countries, has never been sampled in Brazil, and many species of Guaranidrilus and 
Hemienchytraeus are abundant in South America (Schmelz et al. 2013; Niva et al. 2015; 
Pelosi and Römbke 2016) but almost not found in Europe (Schmelz and Collado 2010) 
or North America (Schlaghamerský 2013). On the other hand, Enchytraeus, Fridericia, 
Marionina, and Achaeta are present in both continents (Schlaghamerský 2013; Schmelz 
et al. 2013; Niva et al. 2015; Pelosi and Römbke 2016). According to Pelosi and Römbke 
(2016), some species of the first two genera may be cosmopolitan or peregrine, and 
Fridericia seems to occur more in anthropogenic landscapes, such as pastures or crop-
lands, and less in forests. It was also reported that the density and the distribution of 
enchytraeids do change with the different successional stages of the Atlantic Forest and 
soil types (cambisoil vs. gleysoil) (Römbke et al. 2007). The genus Enchytraeus, for 
example, was less frequent in primary forests than in less advanced stages of succession 
or pasture, while Guaranidrilus was slightly more frequent in primary forests. Another 
study, in the Araucaria mixed forest on cambisoil, shows that 34% of their population 
consisted of Guaranidrilus, the dominant genus.

It seems that, in Brazil, enchytraeid abundance can reach numbers similar to those 
found in temperate regions, however with a distinct species and genus composition 
(Schmelz et  al. 2013). Silva et  al. (2006) found extremely contrasting densities of 
enchytraeids when comparing an area with natural Cerrado to areas with conventional, 
no-tilling, integrated crop-livestock, and pasture systems. In one of the sampling dates, 
while in Cerrado there were more than 3000 enchytraeids per square meter; in the other 
systems there were less than 10, using the TSBF method for sampling. However, in 
general, the no-till, pasture, and crop-livestock systems favored enchytraeid popula-
tions reaching not more than 270 individuals per square meter. Assis (2015) found that 
enchytraeid density and richness were higher in a native mixed Araucaria forest than in 
conventional maize crop, while organic and conventional horticulture areas were some-
what in an intermediary position between the two. This author found Guaranidrilus 
and Tupidrilus only in the forest, while Enchytraeus and Fridericia were the most 
abundant ones in cultivated areas, either organic or conventional, confirming the 
hypothesis that these genera are more common in anthropogenic areas, and he also 
found a possible negative relation between phosphorus soil content and genus diversity.

8.6  Conclusions and Outlook

We believe that the soil fauna correlates with physical-chemical and microbiological 
soil processes, since soil invertebrates continuously fragment the soil organic matter 
and plant wastes, which facilitates many other processes in soil, such as microbial 
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decomposition, nutrient cycling, and water-holding capacity; however the interaction 
between mesofauna and microorganisms is strongly conditioned by soil moisture. 
Eucalyptus plantations may exert some allelopathic effect in soil, once many research-
ers show an inhibition in the development of a diversified and abundant invertebrate 
community. In this sense, more research is needed in order to find out effectively 
which allelopathic substances are produced and what is the magnitude of this effect in 
relation to the provision of soil ecosystem services. Mixed plantations of Eucalyptus 
grandis and Acacia mangium share faunal groups which originate either exclusively 
from pure plantations of Acacia mangium or from Eucalyptus grandis, improving the 
soil quality, although the richness and diversity of such plantations differ from native 
forests. Therefore, more diversified mixed plantations may be the key for a higher soil 
fauna diversity and, consequently, for a better soil health, although perhaps these 
diversified systems are generally adopted in restoration sites. For production sites and 
silvicultural management however it may require greater adaptations.
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Chapter 9
Bioindicators of Soil Quality in Mixed 
Plantations of Eucalyptus and Leguminous 
Trees

Arthur Prudêncio de Araujo Pereira, Daniel Bini, 
Emanuela Gama Rodrigues, Maiele Cintra Santana,  
and Elke Jurandy Bran Nogueira Cardoso 

9.1  Soil Quality Indicators: Definitions, Applications 
and Challenges

9.1.1  Definitions

Soil quality has an important role in both society and environment considering sev-
eral ecosystem services provisioned through soils (e.g., food, feed, fiber, climate 
moderation through C cycling, waste disposal, water filtration and purification, 
elemental cycling) (Lal 2015). Soil quality is commonly defined as the capacity of 
a soil to function within ecosystem and land-use boundaries to sustain biological 
productivity, maintain environmental quality, and promote plant and animal health 
(Doran and Parkin 1994, 1996). This concept has been revised and it is proposed to 
discuss soil use rather than soil functions. Therefore, soil quality assessment would 
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provide the scientific tools for evaluating the management of soil resources, also 
considering the societal demands of the various benefits that soils can provide to 
humankind if well managed. Therefore, the responsibility to maintain the quality of 
the soil could be clearly assigned to the user of the soil (Bünemann et al. 2018).

Additionally, several authors have proposed a link between soil functions and 
ecosystem services (ES) as the capacity of soils to deliver ES is determined largely 
by the soil functions (Greiner et al. 2017; Adhikari and Hartemink 2016). This link 
is a concept that has been considered a challenging yet promising approach for fos-
tering the communication of nature’s capital (Drobnik et al. 2018). According to Lal 
(2015), the soil quality must be preserved or restored to guarantee these services and 
also to enhance long-term productivity and improve the environment. Thus, this 
author suggests that the strategy is to produce “more from less” by reducing losses 
and increasing soil-, water-, and nutrient-use efficiency.

Measuring soil quality is an exercise in identifying inherent and dynamic soil 
properties which are responsive to management, are capable of being precisely 
measured within certain technical and economic constraints, and also are defined 
with respect to the delivery of ecosystem services (Bünemann et al. 2018).

In order to achieve an improvement in productivity and sustainability of pure or 
mixed Eucalyptus plantations, a different management is needed, based on a novel 
approach to measure soil quality which demonstrates the interrelationship between 
soil biota diversity and activity, improvements in nutrient cycling and consequently 
soil fertility, increase in the organic matter quality, and increase in wood productiv-
ity. All these aspects are necessary as a guide in the search for sustainable practices 
(Pereira et al. 2018a; Bini et al. 2013a; Gama-Rodrigues et al. 2008).

The role of soil biota for the functioning, integrity, and long-term sustainability 
of natural and managed terrestrial ecosystems is slowly increasing towards an ade-
quate recognition, since these organisms are essential components of litter decom-
position, nutrient cycling, soil aggregation, and growth of plant communities 
(Bender et al. 2016; Lal 2015). Soil microbial biomass is a labile fraction of the soil 
organic matter (SOM) and plays a crucial role in the maintenance of soil fertility 
and availability of plant nutrients (Jenkinson 1981). The microbial biomass is a 
sensitive indicator of organic matter dynamics because the microbial fraction 
changes comparatively fast and differences are detectable before they occur in total 
organic matter (Cardoso et al. 2013; Gama-Rodrigues and Gama-Rodrigues 1999). 
Although microbial biomass only constitutes an average of 2–5% of the soil organic 
C and 1–5% of the total soil N, it is the most important component of SOM, control-
ling the nature and rate of organic matter transformations (Jenkinson 1981; Smith 
et al. 1990). Moreover, it plays a critical role in soil C cycling and accounts for 
roughly half of the soil surface CO2 efflux through heterotrophic soil respiration 
(Hanson et al. 2000; Högberg et al. 2001).

The litter-soil system comprises the habitat for the majority of species living on 
the planet, while the horizontal and vertical heterogeneity of both soil and litter can 
boost spatial variability in the distribution and activity of this biota (Coleman and 
Whitman 2005). The relationship between environmental attributes and biota of the 
litter-soil system becomes extremely important because any change in the soil or 
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litter attributes affects the biota, and consequently the development of the plant 
community (Bini et al. 2013b; Zaia et al. 2012; Zagatto et al. 2019).

9.1.2  Applications

In this study, we are going to show some soil quality assessments with a focus on 
the provision of ecosystem services in the litter-soil system of pure and/or mixed 
Eucalyptus plantations.

Studying the interrelationships between microbial and soil chemical attributes 
Pereira et  al. (2018a) were able to explore the microbial influence on C and N 
cycling and how it can discriminate between intercropped and pure Eucalyptus 
plantations. The study showed high efficiency of the microbial biomass in incorpo-
rating C and N, and improved organic matter (OM) cycling in mixed systems with 
Acacia mangium. It also showed the potential of longer maintenance of Acacia resi-
dues in the labile fraction of soil OM when compared to Eucalyptus treatments. 
Thus, the study concluded that mixed plantations promote a more efficient use of C 
and N by microbial communities, thereby increasing the plant nutrient availability 
in soils with low levels of OM. The same authors undertook an investigation to 
evaluate interactions between the bacterial community and biological functions 
involved in C and N cycles in the soil and litter layers resulting from pure or mixed 
Eucalyptus grandis and Acacia mangium plantations. This study showed a signifi-
cant increase of bacterial community diversity and functional gene abundance, 
which improved C and N cycling in the soil and in the litter interface of a pure 
Acacia plantation, as well as in the intercropped plantation. Thus, the authors con-
cluded that mixed plantations are a better alternative than using mineral N fertilizers 
for long-term soil health, as mineral N can reduce the abundance of functional 
genes, bacterial diversity, and microbial activities (Pereira et al. 2019).

The interrelationship between soil C, N, and P; litter C, N, P, lignin content, and 
polyphenol content; and microbial biomass and activity was examined by Bini et al. 
(2013a) in pure and mixed plantations of Eucalyptus grandis and Acacia mangium 
before and after senescent leaf drop. This study showed a stronger relationship 
between litter contents and microbiological soil attributes, as well as the important 
role played by the maintenance and quality of litter in regulating microbial biomass 
and activity in soils. The authors concluded that the synergism between the two tree 
species in the intercropped plantation established a new equilibrium in the soil 
microbiota after 20 months, maintaining and stimulating biogeochemical cycling as 
requirement for the sustainability of the intercropped plantations.

Changes in forest litter and soil where the native forest was replaced by eucalyp-
tus plantations in four southeastern areas of Brazil were studied by Gama-Rodrigues 
et al. (2008). The authors observed that the interrelationship between litter and soil 
microbial attributes was sensitive to show the dissimilarity between eucalyptus sites 
and native forest. The study of these interactions also enabled observing that the 
impact of native forest conversion into eucalyptus stands varied in accordance with 
the site-specific characteristics that had been analyzed.
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176

Another study related to the interaction between microbial and chemical soil 
attributes showed that the soil organic C and total N stock were more relevant to 
explain the dissimilarity between eucalyptus stands of different ages than the soil 
microbial attributes. On the other hand, both the microbial litter attributes and cel-
lulose, lignin, and N content of litter were relevant to show the differences between 
those eucalyptus stands. Thus, the litter quality had a direct influence on litter 
microbial activity and microbial biomass C and N, which suggests a close relation-
ship between C and N immobilization or mineralization and litter quality 
(Barreto 2008).

Zagatto et al. (2019) evaluated the density and diversity of soil mesofauna and its 
interaction with microbiological and chemical soil attributes in pure Acacia man-
gium (AC), Eucalyptus grandis (EU), and mixed E. grandis and A. mangium planta-
tions (M). The authors found that the higher soil quality in pure Acacia plantations 
and in mixed plantations was due to the interaction between microbial activity and 
structure of the soil mesofauna community, which contributed to the increase in soil 
nutrients.

The interrelationship between arbuscular mycorrhizal fungi (AMF) root coloni-
zation, enzymatic activity, and soil and litter C, N, and P in both pure and mixed 
plantations of Acacia and Eucalyptus was evaluated by Bini et  al. (2018). The 
results showed that the intercropped plantation increased the AMF colonization 
and the activity of acid and alkaline phosphatase. They also found negative correla-
tions between root colonization and litter C/N and C/P ratios, and a positive cor-
relation with soil acid phosphatase activity and soil N and P concentrations. 
Altogether, this means that intercropped systems with higher root colonization 
rates generate litter of better quality improving P cycling and P nutrition in soil 
and, therefore, the health and productivity of these forests. A study was carried out 
with the purpose to evaluate interactions between the structure and richness of soil 
bacteria, fungi, and archaea; the functional groups of nitrifying, denitrifying, and 
nitrogen-fixing bacteria; and their relationship with soil chemical changes in pure 
and mixed Eucalyptus and Acacia plantations. The results showed a distinct micro-
bial community in mixed plantations with positive effects on soil phosphorus and 
nitrate content, which potentially reduces the demand for mineral fertilization 
(Rachid et al. 2013).

Additionally, Santos et al. (2018) studied the interaction between litter produc-
tion, decomposition, and soil microbial activity in a pure and intercropped 
Eucalyptus and Acacia plantation. In this study, the more diverse litter composition 
in the mixed plantation provided a more balanced N and P supply, which in turn was 
able to sustain high microbial activity levels with positive consequences on litter 
decomposition and boosting nutrient cycling efficiency, being a sustainable option 
to offset the high nitrogen export from successive monoculture-based silvicultural 
systems.
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9.1.3  Challenges

Seeking high productivity has made forest production a simplistic practice, with 
high fertilizer and pesticide applications producing detrimental environmental 
impacts. Nowadays, public concern in environmental issues is growing. This 
imposes the following question: How is it possible to achieve high ecological pro-
ductivity by optimizing ecosystem services in low-input forest systems?

The interrelationship between soil and litter attributes (biological, microbial, 
chemical, and physical) has hitherto provided the fundamental context on how to 
improve ecosystem services. However, a mechanistic understanding of these rela-
tionships and to decide whether they are in relation to the soil as an ecosystem in 
itself or as part of a larger ecosystem in nature are undeniably complex and remain 
elusive.

A challenge in soil ecology is to develop multivariate hypotheses to describe not 
only interrelations between litter and soil attributes or between litter and soil fauna, 
but also the direct and indirect relations between attributes and fauna in the litter- 
soil system. There is a complex interconnection between the edaphic environment 
and productivity (Oliveira et al. 2018; Eisenhauer et al. 2015) (Fig. 9.1). This is a 

Fig. 9.1 Hypothetical model of interactions and processes mediated by soil biota for sustainable 
forest production
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very important consideration. It even would justify a scientific study conducted by 
a multidisciplinary team to elucidate this intricate chain of interactions and the eco-
logical interdependencies between land use, biodiversity, and ecosystem services, 
which will enable an increase in the productive capacity of soils. It could be the start 
of a basis of technological modifications for sustainable production, both economi-
cally and environmentally.

Thus, forest production would bring net benefits from ecosystem services, which 
are a source of revenue for producers who are attentive to sustainable business, and 
would guarantee the demands of future generations. It would increase competitive 
advantages, and finally it would remove trade barriers imposed because of environ-
mental reasons.

9.2  Biological Properties in Forest Ecosystems: Why Are 
They Important for Eucalyptus Plantation?

9.2.1  Forest Habitats: A Brief Description

Natural forests are considered a specific ecosystem, representing high wood pro-
duction and comprising huge habitats that support the microbiome life, which is 
dynamic and quickly responds to anthropogenic and environmental changes 
(Baldrian 2017). Moreover, reactions to the microbiome metabolism can occur in 
the most diverse plant organs and locations, such as leaves, flowers, seeds, fruit, 
wood, inside (endophytic) or on the tree surface (phyllosphere), as well as below-
ground (soil, roots, rhizosphere, and mycorrhizosphere) (Baldrian 2017). Even 
more important, habitats differ in properties such as nutrient availability, major 
environmental conditions, processes, and dynamics, which together can alter the 
microbiome dynamics. The forest microbiome research has been highly focused on 
soil habitats, emphasizing tree roots and their symbionts, while litter and other habi-
tats have been greatly underexplored, mainly in pure and mixed plantations (Pereira 
et al. 2018a, b).

The forest environment has specific properties that differentiate it from other 
(e.g., agricultural systems and implanted forest) (Navarrete et al. 2015). One of the 
most important features is the huge effect of the dominant trees on the surrounding 
habitat, which can regulate aboveground and belowground interactions (Wardle 
et al. 2004). The trees interact with microbial activities and composition, and this is 
mediated by bulk soil and litter chemistry (Augusto et al. 2015; Šnajdr et al. 2013; 
Urbanová et al. 2015). Here, we include organic matter contents, soil pH, nitrogen 
transformations, and other macro- and micronutrients (Fierer and Jackson 2006; 
Lauber et al. 2008; Prescott and Grayston 2013; Rousk et al. 2010; Tedersoo et al. 
2016; Urbanová et al. 2015). These effects seem to be extremely dependent on for-
est management (Tedersoo et al. 2016), and all drivers are combined by stochastic 
effects on microbiome assembly (Bahram et al. 2016), which can contribute to the 
dynamics of microbiomes in different forest habitats (Štursová et al. 2016).
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9.3  Native and Planted Forest Environments

Planted forests are subject to multiple modes of disturbance, such as insect attacks, 
fires, and nutritional imbalances in soil, among others. In addition, this system is 
also significantly changed by many anthropogenic factors, as climate change or 
environmental pollution, water deficit, and management practices, which together 
may easily shift the balance of carbon and nitrogen cycling processes (Trumbore 
et al. 2015).

Soils under native forest have characteristics that differentiate them in numerous 
aspects from the planted forestry and agricultural soils (Fig.  9.2). For example, 
around 50% of the C fixed by trees is allocated in the soil through their root activity 
(Högberg et al. 2001), while the litter layers are important organic matter sources 
for the system, governing important stages of ecosystem services and nutrient 
cycling (Baldrian 2017). Besides the C contents, one of the most notorious effects 
of tree influence is the low pH of the soil solution, potentiated by the release of 
organic acids through root system exudation (Motavalli et al. 1995). In addition, 
there is a large root extrusion of enzymes that degrade organic matter which makes 
biogeochemical cycling very active in this environment, with increases in C and N 
contents above- and belowground (Fig. 9.2, Chap. 2).

Natural forests can provide several ecosystem services that are fundamental for 
the maintenance of the surrounding environment, mainly in soil protection (Lal 
2014), biogeochemical cycling of nutrients (Laclau et  al. 2010), maintenance of 
microbial biodiversity, meso- and macrofauna (Cardoso et al. 2013), and organic 

Fig. 9.2 Major differences between a natural forest and an implanted forest ecosystem. Arrows 
pointing upwards in (a) indicate better soil health than in (b), arrows pointing down, where the 
opposite is true
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matter quality (Pereira et al. 2018a) among others (Fig. 9.2a). The preservation of 
natural forests and its functioning is becoming an evermore important subject, even 
for the common citizen. For example, in natural forests prevails a phenomenon that 
has been gently called the “Wood Wide Web,” or either “The Forest Internet,” 
responsible for permitting the existence of forests on our whole planet, a system that 
biologically interconnects all the trees in a forest, resulting from interactions of 
fungi, bacteria, and plants (including also some other macro- or microorganisms). 
Fungi and bacteria furnish nitrogen and phosphorus to the plants and receive in 
exchange carbon sources, moisture, and protection.

This is the result of millions of years of joint evolution, a real biological network 
which guarantees protection to all participating entities, which has been studied for 
over 30 years, starting even before there was a consolidation of the human Internet. 
Steidinger et al. (2019) showed the first map of these interconnections, demonstrat-
ing that, without this system, extensive forests would probably not exist. In tropical 
regions, where the predominating soils are generally very poor and acidic, with 
deficiencies in phosphorus and organic matter, such associations are even more fun-
damental for forest survival. This paper (about the “Wood Wide Web”) includes 
about 200 scientists worldwide, among which seven Brazilian universities, with all 
earlier findings about the Wood Wide Web and its eventual risk of extinction due to 
deforestation and global warming (Steidinger et al. 2019). In planted pure forests, 
however, this web does not exist, while forest consortia composed of two, or even 
better multiple, tree species are prone to develop such a system, therefore being 
much more sustainable.

On the other hand, the conditions that occur in the planted forest ecosystems, 
such as in Eucalyptus plantations, differ strongly from their natural state, mainly in 
terms of diversity and functionality in the soil-plant-(micro)-biota interface 
(Fig. 9.2b).

In planted forests (monocultures) we find deposition of a unique litter type, 
which may present low nutrient availability (high C/N ratio) (Mercês et al. 2016; 
Snowdon et al. 2005). Moreover, when compared to natural systems, the depletion 
of mineralizable nutrients may occur over time (mainly due to wood exportation), 
and the type and quality of exudates secreted by the roots are extremely selective 
(Churchland and Grayston 2014) (Fig. 9.2b). Thus, forest plantations may differ in 
some soil properties and determine different soil temperatures, aeration gradients, 
porosity percentages, and soil water storage capacities (Baldrian 2017). This behav-
ior can promote more homogenous conditions for microbial communities, making 
them less diverse and less efficient in the use of available resources, leading to nega-
tive plant-soil feedbacks (PSF) (Mariotte et al. 2017), or “soil fatigue” (Huang et al. 
2013). In this sense, little emphasis was placed on studies to minimize PSF using 
intercropping systems to improve biological functions in different forest niches 
(Wang et al. 2017).
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9.4  The Mixed or Consortiated Forest System with N2-Fixing 
Trees: Brief Importance of Biological Functions for Soil, 
Plant Health, and Nutrient Cycling

There are around 3 trillion trees on planet Earth (Crowther et al. 2015), which are 
responsible for covering a large part of the soil surface covered by vegetation. This 
large volume of biomass is extremely important, especially in the regulation of the 
world’s climate, and the health of soil and bodies of water (Kirilenko and Sedjo 
2007). However, trees are closely dependent on the microbiome to survive, which 
provides nutrients essential for their development, such as N, P, and K (primary 
macronutrients), through organic matter cycling in the soil (Baldrian 2017). For 
example, it is estimated that N2-fixing bacteria and mycorrhizal fungi are responsi-
ble for providing up to 75% of the nitrogen and 80% of the phosphorus that forests 
use during their life cycle (Van Der Heijden et al. 2008). In addition, all organic 
matter transformation steps depend on the activity of microorganisms (Singh 2018).

Acacia trees form symbiotic relationships with N2-fixing bacteria (Chap. 6) and 
provide a key reservoir of N, C, and P for the surrounding ecosystem (Bini et al. 
2013a; Paula et al. 2018; Pereira et al. 2018a; Taylor et al. 2017). In this sense, it is 
possible to integrate trees of high economic value (Eucalyptus) and trees of high 
ecological value (Acacia) in an intercropped system (Laclau et  al. 2008; Pereira 
et al. 2017; Rachid et al. 2015) (Fig. 9.3) and improve the ecosystem services pro-
moted by the plant-soil microbiome.

Recent studies have shown the N2-fixing potential around 90–120 kg ha−1 year−1, 
as well as the direct transfer of N of the roots of A. mangium to the E. grandis roots 
(Bouillet et al. 2008; Paula et al. 2015, 2018). In this sense, Eucalyptus plants would 
provide financial benefits and those of A. mangium, immeasurable ecological gains 
(Fig.  9.2). In this case, the availability of N can occur for Eucalyptus also after 
senescence of Acacia plant tissues (litter, fine roots, and nodules), root exudation, as 
well as cell death of organisms of the soil microbiota, providing N through mineral-
ization processes (May and Attiwill 2003; He et  al. 2003; Chalk et  al. 2014). 
However, in spite of the diverse benefits of this association, studies evaluating the 
interactions at the soil-plant-microbiome interface in this type of forest manage-
ment remain poorly understood.

The increase of N in the soil promoted by A. mangium sometimes is able to pro-
mote a significant increase in E. grandis productivity, even in the absence of the 
application of mineral fertilizers (Laclau et al. 2008), although this is very depen-
dent on the climatic and edaphic conditions. In a review published by Forrester et al. 
(2006), a meta-analysis of 18 studies showed that several trials with mixed cultures 
were significantly more productive than monocultures, with fewer cases showing 
the opposite. For example, 11 years after the implantation of a mixed E. globulus 
and A. mearnsii plantation, mixed stands between species were more productive 
than monocultures in terms of aerial biomass, volume of wood produced, and C 
allocation in soil, with higher N and P cycling rates in litter (Forrester et al. 2004).
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9.5  Soil Microorganism Processes and Nutrient Cycling 
in Forest Plantations

Natural or planted forest sustainability shows a great dependence on geochemical, 
biochemical, and biogeochemical cycling. By definition, geochemical cycling is 
characterized by the inputs and outputs of mineral elements between the ecosystem 
and the environment. Biochemical cycling refers to the translocation of nutrients 
inside the plant, such as the process of nutrient translocation. Finally, biogeochemi-
cal cycling involves the processes of nutrient transfer between the soil and plant 

Fig. 9.3 Intercropped Eucalyptus and Acacia plantations. Upward arrows mean that soil health is 
better than in pure plantations, and the opposite is true for downward arrows. Belowground net-
works representing the mycorrhizal associations (endo- and ectomycorrhiza, and dark septate 
endophytes) and interactions between the two plants
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systems, with nutrient uptake by plants until their return to the soil via mineraliza-
tion and decomposition processes or root exudation (Switzer and Nelson 1972). 
Thus, nutrient cycling is related with abiotic and biotic factors to maintain the eco-
system equilibrium. In general, nutrient inputs in ecosystems come from the air, 
rainfall, weathering process, biological N fixation (BNF), organic matter mineral-
ization or decomposition, and throughfall. On the other hand, outputs are repre-
sented by erosion, runoff, volatilization, leaching, and nutrient removal during the 
forest harvest (Lavelle et al. 2005).

Commercial forests, as eucalyptus, are established commonly in poor soils and 
depend on nutrient cycling for their main sustainability. Appropriate management 
can promote the nutrient cycling, with ecological and economic benefits (Forrester 
et al. 2005b; Laclau et al. 2008). Thus, the ecological intensification promoted by 
mixed plantations favors processes of nutrient cycling and increases plant biomass 
and environmental sustainability (Forrester et al. 2005a). Leguminous trees inter-
cropped with a nonleguminous tree (e.g., Eucalyptus) confer advantages to impor-
tant microbial processes related to biogeochemical and geochemical cycling of C 
and nutrients, mainly N and P (Forrester et  al. 2005b; Bini et  al. 2013a, 2018; 
Baldrian 2017; Pereira et al. 2018b). In mixed plantations the microorganisms are 
the protagonists in nutrient cycling, based on three processes: BNF, mycorrhizal 
colonization, and decomposition or mineralization of organic matter (Ward and 
Jensen 2014; Bini et al. 2013a; Liang et al. 2017; Pereira et al. 2019).

Nitrogen-fixing bacteria present in leguminous trees promote BNF. These bacte-
ria are of great value to promote N cycling in mixed plantations with nonlegume 
tree species. The fixed atmospheric N is first immobilized within the leguminous 
trees, and afterwards it is translocated and only then it becomes available for other 
trees (Parrotta et al. 1996; Khanna 1997; Forrester et al. 2006). The fixed nitrogen 
can be shared with nonlegume trees (a) via root exudation of the legume species; (b) 
by transfer of N through hyphal networks of mycorrhizal fungi that connect legumi-
nous and nonleguminous plants; and (c) through the decomposition and mineraliza-
tion of plant tissues of the legume species (Frey and Schüpp 1993; He et al. 2003; 
Forrester et al. 2006). This process is related to increases in N cycling in mixed 
stands. There is a high potential of BNF in mixed plantations, with approximately 
20 g N m−2 year−2, where more than 90% of N is derived from this process (Binkley 
1992; Nygren et al. 2012). In mixed plantations of A. mangium and E. urophylla × 
grandis, Tchichelle et  al. (2017b) found an amount of biologically fixed N four 
times higher than the total amount of commercial nitrogen fertilizer application at 
the beginning of the rotation. According to this author, 16% of the N present in the 
eucalyptus comes from the BNF promoted by Acacia. Moreover, N cycling tends to 
increase because there is a stimulation of the incorporation of N derived from the 
soil into the trees.

N and P cycling seems to be favored in mixed plantations. Of great biological 
importance, the available P needs special attention in tropical soils. In these soils 
there is inorganic P fixation onto iron or aluminum oxides (Hinsinger 2001), which 
makes planting of leguminous trees critical, since they demand great amounts of P 
to sustain BNF processes (Hinsinger 2001; Inagaki et al. 2011). This is the reason 
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why legumes require more P than nonleguminous plants, such as eucalyptus 
(Binkley 1992; Koutika et al. 2016). A strategy for P acquisition in poor soils for 
legumes and eucalyptus is their great capacity of association with arbuscular mycor-
rhizal fungi (AMF) and ectomycorrhizae (Pagano and Scotti 2008; Mendes-Filho 
et al. 2009; Jimu et al. 2017; Bini et al. 2018). In general, these fungi can access P 
sources and other nutrients in soil through their hyphal network, even when the P 
ions are located further away from the plant roots, which cannot get access to them 
(He et al. 2003). In this sense, P cycling in mixed plantations seems to be dominated 
by the high mycorrhizal capacity of the leguminous species involved, which posi-
tively influences a higher colonization in the eucalyptus tree (Khanna 1997; 
Aggangan et al. 2010; Bini et al. 2018).

Pereira et al. (2018a) found colonization of eucalyptus roots by AMF at 0–50 cm 
depth, a fact stimulated by the presence of A. mangium. According to Bini et al. 
(2018), two strategies are important for P cycling in mixed plantations: mycorrhiza-
tion by AMF and high activities of the phosphatase enzymes. E. grandis when inter-
cropped with A. mangium has higher activity of acid and alkaline phosphatases than 
in pure plantations. However, P cycling is probably extremely fast, since it was not 
possible to detect significant differences between the P available in the soil in pure 
and mixed plantations, although there was a higher concentration of P in the trees 
(Bini et al. 2018). Thus, it is possible that other soil microorganisms also are active 
in improving fast P cycling. In addition, nutrient cycling is maximized by fungal 
networks that connect one plant to another, transferring nutrients between them 
without passing through the soil, a phenomenon that can occur between different 
plant species (Simard et al. 2003; Bini et al. 2018).

Among the three processes mentioned above, the process of decomposition and 
mineralization of organic matter is probably the main pathway for nutrient cycling 
in ecosystems and the most responsible for forest sustainability (Rahman et  al. 
2013). Soil organic matter results, largely, from the decomposition of animal and 
plant residues deposited on and under the soil. It is the main source of C, nutrients, 
and energy for soil microorganisms and plants (Brady and Weil 2009).

In tropical and subtropical soils, this is more evident, since it has a relationship 
with physical, chemical, and biological attributes of the soil, which makes the main-
tenance and management of organic matter fundamental for the productive capacity 
of forest soils in the long term (Switzer and Nelson 1972). Soil organic matter is 
produced during the fixation of C by photosynthesis, which generates organic com-
pounds that can be comminuted by root exudates or deposits of fragments of senes-
cent plants on the soil, called litter (Brady and Weil 2009; Rahman et al. 2013). For 
this reason, it is fundamental to create adequate edaphic conditions by stimulating 
biological processes as the degradation and mineralization of organic matter. Litter 
is first fragmented by soil mesofauna and, subsequently, by heterotrophic fungi and 
bacteria, which contribute to the formation of soil organic matter or humus, repre-
sented by stable or labile fractions, such as microbial biomass (Lavelle et al. 2006; 
Rahman et al. 2013).

Microbial biomass is the living part of the organic matter of the soil, being a 
source and sink of nutrients and, therefore, considered the organic matter that 
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 presents a fast cycling (Kaschuk et al. 2010). Bini et al. (2013a), in pure and mixed 
plantations of A. mangium and E. grandis, detected that the microbial biomass 
served as a sink of C and nutrients until 14 months of planting and after 20 months 
became the source of these elements. Litter microbial biomass can represent an 
important pool of C and nutrients, because it shows a greater capacity to be a nutri-
ent sink than the microbial biomass of the soil (Gama-Rodrigues et al. 2011; Bini 
et al. 2013b).

Bini et  al. (2013b) showed that the litter microbial biomass drained approxi-
mately 94% more N than the soil microbial biomass in pure and mixed plantations 
of A. mangium and E. grandis. Litter enters the decomposition and mineralization 
process by the action of several microorganisms by means of exuding many specific 
enzymes (phosphatases, cellulases, ligninases, ureases, etc.). Thus, part of the C is 
recycled into the atmosphere as CO2, while N can be mineralized as NH4+ and then 
converted to NO3−, while other elements such as P and S and several micronutrients 
can be transformed into mineral forms that are absorbed by plants. Only a small 
portion of this C is stabilized in the form of humus, which is still a source of C and 
nutrients, but whose mineralization rate is lower (Rahman et al. 2013).

It is important to highlight the fact that litter is the main source of soil organic 
matter, being a major component of the biogeochemical cycling process of nutrients 
in forest ecosystems (Rahman et al. 2013). Monocultures produce nondiversified 
litter, originated by only one type of plant residue. In contrast, mixed plantations 
produce more heterogeneous organic material (Binkley et al. 1992; Richards et al. 
2010) with higher quality especially in mixes with legumes. Litter is the main vehi-
cle to transfer C, N, P, and Ca from the trees to the soil; other elements as K are 
returned mainly through throughfall, and for Mg, it is variable for different forests 
(Cole and Rapp 1980; Bini et al. 2013b; Santos et al. 2017). However, there are 
variations in the rate of decomposition and mineralization of organic wastes. High 
levels of lignin, polyphenols, cellulose, and high C/N and C/P ratios characterize the 
recalcitrant residues, which make it difficult to recycle nutrients (Bini et al. 2013b; 
Rahman et al. 2013). Furthermore, the quantity and quality of the litter also depend 
mainly on the tree species and the soil attributes which govern nutrient availability.

In general, after closing of the canopy, eucalyptus produces a litter that is rela-
tively poor in nutrients, due to high C/N and C/P ratios, with high percentages of 
cellulose (Gama-Rodrigues and Barros 2002; Paul et al. 2004; Bini et al. 2013b; 
Pereira et al. 2018b), contributing little to the replacement of soil nutrients. On the 
other hand, leguminous trees provide greater incorporation of organic matter and 
nutrients to the soil, due to their higher leaf quality and lower C/N and C/P ratios, 
favoring decomposition processes (Forrester et al. 2006; Richards et al. 2010; Bini 
et al. 2013a; Pereira et al. 2018a). However, although N-fixing legumes favor the 
increase of N, it is important to understand that the higher N and P contents do not 
always result in faster degradation of A. mangium residues, in comparison with 
E. grandis (Bini et al. 2013b). High lignin concentrations in the litter can reduce the 
decomposition rate of legumes (Wedderburn and Carter 1999; Prescott 2010; Bini 
et al. 2013b; Rahman et al. 2013).
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According to Bini et al. (2013a) and Bachega et al. (2016), litter decomposition 
of A. mangium was slower than that of E. grandis, even though containing higher N 
and P concentrations. In mixed plantations, however, there are improvements in lit-
ter quality, since the lignin concentration of the mixture decreases (Bini et al. 2013b; 
Santos et al. 2017). Santos et al. (2017) reported that the deposition of N and K via 
litter was higher in stands of mixed species of Acacia and Eucalyptus than in 
Eucalyptus monocultures. In addition, P, Ca, and Mg depositions were even higher 
in mixed plantations than in Acacia monoculture. Tchichelle et al. (2017) found that 
soil N mineralization was higher in Acacia monocultures and mixed plantations, 
being 82% and 52% higher, respectively, than in E. grandis monoculture. These 
results suggest faster nutrient cycling in the mixture due to microbial decomposition 
processes (Pereira et al. 2019). Similar data were reported when higher N and P 
contents were observed in litter at mixed plantation (Li et al. 2001; Forrester et al. 
2005b; Voigtlaender et  al. 2012 Bini et  al. 2013a, and other authors). With the 
increase of plant age the process of N translocation in leaves decreases and soil N 
contents increase (Richards et al. 2010; Santos et al. 2017).

In mixed stands mycorrhizae and BNF are important microbial processes for N 
and P inputs. The absorption of nutrients via roots or mycorrhizae increases plant 
biomass, and such nutrients are translocated and later reabsorbed from senescent 
tissues. Finally, after dropping back to the soil the plant residues are equivalent to 
litter deposition; this is when the initial decomposition and mineralization process 
is renewed, providing nutrients in the inorganic form to replenish the soil and to be 
reabsorbed by the plant. Thus, sustainability and nutrient cycling depend on micro-
bial action. Microorganisms are involved in geochemical cycling and biogeochem-
istry, being the actors of decomposition and mineralization of organic matter, while 
BNF and mycorrhization complement nutrient cycling. Furthermore, in mixed plan-
tations (and perhaps in most forestry environments) litter represents the main com-
partment to generate new mineral nutrients for plants. In any plan for forest 
implementation, this must be considered seriously since long-term nutrient losses 
can be economically and environmentally unfavorable or even calamitous for 
silviculture.

9.6  Final Remarks and Future Perspectives

Research-related bioindicators of soil quality with pure and mixed forests are only 
just a beginning. The achievement of sustainable Eucalyptus forest systems that 
meet the wood production demands and maintain an intimate relationship with bio-
diversity is an important challenge of the twenty-first century. Although our ability 
to describe major bioindicators in this type of forest remains incomplete, we have 
already created an integrated view of very important processes mediated by micro-
organisms and their diversity, mainly on nutrient cycling. We know very little about 
how to exploit the multifunctionality and multicomplexity of natural ecosystems 
and apply them to increase soil health, yield, and sustainability of forest  ecosystems. 
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Understanding the dynamics of the bioindicator function is a complex but very 
important challenge because this relationship is one of intense mutual cooperation. 
There is a clear need for intensive studies in the setting up of experimental trials that 
consider multiple regions and to make relationships between them, even if these 
studies are initially descriptive. Focusing on the Eucalyptus and Acacia bioindica-
tors of soil quality at the geographic scale will undoubtedly represent an important 
and valuable future field of work in the sustainability of these forest plantations. We 
must know the bioindicator ecology and applications, so we can make appropriate 
predictions of how forest ecosystems will respond to management changes, envi-
ronmental changes, and climatic events in the coming decades.
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Chapter 10
Ecosystem Services in Eucalyptus Planted 
Forests and Mixed and Multifunctional 
Planted Forests

Fabiano de Carvalho Balieiro, Luiz Fernando Duarte de Moraes, 
Rachel Bardy Prado, Ciro José Ribeiro de Moura, Felipe Martini Santos, 
and Arthur Prudêncio de Araujo Pereira

10.1  A Brief State of the Art of Native and Planted Forests

Forests act as a source of food, fuel, and medicine for more than a billion people 
around the world (FAO 2018). In addition forests hold more than three-quarters of 
the world’s terrestrial biodiversity, provide many products and services that contrib-
ute to the socioeconomic development, and are particularly important for hundreds 
of millions of people in rural areas (FAO 2018). According to this report (Global 
Forest Resource Assessment, FRA) the world’s forest area decreased from 31.6 to 
30.6% between 1990 and 2015, but at a slower pace in recent years (FAO 2018). 
On the other hand, planted forests have their area increased year after year, albeit at 
a slower pace in recent years. The average annual rate of increase between 1990 and 
2000 was 3.6 million ha. The rate peaked at 5.9 million ha per year for the period 
2000–2005 and slowed to 3.3 million ha per year between 2010 and 2015 
(FAO 2018).
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Land-use change leads to the destruction and fragmentation of forests, with neg-
ative impacts on the biogeochemical cycles of nutrients, increasing the risk of inva-
sion of species and bringing significant losses of biodiversity (Myers et al. 2000; 
Rodrigues et al. 2009; Brockerhoff et al. 2013; Newbold et al. 2015). The interfer-
ence of human activities that influence climate also pressures these natural ecosys-
tems (Sala et al. 2000; Bonan 2008; Ballester et al. 2010; FAO 2018). A study by 
Mcneill and Mcneill (2003) observed that the loss of average abundance of the 
planet’s original biodiversity was around 73% in 2002 and that this should reach a 
level of 84% by 2050. For Newbold et al. (2015), the loss of local species richness 
above 20% could substantially undermine the contribution of biodiversity to eco-
system function and services and, consequently, human well-being.

In Brazil, native forests are among the most biodiverse and threatened ecosystems 
on the planet (Myers et al. 2000). As part of the group of 24 biomes with an excep-
tional concentration of endemic species and with alarming habitat loss, the Atlantic 
Rainforest and Cerrado biomes, for example, were placed on the list of global 
hotspots. According to the authors, in only 1.4% of the terrestrial surface, these 24 
biomes harbor more than 44% of all vascular plant species and 35% of all vertebrate 
species (mammals, birds, amphibians, and reptiles). Data from Ribeiro et al. (2009) 
indicate that the Atlantic Rainforest has only 11.4–16% of its original coverage. The 
Amazon, despite its huge area, has had its deforestation monitored by the National 
Institute for Space Research (INPE) since 1988. According to the records presented 
by the National Forestry Information System (2017), for the period 2016–2017, the 
increase in the deforested area was equal to 662,400 ha, contrary to the trend of 
decreasing deforestation in previous years (2002–2011). In 2016, land-use changes 
accounted for 51% of Brazilian total greenhouse gas emissions, equivalent to 1.17 
billion Mg (=106 g) CO2 equivalent (CO2e) (Brandão Jr et al. 2018). Deforestation 
was the main source of emissions in relation to land-use changes, with the Amazon 
biome contributing 602 million Mg CO2e (52%) of the sector’s emissions in 2016, 
Cerrado 21% (~248 million Mg CO2e), and the Atlantic Rainforest also 21%.

Despite the continuous degradation of native forest ecosystems, forest cover has 
increased in several countries as the result of regeneration in abandoned agricultural 
areas and forest plantations for commercial or restoration purposes (Chazdon et al. 
2016). However, as pointed out by the author, based on the nature of the data and 
methodology used, he cannot infer about the return of biodiversity and ecosystem 
services lost with the conversion of forest to other land uses or degradation. Planted 
forests emerge as an alternative to biomass production since they occupy a reduced 
area (~2%) globally (FAO 2010). In Brazil alone, these forests occupy more than 
seven million ha (IBÁ 2017). Although heavily criticized on environmental aspects, 
these forests represent alternative sources of raw material, energy, and income for 
farmers. Thousands of direct and indirect jobs, investments in local infrastructure, 
and foreign exchange for the country are due to forestry business. In Brazil, about 
BRL 10 billion was generated for the communities around the business units of the 
sector (http://www.iba.org/statisticaldata).

About the relationship between ecosystem services (ES) and management of 
planted forests we can say that, on different scales, companies and research, exten-
sion, and education institutions have studied, monitored, and proposed management 
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and land-use alternatives capable of reversing the processes of degradation of natu-
ral resources or even increasing the supply of goods and services provided by them 
(Brockerhoff et al. 2013; Ferraz et al. 2013; Gonçalves et al. 2013).

Water regulation, maintenance of soil fertility, regulation of climatic conditions, and 
erosion control are some of the ESs provided by planted forests when well managed. In 
most of the tropical regions, planted forests are highly productive monocultures due to 
the uniformity of plots and management (Gonçalves et al. 2013; Liu et al. 2018), but 
mixed (with poor diversity as reported in this book) and multi- diversified or multipur-
pose plantations can make the production of wood and fibers environmentally and 
socially fairer. Rural development, natural resource management, biodiversity conserva-
tion, and ecological restoration are concepts that should guide the activities of industrial 
or family enterprises involved in the forestry business (Lima et al. 2012a; Liu et al. 2018).

This chapter provides a conceptual basis and application of the ES approach to 
planted forests and forest plantations in three distinct Brazilian production environ-
ments: short-rotation intensive Eucalyptus plantations; low-diverse mixed planta-
tions and high-diversity mixed plantations; or multipurpose plantations. These three 
systems differ in terms of area occupied, technological level adopted, and purpose.

The first system is represented by great paper, pulp, and coal companies in the 
forestry business, which occupy more than seven million ha and are present in at least 
15 states. They play an important role in the economy and in the generation of jobs 
and income (IBÁ 2017). It is currently one of the most advanced agricultural activities 
in Brazil, thanks to investments in research in the areas of plant breeding, genetic 
improvement, and appropriated site management practice (Gonçalves et al. 2013).

The second management system is represented by less complex mixed plantations 
with low diversity of species. Within this category, the most studied plantations in Brazil 
are a mix of leguminous trees associated with diazotrophic bacteria (such as Acacia 
mangium) and non-N2-fixing species (such as Eucalyptus), which are mentioned in this 
book, and the less diverse plantations for the purpose of restoring severely impacted 
degraded areas (Franco and Faria 1997; Parrotta and Knowles 1999; Chaer et al. 2011; 
Balieiro et al. 2018; Franco et al. 2018). In terms of area, these plantations are basically 
experimental plantations or small areas undergoing restoration in mining areas. The last 
commented category is mixed multipurpose plantations. This can be subdivided into 
two subclasses, for restoration purposes, with the possibility of using part of the planta-
tion for commercial/extractive purposes (restricted-use areas) and agroforestry systems.

10.2  Ecosystem Services

10.2.1  Background and Conception

According to Hermann et al. (2011), the concept of ecosystem services dates back to 
the late 1960s and 1970s, highlighting the value of society over the roles of nature 
(King 1966; Helliwell 1969; Ehrlich and Ehrlich 1970; Dee et al. 1973; Ehrlich et al. 
1977; Bormann and Likens 1979). In the same way, in the 1970s, 1980s, and 1990s, 
other scientists already drew the attention of society to the economic dependence 
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on natural capital (Westman 1977; De Groot 1987; Daily 1997 and Costanza and 
Folke 1997), where natural capital is the natural stock of natural assets that generates 
a flow of goods or services that are useful or profitable to man over time (Costanza 
and Daly 1992). This concept has persisted up to now, with small variations in the 
scope of environmental economy. For Gómez-Baggethun and De Groot (2007), from 
an ecological perspective, natural capital cannot be conceived only as a stock or 
aggregation of natural elements, but as encompassing all ecosystem processes and 
interactions, which determine its integrity and ecological balance.

Daily (1997) was one of the first authors to approach the concept of ecosystem 
services as “the services provided by natural ecosystems and the species that com-
pose them, in sustaining and fulfilling the conditions for the permanence of human 
life on Earth.” The definition of Daily (1997) is similar to that of Millennium 
Ecosystem Assessment (MEA 2005), where ecosystem services are “the benefits 
that human beings derive from ecosystems,” and it has been used in the literature in 
general, with small variations (Nicholson et al. 2009).

The ES approach has some advantages that can be highlighted: working on mul-
tiple scales, connection between science and politics, emphasizing social and eco-
nomic aspects related to human well-being, aiming to promote the multifunctionality 
of ESs, and providing financial or nonfinancial compensation to those who work in 
favor of ecosystem services, among other aspects.

Furthermore, the literature on this theme has increased exponentially (Fisher 
et al. 2009), especially after the launch of the Millennium Ecosystem Assessment 
(MEA 2005), which proposed to evaluate ESs and the benefits derived directly and 
indirectly from ecosystems.

The MEA was requested by UN Secretary-General Kofi Annan in 2000 and was 
conducted between 2001 and 2005, involving more than 1300 scientists and 95 
countries (TEEB 2010). It aimed to assess the consequences that changes in ecosys-
tems bring to human well-being and the scientific basis for actions needed to 
improve the preservation and sustainable use of these ecosystems. This unique 
effort to systematize information on ecosystem services and its contribution to 
human well-being demonstrates that the international community recognizes the 
need for and urgency of adopting innovative measures to protect ecosystems, align-
ing preservation with economic development (Andrade and Romeiro 2019).

After 2005, several authors worked in this area; they produced data for the clas-
sification, evaluation, quantification, mapping, modeling, and valuation of  ecosystem 
services, in order to subsidize decision-making in relation to ecosystems (Wilson 
and Carpenter 1999; Heal 2000; De Groot et  al. 2002, 2010; MEA 2003, 2005; 
Turner et  al. 2003; De Groot 2006; Fisher et  al. 2009; Rounsevell et  al. 2010; 
Dominati et al. 2010; Ferraz et al. 2013; among others).

There are several global initiatives to promote research, development, and public 
policies focused on the provision of ecosystem services, such as The Economics of 
Ecosystems and Biodiversity (TEEB), the Natural Capital Project, Intergovernmental 
Platform on Biodiversity and Ecosystem Services (IPBES), Ecosystem Services 
Partnership (ESP), Knowledge and Learning Mechanisms on Biodiversity and 
Ecosystem Services (EKLIPSE), Europe Ecosystem Research Network (Alter-Net), 
and Water Funds.
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In Brazil, many studies have been and still are developed on biodiversity preserva-
tion and environmental conservation in the different biomes, due to the rich biodiver-
sity and natural resources of the country and the processes of degradation due to 
different anthropogenic pressures. The number of publications and interest specifi-
cally on the ES theme are also increasing (see Ferreira et al. 2012; Brockerhoff et al. 
2013; Ferraz et al. 2013, 2014; Prado et al. 2016; Periotto and Tundisi 2018).

10.2.2  Classification of Ecosystem Services

In terms of services provided by ecosystems, three categories are generally consid-
ered: regulation, provision (supply), and cultural (MEA 2003; Hein et al. 2006). In 
addition, another category of support services has been widely used in MEA (2003), 
but the latter has not been widely used in ecosystem assessment because of the 
double meaning or overlap with other service categories (Fisher and Turner 2008).

It should be mentioned that, based on the work on environmental accounting car-
ried out by the European Environmental Agency (EEA), an international classifica-
tion system for ESs has been developed since 2009, called the Common International 
Classification of Ecosystem Services (CICES), which is currently in its V5.1 ver-
sion (Haines-Young and Potschin-Young 2018). This initiative, in direct contribu-
tion to the United Nations Statistics Division (UNSD), a review of the Environmental 
Economic Accounting System (SEEA), aimed to establish an internationally stan-
dardized ES classification system. The idea of establishing an international classifi-
cation is from the need to standardize the description of the ESs so as to enable the 
establishment of methods of environmental accounting, mapping, and evaluation 
for ESs that may be replicable and comparable.

The CICES classification used as its starting point the typology suggested by the 
Millennium Ecosystem Assessment (MEA 2005), which, with the exception of the 
category of support services, considered the other three categories of services: provi-
sion, regulation, and cultural. The support services category was deliberately excluded 
because, as an intermediary service, relations between the ecosystem and environmen-
tal accounting in this case are not explicit. Thus, CICES, adopting a pragmatic view, 
chose to emphasize the final outputs of processes that effectively benefit and have 
direct and explicit value to people (Haines-Young and Potschin-Young 2018). However, 
as the authors themselves warn, the intermediary and support services should not be 
ignored or neglected. The classification presented below will be MEA (2005).

10.2.2.1  Support Services

For MEA (2005), support services are those required for the production of the other 
ESs. They differ from the basic categories insofar as their impacts on man are indi-
rect or occur in the long run. Examples are primary production, atmospheric oxygen 
production, soil formation and retention, nutrient cycling, water cycling, and habitat 
provision. Forests are great natural assets that provide these services.
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The cycles of several key nutrients for life support have been significantly altered 
by human activities over the past two centuries, with positive and negative conse-
quences for other ecosystem services, as well as impacts on human well-being.

Forests are responsible for maintaining biodiversity. In Brazil, the ecosystem 
services were threatened by actions of deforestation and fires, associated with the 
dynamics of land use, agricultural and livestock expansion, and urban areas. 
According to the Ministry of the Environment, the loss of natural environments is 
estimated at between 15 and 18% in the Amazon biome; 50% in the Cerrado, 
Pampas, and Caatinga biomes; and 88% in the Atlantic Forest biome (Ferreira et al. 
2012). Sparovek et al. (2010) estimated an environmental liability of 21–30 million 
hectares, which have to be restored in Brazil.

Natural ecosystems provide habitat and food requirements for a wide range of 
arthropod predators and parasitoids, insectivorous birds, and microbial pathogens 
that act as natural enemies of agricultural pests and thus provide biological control 
services (Tscharntke et al. 2005). An ecosystem service that has been greatly com-
promised by the suppression of forests is pollination by reducing habitats for birds 
and insects, compromising the ESs of regulation and provision.

10.2.2.2  Regulation Ecosystem Services

This relates to the regulatory characteristics of ecosystem processes, such as main-
tenance of air quality, climate regulation, erosion control, purification and regula-
tion of water flow, self-purification of water (process of degradation of nutrients 
contained in water bodies due to sources of pollution, usually sewage), regulation of 
human diseases and pests in agriculture, pollination, and mitigation of natural dam-
ages. These services are derived almost exclusively from regulatory ecosystem 
purposes.

Unlike provisioning services, their assessment does not occur by their “level” of 
production or quantity available, but by the analysis of the ability of ecosystems to 
regulate certain services.

Forests play an essential role in regulating services, for it is through them that 
climate regulation, for example, is affected by deforestation and burning practices, 
drastically impacting climate change and its effects on the economy and the quality 
of life of society.

Forests also participate in water regulation and carbon sequestration. Water regu-
lation is an ecosystem service that is highly related to the management of produc-
tion systems, either through the direct use of water in irrigated systems or because 
of the changes they impose on the physical-biotic environment of the river basins 
that interfere with the water, hydrological, and climatic cycles. On the other hand, 
the deforestation caused for the implantation of agricultural systems can alter the 
regional precipitation regimes, through the changes in the evapotranspiration flows 
of clouds. The local climate can then become drier, not only impacting ecosystems 
but also compromising water security (Vergara and Scholz 2010).
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Many studies estimated the potential of forests to sequester carbon, which is an 
ecosystem service regulator (Lal 2005; Jandl et al. 2007; Sedjo and Sohngen 2012). 
In times of climate change, they disagree on whether the carbon forest balance in 
future will be positive or negative (in photosynthesis or respiration) and heat up the 
backstage of research (Bonan 2008; Bellassen and Luyssaert 2014; Nottingham 
et al. 2015).

In this sense, planted forests, when well managed and with mixed plantations, 
can also contribute to the regulatory services mentioned here, as will be presented 
in the subsequent items.

10.2.2.3  Provision (Supply) Services

For MEA (2005), these services include products obtained directly from natural or 
seminatural ecosystems (agriculture), such as food and fiber; wood for fuel and 
other materials that serve as a source of energy; genetic resources; biochemical, 
medicinal, and pharmaceutical products; ornamental resources; and water.

Data from world food production illustrate the increase in the generation of pro-
visioning services. According to MEA (2005), between 1961 and 2003 food pro-
duction increased by more than 160%, with cereal production increasing 2.5 times, 
beef and sheep production increasing 40%, and production of pork and poultry meat 
increasing 60% and 100%, respectively.

Forests, in addition to the provision of water and food, are able to provide medic-
inal products, fiber, wood, and energy. Due to the richness of Brazilian biodiversity, 
native vegetation is a source of food resources in all Brazilian biomes. Many native 
plants are now domesticated and widely used in the country, such as palm heart, 
cassava, pepper, peanut, guaraná, pineapple, and cacao (Prado and Murrieta 2015), 
while others are more regional, such as pine nuts in the Araucaria Forests.

Products derived from plant extraction can be classified as timber and non- 
timber. In 2016, the value of non-timber products (BRL 1.9 billion) was 4.6% higher 
than in 2015 and 18% higher than in 2014 (SNIF 2017), with 86.5% (BRL 1.6 bil-
lion) corresponding to extractive activities in native forests. Non-timber products 
(as waxes, saponin, honey, or food products) generally are extracted by traditional 
populations and family farmers. Food products, such as açaí, native erva mate, and 
Brazil nut, generated in 2015, respectively, $480, $396, and $107 million Brazilian 
Reals, while waxes (carnauba powder), oilseeds (babaçu nuts), and fibers (piassava) 
each generated more than $195, $107, and $101 million Brazilian Reals in 2015 
(SNIF 2016).

Brazil is the third largest exporter of forestry products (e.g., timber, pulp, paper, 
resins, tannins, gums), accounting for 3.64% of the total global market volume 
(FAO stat; data for 2016). Forest products generally rank fourth in the ranking of the 
value of national agribusiness exports, only behind soybeans, meat, and sugar- 
alcohol complex. Therefore, native and planted forests definitely contribute to this 
national scenario of ES provision.
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10.2.2.4  Cultural Services

These include cultural diversity, as the very diversity of ecosystems influences the 
multiplicity of cultures, religious and spiritual values, generation of (formal and 
traditional) knowledge, and educational and aesthetic values, among others. These 
services are closely linked to human values and behaviors, as well as to social insti-
tutions and patterns, characteristics that make their perception different among 
groups of individuals, making it difficult to evaluate their provision (Andrade and 
Romeiro 2019).

Still, according to Andrade and Romeiro (2019), societies have developed an 
intimate interaction with the natural environment, which has shaped cultural diver-
sity and human value systems. However, the transformation of natural ecosystems 
into cultivated landscapes with more homogeneous characteristics associated with 
economic and social changes, such as rapid urbanization, improvement and cost 
reduction of transportation conditions, and intensification of globalization, has 
weakened the links between ecosystems and cultural diversity/identity.

On the other hand, the use of ecosystems for recreation and tourism purposes has 
increased, mainly due to population growth and greater availability of time for lei-
sure, mainly of the populations with greater purchasing power and greater access to 
infrastructure, which facilitate access to cultural services. Ecological tourism, for 
example, corresponds to one of the main sources of income for some countries that 
still have a large part of their ecosystems conserved.

Forests contribute effectively to cultural services, since they make up landscapes 
with a greater diversity of flora and fauna, which becomes an attraction for humans. 
They also contribute to water regulation and provision, as well as keeping water bodies 
such as rivers, lakes, waterfalls, and other pristin services, enabling recreation and 
tourism. In addition to these benefits, forests are associated with diverse believes reli-
gions, and spiritual aspects of traditional peoples such as indigenous people and others 
living in forests, factors that are related to cultural ecosystem services (ES). Kreye 
et al. (2017) present a discussion about forest-related, cultural ES.

It should also be highlighted that in order to show the ES provided by natural and 
planted forests, many studies have been carried out, based on different methodolo-
gies, aiming at their quantification and valuation. Masiero et al. (2019) present a 
manual with several methods for quantifying and valuating ESs from forests.

10.3  Ecosystem Services of Monoculture, Intensely Managed 
Planted Forests

Over the past 50 years, eucalypts went from being a risky investment in Brazilian 
silviculture to a global forestry success story, perhaps compared to the achievement 
of Henry Wickham, responsible for the expatriation of the rubber tree to Kew 
Gardens and then to its final scale in Malaysia.
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Due to its geographical origin and anatomical characteristics that imply growth 
stresses that hinder drying, in addition to its wood being considered of moderate 
durability against rotting fungi and termites (Silva et  al. 1995), Eucalyptus was 
viewed with distrust at the time of the introduction of the industrial plantations. But 
what is eucalypts for? This was a relevant question years ago, and it is with it that 
the book by Higa et  al. (2000) entitled “Eucalyptus Plantation in Small Rural 
Properties” begins. The publication presents the genus Eucalyptus spp. for small 
properties, and argues:

Eucalyptus involves more than 600 species that are adapted to different climates and soils 
and can be used for different purposes. Eucalyptus can be planted as ornamental trees in 
parks and gardens; the leaves can be used in floral arrangements and for extracting oil and 
the flowers are used for honey production. The most common use is the use of wood such as 
firewood, poles, fences, rural buildings, production of saw wood, panel manufacturing and 
paper and pulp manufacturing.

Eucalypt is the most planted forest crop in Brazil and is a raw material for indus-
trial and domestic use. Currently, more than 91% of all wood produced for industrial 
purposes in Brazil comes from this essence, generating 510,000 jobs directly and 3.7 
million indirectly, and contributing to the GDP with BRL 71 billion (IBÁ 2017).

Since its introduction in Brazil in 1909 by Edmundo Navarro de Andrade, in the 
state of São Paulo, Eucalyptus came to fulfill one of the four types of ecosystem 
services, the provisioning.

Its introduction and naturalization were a huge success and, in addition to sup-
plying the Brazilian and world fiber market, eucalypt is also a source of energy and 
timber for Brazilian forestry companies, considerably reducing the pressure on the 
native forests, guaranteeing the conservation of the genetic patrimony associated 
with these forests.

It cannot be denied that in addition to provisioning, Eucalyptus provides other eco-
system services important to our society, regulating environmental conditions by car-
bon sequestration; providing cultural services such as spaces for recreation and a 
socioeconomic identity factor; and finally supporting services that influence the for-
mation of soil and habitats, nutrient cycling, and oxygen production, among others.

Regarding support services, the forest sector currently protects and conserves 
almost six million hectares, in areas of permanent preservation (APPs, 30%), legal 
reserve areas (RL, 67%), and private reserve areas (RPPN, 3%), which contribute 
directly to the conservation of biodiversity, soil, and water (IBÁ 2017). According 
to a database of the main companies in the sector and organized in their 2017 report 
on the biomes of the Atlantic Forest and Cerrado, of the species threatened with 
extinction in the national territory, 38% of the mammals and 41% of the birds were 
found in areas belonging to Brazilian forest companies (IBÁ 2017). Around the 
world and in Brazil, planted forests represent an increasing proportion of the global 
forest area and partly compensate for the loss of natural forest in terms of forest 
area, habitat for biodiversity, and ecological function (Brockerhoff et  al. 2013; 
Ferraz et al. 2013).

The performance of planted forests in terms of environmental benefits is highly 
dependent on their management plan, especially with respect to the hydrological 
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regulation of micro-basins, since their growth and productivity are related to impor-
tant social (hydrosolidarity and land-use conflicts) and environmental (climate 
change and biodiversity) issues (Lima et al. 2012b; Ferraz et al. 2013). Recently, 
Cassiano (2017) monitored the hydrological regime and water quality in three 
micro-basins (one micro-basin with age and species in mosaic management, two 
with conventional eucalypt management), demonstrating that the mosaic was more 
adequate in the regulation of the hydrological regime and water quality in relation 
to conventional management of eucalypt-planted forests. Ferraz et al. (2013) stud-
ied examples of forest management alternatives at macro- (theoretical thresholds 
for the management of evapotranspiration) and meso-scales (using data from a 
catchment experiment) that contribute to improve water conservation in forest land-
scape areas in Brazil. Their results suggest that for effective water conservation in 
Eucalyptus spp. plantations the scales of evaluation must be considered. At regional 
scale, the natural climatic constraints of water availability should drive the choice 
of more water-efficient species/varieties and forest management, while at the meso- 
scale the proportion of native forest in the landscape plays a crucial role in reduc-
tion and regulation of water use. In other words, mosaic management could stabilize 
flows from plantation areas. Figure  10.1 summarizes the theoretical potential of 
different forest landscapes to provide some hydric ecosystem services (adapted 
from Ferraz et al. 2013).

In micro-basins, generalized clear cutting can increase the concentration of nutri-
ents and suspended sediments in the waters of the micro-basin, leading to losses of 
the natural nutritional capital of the soil, water quality, and storage capacity of the 
reservoirs and damages to productivity in medium and long terms (Lima et  al. 
2012b). The water quality indicators that were most affected by the clear cutting of 
eucalypt in monitored micro-basins are turbidity, color, and electrical conductivity 
(Câmara et al. 2000).

Water consumption in Eucalyptus plantations is not very different from the con-
sumption of other species that have the same growth rate. That is, the greater the 
biomass production, the greater the water consumption to provide growth. However, 
there are differences within and between species in the efficiency of water use (bio-
mass produced per unit of water consumed), due, for example, to physiological 
mechanisms that reduce transpiration as in cases of reduction in leaf area index in 
regions of greater water deficit (Fig. 10.2).

Management strategies considering selected genotypes and plant spacing can 
also increase the water security of commercial forests. Wood biomass at tighter 
spacing is generally higher (47–57 kg tree−1 at a planting density of 591 trees ha−1 
vs. 13–24 kg tree−1 with 2949 trees ha−1) but exhibited trees present lower leaf water 
potentials resulting in a trade-off between productivity and potential water stress 
(Hakamada et al. 2017). Of the genotypes tested, the E. urograndis clone presented 
the best performance from the lowest to highest planting density, while the hybrid 
E. grandis  ×  E. camaldulensis, the worst. In other words, for both industry and 
 family farmers they will be less vulnerable to climate change (water stress) under-
standing the interaction between planting density and genotypes. The authors expect 
that for lower water availability, regional potential water stress will be higher with 
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total stand (stem wood) biomass productivity increase, and the opposite would be 
true in areas with higher water availability.

Another important factor to consider in the water balance is the fact that forests, 
despite being innate water consumers, also intercept rainfall and in the case of euca-
lypt, due to leaf characteristics such as leaf area, allow more water to reach the for-
est floor, when compared to the Pinus genus, for example (Paula Lima et al. 2013).

Companies are also striving to adopt more sustainable practices. Management 
techniques as leaving plant residues on the soil (ground or not), planting seedlings 
directly on the straw, and desiccating undergrowth rather than revolving the soil, all 
have led to minimized soil erosion. Likewise, rational use of pesticides, management 
of fertility and crop health, and planning and maintenance of roads and roadways 
within the areas also contributed to the mitigation of erosive processes, significant 
improvements in soil and water quality, and biodiversity conservation (Chaer and 
Tótola 2007; Brockerhoff et al. 2013; Gonçalves et al. 2013). All of these actions 
contribute to the environmental regularization of properties and forest certification by 
the Forest Stewardship Council (FSC) and the Program for the Endorsement of Forest 
Certification (PEFC), represented in Brazil by the National Forest Certification 
Program (Cerflor), with strict monitoring indicators and biodiversity management.

Fig. 10.1 Mosaic of eucalyptus forest plantations (on the upper plateau) and native forest in lower 
part of the landscape close to the stream (Internet photo)
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Despite these advances, production of planted forests in detriment of other eco-
system services is advancing in some companies, but this vision must change, espe-
cially under the logic that increasing the area of planted forests will not compensate 
for loss of biodiversity and scenic or cultural services (for example) due to the loss 
of natural forest cover. To give an example, because it is extremely sensitive to weed 
competition, the control of weeds (Zen 1987; Tarouco et al. 2009) and invasive or 
pioneer species is difficult to give up given the sensitivity of Eucalyptus to resources 
in the initial stage of establishment. On the other hand, as detected by Stallings 
(1990) in the Atlantic Forest biome, more than 50% of the species of mammals and 
birds found in primary forest were found in eucalypt areas with understory vegeta-
tion and, on the contrary, none of them in plantations without this vegetation. In 
other words, the production logistics of the sector must be rethought, since the mix-
ing of tree species (mixed plantations) can improve the performance of the 
Eucalyptus stand, with gains in several other ecosystem services.

An important aspect to be considered in relation to the environmental services of 
Eucalyptus as well as its impacts, is the scale at which species of this genus are 

Fig. 10.2 Performance variation of expected ecosystem services linked to water conservation pro-
vided by different forest cover management systems (adapted from Ferraz et al. 2013; illustration 
by F.C. Balieiro)

F. de Carvalho Balieiro et al.



205

planted. Another point concerns the species, since the choice of the appropriate spe-
cies will influence the quality and quantity of the ecosystem service.

Regarding the ecosystem services of the soil associated with Eucalyptus planta-
tions, it is worth mentioning that soil carbon stocks and organic matter increases 
have been comparable to natural ecosystems (Fialho and Zinn 2014). Although 
some changes in soil and climate behavior may be evident (Cook et al. 2016), forest 
ecosystems retain more of this soil asset than the Brazilian agricultural sector. 
According to the Brazilian Institute of Geography and Statistics, IBGE, agricultural 
activities cover an area of about 350 million hectares, of which approximately 172 
million hectares are destined to pasture and with more than 50% of these areas in 
some state of degradation (Macedo et  al. 2013). These degraded areas  could be 
managed by the forest sector with many other environmental gains.

 The management of Eucalyptus as well as any other silvicultural activity implies 
a permanent culture with cycles varying from 5 to 20 years of rotation, with fire 
being banned from these areas, unlike poorly managed pastures that sometimes 
burn in one cycle of fire-free cutting of Eucalyptus, thus avoiding emissions of 
greenhouse gases and soil degradation.

In summary, the planting of Eucalyptus may be the opportunity for the conver-
sion of exclusively agricultural landscapes to agroforestry such as agrisilviculture, 
silvipastoral, and agrosilvopastoral systems. After all, eucalypt is recognized by 
farmers as a commodity, being adopted as a more familiar crop, as opposed to plant-
ing native species which, although more advantageous in providing ecosystem ser-
vices, is not easily accepted in rural areas.

Thus, the adoption of Eucalyptus and appropriate management can promote the 
transition to natural forest restoration through the regeneration of pioneer and early 
native species in its understory, which may facilitate the succession of forests 
(Parrotta et al. 1997), and thus the provision of ecosystem services.

10.4  Ecosystem Services in Low-Diversity, Mixed-Planted 
Forests

Low-diversity (with up to five species), mixed-planted forests are common in pro-
grams for the restoration of severely degraded areas, such as mining areas (Franco 
and de Faria 1997; Parrotta and Knowles 1999; Singh et  al. 2006; Franco et al. 
2018), or in areas under environmental restoration where the availability of seed-
lings or seeds is low (Rodrigues et al. 2009). In Brazil and in other countries such as 
Australia, the USA, Congo, and Costa Rica, plantations that associate N2-fixing trees 
and non-N2-fixing  tree species have gained importance in the last years. These 
mixed plantations have been studied under different experimental designs (Forrester 
et al. 2006; Kelty 2006), and most of them concentrate on the use of exotic species 
(Forrester et al. 2006; Liu et al. 2018; Marron and Epron 2019). Most of the results 
brought to this point are derived from the other chapters, especially from the experi-
ence with Eucalyptus and Acacia mangium in Brazil.
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The provision of timber for energy or industrial purposes (paper and pulp) 
through mixed Eucalyptus and N2-fixing species may reach higher levels 
than Eucalyptus   monocultures (Binkley et  al. 1992; Kaye et  al. 2000; Forrester 
et al. 2013; Koutika et al. 2014; Santos et al. 2016). However, this fact cannot be 
generalized (Marron and Epron 2019). Based on data from experiments in five loca-
tions in Brazil and one in the Congo, the global production of timber from mixed 
plantations was higher in poorer and sandy soils and where the climate favored the 
development of the legume (Acacia mangium) (Santos et al. 2016). A very recent 
meta-analysis by Marron and Epron (2019), with 148 case studies around the world, 
showed that plant mixtures have a significantly positive global effect, with mixed- 
tree plantations being 18% more productive than the non-N2-fixing monocultures, 
and this effect was significantly different from zero (null) under temperate condi-
tions (24% more productive) but not under tropical conditions (12% more produc-
tive). They attributed these findings to nitrogen availability (generally less in 
temperate climate). However, as cited above, the marked success of the mixture is 
more evident in sites with low biomass production potential.

Comparing with the national average of eucalyptus productivity in monocultures 
(~20 Mg ha−1 year−1) (Stape et al. 2010; Gonçalves et al. 2013), and the possibility 
of opening markets for other types of raw material, the rural producer and the indus-
try would have more income and business options when handling mixed planta-
tions. Considering that one half of the pasture area is in some degree of degradation 
(Oliveira et  al. 2004), and that sandy soils cover around 10% of the Brazilian 
 territory, these mixed plantations can provide additional gains in timber, and of 
several other ecosystem services for the property or countryside. The possibility of 
using timber or non-native species can also bring even greater benefits resulting 
from the conservation of native biodiversity.

One of the main concerns regarding successive rotations of tropical Eucalyptus 
plantations is the soil nitrogen (N) balance, which generally becomes negative with 
multiple rotations due to a combination of high N exports from timber harvests and 
low doses of N fertilizers that are typically applied (Corbeels et al. 2005; Laclau 
et al. 2010). Thus, N inputs are required to sustain satisfactory forest production, 
which is accomplished generally by nitrogen fertilizer applications (e.g., urea, 
ammonium sulfate, and ammonium nitrate). Plantation of Eucalyptus in consortium 
with N2-fixing trees is a valuable and sustainable technique, because it can provide 
an increase in the N availability for Eucalyptus trees, obtain high timber productions 
even without the use of N fertilizers (Voigtlaender et  al. 2012; Santos et  al. 
2016), with low greenhouse gas emissions, especially the nitrous oxide (N2O), orig-
inating from N fertilizations (Silveira 2018). Tchichelle et al. (2017) showed that 
soil N mineralization was 82% higher under Acacia mangium monoculture and 
53% higher under mixtures with A. mangium and E. grandis than in E. grandis 
monoculture, although differences in N stock and C:N ratio in the 0–25 cm soil 
layer between the two pure treatments were not significant. The higher N mineral-
ization rate in pure legume tree plantations or in mixed plantations, when compared 
to Eucalyptus monocultures, has also been observed in other studies in the tropics 
(Bernhard-Reversat 1996; Parrotta 1999; Forrester et al. 2005).
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In terms of N2O emissions in mixed plantations established in the Southeast 
region, Santos et al. (in preparation) detected very low emissions of nitrous oxide 
from sandy soil (except in some periods of prolonged rainfall). This is due to the 
absence of mineral fertilization at the fifth year of the plantation and the fact that 
the soil in the experimental area has a low water retention capacity. However, when 
analyzing the accumulated emissions, these were higher in the A. mangium envi-
ronment, in relation to E. urograndis, and with intermediate values for the mixed 
plantations (E. urograndis + A. mangium). In recently established tree plantations 
on medium-textured Oxisols (clay content ranging from 34 to 42%), in central-
western Brazil, Silveira (2018) observed the same emission pattern, with low aver-
age flows in the dry period. This was explained by the low availability of inorganic 
nitrogen in the soil and due to the absence of microanaerobic sites within the 
microaggregates of the soil, and higher flows during the wet season. However, the 
application of N fertilizer (via urea) in the E + N treatment resulted in an increase 
in N2O fluxes that began to be noticed a few days after application of N, coinciding 
with the highest rainfall event after application of N, when soil moisture content 
increased. It has been speculated that several years later, far from the initial phase 
of forest growth, when fertilization and soil-tillage operations cease and the N 
emissions are usually very low, the enrichment of N in the soil provided by the 
legume might raise the emissions of N2O, in relation to Eucalyptus monocultures 
(Rachid et al. 2013). However, many more studies must be encouraged before this 
can be corroborated as a fact. In addition, we believe that the low nitrous oxide 
emission probably is  compensated by higher C sequestration by the soil and no N 
fertilizer application in mixed plantations, but these balances have not been 
obtained yet.

The sequestration of atmospheric C by mixed-planted forests is another ecosys-
tem service of these forests. This service is proportional to the growth rates of these 
plantations, which can vary with factors such as planting structure, composition, 
age, climatic condition, and soil type (Cook et  al. 2016; Brandani et  al. 2017; 
Marron and Epron 2019). The total amount of C sequestered by these plantations 
varies with the proportion of the total allocated in woody tissues and the end use of 
this biomass. Thus, uses for civil construction, wooden posts, furniture, and handi-
crafts increase the mitigating potential of the planted forests. On the other hand, if 
the use is for energy purposes, the sequestration becomes temporary. Carbon 
sequestration through soil is strongly related to the conversion to other uses for 
mixed plantings, or for more conservative management of soil and crop residues. 
Soil organic matter plays a role in a series of processes and properties from which 
several essential ecosystem services emerge, such as nutrient filtration, waste recy-
cling, water filtration and storage, and flood control, among others (Dominati et al. 
2010). As already presented in several chapters of this book, mixed plantations with 
non-N2-fixing trees and N2-fixing species can sequester more C than pure planta-
tions of non-N2-fixing trees, such as Eucalyptus. However, this effect is particularly 
dependent on the development and type of interactions of the species, as well as on 
the local edaphoclimatic conditions (Balieiro et al. 2008; Voigtlaender et al. 2012, 
2019; Koutika et al. 2014; Rocha et al. 2019).
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Erosion control and flood mitigation are ecosystem services provided  by all 
kinds of forests. This includes mixed plantations, with planting on the remnants of 
the previous crop, because of the rapid covering of the soil by the plants (<2 years), 
and efficient exploitation of the soil mass resulting from complementarity and/or 
competition of aerial and underground niches (Chaer and Tótola 2007; Laclau et al. 
2013; Silva et al. 2015; Santos et al. 2016). They protect the soil against the impact 
of raindrops, preserving and stabilizing the soil structure. Soil losses in 
Eucalyptus and Acacia plantations are usually low (<2.0 Mg ha−1), reducing associ-
ated losses of nutrients from these plantations.

The expected improvements of the microbial activity, due to litter introduction of 
N2-fixing legumes are conditioned by the structural quality of the litter produced by 
the species, the litter stoichiometry (N:P ratio), and the increase in the diversity of 
intercropping tree species, but divergent results can be found in the literature, in 
terms of decomposition, as discussed in Chap. 4.

Recent research has increased our understanding of the interactions that occur 
between microbiome-soil and microbiome-plant in mixed-plantation systems, par-
ticularly using Acacia mangium trees as a model plant (Rachid et al. 2015; Pereira 
et al. 2017; Fonseca et al. 2018; Bini et al. 2018). The search for specific roles in 
natural ecosystems and applying them in agriculture (Andreote and Silva 2017), as 
in the case of mixed-forest plantations, can increase the sustainability of planted 
forests. Studies with microorganisms associated with the soil-plant interface in 
Eucalyptus breeding programs have been neglected for years and we still know very 
little about this plant-microbiome interaction. In a forest system, trees are  dependent 
on the microbiome to survive, which provides nutrients essential to their develop-
ment, such as N, P, and K (primary macronutrients), by cycling organic matter in the 
soil. It was estimated that N2-fixing bacteria and mycorrhizal fungi are responsible 
for furnishing up to 80% of all phosphorus and 75% of all nitrogen that forests use 
in their life cycle (van der Heijden et al. 2013).

A recent study evaluating a mixed-cultivation system between E. grandis and 
A. mangium on a 4-year-old and  sandy-textured red-yellow Latosol 
(Ferralsol) showed strong influence of the composition of plants on the microbial 
community structure of the soil, both at the surface (0–20 cm) and at the subsurface 
(20–800 cm) (Pereira et al. 2017). In this study, the structure of the bacterial com-
munity was completely different when comparing with the pure treatment of 
E. grandis and the mixed treatment of the same species, suggesting that the acacia 
plants are the main modulators of the structure of the microbial community of the 
soil (Pereira et al. 2017). It is still unclear which effects are due to this behavior, but 
this may have occurred due to the production of root exudates by A. mangium and, 
mainly, by changes in soil chemical attributes that occur in the root region, espe-
cially high levels of carbon and nitrogen (Rachid et al. 2013; Pereira et al. 2018).

Similarly, a mixed plantation of E. urograndis and A. mangium at 3 years of age 
installed in a Haplic Planosol (0–10  cm) of sandy texture (90% sand) showed, 
through the PCR-DGGE technique, profiles of bands with significant differentia-
tion in the soil bacterial community structure (Rachid 2013). In this study, the 
bacterial community showed the effect of each isolated plantation, which presented 
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a community structure with its own characteristics, and community integration in 
the mixed treatment. In other words, the mixed treatment bacterial community had 
characteristics of both species, where the intermediate position leads to the belief 
that there is a balance in the influence of each species in relation to the community 
structure (Rachid et al. 2013). Thus, the influence of the plant composition of the 
mixed plantations between Eucalyptus  and Acacia seems to be variable, becoming 
differentiated according to the edaphoclimatic factors of the place, the soil layer 
sampled, and the age of the stands. Because such studies were introduced relatively 
recently, learning about the changes in the soil microbial community in different 
regions, in contrasting soil and climate conditions, becomes necessary in future 
research.

Among the fungal types, two main classes are predominant in forest ecosystems, 
saprophytic and symbiotic fungi. In this sense, the roots of the trees can perform 
associations with the most varied types of fungi, such as arbuscular mycorrhizal 
(AMF) and ectomycorrhizal (ECM) fungi (Bonfanti and Anca 2009). Several types 
of mycorrhizal fungi present specificity for a single tree species (Lang et al. 2011). 
However, Eucalyptus and Acacia roots have the ability to associate with both AMF 
and ECM and, in some cases, with both types of symbionts at the same time (Pereira 
et al. 2018; Bini et al. 2018).

Bini et  al. (2018) published possibly the first evaluation of AMF effects on a 
mixed cropping system. A study by Bini et al. (2018), on the dynamics of AMF dur-
ing the first 20  months after planting pure and mixed stands of E. grandis and 
A. mangium, showed that the colonization by AMF in E. grandis roots was 
 significantly higher, when the trees were grown in mixed systems with A. mangium. 
They also identified a strong correlation between AMF colonization rates and acid 
and alkaline phosphatase activities in soil, which are produced in greater quantity in 
forests containing A. mangium.

 In this aspect, with the greater plant diversity, the materials deposited on and 
within the soil have the possibility of intensifying the nutrient cycling (Laclau 
et al. 2010).

10.5  Ecosystem Services of High-Diversity, Mixed 
Plantations: Multifunctional Planted Forest

Distinct types of forests—natural and planted forests or reforested areas—may pro-
vide ecosystem services at different levels; assessing the different aspects of forest 
state, related biodiversity, and landscape context becomes essential to monitor the 
forest and to estimate its contribution to the provision of ecosystem services (Chazdon 
et al. 2016). Since multiple-use forests (accounting for almost 20% of tropical forest 
area) are those that allow both production and conservation, in order to provide a 
great extent of ecosystem services, planted forests are expected to be multifunctional 
(Sloan and Sayer 2015).
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As described in Chap. 11 of this book, to be considered multifunctional planted 
forests, high-diversity mixed-plantation forests must focus beyond forest structure 
or species composition, targeting also ecological functioning, which may enhance 
the provision of a wider variety of ecosystem services. Ecosystem multifunctional-
ity requires greater numbers of species, since different tree species were found to 
influence different functions (Hector and Bagchi 2007). Besides providing ecosys-
tem stability, the provision of ecosystem services by biodiversity also meets human 
society needs (Mori et al. 2013).

The evidence that the conservation of biodiversity is essential to provide ecosys-
tem services has led to the discussion of changes on both production systems and 
rural landscapes. Deforestation and cropping remain the major causes of degrada-
tion of natural ecosystems (Rey Benayas and Bullock 2012; Sloan and Sayer 2015; 
Curtis et al. 2018), leading to the challenge of proposing land uses to provide a wide 
range of ecosystem services while conserving biodiversity in agricultural land-
scapes (Rey Benayas and Bullock 2012; Mori et al. 2013).

Agricultural intensification also causes biodiversity loss (Clough et  al. 2011), 
and the consequent loss of ecosystem functions sustaining ecosystem services (Mori 
et al. 2013). In order to provide a full range of services, we need high-diversity- 
based production systems, planned to target the inclusion of ecosystem functions. In 
a perspective from the biodiversity and ecosystem functioning (BEF) theory, apply-
ing response-and-effect traits into the assembling of a planted forest will help for an 
optimal ecosystem multifunctionality (Mori et al. 2013; Laughlin 2014), leading to 
improved conservation priorities and a more resilient ecosystem to face negative 
effects of climate changes (Mori et al. 2013).

In order to have more multifunctionality in the rural landscape in the tropics, 
mixed-planted forests are so an alternative to traditional cropping and allow a good 
balance between production (as wood quality) and ecological benefits, like nutrient 
cycling; further, mixed plantations with higher diversity may contribute to a more 
efficient use of soil water (Amazonas et  al. 2018). As commented above, adding 
plant functional traits to mixed-planted forests may be effective for increasing multi-
functionality (Blesh 2018). The Eucalyptus-Acacia mixing model may supply nitro-
gen to the field, since Acacia species are N2-fixing trees. Including biological nitrogen 
fixation (BNF) may supply nitrogen (N) to farm fields; in forest restoration, N2-fixing 
cover crops have been used for weed control, contributing to enhance the multifunc-
tionality of the ecosystem (Blesh 2018). When Eucalyptus is combined with a mix-
ture of native trees in a high-diversity arrangement, the whole system was found to 
be more efficient in the use of soil water, which may suggest that such an agroeco-
system may adapt to climate change conditions (Amazonas et al. 2018).

A meta-analysis showed that biodiverse agroforestry systems improve the provision 
of ecosystems in comparison to simple (low diversity) agroforestry systems and con-
ventional production systems (Santos et al. 2018). Biodiverse agroforests were found 
to reduce biodiversity loss and negative impact on the provision of ecosystem services 
(Santos et al. 2018). The design and associated sustainable management of agrofor-
ests can avoid the removal of forest cover, optimizing both biodiversity and crop 
production benefits (Clough et al. 2011; Lescourret et al. 2015; Damour et al. 2018). 
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The diverse layer consisting of multiple-use tree species is the main factor respon-
sible for the effective provision of ecosystem services (Lescourret et al. 2015).

Biodiverse agroforests are a type of high-diversity planted forests very highly 
recommended to improve biodiversity levels and provision of ecosystem services, 
supporting the planning of a biodiversity-friendly agricultural landscape (Santos 
et al. 2018; Clough et al. 2011). Agriculture intensification is a cause for land-
scape simplification, and land-use planning must seek multifunctional landscapes, 
providing goods and services, offering food security and actions for biodiversity 
conservation (O’Farrell and Anderson 2010).

Multifunctionality is the capacity of a landscape to provide multiple socioeco-
nomic and ecological benefits (Hölting et  al. 2019). Despite being unusual, it is 
important to understand how biodiversity in agricultural landscapes provides mul-
tiple ecosystem services, which may help enhancing landscape complexity 
(Birkhofer et al. 2018). Multifunctional, complex landscapes are expected to reduce 
biodiversity loss and maintain a balanced supply of ecosystem services (Frueh- 
Mueller et al. 2018), and multifunctional planted forests play an essential role in 
meeting those goals. Studies indicate that landscape management actions taken to 
conserve biodiversity will always promote an enhancement in the provision of eco-
system services (Birkhofer et al. 2018).

A strategy adopted to promote complex landscapes is the concept of land spar-
ing, when biodiversity actions are allocated separately from production. On the 
other hand, land sharing may consist of biodiversity-based agricultural practices, 
with land uses or production systems that provide ecosystem services without 
decreasing agricultural production (Rey Benayas and Bullock 2012). High-diversity 
planted forests used for forest restoration is a good example of a land use based on 
the principle of land sharing used to reduce biodiversity loss and  environmental 
health increase (Rey Benayas and Bullock 2012).

Beyond the arrangement of species in planted forests based on high biodiversity, 
the landscape approach may support the design of land management to achieve 
socioeconomic and ecological benefits in areas where land use traditionally com-
petes with biodiversity conservation (Sayer et al. 2013). The achievement of multiple 
benefits depends on how stakeholders (farmers) are motivated to contribute to a 
wider range of ecosystem services (Frueh-Mueller et al. 2018). Incentive mechanism 
as payments for ecosystem services (PES) is a way to stimulate high and balanced 
provision of ecosystem services in productive landscapes, offering the opportunity 
for local stakeholders to participate in the decision-making process (Frueh-Mueller 
et al. 2018). PES may encourage farmers to keep the forest cover and enhance the 
permeability of the landscape (Tscharntke et al. 2011). Farmers have the chance to 
make choices for multispecies cropping system designs, selecting plant species and 
creating multifunctional agroecosystems, managing for crop yield and provision of 
ecosystem services (Damour et  al. 2018). Multifunctional landscapes try to hold 
social and ecological dimensions in the management of a more complex landscape 
(Lescourret et al. 2015).

Multifunctional planted forests are able to provide economic besides ecological 
benefits, by either restoring or conserving biodiversity and related ecosystem services. 
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However, that approach presents some challenges as well, since it is necessary to 
ensure that, besides providing ecosystem services, multifunctional planted forests 
must support the needs of different stakeholders (Bullock et al. 2011). The assessment 
of studies focusing on the definition of multifunctionality indicated that about 33% of 
studies assessed ecological and socioeconomic variables in equal shares and inte-
grated the perspectives of the stakeholders as well (Hölting et al. 2019).

High-diversity-based planted forests may ensure the provision of multiple ser-
vices, since farmers have a clear understanding of how the ecosystem design and 
associated management practices can do that. In the landscape approach, the 
exchange of knowledge and experience among stakeholders is essential for a multi-
functional landscape (Tscharntke et al. 2011). The success in using multifunctional 
planted forests to build a sustainable agricultural landscape is strongly based on 
achieving social and economic benefits. Therefore, the demand policies must con-
sider a landscape scale to promote multifunctionality (Holt et al. 2016).

10.6  Final Comments

Forests may provide ecosystem services (ES) at different levels, but the implementa-
tion of a sustainable and multifunctional landscape requires focus on a range of issues 
and principles, as adaptive management, stakeholder involvement, and multiple objec-
tives (O’Farrell and Anderson 2010; Sayer et al. 2013). Some constraints that must be 
overcome include institutional and governance concerns, transparent negotiation, and 
share of rights (O’Farrell and Anderson 2010; Sayer et al. 2013). Learning actions to 
bring together the multiple stakeholders in the construction of multifunctional land-
scapes and ways to foster synergy between ecosystem functioning and social dynam-
ics are needed (O’Farrell and Anderson 2010; Lescourret et al. 2015).

Under local and regional scale the mosaic of exotic planted forests and native 
forests in the rural landscape matrix has brought immeasurable benefits to sustain-
ability. The mixed-planted forests (with low or high diversity) emerge as an alterna-
tive to traditional cropping and allow a right balance between production (wood) 
and ecological benefits. Multifunctional landscapes are expected to reduce biodiver-
sity loss and maintain a stable supply of ecosystem services, while under commer-
cial level increased rotation length, multiple uses, alternative spacing and species or 
clone arrangements (as mixed with N2-fixing trees), as well as conservative soil 
practices are necessary to mitigate the loss of natural capital.
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Chapter 11
The Risk of Invasions When Using Acacia 
spp. in Forestry

Ciro José Ribeiro de Moura, Nina Attias, and Helena de Godoy Bergallo

11.1  Aliens Welcome

Exotic tree species such as Pinus and Eucalyptus have a great impact on the Brazilian 
economy, accounting for 6.1% of the Brazilian GDP in 2018 (Industria Brasileira de 
Árvores, 2019). Nowadays Brazil is the third largest exporter of pulp, accounting 
for 13.2% of the world market. According to IBGE (2019), planted forests currently 
occupy ten million hectares, which corresponds to 1% of the country’s agricul-
tural lands.

“The climate, the soil and the technology we have in Brazil have allowed us to achieve the 
highest average annual productivity in the world,” explains agronomist João Salomão, gen-
eral coordinator of Forestry and Livestock Affairs at the Ministry of Agriculture, Livestock 
and Supply (MAPA).

In 2016, Brazil led the global ranking of forest productivity, with an average of 
35.7 m3 ha−1 year−1 in eucalypt plantation and 30.5 m3 ha year−1 in planting pine 
trees, according to data from the Brazilian tree industry (Industria Brasileira de 
Árvores 2019).
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However, some of these genera such as Acacia and Pinus present invasive behav-
ior in some ecosystems, and it is necessary to account for and internalize these 
impacts economically.

In Brazil, the impacts of all invasive species generate an annual loss of approxi-
mately US$ 50 billion per year (Pimentel et al. 2001). However, this estimation is 
outdated, resulting in an underestimate of the invasion problems caused by several 
species and its negative environmental and socioeconomic impacts (Rouget et al. 
2016). Despite the abundant evidence and warnings of the possible impacts and 
damages caused by the introduction of exotic species, they continue being intro-
duced to new locations for various purposes (Vitousek et al. 2017).

We estimate that 21% of known plant species in Brazil are exotic (Pimentel et al. 
2001), including the main crops such as soybean, coffee, sugarcane, rice, corn, 
oranges, bananas, coconut, and many others. To control the action of invasive exotic 
species, management and eradication techniques have to be implemented (van 
Wilgen et  al. 2011) and are surrounded by a high degree of uncertainty, besides 
elevated costs. Hence, considering the risk of invasion and the costs associated with 
the control of alien species, the Convention on Biological Diversity (1992) states 
that, according to the precautionary principle, the prevention of future invasions 
should be the most efficient form of management.

The perception of the impact of the biological invasion is supplanted by the per-
ception of utility and generation of economic revenues from the use of these spe-
cies, which is seen as a commodity to feed the people. As a rule, the costs of the 
invasion impact caused by the invasive alien species are externalized to the whole 
society. Furthermore, the decision to prioritize caution and control by the society as 
a whole depends on the perception and type of impact caused by the biological inva-
sion and the willingness to pay for the high control costs.

When an exotic species has been settled for multiple human generations, it 
becomes part of the landscape memory and can be mistakenly recognized as native 
species (Diamond 2005). One example of this is the jackfruit Artocarpus hetero-
phyllus, originally from Asia and introduced in Brazil in the sixteenth century 
(Ferrão 1993). The species has been classified as Artocarpus heterophyllus by Lam., 
as published in Encyclopédie Méthodique Botanique in 1789 but, 23 years later, in 
1812, the same species was misclassified as Artocarpus brasiliensis by Ortega, in 
Memórias de Mathematica e Phisica da Academia Real das Sciencias de Lisboa 3: 
84, portraying how the species had been incorporated into the local landscape.

11.2  Acacia Silviculture

The economic value of eucalypt was recognized from the earliest days of European 
settlement in Australia, and this stimulated the transfer of seeds of many taxa around 
the world. However, systematic collection and evaluation of Australian Acacias spp. 
only began in the 1970s. The major agency involved was the Australian Tree Seed 
Centre that dispatched samples of 322 taxa (1/3 of them Acacia spp. native to 
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Australia) between 1980 and 2010 to 149 countries. Plantations in SE Asia and 
South Africa supplying the pulp and paper industry also provide logs for solid wood 
products (Griffin et al. 2011).

This commercially versatile genus can be used in a small scale as a resource of 
firewood in rural properties or in large scale industrially (Midgley and Turnbull 
2003). At local scale, it is used for landscape purposes, such as firebreaks and wind-
breaks; in the forestation of urban and rural areas; and, in consortium with other 
legumes, for the reclamation of degraded soils (Carvalho et al. 1998, Faria et al. 
1998, Souza et al. 2004, Balieiro et al. 2007).

Acacias as N2-fixing trees have been used in mixed plantations with eucalypt 
increasing biomass productivity while maintaining the fertility, because of the more 
efficient use of soils, both physically and chemically (Kleinpaul et al. 2010), high-
lighting the importance of soil enriched with symbiotically fixed N in substitution 
of high doses of synthetic N fertilizer (see Chap. 6).

Acacia mangium has become a widely used species in reforestation programs in 
the humid tropical plains of Asia. It also is one of the most common leguminous tree 
species in plantations in the tropical and subtropical regions of southeastern China 
(Midgley and Turnbull 2003, Xiong et al. 2008).

In Brazil, Acacia mangium is planted with multifunctional characteristics in a 
consortium with agricultural crops and lends itself to uses in integrated forest and 
livestock cultures. The first commercial plantation in Brazil was set up in 1930, 
when 30 kg of seeds were imported from South Africa (Higa et al. 2009).

Around the word, this species is implemented in plantations destined to the pro-
duction of firewood (calorific value of ~4900 kcal/kg) (Sahri et al. 1998), wood pulp 
(Weber et al. 2007), wood for construction, and adhesives (Hoong et al. 2009).

It began to be used in reforestation programs as a carbon sequestration plant 
(Heriansyah et al. 2007, Tonini et al. 2010). In Brazil, the most common use is in 
reforestation programs of land reclamation, and this use was incorporated and popu-
larized by Embrapa (the Brazilian Agricultural Research Corporation) in Brazil, 
especially in the Amazon and in Rio de Janeiro states.

Finally, this tree, in addition to the various possible uses of its wood, is approved 
due to its melliferous flowers; that is, its floral nectar is used by exotic bees of the 
genus Apis for the production of honey (Barbosa 2002). Acacia produces a high 
amount of wood with low accumulation of nutrients, being a silvicultural option in 
areas with low soil fertility (Franco and De Faria 1997, Balieiro et al. 2004).

In 2006 black Acacia (Acacia mearnsii De Wild.) was the third most planted for-
est species in Brazil, surpassed only by Eucalyptus spp. and Pinus spp. (SBS, 2006). 
Brazil has 9.85 million hectares of planted forests, 75.2% of which in eucalypt and 
20.6% in Pinus, according to the survey Plant Production and Forestry 2017 (PEVS 
in Portuguese) (IBGE, 2017).

The use of Acacia mearnsii as a raw material for tannin, cellulose, and charcoal 
also presents great social importance, mostly in small properties. One strategy of 
cultivation is at the beginning of the crop and, at 3 years of age, the area is trans-
formed into cattle pasture under the canopies (Mora, 2002).

11 The Risk of Invasions When Using Acacia spp. in Forestry
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From 2010 to 2016 the area planted with black Acacia species had been stabi-
lized around 149.000 (±11.85 ha) according to Ibá and Pöyry (2016).

11.3  Success for the Successful

There are approximately 1350 species of the genus Acacia (Fabaceae) distributed 
worldwide (Maslin et al. 2003). We estimate that the area planted with trees of the 
genus Acacia in the world in the year 2000 was close to eight million hectares (FAO 
2006). Nevertheless, several factors can influence the successful establishment of an 
exotic species. In most cases, only a small portion of species introduced are able to 
thrive in natural environments and indeed become invasive and maintain long-term 
viable populations and disperse from the area of introduction (Lockwood et al. 2001).

Australian acacias have great adaptability and rapid growth, which favors their 
popularity for introduction in several countries and climatic regimes, with some 
species introduced in more than 70 countries (Midgley and Turnbull 2003). However, 
acacias have a consistent history of introduction followed by invasion, which, since 
1900, has been recorded throughout Southeast Asia (Richardson et al. 2015), South 
Africa, Hawaii (Richardson et al. 2011a), and Portugal (Fernandes et al. 2013).

Acacias possess a set of ecological characteristics that can be related to their 
establishment success such as short generation time and high seed production 
(Richardson et al. 2015). However, it is important to keep in mind that, as for other 
exotic species, in the journey of success of the acacias, the intentional introduction 
has aided the species to overcome biological filters (Groom et al. 2006), such as 
biogeographic isolation and biotic conditions, through human intervention. The 
probability of a successful establishment can be further increased by the fact that 
foresters actively select areas where environmental conditions are similar to those in 
the native ranges of the species (Richardson et al. 2015).

The genus Acacia was introduced in Brazil about a 100 years ago (Schneider 
et al. 1991). Within the genus Acacia, the species A. mangium Willd. and A. mearn-
sii De Wild. are those that occupy the largest area in Brazil being used in activities 
such as forestry, land reclamation, and urban and rural afforestation (Attias et al. 
2014). In Brazil A. mangium has shown a cycle of 8–15 years, and although it has 
not been invasive in areas already vegetated, either under forest or planted pasture 
(Franco 2018) under native environments such as the savannas of the state of 
Roraima, and oligotrophic soils, this species has shown an invasive character 
(Aguiar Jr et al. 2014).

Other species were also brought to Brazil, as Acacia auriculiformis A. Cunn. ex 
Benth. and Acacia holosericea A. Cunn. ex G. Don., and were very successful in 
their establishment as well.

Coincidently, or not, those are the acacia species most frequently recorded in the 
regional lists of invasive alien species in Brazil (Attias et  al. 2014). The Horus 
Institute, a Brazilian NGO dedicated to the invasive species study and control, eval-
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uated A. holosericea as of high risk of invasiveness in a calculation of the risk of 
introduction.

According to Balieiro and Tonini (2018), the first experimental mixed planta-
tions with A. mangium were carried out in 1979 by the Brazilian Agricultural 
Research Corporation (Embrapa) in Colombo (Paraná) and, in 1985, plantings were 
 established in Minas Gerais. Around 1993, the Embrapa center at Seropédica (Rio 
de Janeiro) established the first experimental plantations with the species, which 
culminated later in the pioneering of that research center in the restoration of 
degraded areas in Brazil.

In the southeastern states in Brazil, Acacia spp. were planted for several purposes 
as afforestation of roads or highway, landscaping, soil conservation, and land recla-
mation. Since that time, technicians and specialists noticed the behavior of the spe-
cies in invading open environments in a very aggressive way, beyond its planting 
areas (Balieiro, personal communication).

In Brazil, these species have been recorded in areas adjacent to their introduction 
sites (Mochiutti et al. 2007, Aguiar Jr et al. 2014). Plantations consist of a continu-
ous source of dispersing individuals, increasing the chance of invasion by the spe-
cies in adjacent areas. Furthermore, the anthropogenic disturbance generated by 
plantation management activities can modify the environmental conditions and 
facilitated the invasion process in these areas. However, the organized introduction 
of acacias in Brazil, by itself, does not explain all the success in the establishment 
in the new environment.

Some other ecological characteristics can be ascribed to them as their ability to 
define much of the structure of a new community as a foundation species (Ellison 
et al. 2005), keystone species (Mills et al. 1993), and ecosystem engineer (Ellison 
et al. 2005) and probably it is most consistently determined by their propagule pres-
sure (Lockwood et al. 2005, Cassey et al. 2018).

Nowadays the evaluation of the risk of invasion of these species is already done 
by the NGO Horus Institute (2018) providing support for prevention strategies to be 
adopted before these species cause significant damage in new areas in Brazil, as 
they already do in other countries (Richardson and van Wilgen 2004).

Moreover, according to the National Database of Invasive Alien Species I3N in 
Brazil, the genus Acacia is spread across 11 states. The database indicates invasions 
at different levels by Acacia auriculiformis, Acacia farnesiana, Acacia holosericea, 
Acacia longifolia, Acacia mangium, Acacia mearnsii, and Acacia podalyriifolia.

It is important to consider that in their native environment in Australia, the spe-
cies of the genus Acacia occupy a wide variety of environments, but are particularly 
prevalent in arid, semiarid, and subtropical dry regions. The seeds are produced in 
large quantities and have the capacity to remain viable for long periods (ABRS 
2001). Acacia mangium, however, has very small and not very competitive seeds 
when competing with already established vegetation.

Acacia species as other plants known for their histories of introductions to new 
habitats by humans are in the selected group of species that easily become domi-
nant. This can be attributed to their escape from specialist consumers and release 
from enemies, which is also thought by some researchers to lead to the evolution of 
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increased competitive ability, driven by a decrease in the plant’s resource allocation 
to consumer defense and an increase in allocation to size or fecundity (Callaway 
and Ridenour 2004).

In Brazil, the deliberate introduction of acacia species for multiple purposes pos-
sibly influenced the success of the species. In this sense, the propagule pressure is a 
determinant for the establishment and success of alien species. The number of indi-
viduals introduced to find a new population may have surpassed any obstacle or 
competitor in favor of the establishment of the acacias (Cassey et al. 2018).

A well-documented case of introduction occurred in 1998, when A. mangium 
was introduced in Roraima as an experimental planting of a thousand seedlings. 
Due to the apparent success of this planting, Walter Vogel founded Ouro Verde 
Agrosilvopastoril Ltda. (OVA) and started to invest in commercial acacia forestry in 
the Boa Vista, RR region, from 1999 (Forest Management Plan—Ouro Verde 
Project 2007).

During the process of establishing the company, Walter Vogel donated 100 seed-
lings of A. mangium to each public school in Boa Vista. Parts of these seedlings were 
planted within the school grounds and another part distributed to parents and school 
employees. Thus, because it provided efficient shading, the species was quickly 
accepted by the residents and disseminated through the city (Isabela Coutinho, resi-
dent of Boa Vista, personal communication), facilitating the invasion process.

In 2007, 80,866 ha of savannah land was occupied by the activities of the OVA 
company, of which 26,757 ha were planted with acacias, and the production capac-
ity of A. mangium sawmills was estimated at 10,000 m3/year (Forest Management 
Plan—Ouro Verde Project 2007).

As part of the preparation process of the A. mangium planting area, Cajanus 
cajan (L.) Millsp.), another exotic and invasive species in other regions, was planted 
with a function of wind breaking for the seedlings, facilitating the vertical growth of 
acacia seedlings.

According to the OVA Management Plan, in recognition of the invasive potential 
of A. mangium, a task force was created to once a year clean up all watercourses of 
the farms of the company of invasive vegetation of this species (Management Plan 
Forestry—Ouro Verde Project 2007). However, these measures have not been shown 
to be totally effective, with A. mangium occurring spontaneously outside the planta-
tion area (Aguiar Jr et al. 2014).

11.4  But Why?

Popularly known in Brazil as Australian Acacia, A. mangium, or even only Acacia, 
it has a dense crown and white flowers and can reach up to 30 m in height (Lorenzi 
et al. 2003, Midgley and Turnbull 2003).

In plantations, flower and seed production starts at 2 years of age and mature 
pods can be observed 7 months after flowering. Flower pollination occurs by insects, 
mainly by bees (Midgley and Turnbull 2003). The fruits are spiral-shaped pods, 
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which contain small black seeds that remain in the mature pods fixed by an orange 
aryl and which are dispersed naturally by wind and birds (Kull and Rangan 2008).

In natural habitat, A. mangium individuals are concentrated in lowland coastal 
areas at altitudes of up to 300 m. They grow on the banks of closed forests, in open 
forests, woods, and especially areas disturbed by fire (Midgley and Turnbull 2003). 
The initial growth rate is directly proportional to the light incidence, reaching its 
maximum in open areas. Many physiological characteristics define A. mangium as 
a pioneer species that is fast growing and with ease of establishment in a wide vari-
ety of environmental conditions, especially in humid tropical areas (Tong and 
Ng 2008).

Other characteristics of this species favor its dominant establishment in many 
places as, for example, the ability to shade competitors quickly, the reduced amount 
of potential pathogens, and the ability to capture large amounts of rainwater associ-
ated with essential nutrients in the runoffs of the trunk. High tolerance to soils that 
are compacted and very acidic (pH 4.2–6.5) and have low nutrient concentration 
also contributes to this facility (Lorenzi et al. 2003, Midgley and Turnbull 2003, 
Balieiro and Tonini 2018).

These characteristics guarantee to this species a great competitive potential in 
environments under water stress and conditions of low soil fertility (Faria et al. 1998, 
Balieiro et al. 2007). It is important to note that these same characteristics (e.g., large 
seed production, rapid initial growth, and shading capacity of competing species) are 
common features of invasive alien species (Rejmánek and Richardson 1996, Castro-
Diez et al. 2011). However, as commented before, its small seeds are not very suc-
cessful in establishing at seedlings stage competing in areas densely vegetated.

Despite all characteristics mentioned above, a special one that gives to Acacia 
species a great competitive advantage is the ability to grow on low-nitrogen soils 
due to the biological property of forming symbiosis with rhizobial bacteria 
(Duponnois and Plenchette 2003).

This is especially important in extremely adverse situations found in heavily 
degraded soils that have lost their upper horizons, where the physical and chemical 
factors are too restrictive for plant growth. Acacia symbioses with nodulating N2- 
fixing bacteria and arbuscular mycorrhizal fungi constitute an efficient strategy to 
accelerate soil reclamation and initiate natural succession (Chaer et al. 2011, see 
also Chaps. 6 and 7).

11.5  Acacia and Its Interactions

Complex interactions can be generated as a result of the introduction of exotic 
plants into a new community. These interactions can cause disturbances in several 
environmental variables, affecting species, communities, and ecosystems 
(Richardson et al. 2011a, b, Vilà et al. 2011). In this context, the form and intensity 
with which an exotic species affects the physical, chemical, and biological environ-
ment are described as disturbance (Richardson et al. 2011a, b).
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A. mangium plantations are often responsible for changes in various edaphic 
attributes. Studies conducted in Thailand have indicated that soil moisture within an 
acacia planting is lower than adjacent open areas, indicating a high rate of water 
consumption and competition among individuals for this resource (Sakai and 
Thaingam 1998 cited in Kamo et al. 2009). The concentration of nutrients in these 
environments can also be altered. Peak plant growth is capable of rapidly absorbing 
large amounts of nutrients, which can deplete the soil and limit the growth of indi-
viduals at advanced ages (Tong and Ng 2008, Nykvist and Sim 2009).

Soil acidification is common under cropping systems depending on N2 fixation 
as a source of nitrogen if parts of crop removed contain large quantities of bases. For 
Nambiar et al. (2014) the effect of Acacia spp. in acidifying soils is questionable 
because of the confounding problems in the design of the studies. The pH fluctua-
tion in time (or the moment of soil sampling) and the use of a pasture, abandoned 
land, or forests as reference treatments are some of those factors. In the case of 
A. mangium, if harvest residues and litter are maintained, the only removal of poles 
should not affect too much the soil pH (Franco, A. A., personal communication).

The amount of litter accumulated in the soil is influenced mainly by the amount 
of organic matter produced by the plants associated with the litter decomposition 
rate (Garay et al. 2003). A. mangium adult individuals do not have leaves but rather 
flat stems, called phyllody, with leaflike appearance. When they fall, these phyl-
lodes decay very slowly, accumulating in the litter (Balieiro et al. 2004, Kull and 
Rangan 2008). The reduction of litter decomposition rate is a common disturbance 
in invasion processes (Vilà et al. 2011), but very desirable as a soil conditioner in 
tropical soils for sustainability of the system.

When compared decomposition rates were slower for acacia residues than for 
Eucalypt residues despite initial higher N and P concentrations in the Acacia resi-
dues. The decomposition rates depended on the carbon quality of the litter, primar-
ily in terms of water-soluble compounds and lignin, and on the P availability 
(Bachega et al. 2016).

In mixed plantations of eucalyptus and Acacia the niche separation of the fine 
root system’s architecture and distribution in the soil horizons, associated with the 
capacity of biological symbioses with nodulating N2-fixing bacteria and the differ-
ent dynamics of phosphorus, can be beneficial for both species (Balieiro, personal 
communication).

Parrotta and Knowles (1999), in a study of the Brazilian Amazon region, found 
that a higher litter accumulation and slower humus-layer formation in the natural 
regeneration and mixed native species plots are due to the relatively slow decompo-
sition of the dominant species in these stands, when compared to other treatments, 
as Cecropia spp., or Eucalyptus spp. mixed with Acacia mangium in the mixed 
commercial species treatment. These trends may reflect treatment differences in the 
development and activity of litter invertebrate communities and other litter decom-
posers, a topic meriting further research.

The accumulation of litter under individuals of A. mangium benefits the recovery 
of degraded areas by protecting soil from erosion, soil temperature fluctuation, and 
increasing nutrient reserve (Balieiro et al. 2004). However, this accumulation may 
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also be responsible for increased propensity for burning and inhibition of native 
seed germination (Parrotta and Knowles 1999, Balieiro et  al. 2004, Kull and 
Rangan 2008).

The modifications observed in the soil can have influence not only on the local 
vegetation, but also on the edaphic fauna (see Chap. 8). Tsukamoto and Sabang 
(2005) reported the simplification of the structure of the macroinvertebrate soil 
community in a 14-year plantation in Malaysia. Compared to the adjacent native 
forest area, the acacia plantation had a total biomass four times higher, but with a 
different taxonomic composition and lower diversity. It is interesting to note that 
one of the dominant species of this community is a species of exotic earthworm that 
probably was also introduced during planting (Tsukamoto and Sabang 2005).

Another important aspect on soils and soil-fauna is the allelopathic effects attrib-
uted to the Acacia species (Lorenzo et al. 2008, Lorenzo et al. 2010). Callaway and 
Ridenour (2004) proposed that invaders with allelochemical substances have com-
petitive advantages in their new habitats, which they named as “allelopathic advan-
tage against resident species” hypothesis or “AARS.”

The same experience as reported in Brazil is also reported in the rest of the 
world, accordingly with the International Union for Conservation of Nature (IUCN), 
about several environmental disturbances caused by the introduction of acacia and 
eucalyptus in Bangladesh since the 1980s. These include competition with native 
flora, high water consumption, reduction of soil fertility due to the deposition of 
slowly degradable leaves, inadequacy of their fruits and nectar for the consumption 
of native fauna, and production of pollen with a potential negative effect on the 
human respiratory tract (Barua et al. 2001).

Back to Brazil, in Roraima, 3- and 4-year plantations were responsible for the 
disappearance of native herbaceous vegetation through shading. In this same region, 
a large increase in the density of exotic bees of the genus Apis sp. (Barbosa 2002) 
was observed. This high density of bees harms the hunting and extraction activities 
of the indigenous populations that occupy lands near the plantations, generating 
complaints from them (C. Castilho, personal communication). On the other hand, 
an experiment of reclamation of mining residue, conducted in Porto Trombetas, 
Pará state, in a forest predominating matrix, has shown that, after 10 years of plant-
ing, several introductions of A. mangium have died out completely and have been 
replaced by a diverse and much superior biomass production than the plots planted 
with Eucalyptus spp. and that no seedling or plant of A. mangium was observed in 
the forest nearby (Campello 1999, Franco 2018).

In savanna areas adjacent to plantations in the state of Roraima, the spontaneous 
occurrence of adult reproductive A. mangium individuals was observed. In this loca-
tion, the species density was inversely proportional to the distance of the source 
area, with 900 m being the maximum distance of dispersion observed (Aguiar Jr 
et al. 2014). According to Richardson et al. (2000), a species may be considered 
invasive if it is able to generate new reproductive individuals at a distance of more 
than 100 m from the source individuals in a period of less than 50 years. Thus, the 
study conducted by Aguiar Jr et  al. (2014) shows that this species has invasive 
behavior in the Cerrado region of Roraima. After only 9 years of planting, A. man-
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gium was able to disperse over long distances and reach the reproductive stage 
(Aguiar Jr et  al. 2014). The same study found the presence of Acacia mangium 
individuals up to 900 m from the plantation edge 8–9 years after its introduction, 
independent of life stage or establishment pattern, indicating that this species can 
naturally disperse over long distances in open areas as natural Amazonian savanna.

11.6  We Are Not Alone: The Pity Comes by Horseback

The black acacia (A. mearnsii) is included in the list of the 100 “worst” invasive 
species in the world according to IUCN (Lowe et al. 2000); the invasion of natural 
environments by black acacia has not been extensively tested in Brazil, as in other 
parts of the world, even though it has been planted and used in the South for 
many years.

In Brazil, this species is found frequently in disturbed environments adjacent to 
crops, along roadsides and even in protected areas as parks and reserves. In Rio 
Grande do Sul, it was recorded as invasive in rural environments near cultivated 
areas. However, because it is a pioneer plant with high light demand, it is not able 
to establish itself in shady environments, areas of forest, or savannas (capoeiras in 
Portuguese) (Mochiutti et al. 2007). In this same Brazilian state, Nardelli (2004) 
recorded occurrences of black acacia in the natural ecosystems adjacent to planta-
tions. The environment of black acacia plantations in Rio Grande do Sul is com-
posed of areas of natural pasture, plains, areas of agricultural cultivation, field areas, 
regrown natural vegetation, called “capoeiras,” and open environments with light 
availability, suitable for the establishment of the species.

In Paraná state, also located in the south of Brazil with a subtropical climate, 
A. mearnsii was recorded as an invasive species within the Vila Velha State Park 
(PEVV). At this site, black acacia is found in abundance in areas reforested with 
Eucalyptus spp. and in areas of intensive use (Carpanezzi 2011).

Given the increase in the number of individuals of Acacia and other exotic inva-
sive tree species, as Pinus elliottii and Pinus taeda in the PEVV (Carpanezzi 2011), 
the Environmental Institute of Paraná, in partnership with other organizations, man-
aged to promote the withdrawal of 50,000 trees from invasive alien species in 2007 
(www.institutohorus.org.br/pr_vilavelha accessed 12/01/2019).

The invasion process of A. mearnsii has been responsible for several disturbances 
in the water balance and edaphic conditions of the invaded sites, affecting local 
biodiversity and economy (Moyo and Fatunbi 2010). This species has very high 
levels of water consumption, even when compared to other species of Acacia. This 
is due to its high rate of evapotranspiration and great capacity to capture rainwater 
and soil nutrients (Jobbágy and Jackson 2003). In South Africa, researchers esti-
mate that the damage caused by this high water consumption is $ 2.8 million per 
year (Moyo and Fatunbi 2010). Also in South Africa, Richardson and van Wilgen 
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(2004) observed that, in riparian environments, commonly colonized by this spe-
cies, this has a direct consequence in the reduction of the flow of streams.

The canopies of the black acacia, besides shading smaller species, like light- 
dependent grasses, produce large numbers of leaves. These are deposited in large 
quantities on the litter and, after their decomposition, can modify the composition 
of nutrients and minerals of the soil. It was observed that soils in areas dominated 
by black acacia are drier and more acidic (pH 4.4) when compared to natural areas 
of grasses (pH 5.3) (Moyo and Fatunbi 2010). The association of these factors, such 
as the change in chemical composition of the soil, the shading of open areas, and the 
large layer of litter formed by this species, tends to make it difficult to establish 
seedlings of native species and, consequently, process of natural succession.

The biological characteristics of A. mearnsii, such as the large production of 
small seeds and the short juvenile phase, allow it to disperse and colonize open 
areas rapidly. This combination of strategies, among others, makes it an aggressive 
invader (Rejmánek and Richardson 1996). This species has been recorded as an 
invasive species in several countries, with the most alarming cases being recorded 
in South Africa and Hawaii, USA (Daehler and Carino 2000, Richardson and van 
Wilgen 2004, Henderson 2007, Moyo and Fatunbi 2010).

Currently, A. mearnsii can be found in the following 42 countries: Afghanistan, 
Albania, Angola, Bangladesh, Bosnia and Herzegovina, Botswana, Brazil, Bulgaria, 
China, Colombia, Croatia, Eritrea, Ethiopia, Indonesia, Iran, Italy, Japan, Kenya, 
Lesotho, Malawi, Malaysia, Mexico, Mozambique, Myanmar, Namibia, New 
Zealand, Nicaragua, Pakistan, Panama, Papua New Guinea, Portugal, Romania, 
South Africa, Sri Lanka, Swaziland, Tanzania, Thailand, Uganda, the United States, 
Vietnam, Zambia, and Zimbabwe (www.worldagroforestry.org accessed on 
07/03/2019).

Black acacia has been officially declared an invasive species in South Africa 
since 1984. In this country, it is estimated that more than 2.5 million hectares have 
already been invaded by the species, which is called “green cancer” (Galatowitsch 
and Richardson 2005).

In African biomes, the species mainly invades areas where there are fires, which 
stimulate the germination of seeds accumulated in the seed bank (Midgley and 
Turnbull 2003, Mochiutti et al. 2007, Moyo and Fatunbi 2010). In Hawaii, black 
acacia has invasive behavior and propagates easily in regions between 600 and 
1200 m altitude, with rainfall between 1000 and 1200 mm.

It was only in the late 1930s that 65,000 individuals of this species were intro-
duced into conservation areas in Hawaii. These individuals should be the progeni-
tors of the invading individuals currently found, not only within conservation units 
but also in other natural environments (Little Jr. and Skolmen 1989, Stone et al. 
1992, Frohlich and Lau 2008).

But things can be worse if acacia is planted associated with Leucaena leuco-
cephala (Santos et al. 2009), another legume tree species on the list of 100 worst 
invasive species (Lowe et al. 2000) or other aggressive species.

This chapter presented several case studies in countries that recognized and stud-
ied the invasive potential of acacia genera, well documented in scientific literature 
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accumulated over the decades. It is important to consider that we have in Brazil 
similar environmental conditions to those areas spread across the globe, especially 
in the tropics and even in Europe. Similarities in the history of invasion by acacia 
species when the weather and local conditions are favorable for their occurrence 
may produce the same patterns of invasion, which can happen here in Brazil or, may 
be, is already happening.

11.7  Conclusions: In Doubt Do Not Overtake

Australian acacias have several characteristic attributes of invasive species. These 
attributes are considered advantageous in the establishment, dispersal, and popula-
tion growth phases (Rejmánek 1996, Rejmánek and Richardson 1996, Pysek and 
Richardson 2007). In addition, these species occupy an extensive geographical area 
in their native distribution in Oceania, being adapted to a wide range of climatic 
conditions.

This characteristic favors the establishment of these species in the introduction 
regions, especially in the tropics and subtropics possibly because these species have 
a higher capacity to overcome abiotic filters (Castro-Díez et  al. 2011). Besides 
these, several other physiological and biological characteristics of both species are 
favorable to establishment and invasion.

The invasion process can be influenced equally by factors extrinsic to the spe-
cies, such as the time elapsed since introduction and the number of forms of use 
(Pysek and Richardson 2007, Castro-Díez et al. 2011). The most serious problems 
related to invasion are caused commonly by species widely cultivated for long peri-
ods of time (Richardson 1998). The information compiled in this study demon-
strates that A. mangium was introduced in the Brazilian territory more than 30 years 
ago (1979) and A. mearnsii approximately 100 years ago (1918), both being used 
for several purposes, and reports of them being invasive under our conditions until 
now are not very generalized.

Castro-Díez and his collaborators (2011) observed that the number of forms of 
human use is the most predictive feature of the distribution and abundance of 
Australian acacias in South Africa, where exotic acacias with the greatest number of 
uses were proven to be the most abundant and widely distributed. In addition, exotic 
species introduced through cultivation exert constant pressure of propagules due to 
the periodic introduction of new individuals. This fact increases the chances of the 
introduced species to find environments suitable for colonization, besides reducing 
the influence of environmental heterogeneity as a filter for the establishment of spe-
cies (Wilson et al. 2009).

In this context, the set of characteristics of the studied species shows its potential 
invasion in Brazil and in the world. According to Nardelli (2004), Mochiutti et al. 
(2007), and Aguiar Jr et al. (2014), there are invasion records of Acacia spp. in sev-
eral Brazilian regions as Amazonian savanna (3° north latitude), Brazilian lowland 
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Atlantic Forest in southeast in Espírito Santo state (19° south latitude), and grass-
lands (30° south latitude) in the Rio Grande do Sul state.

These are similar to invasion histories of these species in other regions of the 
world (Daehler and Carino 2000, Barua et al. 2001, Richardson and van Wilgen 
2004, Henderson 2007, Moyo and Fatunbi 2010), where they have been used for a 
longer time, which may serve as an alert. In regions already extensively invaded by 
these species, such as South Africa, major economic and ecological damages have 
been reported. The Working for Water program, developed in South Africa, has 
invested more than US$ 125 million in the mechanical removal of Australian acacia 
trees in an area of 135,000 ha between 2000 and 2010. However, this program did 
not obtain success in the eradication or population reduction of the target species in 
all regions of the action (van Wilgen et al. 2011).

In order to prevent Brazil from having similar losses, preventive and control 
measures should be adopted, especially in the vicinity of the introduction areas 
(Richardson and Thuiller 2007). One trend observed in the study of the invasion 
process is that disturbed environments tend to be more susceptible to invasion 
(Pysek and Richardson 2007). Areas adjacent to commercial plantations are often 
deprived of their original vegetation and suffer from various disturbances associated 
with the management of plantations, such as the movement of machines.

Similarly, areas where species are introduced for the reclamation of degraded 
soils also tend to be altered environments, especially due to low species diversity. In 
this sense, these areas would be adequate for the beginning of the process of disper-
sion and establishment of the exotic species.

The most controversial management issues involve species that have invading 
behavior, causing serious damage and at the same time providing economic and 
ecological benefits in specific situations and areas. Australian acacias fit this profile 
and are managed in different ways in different countries. In South Africa, the plant-
ing of Australian acacia for commercial purposes is permitted in demarcated areas. 
However, all owners are responsible for controlling the dispersal of the species 
around their lands (van Wilgen et al. 2011).

A strategy to avoid dispersal of species from their places of introduction would 
be the “encircling” of commercial plantations by native species to the region in 
question, of fast growth and with great capacity of shadowing. Since both species 
have high affinity and similar dependence on light, especially in the initial stages of 
growth, the shading of the perimeter of the plantation could inhibit the germination 
of the seeds dispersed in the adjacent areas. The maximum dispersion distance of 
the species should be used as a parameter to define the width of this planting of 
native species.

In cases where the invasion process has already begun, measures to control inva-
sive populations need to be adopted. In South Africa, young invading individuals are 
pulled out manually while adult individuals are mechanically cut and treated with 
herbicides (Garlon 4 or Timbrel) (Dahl et al. 2001). Adult individuals located in 
areas with steep slopes are ringed to reduce the risk of erosion due to the removal of 
trees (Department of Water Resources Republic of South Africa—http: //www.
dwaf.gov.za/wfw/Control/). Due to the large number of seeds accumulated on the 
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soil and the permanence of plant structures, such as stumps and roots, the removal 
of individual trees is followed by controlled burning of the region. This process, in 
addition to inhibiting regrowth, breaks seed dormancy and stimulates their germina-
tion. In this way, the seed bank is reduced and the new seedlings can be removed 
manually. Considering that invasion of riparian environments by these species is 
common, the use of herbicides should be cautious, since some of its components 
may persist in the environment for prolonged periods and contaminate water  
(Dahl et al. 2001).

Correia and Martins (2015) found the presence of Acacia mangium in the soil 
seed bank of a previously native forest area, which followed a reforestation project 
that contemplates the eradication after the period of planting and after a final clear- 
cut. This corroborates the proposal that the use of alien species in forestry processes 
may be, in part of the cases, the risk of contamination for the remaining ecosystems, 
proving that they can invade native forests.

The good notice that emerges from Correia and Martins (2015) is the low seed 
density of Acacia mangium that germinated under the canopy of this forest with a 
restoration project. It is plausible and may be inferred that the species is leaving the 
system for not finding sufficient light levels for germination and establishment. 
However, the presence of a few seeds on the native forest seed bank illustrates well 
the problem of the use in forest restoration projects with certain alien invasive spe-
cies that may contaminate nearby preserved ecosystems.

In this sense, another ecological characteristic of Acacia mangium arises, that is, 
the short life cycle. A personal and empirical observation of a restoration project 
was conducted in the Piraí municipality, located in SE Brazil over the last two 
decades, close to the margins of a power plant water reservoir, where the area 
planted in the 1990s is nowadays almost gone after the trees’ dieback. However, the 
clearings opened by the acacias’ death after approximately 25 years after planting 
are not being colonized by native species, even in the presence of a source of propa-
gules of native species in the forest patches on surroundings.

Considering that planting acacias is a consolidated activity in Brazil, the devel-
opment of national invasion prevention strategies becomes indispensable. The cre-
ation of public policies to reduce the use of these species and regulate their 
management is essential. Its use for landscaping and the recovery of degraded areas 
proved to be inefficient and inadequate due to its invading status and should be 
replaced by native fast-growing species.

Its cultivation for commercial purposes must be regulated, with new policies to 
delimit the areas of planting and to control the invasion in the surrounding areas, 
following the example of South Africa. Within this regulation the responsibility of 
the entrepreneur for the containment and periodic control of the invasion (polluter 
pays principle) should be highlighted. In addition, detailed records and studies of 
control of these species in Brazil are required. This type of material is still scarce 
and not detailed. However, considering that invasion control is much more expen-
sive in comparison to prevention (Thuiller et  al. 2005, Richardson and Thuiller 
2007, Broennimann and Guisan 2008) and that the invasion process in Brazil is 
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already under way (Aguiar Jr et al. 2014), it is necessary that these control measures 
be systematized with urgency, based on the information available in Brazil and 
the world.

Although control is of importance, it is highly important to consider the socio- 
environmental interactions among local people and invader species. Regardless of 
local people considering the presence and the utility of those species as being 
 positive because of their use as firewood, charcoal, wood, or even a crop, a scientific 
control will be necessary.

In this sense, Shackleton et al. (2019) recommend that policymakers and manag-
ers need to be more reflexive about the ways in which environmental problems are 
framed and to put those frames more in conversation with local people’s experi-
ences in order to productively resolve invasive species management dilemmas.

We propose that it is necessary to investigate the use of equivalent native species 
as a resource for the substitution of exotic trees, as shown in Table 11.1.

Therefore, the discussion about the use or not of exotic species that can be inva-
sive still is in vogue. In this sense, an important question remains: Why use exotic 
species in a mega diverse country? The book “Ecological Imperialism by Crosby 
(2004) discusses the biological invasion of the new lands by what they call the “por-
table biota”: the set of animals, plants, and diseases that have shipped with the 
Europeans in the caravels and risk and their analysis in the context of fifteenth cen-
tury. Hence, after all consequences and all science produced should we still be 
doing the same thing in the twenty-first century?

In short: Acacias present a great invasive potential, especially in environments 
with water stress, and where soils are shallow or of low fertility. For being helio-
philic, needing high light incidence, they are also competitive with native species in 
open areas, dominated by ground vegetation. This occurred with Acacia mangium 
in sites of Cerrado (Brazilian savannah) in Roraima and Amapá. The same is true for 
other acacias and different exotic species, as Elaeis guineensis, Casuarina equiseti-
folia, and Pinus elliottii among others.

Table 11.1 Examples of Brazilian native species, which can be used as alternatives to Acacia 
species for multiple purposes

Acacias Brazilian native species
Use or resource Species equivalent References

Firewood Piptadenia gonoacantha Hansted et al. (2016)
Reforestation programs Anadenanthera peregrina

Bombacopsis glabra
Centrolobium tomentosum
Citharexylum myrianthum
Dalbergia nigra
Peltophorum dubium
Trema micrantha
Xylopia brasiliensis

Suganuma et al. (2014); 
Rodrigues et al. (2009)

Carbon sequestration plant Multiple species Brancalion et al. (2018)
Melliferous Mabea fistulifera, Croton sp. Oliveira et al. (2004)
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Thus, acacias have a high invasive potential in open areas, as the Brazilian 
Cerrado, and should not be recommended in this biome. Nevertheless, they show a 
low invasive potential in forested areas and pastures, where they cannot compete 
with established vegetation.

Lastly this chapter is not a monolith engraved with biological xenophobia argu-
ments. We are not proposing to ban or leave out introduced species as coffee, wheat, 
orange, sugar cane, corn, bananas, eucalyptus, pinus, acacias, most pasture grasses, 
and many other diverse sources of food but its mandatory to all technicians keep in 
mind, the intrinsic responsibility on the risks involved in the management of an exotic 
species, especially those with a large repertoire of invasions across the globe, in order 
to conserve and preserve local environments as mentioned throughout this chapter.
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Chapter 12
Multifunctional Mixed-Forest Plantations: 
The Use of Brazilian Native Leguminous 
Tree Species for Sustainable Rural 
Development

Antonio Carlos Gama-Rodrigues

12.1  Introduction

As a result of global climate change, declining biodiversity, increasing soil degrada-
tion, and diminishing water resources, there has been a growing recognition of the 
relevance of mixed-species plantations for sustainable rural development, integrat-
ing actions to ensure water security, energy, and food, in such a way that this forest 
system can be considered an adequate technique of climate-smart forestry. In this 
context, there is evidence that mixed-species plantations have high potential to 
achieving higher productivity than monocultures (Binkley 1992; Wormald 1992; 
Petit and Montagnini 2006; Kelty 2006; Gama-Rodrigues et al. 2007; Piotto 2008; 
Piotto et al. 2010; Pretzsch et al. 2017). However, there are limited examples of suc-
cessful mixed-species plantations, especially mixtures with indigenous tropical tree 
species (Liu et al. 2018). In Brazil, successful mixed-species plantations have been 
with fast-growing, exotic, and low-density wood species such as Eucalyptus and 
Acacia (Bouillet et al. 2013; Chap. 2), while studies on mixtures of N2-fixing and 
non-N2-fixing native tree species are still quite scarce, despite the high diversity of 
tree species in all forest types that make up the various Brazilian biomes.

Thus, this chapter focuses on the Brazilian experience, complemented with other 
experiences in tropical and subtropical countries, on the potential of mixed-species 
plantations with native tree species and N2-fixing leguminous species for timber and 
non-timber products, for the reclamation of degraded lands and for environmental 
services.
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12.2  Planted Forests

The forest plantations in several regions of Brazil are basically with Eucalyptus and 
Pinus, but in recent years native and other exotic tree species have been widely 
used. Currently, the area of forest planted with other species occupies 521.1 thou-
sand ha, corresponding to 7.3% of the total area of existing forest plantations. The 
species Acacia mangium (acácia), A. mearnsii (acácia negra), Hevea brasiliensis 
(seringueira), Tectona grandis (teca), and Schizolobium parahyba var. amazonicum 
(paricá) are established in greater planted area, accounting for 83.4%. Of this total, 
only Schizolobium parahyba occupies a planted area of 87,901 ha, accounting for 
16.9% of the total area of plantations with other tree species in Brazil (ABRAF 
2013; Cordeiro et al. 2015). Schizolobium parahyba has been planted commercially, 
around 20,000 ha, in the states of Acre, Mato Grosso, Pará, Rondônia, Maranhão, 
and Tocantins. However, these monospecific plantations with a non-N2-fixing 
legume species are usually very heterogeneous and irregular and apparently the 
results obtained are not satisfactory (Carvalho 2007). As a result, this tree species is 
used in mixed-species plantations, particularly by association of Cordia goeldiana 
(freijó) and Swietenia macrophylla (mogno) (Cordeiro et al. 2015), and also as a 
shade tree in coffee or cacao plantations in Rondônia and Pará. The planted area of 
Acacia mangium and A. mearnsii, both N2-fixing legume species, is 148.3 thousand 
ha, concentrated in the states of Amapá, Mato Grosso, Paraná, Roraima, Rio Grande 
do Sul, and Amazonas (ABRAF 2013). A. mearnsii is planted commercially in 
mixed stands with Eucalyptus sp. in Rio Grande do Sul, while A. mangium is also 
used mostly in mixed stands with eucalypt or in ecological restoration areas.

12.3  Mixed Plantations Including Native Species

Brazil has many leguminous tree species which are suitable to produce timber and 
other products. Knowledge of the functional ecological traits of this tree species 
group is important to ensure the sustainability of the mixed-species plantations. One 
of the most important specific attributes is the ability of some species to associate 
with diazotrophic N2-fixing bacteria (see Chap. 6). In this case, the Atlantic Forest 
has 469 species of leguminous trees identified, but only 174 species have positive 
nodulation registration by N2-fixing bacteria (Canosa et al. 2012).

The species that compose the Atlantic Forest fragments showed different abili-
ties to absorb nutrients (Leão and Silva 1991; Cunha et al. 2009). When these native 
tree species were implanted in monocultures, they caused changes in soil physical, 
chemical, and microbiological properties, differentiating them markedly from the 
soils under natural forest (Silva 1988; Gama-Rodrigues et al. 1999; Gama-Rodrigues 
and Barros 2002; Gama-Rodrigues et al. 2008; Gama-Rodrigues et al. 2011a). In 
these forest plantations, litterfall is season dependent and its decomposition rates 
are variable (Vinha and Pereira 1983; Vinha et  al. 1985; Gama-Rodrigues et  al. 
2003). Further, the trees grow very slowly in height and diameter for the first 
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15 years after planting (Vinha and Lobão 1989). An alternative, therefore, to native- 
species monocultures in tropical regions, both for the reclamation of degraded soils 
and timber production, is mixed-species plantation systems, which can promote 
ecophysiological conditions favorable to higher tree growth in addition to providing 
improvements in soil structure and increasing organic matter content and nutrient 
availability (Gama-Rodrigues et al. 2007). This type of forest system aims to maxi-
mize the ecophysiological attributes of native tree species when in their natural 
environment.

Based on this, the general hypothesis is that native tree species, when removed 
from the natural forest and placed in pure plantations, would not present an ade-
quate form (accentuated cymose branching) to commercialize and would always 
grow below the expectation. There are several reasons for a better development of 
the native tree species in mixed plantations, as a relatively constant litterfall rate 
throughout the year, the more varied kinds of litter and of nutrient transfer through 
litterfall, and the diverse quality of the litter components, leading to a more uniform 
decomposition rate, besides the complementary role of the different tree species in 
nutrient uptake, resulting in improved soil fertility (Gama-Rodrigues et al. 2007). A 
mixed-species plantation reproduces the complex interactions of a natural forest. In 
such an ecosystem, collective and emergent properties are manifested simultane-
ously (Salt 1979; Odum 1983). The continuous litterfall rate in the mixed-species 
plantation is a collective property of the tree species on the site. The litter decompo-
sition rate represents an emergent property, due to the interaction of decomposition 
processes of its components and not only of the total sum of the individual rates of 
the tree species (Gama-Rodrigues et al. 2003). Thus, the complementary interac-
tions overlap with those of competition, providing greater stability to the forest 
ecosystem. Therefore, priority for the establishment of a mixed planting is the com-
bination of species with complementary ecophysiological attributes, such as species 
with high nutrient cycling rates together with species of high nutrient-use efficiency 
(Gama-Rodrigues et al. 2007). In this sense, some N2-fixing leguminous tree spe-
cies in the stands may be planted solely to improve growing conditions for the target 
timber tree species. In turn, in monocultures, nutrient cycling is restricted to the 
litter of the planted tree species. The eventual slow litter decomposition of one par-
ticular tree species would diminish the rate of nutrient cycling, which would affect 
tree growth, independently of any improvement in soil fertility.

12.4  Case Studies

A mixed-species plantation for timber production can be managed in two ways: 
(1) it may be designed to harvest crop trees all at the same time or (2) the planta-
tion may allow for different species maturation rates, with harvests occurring 
years to decades apart (Hall and Asthon 2016). In this sense, Gama-Rodrigues 
et al. (2007) evaluated the biomass and nutrient cycling in 22-year-old pure and 
mixed stands of six native hardwood species of the Atlantic Forest in southeastern 
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Bahia. The following species were studied: Peltogyne angustiflora (pau-roxo), 
Centrolobium robustum (putumuju), Arapatiella psilophylla (arapati), 
Sclerolobium chrysophyllum(arapaçu), Macrolobium latifolium (óleo-comumbá), 
Cordia trichotoma (claraíba). The first five species are leguminous trees. The 
mixed species outmatched pure stands in height, stem volume, and total biomass 
(Tables 12.1 and 12.2). Thus, growth and yield in mixed-species stands were 
higher than in pure stands owing to the combination of species with complemen-
tary ecophysiological attributes, consequently improving the efficiency in nutrient 
use and cycling. In contrast, Silva and Vinha (1991) did not find any differences in 
tree height of the native species Arapatiella psilophylla, Bombax macrophyllum 
(imbiruçu), Bowdichia virgilioides (sucupira-preto), and the exotic Gmelina arbo-
rea (gmelina) between pure and mixed stands under the same environmental con-
ditions. In southern Bahia, Vinha (1992) also reported that in plantations with 
Bombax macrophyllum shaded with Leucaena leucocephala (leucena) the survival 
rate was approximately 90%, whereas in pure plantings it was little more than 
10%. Thus, empirical evaluations showed that, in general, the satisfactory further 
development of native hardwood species in southern Bahia occurred in mixed 
stands and not in pure stands.

Table 12.1 Diameter at breast height (DBH), total height (TH), and tree stem volume (VOL) of 
native forest species, in pure (P) and mixed stands (M) in southeastern Bahia, Brazil

Species
DBH TH VOL
P (cm) M (cm) P (m) M (m) P (m3 tree−1) M (m3 tree−1)

P. angustiflora 16.7 13.1 12.5 15.0 0.114 0.088
C. robustum 14.6 14.6 15.5 19.8 0.125 0.179
A. psilophylla 13.7 14.6 12.7 15.3 0.099 0.155
S. chrysophyllum 18.1 17.5 12.3 18.2 0.127 0.254
C. trichotoma 14.8 16.9 15.5 19.9 0.142 0.222
M. latifolium 16.9 18.0 11.5 16.5 0.166 0.204
Mean 15.8a 15.8b 13.3 17.5 0.129 0.184

aMean of the pure stands
bMean of the species in the mixed stand (from Gama-Rodrigues et al. 2007)

Table 12.2 Biomass of components of native forest species, in pure (P) and mixed (M) stands

Species Leaf Branch Bark Bolewood Total
P M P M P M P M P M

kg tree−1

P. angustiflora 5.0 7.3 34.0 38.9 8.1 5.7 93 69 140 121
C. robustum 3.0 2.9 11.3 11.5 14.0 16.9 60 81 88 112
A. psilophylla 7.3 20.1 23.0 55.2 6.3 11.1 60 105 95 191
S. chrysophyllum 9.8 9.6 20.9 22.4 8.8 11.8 76 84 116 128
C. trichotoma 1.6 4.2 10.4 15.6 10.0 15.6 69 111 91 147
M. latifolium 6.8 8.8 20.1 22.1 15.0 12.0 84 109 121 152
Mean 5.6a 8.8b 20.0 27.6 10.4 12.0 74 93 110 142

aMean of the pure stands
bMean of the species in the mixed stand (from Gama-Rodrigues et al. 2007)
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Mixed stands of six hardwood species at the age of 9 years (farinha seca—Pel-
tophorum dubium, ipê rosa—Handroanthus heptaphylla, ipê amarelo—Handroan-
thus chrysotrichus, mogno africano Khaya sp., paineira—Ceiba speciosa, and 
sobrasil—Colubrina glandulosa) with 75% density of fast-growing N2-fixing legu-
minous trees (acacia auriculada—Acacia auriculiformis, acacia—Acacia mangium, 
guachapele—Pseudosamanea guachapele, jaracandá da Bahia—Dalbergia nigra, 
orelha de negro—Enterolobium contortisiliquum, pau-jacaré—Piptadenia gonoac-
antha, and sabiá—Mimosa caesalpiniaefolia) can increase soil P concentrations 
through cycling and accumulation of organic and inorganic P compounds, and con-
serving N and organic matter in a red-yellow Latosol, in the state of Rio de Janeiro 
(Aleixo et al. 2019, in press). However, growth and yield of all tree species were not 
satisfactory (Fig. 12.1).

Fig. 12.1 Mixed stand with six hardwood species and fast-growing N2-fixing leguminous trees for 
the reclamation of degraded lands in southern Rio de Janeiro, Brazil (photo: A.C. Gama-Rodrigues)
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In the Amazon region, several consortium combinations have been tested 
between Schizolobium parahyba and other tree species (Fig. 12.2). In southern Pará, 
mean annual increments in height, diameter at breast height, and volume of 
Schizolobium parahyba were higher in mixed plantations with Cordia goeldiana 
and Swietenia macrophylla than in pure plantations (Cordeiro et al. 2015). Souza 
et al. (2003) reported several consortia tested in the municipality of Igarapé-Açu, 
Pará: (1) Schizolobium parahyba × Swietenia macrophylla × Protium heptaphyllum 
(breu sucuruba); (2) Schizolobium parahyba × Tectona grandis × Hymenaea cour-
baril (jatobá); (3) Schizolobium parahyba × Ceiba pentandra (sumaúma) × Ochroma 
pyramidale (pau de balsa). The highest growth of the species was in consortium 
with Swietenia macrophylla and Protium heptaphyllum. In Amazonas, in a 4-year- 
old the consortium Schizolobium parahyba × Carapa guianensis (andiroba) pre-
sented the highest growth in height and diameter over the consortia Schizolobium 
parahyba × Bertholletia excelsa (castanha-do-pará) and Schizolobium parahyba × 
Swietenia macrophylla. Even though S. parahyba is a legume tree it is a non- 
nodulating species and may not contribute with N to the system.

In Costa Rica, 15–16-year-old mixed plantation of Vochysia guatemalensis, 
Virola koschnyi, Jacaranda copaia, Terminalia amazonia, and Hieronyma alcho-
rneoides may be the preferred system for reforestation with native species 
designed for timber production or carbon sequestration because this system is 
more economically viable and productive than pure plantations (Piotto et  al. 
2010). Hall and Ashton (2016) describe a project of planting design and growth 

Fig. 12.2 Consortium of Acacia mangium (for energy) and Schizolobium amazonicum (for lami-
nate) in Paragominas, state of Pará, Amazon, 10 months after planting (photo: J.L.M. Gonçalves)
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through time for a mixed-species timber plantation, with four native species in 
Panama: Ormosia macrocalyx (N2-fixing species), Dalbergia retusa (also fixes 
N2), Terminalia amazonia, and Hieronyma alchorneoides. According to the model 
T. amazonia and H. alchorneoides can be harvested at around 20  years; while 
D. retusa can be harvested at around 30 years of age.

The use of leguminous tree species associated with N2-fixing bacteria and arbus-
cular mycorrhizal fungi is a technique that has shown viability to accelerate land 
reclamation and initiate natural succession in several regions of Brazil 
 (Gama- Rodrigues et al. 2008; Chaer et al. 2011). However, trees from the genera 
Acacia, Mimosa, and Gliricidia, among other N2-fixing species, have been used 
mainly in pure stands. The focus on commercial use of these species is secondary to 
improving environmental conditions. Among them, high inputs of organic matter 
via litterfall (Costa et al. 2014) and increases in the organic C and N contents of the 
soil and microbial biomass have been reported (Gama-Rodrigues et  al. 2008). 
Advances as higher mineralization rates of C and N of the soil (Nunes et al. 2016), 
greater contents of soil organic P (Zaia et al. 2008), higher abundance, and richness 
of the soil fauna (Manhães et al. 2013; Bianchi et al. 2017) were also detected. Such 
improvements further reduce the risks of erosion, given the permanent cover of the 
soil by the accumulated litter. In a 7-year-old mixed-species stand with the native 
Atlantic Forest species Anadenanthera falcata (angico—N2-fixing species), 
Myracrodruon urundeuva (aroeira), Gochnatia polymorpha (cambará), and 
Tabebuia impetiginosa (ipê-roxo) uniform litterfall rates enabled a more effective 
soil cover, even though pure stands of Gochnatia polymorpha and Anadenanthera 
falcata had showed the highest litterfall production (Garrido and Poggiani 1982). 
However, regarding the improvement of soil quality using leguminous trees, whether 
in pure or mixed systems, the magnitude of edaphic changes is related to the soil 
buffer capacity. In soils with high contents of organic matter and clay, it is expected 
that these changes are of low magnitude. In this situation, changes of soil properties 
will take longer periods of time. Therefore, in addition to soil resilience, the level of 
degradation and the type and intensity of land use influence the ability of forest spe-
cies to change the soil attributes, and site productivity.

Rappaport and Montagnini (2014) evaluated the restoration potential of 21 native 
tree species of the Atlantic Forest 3 years after planting in the understory of an old 
rubber plantation in southern Bahia. Eight leguminous tree species were tested: 
Arapatiella psilophylla (arapati), Caesalpinia echinata (pau-brasil), Copaifera 
lucens (pau-óleo), Tachigali densiflora (ingá-açu), Andira legalis (angelim), 
Swartzia macrostachya (manga-brava), Parkia pendula (faveira), and Inga hetero-
phylla (ingá-caixão). Among these eight tree species, Parkia pendula and Tachigali 
densiflora grew faster than the other leguminous tree species.

12.5  Use of N2-Fixing Tree Species in Agroforestry Systems

Multistrata agroforestry systems are considered a good model of mixtures of N2- 
fixing and non-N2-fixing tree species. In this case, agroforestry systems (AFS) 
based on cacao (Theobroma cacao) are the best example of sustainability of shaded 
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tree-shrub systems because of their high potential for sequestering carbon, recy-
cling nutrients, and providing other environmental services, in order to ensure 
greater diversity of multiple supply of timber and non-timber products. Brazil is one 
of the major cacao-producing countries, accounting for 5% of the world’s cacao 
production. The main cacao-producing areas are (1) Amazon region (Pará, Rondônia, 
Mato Grosso, and Amazonas) in 192,411 ha of planted area and (2) south of Bahia 
and northern Espírito Santo in 550,000 ha of planted area. The cacao-cabruca and 
cacao shading leguminous tree systems are the matrices that dominate the landscape 
in the cocoa-growing region in southern Bahia. In cabruca systems, the cacao is 
planted under thinned natural forest shaded by native tree species (Fig. 12.3), where 
the cacao stand density is about 600 plants ha−1 and the remaining shade trees range 
from 30 to 70 individuals ha−1 with a mixture of N2-fixing and non-N2-fixing tree 
species. This plantation system is established in an area of 385,000 ha−1. In these 
systems, the leguminous tree Erythrina spp. (erythrina) is the most common among 
such introduced shade trees in areas where all native forest has been removed 
(Fig. 12.4). In this Atlantic Forest system (AFS) cacao and erythrina are established 
at densities of 1111 and 32 plants ha−1, respectively, and the canopy of erythrina is 
not pruned. This plantation system grew out of the 1960s, when CEPLAC (Executive 
Committee of the Plan of Cacao Farming) initiated a broad program aiming at sig-
nificant increases in cacao production based on the reduction of cacao shading, 
eliminating 50–70% of the trees of the Atlantic Forest (Monroe et  al. 2016). 

Fig. 12.3 Cacao-cabruca systems in southeastern Bahia, Brazil (photo: A.C. Gama-Rodrigues)
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However, in the last two decades, CEPLAC has recommended that erythrina be 
replaced by multiple-use tree species such as rubber trees (Hevea brasiliensis) to 
increase the farmers’ income. Currently, the planted area of the cocoa-rubber sys-
tem is 12,000 ha. This AFS is established in double rows of rubber alternated with 
4–5 cacao rows and a row of Gliricidia sepium (gliricidia), a N2-fixing legume tree, 
in the cacao-planting area (Fig. 12.5). These three cacao AFS have high potential for 
sequestering carbon in the plant-soil system (Gama-Rodrigues et al. 2011b; Monroe 
et al. 2016), high nutrient cycling rates and soil nutrient stocks (Zaia et al. 2012; 
Fontes et al. 2014; Aleixo et al. 2017), and high soil biodiversity (Moço et al. 2010; 
Oliveira et al. 2018). Thus, these ecological processes are excellent evidence of the 
compatibility and complementarity of different species for the sustainability of mul-
tistrata production systems.

There are several models of agroforestry systems based on the shaded cacao with 
a mixture of N2-fixing and non-N2-fixing tree species in the Amazon region (Müller 
and Gama-Rodrigues 2012). Figure 12.6 shows the combination of cocoa with the 
tree species Schizolobium amazonicum (paricá), Cordia alliodora (freijó-louro), 
Bagassa guianensis (garrote), Swietenia macrophylla (mogno), Bertholletia excelsa 
(castanha-do-pará), and Tabebuia heptaphylla (ipê-roxo), all of them non N2-fixing 
species. In Rondônia, this model has been used since 1973 and totals 30,650 hect-
ares. It can be considered as an artificial cabruca system. Another plantation system 
design is the combination of cacao with coconut (Cocos nucifera) and gliricidia plus 
banana. In this system, the planting densities are cocoa 740 plants ha−1, coconut 123 

Fig. 12.4 Cacao-erythrina agroforestry systems in southeastern Bahia, Brazil (photo: A.C. 
Gama-Rodrigues)
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plants ha−1, banana 740 plants ha−1, and gliricidia 247 plants ha−1 (Fig.  12.7). 
Currently, there are about 500 ha of this mixed system. On the other hand, Almeida 
et al. (2009) evaluated the richness of tree species and timber potential, present in 
some cacao plantations established in Ouro Preto do Oeste, Rondônia, since the 
1980s. The number of tree species found during the survey is described in Table 12.3. 
The leguminous tree species accounted for 22% of all tree species surveyed. The 
largest number of leguminous tree species was Caesalpinioideae (six species), fol-
lowed by Mimosoideae (five species) and Papilionoideae (three species). Most 
shade tree species came from natural regeneration and only 2–20% from seedling 
planting, with Schizolobium amazonicum being the most common tree species, with 
45% of individuals inventoried and timber average volume of 51  m3  ha−1. 
Additionally, these cacao AFS with this profile of floristic diversity could be consid-
ered in the Amazon as areas of forest restoration in the properties with demand of 
environmental liabilities.

Forest-based fallow systems enriched with fast-growing N2-fixing leguminous 
tree species appear to be a viable option for managing N despite the large amount of 
N removed from the system as timber and fuelwood (Gama-Rodrigues 2011). This 
technique has been used as an alternative to the use of fire and reduction of a fallow 
period in slash-and-burn systems adopted by family farming in northeast Pará (Kato 
et al. 2006). The selected leguminous tree species to accelerate the accumulation of 
biomass and nutrients are Acacia angustissima, A. auriculiformis, Acacia mangium, 

Fig. 12.5 Cacao-rubber agroforestry systems with gliricidia in southeastern Bahia, Brazil (photo: 
A.C. Gama-Rodrigues)
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Fig. 12.6 Schematic diagram showing the spatial arrangement of cacao-based (+) association 
with native tree species ( ): Schizolobium amazonicum, Cordia alliodora, Bagassa guianensis, 
Swietenia macrophylla, Bertholletia excelsa, and Tabebuia heptaphylla (from Müller and Gama- 
Rodrigues 2012)
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Fig. 12.7 Schematic diagram showing the spatial arrangement of cacao-based (+) association 
with coconut (●) and gliricidia (∗) (from Müller and Gama-Rodrigues 2012)
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Table 12.3 Shading species present in four cocoa plantations in Ouro Preto do Oeste, Rondônia, 
Brazil

Common name 
(Portuguese) Family Genus or species

Abacateiro Lauraceae Persea americana Mill.
Algodoeiro ou 
Imbiruçu

Bombacaceae Eriotheca sp.

Amoreira Moraceae Maclura tinctoria (L.) D. Don ex Steud
Angelim-saia Fabaceae- Mimosoideae Parkia pendula (Willd.) Benth. ex Walp.
Angico-branco Fabaceae- Mimosoideae Piptadenia foliolosa Benth
Angico-rosa Fabaceae- Mimosoideae Parapiptadenia rigida (Benth.) Brenan
Babaçu Arecaceae Attalea speciosa Mart. ex Spreng
Babão ou Coco Babão Arecaceae Syagrus comosa (Mart.) Mart.
Bacurizeiro Arecaceae Attalea phalerata Mart. ex Spreng
Bajinha Fabaceae- 

Caesalpinioideae
Pterogyne sp.

Bandarra ou Paricá Fabaceae- 
Caesalpinioideae

Schizolobium parahyba var. amazonicum 
(Huber ex Ducke) Barneby

Bolão Sapotaceae Pouteria pachycarpa Pires
Cajazinho ou 
Taperebá

Anacardiaceae Spondias mombin L.

Canela Lauraceae Nectandra sp.
Castanheira-do-brasil Lecythidaceae Bertholletia excelsa Humb. & Bonpl.
Cebolão Unknown Unknown
Cedro-rosa Meliaceae Cedrela odorata L.
Cerejeira Fabaceae- Papilionoideae Amburana acreana Ducke (A.C.Sm.)
Coração-de-negro Fabaceae- Papilionoideae Swartzia panacoco Cowan
Camaruzeiro Fabaceae- Papilionoideae Dipteryx sp.
Embireira Timeleaceae Daphnopsis sp.
Farinha-seca Chrysobalanaceae Parinari coriaceum Benth
Feijão-cru Fabaceae- Mimosoideae Pithecellobium saman var. acutifolium 

Benth
Figueira Moraceae Ficus sp.
Freijó-cinza Boraginaceae Cordia goeldiana Huber
Garapa Fabaceae- 

Caesalpinioideae
Apuleia leiocarpa (Vogel) J.F.Macbr

Garrote Moraceae Bagassa guianensis Aubl.
Gmelina ou Melina Verbenaceae Gmelina arborea Roxb.
Goiabeira Myrtaceae Psidium guajyava L.
Imbaúba Cecropiaceae Cecropia sp.
Ingazeira Fabaceae- Mimosoideae Inga sp.
Ipê-amarelo Bignoniaceae Tabebuia incana A. Gentry
Ipê-champagne Bignoniaceae Tabebuia sp.
Ipê-roxo Bignoniaceae Tabebuia sp.
Ipê-tabaco Bignoniaceae Tabebuia serratifolia (Vahi) Nichols.

(continued)
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Table 12.3 (continued)

Jangada Rubiaceae Guettarda viburnoides Cham. &Schltdl.
Jaqueira Moraceae Artocarpus integra L.
Jatobá Fabaceae- Papilionoideae Hymenaea oblongifolia Huber
Jenipapeiro Rubiaceae Genipacaruto H.B.K.
Laranjeira Rutaceae Citrus sinensis (L.) Osbeck
Leiteira Moraceae Brosimum sp.
Limeira Rutaceae Citrus bergamia Risso
Limoeiro Rutaceae Citrus limon (L) Burm
Louro Lauraceae Ocotea sp.
Mamica-de-porca Tutaceae Zanthoxylum acreanum (Krause) J.F. Macbr.
Mangueira Anacardiaceae Mangifera indica L.
Maparaíba Unknown Unknown
Mogno Meliaceae Swietenia macrophylla KING
Mutamba Sterculiaceae Guazuma sp.
Paineira Bombacaceae Chorisia sp.
Pau d’alho Phytolaccaceae Gallesia integrifolia (Spreng.) Harms
Pau-sangue Guttiferae Vismia brasiliensis Choisy
Pintadinho Fabaceae- 

Caesalpinioideae
Poeppigia procera Presl

Ponkan Rutaceae Citrus reticulata Blanco
Pupunheira Arecaceae Bactris gasipaes H.B.K.
Seringueira Euphorbiaceae Hevea brasiliensis (Willd. ex. Adr. De Juss.) 

Muell. Arg.
Sete Camadas Unknown Unknown
Sumaumeira Bombacaceae Ceiba pentandra (L) Gaertn.
Tarumã Berbenaceae Vitex sp.
Tauari Lecytidaceae Couratari sp.
Tucumazeiro Arecaceae Astrocaryum sp.
Unha-de-vaca Fabaceae- 

Caesalpinioideae
Bauhinia sp.

Urtigão Unknown Unknown

From Almeida et al. 2009

Clitoria racemosa, Inga edulis, and Sclerolobium paniculatum. The fallow vegeta-
tion enriched with A. mangium is the one that presented the greatest potential for 
sequestering carbon 2 years after fallow.

12.6  Outlook and Conclusions

Mixed-forest plantations have high potential to be an alternative to conventional 
monoculture systems to address environmental, social, and economic issues in 
Brazil. But their integration in agricultural landscapes requires a qualitative SWOT 
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(strengths-weaknesses-opportunities-threats) analysis of local stakeholders’ per-
ceptions. A priori, lack of systematic research and technology inputs to improve the 
system would be the major weaknesses, while sustainability, multi-functionality, 
and high sociocultural values would be common strengths. Potential government 
support, climate-smart forestry, and climate-change mitigation would constitute 
good opportunities, but lack of knowledge on economic viability and strong pres-
sure towards high productivity would be threat factors. Thus, SWOT analyses 
should take from climate-smart forest to climate-smart landscapes. To achieve 
climate- smart landscapes, future research needs should prioritize forest breeding 
and biotechnology for multifunctional mixed-forest plantations integrated into the 
biological management of soil fertility and modeling of plant-soil interactions. 
Therefore, the technology produced based on ecological processes can support 
farmers as managers of complex social-ecological systems better than those based 
on technological packages. Thus, integrated management of natural resources can 
increase rural prosperity through better communication of results between different 
stakeholders.
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Chapter 13
The Brazilian Legal Framework  
on Mixed- Planted Forests

Luiz Fernando Duarte de Moraes, Renata Evangelista de Oliveira, 
Maria Jose Brito Zakia, and Helena Carrascosa Von Glehn

13.1  Introduction

Forests have been playing a very important role in the establishment of land-use 
policies worldwide. Forest cover changes directly affect biodiversity, global carbon 
budget, and ecosystem functions. In many countries in Latin America, historically 
there has been a contrasting dynamics between rates of deforestation and reforesta-
tion. From 2001 to 2010, Brazil lost hundreds of thousands of hectares of forests, 
and simultaneously the country witnessed the greatest expansion of woody vegeta-
tion gain (Aide et al. 2013). A significant part of this gain was likely due to planting 
forests with exotic and native species all over the country.

Planting forests in Brazil has two main motivations throughout history: as an 
economic activity, supplying raw materials for construction and furniture making, 
and as actions for the fulfillment of legal obligations. Landowners plant forests as 
an option to restore permanent preservation areas and legal reserves and so meet the 
legal requirements placed by the current legal framework on land use (Oakleaf et al. 
2017). Recently, planted forests have also become relevant to mitigate the effects of 
climate change.

Natural and planted forests have multiple benefits, contributing to production, 
protection and conservation, and environmental and social services (SFB 2013; 
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Yao et  al. 2016). Additionally, different forms of reforestation may be used for 
many objectives (Baral et al. 2016), for instance, depending on the purpose (indus-
trial use, environmental, agroforestry, and farm forestry) or species composition 
(monoculture or mixed species, hardwood or softwood, native or exotic species). 
Forest plantations can be used to restore biodiversity and to provide goods and 
services, but different goals require different strategies, planting, and management 
models as well, including the use of more or less species. In Brazil, most planted 
forests are tree monospecific plantations of exotic species, mainly Pinus and 
Eucalyptus.

According to Lamb et al. (2005), if we intend to supply goods and ecological 
services, tree plantation monocultures are efficient for timber or food production, 
but in most circumstances they are less successful in supplying services.1 Mixed- 
species plantations with native species can potentially supply a wider range of 
goods and services than monocultures, since biodiversity gains are expected to be 
greater.

Whether for economic reasons or for requirement of legal compliance, there is a 
high demand and the enormous challenge of identifying opportunities offered by 
laws and public policies for the planting of mixed forests.

In this chapter, we discuss the legal framework of planted forests, focusing on 
federal Brazilian rules for use and management of forest plantations, with either 
exotic or native species. We intend to clarify when, where, and how those forests 
can be established according to legal rules, to a more effective provision of timber 
and non-timber products, and services as well.

We focus on the legal framework of the so-called multifunctional mixed-planted 
forests; neither native forest remnants nor monocultures will be the object of 
discussion.

13.2  Concepts

New definitions on “forest” have been necessary to have policies promoting effec-
tive forest conservation; minor changes in traditional definitions may distinguish 
native forests from plantations, ensuring that planted forests will protect biodiver-
sity and contribute to sustainable development (Sasaki and Putz 2009).

For the Brazilian legal framework, the concept of forest has not been estab-
lished yet. According to FAO, forest is as a “land spanning more than 0.5 hectares 
with trees higher than 5 meters and a canopy cover of more than 10 %, or trees able 
to reach these thresholds in situ. It does not include land that is predominantly 
under agricultural or urban land use”; planted forests are defined as being predomi-
nantly composed of trees established through planting and/or deliberate seeding 
(FAO, 2012).

1 Services supplying means conserving ecological and hydrological processes.
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Since FAO’s definition is not suggested to meet the minimum requirements to 
attend public policies, a new definition was adopted under the Kyoto Protocol: 
“Forest is a minimum area of land of 0.05–1.0 hectares, with tree crown cover (or 
equivalent stocking level) of more than 10–30%, with trees with the potential to 
reach a minimum height of 2–5 m at maturity in situ.” A forest may consist of either 
closed forest formations where trees of various storeys and undergrowth cover a high 
proportion of the ground or open forest. Young natural stands and all plantations 
which have yet to reach either a crown density of 10–30% or tree height of 2–5 m are 
included under forest. Those are considered areas normally forming part of the forest 
area which are temporarily unstocked, as a result of human intervention such as har-
vesting or natural causes but which are expected to revert to forest (Kant 2006).

During the World Congress of Forests in 1990, new concepts and management 
practices were proposed to distinguish the so-called forest plantations (simple trees 
cultivation/silviculture) from “planted forests” (which brings the comprehension of 
these forests as ecosystems):

The success of the forest plantations depends on the species fitness, its origin, and on their 
objectives. Further than the dogmatic controversial issues concerned to the introduction of 
exotic species, management priorities should aim the maintenance of soil productivity 
potential, as well of some biodiversity and sustainable income. The management of forest 
plantations must aim changing plantations into forests.

In fact, this simple change of words brings distinct concepts: while “forest plan-
tations” focus on timber production, “planted forests” are planned and managed for 
both forest production and ecosystem services, like water regulation and soil and 
biodiversity conservation.

FAO’s recommendation in the 1990s may be seen as a way of integrating forestry 
production (through plantations) to the maintenance of ecological and hydrological 
processes, i.e., to social and environmental values (ensured by planted forests, in 
this case). As we can see, there is not a clear relationship between “forest planta-
tions” (single-tree cultivation) and “planted forests,” since the concept of planted 
forests is suggested to aggregate social and environmental issues into planning, 
decision-making, and forest management (Lima and Zakia 2006).

Anyway, a new concept has been proposed: multifunctional forests are suggested 
to embrace issues further than structure, concerning species composition and eco-
logical functioning of forests, closely related to the provision of ecosystem services, 
as described in Fig. 13.1. As suggested in Fig. 13.1, a mixed plantation consisting of 
Eucalyptus and Acacia (only two species and both exotic) is not expected to provide 
multiple functions (or services) to the environment.

The Brazilian legal framework (Federal Decree 8375/2014) defines planted for-
ests as those “consisting predominantly of trees, established by planting or seedling, 
cultivated with economic purposes and for trades, out of permanent preservation, 
restrict use and legal reserve areas.”

Planted forests in Brazil are placed by legislation according to two aspects: the 
portion of either the landscape or the rural property they are located on, and the 
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objectives of planting forests. Forests can be planted on permanent preservation 
areas and legal reserve, which are mandatory protected natural areas (Silva and 
Ranieri 2014); on areas of restricted use; and on areas available for agriculture and 
forestry with no restrictions. Legal definitions of each type of area described below, 
as well as their closeness to different kinds of planted forests, are given below:

• Permanent Preservation Area (APP): A protected area, covered or not by native 
vegetation, with its environmental functions of preserving water resources, land-
scape, geological stability, and biodiversity; improving the fauna and flora gene 
flow; protecting the soil; and ensuring the well-being of human populations.

• Legal Reserve: An area located within a property or a rural possession, under the 
terms of article no. 12, with the purpose of ensuring the economic and sustain-
able use of the rural property’s natural resources, keeping and restoring ecologi-
cal processes, and promoting biodiversity conservation, which includes shelters, 
and protection of wild fauna and native flora.

• Consolidated Rural Area: A rural property area occupied by human beings, 
existing prior to July 22, 2008, with its buildings, improvements, or agricultural 
and forestry activities, which may include a fallow system.

• Areas of Restricted Use: Areas with specific characteristics, which are:

 – Pantanal areas and plains, and areas where ecologically sustainable exploitation 
is allowed, and where technical recommendations from official research author-
ities must be observed. New removals of native vegetation for alternative use of 
the soil will depend on the approval of the state’s environmental authority.

Fig. 13.1 Framework to introduce the concept of multifunctional mixed forests (adapted from 
Thiel, 2017). Hans Thiel, Close to Nature Planted Forests (CTNPF). World Bank/FAO Collaborative 
Program (CP) Initiative. Report, 2017 (not published)
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 – Slope areas between 25° and 45° where sustainable forest management and 
farming, cattle breeding, and forestry activities are allowed, as well as the main-
tenance of the physical infrastructure connected to the development of these 
activities, provided that good agricultural practices are observed. The conver-
sion of new areas is forbidden, except when declared of public interest.

• Area for Common Use: Non-protected area, available for agriculture, cattle rais-
ing, and forestry (alternative soil uses).

An overview of the evolution of legal framework on forests may allow under-
standing how the regulatory environment affects the perception on the alternatives 
for the use and management of forests in rural properties. To meet the main objec-
tive of this book, it is necessary to state that mixed Eucalyptus and Acacia planted 
forests are not allowed to fulfill legal environmental requirements (to recover per-
manent preservation areas or legal reserves, for instance). The legal framework 
related to native and planted forests in Brazil, in a historical perspective, is pre-
sented below.

13.3  Brazilian Federal Legal Framework

The historical development of legal system regulating the use and management of 
forests in Brazil may be divided into historical periods.

The first regulatory mechanisms on forests in Brazil were based on the Portuguese 
legal system. The Colonial period, from 1500 to the beginning of the nineteenth 
century, was characterized by an unsustainable exploitation of timber products. A 
good example was the intense withdrawal of the valuable “pau-brasil” (Brazil 
wood), exclusively traded with the Portuguese Crown that adopted the first legal 
acts (as the “Pau-Brasil Act, in 1605) to protect natural resources, basically with 
economic purposes (Medeiros 2006; Bacha 2004). By the end of the eighteenth 
century, a Royal Charter stated the need to conserve native forests and prohibited 
the unauthorized cutting of valuable hardwood tree species (Medeiros 2006). From 
that period to the end of the nineteenth century the plantation of forests had basi-
cally ornamental and scientific purposes (Hora 2015).

During the Imperial period (nineteenth century), Brazilian Atlantic Forest faced 
an intense deforestation for coffee farming expansion, which led to the creation of 
command and control policies. In the first decades of the Brazilian Republic, estab-
lished in the end of the nineteenth century, the government promoted the forest 
sector with economic purposes, by introducing Eucalyptus (the potential of native 
tree species was poorly known) plantations, which resulted in great deforestation.

Following this period, government initiatives showed some concerns on environ-
mental aspects, and created the Brazilian Forest Service, in the 1920s, and the first 
Forest Code, in 1934, which proposed four categories of forests: protective, rem-
nants, model, and production (Thomas and Foleto 2013; Bacha 2004). The 1934 
forest code implied the “obligation of large consumers of forest products (such as 
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steel companies and transportation) to keep the cultivation of forests for firewood or 
charcoal supply (spare)” (Bacha 2004). Imprisonment, detention, and fines were 
some of the penalties imposed by the 1934 forest code to those responsible for 
deforestation, burning forests, and invading public lands (Moretto et al. 2010).

Environmental concern increased during the 1960s, when an intensification of 
command-and-control regulation to stop deforestation was observed. No tools to 
stimulate the conservation of native forests were created though. A second version 
of the Brazilian Forest Code was passed in 1965, replacing the 1934 version. Some 
modifications of the first version included the requirement of authorization of the 
public authorities to explore all native forests, the requirement for forest replace-
ment for all consumers of forest products, and the requirement for management 
plans to explore the forests in some regions of the country (Bacha 2004). From the 
beginning of the twentieth century to the 1960s, although forests were planted for 
economic purposes, planted forest expansion had not promoted the development of 
forestry (Hora 2015).

Despite requiring forest replacement in deforested areas, legal framework had 
not defined which species could be planted (Moretto et al. 2010), which resulted in 
the intense introduction of exotic and invasive species. By that time (1960s), there 
was a conflict between the legal framework related to forests and other laws, like the 
Land Statute, which stated that the landowner could benefit from deforestation 
(Bacha 2004). Consequently, rural landowners were authorized, even when funded, 
to replace native forests by homogeneous stands (Moretto et al. 2010; Bacha 2004). 
It resulted in the expansion of Eucalyptus and Pinus plantations over native forests 
(Moretto et al. 2010).

The area of planted forest faced a great expansion from 1965 to 1986, due to 
public financial incentives and strengthening of the legal framework (Hora 2015); in 
1970, planted forests covered 1.66 million hectares, reaching up to almost six mil-
lion hectares in 1985 (Bacha 2004). There were no clear concerns on the costs of 
planting forests in that period (Hora 2015).

The expansion of forest-planted area in Brazil from 1975 to 2000, however, was 
about 5% of the deforested area in Amazonia, in the same period (Bacha 2004). In 
summary, forest plantations were used in that period as a tool for economic develop-
ment, putting aside other benefits forests can provide, especially those related to 
biodiversity conservation and ecosystem service delivery.

The economic development approach in that period was evidenced by the cre-
ation, in 1967, of the Brazilian Institute of Forest Development (IBDF), to regulate 
afforestation and reforestation activities, evaluating projects applied to access pub-
lic funds. Most of the reforestation projects supported by the IBDF had economic 
purposes and used mostly exotic species. Only by the end of the 1980s the legal 
framework brought the concern on prioritizing native species in reforestation made 
by legal compliance (Moretto et al. 2010).

In 1988, the new Brazilian Constitution allowed states to also create specific laws 
and legislate on the management and use of forest resources. On the other hand, public 
policies for the economic development remained a great threat to forest conservation, 
and deforestation indices remained high (Bacha 2004). As the destruction of forest 
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resources could affect the economic development of the country, new policies based 
on command and control have been established to reduce deforestation (Bacha 2004). 
During the Earth Summit in 1992, in Rio de Janeiro, intergovernmental and interna-
tional agreements were made to use sustainable development to protect forests (Nazo 
and Mukai 2001).

The lack of financial incentives, although forestry was considered a profitable 
activity, was followed by a reduction in the planted area, to almost five million ha in 
2000. As it was difficult to expand planted forests, the sector invested, from 1990 to 
2000, in the development of tools and techniques to improve efficiency in forestry 
(Hora 2015).

Up to 2006, Brazilian legal frames targeting forest remained excessively protec-
tionist, but the Law 11284/2006, which aimed to protect the Atlantic Forest, pro-
moted sustainable use and conservation in public forests. That law provided the 
basis of a forest-based development model, by taking into account several issues, 
like ecosystem and biodiversity protection, rights of traditional communities, an 
efficient and rational forest use, and conditions to stimulate long-term investment 
(Bustamante et al. 2018). Importance of economic goals (e.g., profitability, produc-
tivity, efficiency) became most visible when the responsibility for and coordination 
of planted forests were transferred from the Ministry of the Environment to the 
Ministry of Agriculture (Bustamante et al. 2018).

There is a clear expansion of planted forests over the last decades in Brazil (Hora 
2015), and a concern that forestry expansion may negatively affect biodiversity. The 
current Brazilian legal framework provides a system for the protection and forestry 
regulation with laws mostly focusing on native vegetation (Brazil holds six biomes3), 
water resources, and climate. Four legal tools,2 as below, rule planted forests:

 (a) The National Policy on Climate Change (Federal Law 12187/2009), established 
to consolidate and expand protected areas, fostering reforestation and revegeta-
tion of degraded areas.

 (b) Conflicts between biodiversity conservation and social and economic interests 
pushed the establishment of the most recent legal framework in Brazil: the Law 
for the Protection of Native Vegetation (12651/2012). This law establishes rules 
for the protection, restoration, and compensation of native vegetation, and 
defines rules for forest exploitation and controls the origin of forest products. It 
regulates extractive activities and management of wood and non-wood products 
in native and planted forests, in conformity to a previously approved sustainable 
forest management plan (Oliveira and Sais 2017; Zakia and Guedes Pinto 2013; 
Kuntschik 2012). Forest plantation in non-protected areas is considered as 
agriculture.

 (c) Most recently, Brazil has established an Agriculture Policy for Planted Forests 
(Decree 8375/2014), and the National Policy for the Recovery of Native 
Vegetation (Decree 8972/2017). Both policies offer interesting opportunities 
for the development and expansion of planted forests in Brazil.

2 Federal laws can be consulted in http://www4.planalto.gov.br/legislacao/
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13.4  The National Plan on Climate Change, the Federal Law 
and the National Policy for the Protection of Native 
Vegetation, and National Policy on Planted Forests: 
Opportunities and Challenges

The goals placed by legal framework and forest-based Brazilian policies offer sig-
nificant opportunities for the expansion of multifunctional mixed-planted forests, 
but some bottlenecks need to be addressed.

One policy that has a great potential in fostering the expansion of mixed-planted 
forest is the Brazilian National Climate Change Plan (NCCP), which aims “to make 
the economic and social development compatible with the protection of the climate 
system and to promote the reduction of greenhouse gas emissions by encouraging the 
use of clean energy” (Brasil 2008). One of the goals of the NCCP was to eliminate 
the net loss of forest coverage in Brazil by 2015, which meant avoiding deforestation, 
and upscaling of forest plantations to 11 million ha in 2020; two million ha have been 
expected to be plantations of native species to replace degraded pastures (Brasil 2008).

The most important Brazilian law on forestry (Federal Law 12651/2012) estab-
lishes that no previous authorization is necessary for reforestation, using either exotic 
or native species (Brazil 2012). In 2017, the decree 8.972/2017 created the National 
Policy for Native Vegetation Recovery (Proveg), to articulate, integrate, and promote 
policies, programs, and actions that encourage forest recovery and other native vegeta-
tion forms. In order to implement that policy, the National Plan for Recovery of Native 
Vegetation (Planaveg) aims to have at least 12 million ha of forests and other forms of 
native vegetation restored in Brazil, up to 2030. Among the guidelines of Planaveg are 
the following: to foster society’s awareness of the benefits of recovering native vegeta-
tion, and to improve the regulatory environment and increased legal certainty for the 
recovery of native vegetation with economic exploitation (Brazil, 2017).

The principles of the National Plan on Climate Change are to stimulate the pro-
duction of forest goods and services for the social and economic development of the 
country, and mitigate the effects of climate change (Brazil, 2014). The Brazilian 
Ministry of Agriculture is in charge of creating the “National Plan for the 
Development of Planted Forests,” which will establish forest production goals in 
Brazil, and the actions to be taken to achieve them.

Principles, objectives, and goals above are assumed as voluntary commitments 
from Brazil for the restoration of degraded areas, which may result in the expansion 
of planted forests. Multifunctional mixed forests have the conditions to fulfill legal 
requirements, provide adequate environmental services, and deliver economic ben-
efits. An overview on the regulation of multifunctional mixed forests in Brazil is 
summarized in Table 13.1.

According to the Brazilian legal framework, multifunctional mixed forests consist-
ing exclusively of native tree species can be planted to recover all these sites in rural 
properties: permanent preservation areas (within small, medium, and large properties), 
legal reserves, restricted-use areas, and areas that do not need any specific regulation 
(Table 13.1).
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Table 13.1 Summary of permissions and possibilities placed by Brazilian legal framework for the 
implementation of multifunctional planted forests in rural properties

Recovery of 
APP in small 
properties (see 
Box 13.1)

Recovery of 
APP in 
medium and 
great 
properties (see 
Box 13.1)

Recovery of 
legal reserve

Recovery of 
restricted-use 
area

Non- 
protected 
area (suitable 
for 
agriculture)a

Plantations of 
exotic trees 
only

Not allowed Not allowed Not allowed Not allowed Allowed

Plantations 
combining 
native and 
exotic trees

Allowed Not allowed Allowed Allowed Allowed

Plantations of 
native trees 
only

Allowed Allowed Allowed Allowed Allowed

Agroforestry 
systems with 
exotic trees 
only

Not allowed Not allowed Not allowed Not allowed Allowed

Agroforestry 
systems with 
native trees 
only

Allowed Allowed Allowed Allowed Allowed

Agroforestry 
with native and 
exotic species

Allowed Not allowed Allowed Allowed Allowed

Plantations for 
economic 
purposes

Allowed Not allowed Allowed Allowed Allowed

Environmental 
function 
established by 
legal 
framework

Preserve 
water 
resources, 
landscape, 
geological 
stability and 
biodiversity, 
facilitate gene 
flow of fauna 
and flora, 
protect soil

Preserve 
water 
resources, 
landscape, 
geological 
stability and 
biodiversity, 
facilitate gene 
flow of fauna 
and flora, 
protect soil

Assist the 
conservation 
and 
rehabilitation 
of ecological 
processes and 
promote the 
conservation of 
biodiversity, as 
well as shelter 
and protection 
of wildlife and 
native flora

Assist the 
conservation 
and 
rehabilitation 
of ecological 
processes and 
promote the 
conservation of 
biodiversity, as 
well as shelter 
and protection 
of wildlife and 
native flora

Water and 
soil 
conservation

Eligible for the 
payment of 
ecosystem 
services

Yes Yes Yes Yes No legal 
prediction

(continued)
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Brazilian rural properties may be classified into small, medium, or large, according 
to the corresponding fiscal modules (in units of area—see Box 13.1). Small properties 
and familiar-based farmers have some extra benefits related to the use and manage-
ment of their lands in Brazil. There is no legal restriction for native planted forests to 
meet ecological requirements, but no exploitation is allowed in recovered permanent 
preservation areas (APP) located in medium and large properties. As we can see, 
Brazilian current legal framework allows small farmers (Box 13.1, below) to manage 
planted forests in their APP.

The use of noninvasive exotic species in planted forests to meet legal require-
ments is allowed for the recovery of APP only in small farms and to recover legal 
reserves, always combined with native species. No systems consisting exclusively 
of exotic trees—like the so-called Eucalyptus-Acacia system—are allowed to 
recover legally protected areas. This indicates a great concern on the potential inva-
siveness of some exotic species, as Acacia species.

Plantations for economic purposes are also allowed for the recovery of restricted- 
use areas and legal reserves, which enhances the potential multifunctionality of the 
models designed for those areas (Fig.  13.2). These plantations are allowed in 
restricted-use areas only if the use of area is consolidated (according to Federal Law 
12651/2012), and under the adoption of water and soil conservation practices that 
include the Eucalyptus-Acacia system.

Since it is mandatory, the recovery of legal reserve areas offers the best opportu-
nity for the expansion of multifunctional mixed-planted forests, since environmen-
tal functions and economic benefits can be obtained simultaneously. It is important 
to notice that mixed-planted forests in the legal reserve may contain noninvasive 

Table 13.1 (continued)

Recovery of 
APP in small 
properties (see 
Box 13.1)

Recovery of 
APP in 
medium and 
great 
properties (see 
Box 13.1)

Recovery of 
legal reserve

Recovery of 
restricted-use 
area

Non- 
protected 
area (suitable 
for 
agriculture)a

Legal rules Federal Law 
12.651/2012
Federal 
Decree 
7850/2012

Federal Law 
12.651/2012
Federal 
Decree 
7850/2012

Federal Law 
12.651/2012
Federal Decree 
7850/2012

Federal Law 
12.651/2012

Federal Law 
12.651/2012; 
Federal 
Decree 
8.375/2014

Allowed use 
and 
management 
for economic 
purposes

Needs 
regulation

Not 
applicable

Needs 
regulation

Needs 
regulation

–

APP permanent preservation areas
aHere is a bill under discussion in the Brazilian Congress (6411 PL/2016) that proposes that silvi-
cultural activities should not require environmental licensing, in case of planting and management 
of either native or exotic trees, for logging and forest resource extraction, in consolidated rural 
areas, located in APP, or in degraded lands due to human activities, since those lands are not 
located on the APP or the legal reserve area
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Fig. 13.2 Opportunities of economic uses in planted forests and potential of providing forest 
services and goods according to the legal framework (adapted from Thiel, 2017). Hans Thiel, 
Close to Nature Planted Forests (CTNPF). World Bank/FAO Collaborative Program (CP) Initiative. 
Report, 2017 (not published)

13 The Brazilian Legal Framework on Mixed-Planted Forests

Box 13.1 Zakia and Guedes-Pinto (2013)

Rural Module?
A rural module is calculated for each rural property, and its area reflects the 

kind of exploitation or utilization prevailing in the rural property.
Fiscal Module
A fiscal module is a land measuring unit in Brazil, established by Law no. 

6746 of December 10, 1979. It is expressed in hectares, is variable, and set for 
each municipality according to:

• Kind of exploitation prevailing in the municipality
• The income brought in by the main exploitation business
• Other existing exploitation businesses in the municipality which, even if not 

prevailing, are significant for the income they bring, or the area they use
• Concept of family property

A fiscal module should not be confused with a rural module.
A fiscal module equals the minimum area required for a rural property to run 

a viable exploitation business. Depending on the municipality, a fiscal module 
may vary from 5 to 110 ha. In metropolitan regions, a rural module is usually 
quite smaller than in rural areas farther away from major urban centers.

A fiscal module also serves as a standard to define beneficiaries at PRONAF 
(small family farm producers, owners, sharecroppers, legal holders, partners, 
or tenants of up to four (4) fiscal modules).
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exotic species, which still needs legal regulation, especially for the management and 
use of native trees.

The presence of native forest remnants has been costly and sometimes punitive 
to rural landowners. Brazilian laws historically have restricted the use and manage-
ment of native forests, resulting in an understanding that “an overprotective approach 
may fail in effective protection.” The management practices and uses recently 
allowed in legal reserve are a chance to change that paradigm.

In the definition of legal reserve given by the Federal Law 12651/2012, the eco-
nomic purposes are not allowed just to mitigate costs of the reforestation (restora-
tion), but also to offer new incomes for the landowner. In this new approach, the 
ecological function of the legal reserve concerns rather to ecosystem services than 
the biodiversity conservation or community structure. The model that better fits to 
the new objectives (as to restoration purposes) of the legal reserve is that related to 
the concept of multifunctional planted forest (see Table 13.1).

The law states that economic-based alternatives to be proposed for the use 
and management of legal reserve must target the maintenance of ecological 
functions. As other legal tools also require the legal reserve to attend ecological 
functions, there is no reason to avoid the sustainable use of forest resources in 
the legal reserve. It is a matter of searching a balance between biodiversity, con-
servation, and economic sustainability, and enabling the dual functions of the 
legal reserve.

In São Paulo state, this is especially challenging. Most of the rural properties do 
not have enough native vegetation and need reforestation actions to fulfill the mini-
mum requirements of a legal reserve. Landowners may either protect, restore, or 
offset the legal reserve to meet the legal requirements (Oakleaf et al. 2017). The 
restoration of legal reserve to comply with the legal framework may be done by 
either assisting natural regeneration or planting forests in the rural properties. The 
combination of restoration and offset may offer a great opportunity to allow the 
expansion of forest cover in strategic areas for water conservation and to reconnect 
isolated forest remnants (implementation of ecological corridors). Lands in São 
Paulo state have the greatest opportunity costs of land use in Brazil, both in the 
Atlantic Forest and in Cerrado, resulting in high costs of restoration of native forests 
as well. A proper regulation may provide economic sustainability to multifunctional 
planted forests in the legal reserve, independent of legal obligations.

13.5  Final Comments

Brazilian legal framework places a good range of opportunities for the expansion of 
planted forests. However, environmental threats, such as global warming and bio-
logical invasions, recommend extreme care on the use of exotic and invasive tree 
species, as is the case of the Eucalyptus-Acacia consortium; their use must be 
planned considering rather a multifunctional approach. For the establishment of 
public policies, however, mixed-planted forests should be multifunctional and pri-
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oritize the use of multiple native species in mixed combinations (diversity is always 
welcome!). This is an opportunity for the development of the silviculture of native 
species.

Planting mixed forests for the recovery of permanent preservation areas in small 
properties and legal reserves needs regulation to enable the delivery of economic 
benefits to landowners, as well as environmental services to the landscape.

Governance is also a key issue. The opportunities discussed in this chapter, con-
sidering all the possible uses and services from multifunctional forests, will only be 
achieved if governments maintain and support the legal framework and public poli-
cies listed here.

Government actions must support the consolidation of the legal environment, 
and new policies should avoid conflicts with formerly published policies. Conflicts 
can affect the effectiveness of regulation, hindering the achievement of policy- 
related goals. Further, since most of Brazilian forest-related policies are associated 
to international agreements concerning global issues, governance should contribute 
to a collective international effort, and try not to favor specific sectors.

It should be noted that government actions must always strengthen sustainable 
development policies and strategies and that all care must be taken to avoid changes 
in government and/or political directions negatively affecting them (unfortunately, 
recent decisions of the Brazilian Government apparently have pointed in another 
direction). It is also a duty of Brazilian civil society to watch out for any misconduct 
in this regard.

Finally, it is important to remember that the forest cover, hopefully fulfilled with 
the so-called multifunctional forests, is located in multiple and heterogeneous rural 
landscapes, where the socioeconomic and cultural aspects are essential for the per-
manence (or not) of these forests, and their participation in the effectiveness of rural 
development in Brazil.
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