
Chapter 94
Lattice Simulations with Chiral Effective
Field Theory for Light
and Medium-Mass Nuclei

Serdar Elhatisari

Abstract In this proceedings we present recent results from lattice simulations with
chiral effective field theory up to next-to-next-to-next-to-leading order. We discuss
our investigation on the degree of locality of the short-range nucleon-nucleon inter-
actions. We also discuss ground state energies of light and medium-mass nuclei as
well as new algorithms for the proton and neutron density distributions and other
properties.

94.1 Introduction

Lattice effective field theory is a powerful numericalmethod formulated in the frame-
work of chiral effective field theory which organizes the nuclear interactions as an
expansion in powers of low energy scales, Q, such as the momenta, the pion mass
etc. Chiral effective field theory gives a modern description for the nuclear forces in
the chiral limit where the light quarks are massless. A relevant recent review can be
found in [1]. In the chiral expansion the first term dominates and is called the leading
order (LO or Q0) interaction. The first correction to the LO is the next-to-leading
order (NLO or Q2) interaction, the second correction is called the next-to-next-to-
leading order (NNLO or Q3) and so on. These interactions contain sets of coupling
constants (or low-energy constants (LECs)) to be determined by fitting to the exper-
imental data.

In lattice effective field theory these interactions are formulated in a periodic cubic
lattice, and the LECs on the lattice are determined by fitting to experimental data.
Reference [2] discusses the details of lattice interactions and a new lattice formulation
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of short-range chiral effective field theory interactions with a simpler decomposition
into spin channels.

94.2 Euclidean Time Projection Monte Carlo

In lattice simulationswe study the low-lying states of nuclei using the normal ordered
transfer-matrix formalism. The transfer matrix is defined in Euclidean time as in the
following,

MLO = : exp(−αt HLO) : (94.1)

where H is the lattice Hamiltonian, and αt is the ratio of the temporal lattice spacing
at to the spatial lattice spacing a. The symbol : : signifies normal ordering, which
moves all annihilation operators to the right and creation operators to the left with the
appropriate number of anticommutation minus signs. In our simulation we employ
projection Monte Carlo with auxiliary fields for nucleon-nucleon interactions. In
auxiliary-field Monte Carlo simulations, the interactions are recast as single particle
interacting with fluctuating auxiliary fields. See [3] for a detailed discussion on
auxiliary-field Monte Carlo calculations.

Nuclear structure on the lattice: To compute the ground state energies or the prop-
erties of nuclei, we consider some initial and final states, respectively |Ψi 〉 and

∣
∣Ψ f

〉

,
as Slater determinants of free-particle standing waves on the lattice. These states
are projected in Euclidean time using the transfer matrix to form the Euclidean time
projection amplitude at LO,

ZLO(Lt ) = 〈

Ψ f

∣
∣ MLt

LO |Ψi 〉 . (94.2)

We perform the auxiliary-field Monte Carlo simulations to compute the quantum
amplitude ZLO(Lt ), and the ground state energy at LO is determined from the ratio
ZLO(Lt + 1)/ZLO(Lt ) in the limit Lt → ∞. In our simulation the higher order cal-
culations are computed using perturbation theory, and we compute the Euclidean
time projection amplitude at higher order,

Zho(Lt + 1) = 〈

Ψ f

∣
∣ M (Lt−1)/2

LO Mho M
(Lt−1)/2
LO |Ψi 〉 , (94.3)

where

Mho = : exp [−αt ( HLO + Hho)] . (94.4)

Therefore, the energy correction to the LO energy is computed from the ratio
Zho(Lt + 1)/ZLO(Lt + 1).
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Nuclear scattering on the lattice: Scattering and reactions involving clusters can
be studied on the lattice using the adiabatic projection method, which is a general
framework that constructs a low energy effective field theory for the clusters. See
[4–6] for the details of the method. The method uses initial states,

|R〉 =
∑

r

|r + R〉1 ⊗ |r〉2 , (94.5)

which is parameterized by the relative separation between clusters, R. Furthermore,
we project these initial states onto spherical harmonics Y�,�z with angular momentum
numbers �, �z ,

|R〉�,�z =
∑

R′
Y�,�z (R̂

′) δR,|R′| |R〉 . (94.6)

Then we evolve these states using the LO transfer matrix in Euclidean time to form
dressed cluster states,

|R〉�,�znt = Mnt
LO |R〉�,�z . (94.7)

These dressed cluster states are used to construct the transfer matrix of the cluster-
cluster system,

[Mnt ]�,�zR′,R = �,�z
nt

〈

R′ |MLO| R〉�,�z

nt
, (94.8)

and the norm matrix,

[Nnt ]�,�zR′,R = �,�z
nt

〈

R′ | R〉�,�z

nt
. (94.9)

The adiabatic projection inEuclidean time gives a systematically improvable descrip-
tion of the low-lying scattering states of clusters, and in the limit of large Euclidean
time the description becomes exact. We use the auxiliary-field Monte Carlo sim-
ulations to compute the amplitude matrices in (94.8) and (94.9). In addition, we
perform metropolis sampling of the cluster positions. Then we use (94.8) and (94.9)
to construct the adiabatic transfer matrix,

[Ma
nt ]�,�zR′,R =

[

N
− 1

2
nt Mnt N

− 1
2

nt

]

, (94.10)

and by employing the spherical wall method [4, 7] the adiabatic transfer matrix is
used to compute the scattering phase shifts for two-cluster systems. The compu-
tational scaling of lattice calculations consisting of A1-body and A2-body clusters
is roughly (A1 + A2)

2, and this makes ab initio calculations involving a heavier
projectile accessible and practical.
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94.3 Results

Alpha-alpha scattering: In this section, we present the recent results from the lat-
tice simulations. We start with the first ab initio calculation of the elastic 4He+4He
scattering using the adiabatic projection method. As described above, thanks to mild
computational scaling, ab initio calculations involving 4He cluster as a projectile are
possible with the adiabatic projection method. We used the lattice action developed
and used in [8], and performed the first ab initio calculation of 4He+4He scattering
up to next-to-next-to-leading order in chiral effective field theory [5]. In these cal-
culations the spatial lattice spacing is a = 1.97 fm and the temporal lattice spacing
is at = 1.32 fm.

Figure 94.1 shows the S-wave (left) and the D-wave (right) scattering phase shifts
versus laboratory energy up to NNLO in chiral effective field theory comparison
with experimental data [9]. We found that for the S-wave the NNLO result is in
good agreement with experiment, and we found a fairly good agreement between
the D-wave the NNLO result and experiment.

The adiabatic projection method is of significant importance not only because
the 4He nuclei has been the heaviest projectile used in the ab initio calculations of
scattering and reactions, but also has opened the door towards using experimental
data from collisions of heavier nuclei as input to improve ab initio nuclear structure
theory.

Degree of locality of nuclear forces: In [10] we used the 4He+4He scattering as
a tool for probing the degree of locality of the short-range nuclear interactions and
the nuclear structure of alpha-conjugate nuclei which are nuclei with equal and
even numbers of protons and neutrons. We started with two leading order lattice
interactions VA(r′, r) and VB(r′, r) where r is the spatial separation between the
two incoming nucleons and r′ is the spatial separation between the two outgoing

Fig. 94.1 Left: S-wave phase shifts up to NNLO and comparisonwith experimental data [9]. Right:
D-wave phase shifts up to NNLO and comparison with experimental data [9]
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Fig. 94.2 4He+4He S-wave
scattering. We plot S-wave
phase shifts δ0 for
alpha-alpha scattering for
interactions VA(r′, r) and
VB(r′, r) versus laboratory
energy. We show LO for A
(green tiangle), LO +
Coulomb for A (orange
diamonds), LO for B (blue
circles), and LO + Coulomb
results for B (red squares)
comparison with
experimental data [9]

nucleons. The interaction VA(r′, r) includes non-local short-range interactions,while
the interaction VB(r′, r) consists of both non-local and local short-range interactions.
We tuned the interactions VA(r′, r) and VB(r′, r) to produce the experimental low-
energy nucleon-nucleon scattering phase shifts, while the extra parameters of the
interaction VB(r′, r) due to the local terms were tuned to give the alpha-alpha S-
wave scattering phase shifts. Figure 94.2 shows the 4He+4He S-wave scattering
phase shifts as a function of laboratory energy for interactions VA(r′, r) and VB(r′, r).
The results from Fig. 94.2 clearly shows that the 4He+4He scattering phase shifts
are highly sensitive to the degree of locality of the short-range nuclear interactions.
Reference [10] explains these results in detail closely looking at the structure of the
4He wave function.

For interactions VA(r′, r) and VB(r′, r) we computed the ground state energies
of 3H, 3He, 4He as well as alpha-conjugate nuclei 8Be, 12C, 16O, 20Ne given in
Table 94.1. We found that nuclei up to 8Be are equally well described by both
interactions. For the interaction VB(r′, r) the results of nuclei heavier than 8Be are in
agreement with the experimental data, while they are underbound for the interaction
VA(r′, r). Also the 4He+4He scattering phase shifts for interaction VA(r′, r) is very
weak as given in Fig. 94.2. To illuminate what is going on with the interaction
VA(r′, r) we found it useful to look at the ratio of the LO energy for each of the
alpha-conjugate nuclei to that of the 4He particle. The results for the ratios are
1.997(6), 3.00(1), 4.00(2), and 5.03(3) for 8Be, 12C, 16O, and 20Ne, respectively. The
important result revealed here is that in each case the interaction VA(r′, r) forms a
weakly-interacting Bose gas of alpha particles.

In this study we found that the correct description of the 4He+4He scattering
phase shifts play a crucial role to describe alpha-conjugate nuclei well. In order to
understand the many-body limit in details, we switched off the Coulomb interactions
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Table 94.1 The lattice results for the ground state energies of 3H, 3He, 4He, 8Be, 12C, 16O, 20Ne
from the interactions VA(r′, r) and VB(r′, r). All energies are in units of MeV

Nucleus A (LO) B (LO) A (LO +
Coulomb)

B (LO +
Coulomb)

Experiment

3H −7.82(5) −7.78(12) −7.82(5) −7.78(12) −8.482
3He −7.82(5) −7.78(12) −7.08(5) −7.09(12) −7.718
4He −29.36(4) −29.19(6) −28.62(4) −28.45(6) −28.296
8Be −58.61(14) −59.73(6) −56.51(14) −57.29(7) −56.591
12C −88.2(3) −95.0(5) −84.0(3) −89.9(5) −92.162
16O −117.5(6) −135.4(7) −110.5(6) −126.0(7) −127.619
20Ne −148(1) −178(1) −137(1) −164(1) −160.645

Fig. 94.3 Zero-temperature phase diagramas a function of the parameterλ in the nuclear interaction
Vλ = (1 − λ)VA + λVB . A first-order quantum phase transition from a Bose gas to nuclear liquid
at the point appears where the alpha-alpha scattering length crosses zero. This is very close to the
value λ = 0. Also shown are the alpha-conjugate nuclear ground state energies EA for A nucleons
up to A = 20 relative to the corresponding multi-alpha threshold EαA/4. The last alpha-conjugate
nucleus to be bound is 8Be at the unitarity point

and connect the interaction VA(r′, r) to the interaction VB(r′, r) by a simple inter-
polation, Vλ = (1 − λ)VA + λVB . We did not observe any significant change in the
properties of the two-, three-, and four-nucleon systems with λ, while the many-body
ground state of the interpolated interaction Vλ undergoes a quantum phase transi-
tion from a Bose-condensed gas to a nuclear liquid. A schematic view of the zero
temperature phase diagram is shown in Fig. 94.3.

Density profiles for nuclei: The simulations with auxiliary-field Monte Carlo meth-
ods involve quantum states that are superposition of many different center-of-mass
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Fig. 94.4 A sketch of the
pinhole locations and
spin-isospin indices at time
τ/2 = Ltat/2

positions. Therefore, the density distrubitions of the nucleons cannot be computed
direclty. To solve this problem we developed and introduced a new computational
approach called the pinhole algorithm [11], which solves a long-standing deficiency
of auxiliary-fieldMonte Carlo simulations in computing density correlations relative
to the center of mass.

In this algorithm we consider a screen placed at the middle time step having
pinholes with spin and isospin labels that allow nucleons with the corresponding
spin and isospin to pass. This screen corresponds to the insertion of the normal-
ordered A-body density operator at the middle time step,

ρi1, j1,...,i A, jA(n1, . . . ,nA) = : ρi1, j1(n1) . . . ρi A, jA(nA) : (94.11)

where ρi, j (n) = a†i, j (n)ai, j (n) is the density operator for nucleon with spin i and
isospin j . Figure 94.4 shows a sketch of the pinhole locations and spin-isospin
indices for the operator ρi1, j1,...,i A, jA(n1, . . . ,nA) inserted at time τ/2. The screen
has A pinholes for a simulation consist of A nucleons, and we perform Metropolis
sampling for the locations as well as the spin and isospin labels of the pinholes. Using
the pinhole algorithm, we have computed the proton and neutron densities for the
ground states of 12C, 14C, and 16C given in Fig. 94.5.

Ground state energies for light and medium-mass nuclei: Recently we have con-
structed a set of short-range chiral effective field theory interactions on the lat-
tice with a simpler decomposition into spin channels. Li et al. [2] presents the full
details of these lattice interactions and the results for the neutron-proton scattering
on the lattice with various lattice spacings comparision with the empirical phase
shifts.
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Fig. 94.5 Plots of the proton and neutron densities as function of radial distance for the ground
states of 12C, 14C, and 16C comparison with the experimentally observed proton densities for 12C
and 14C [12]. We show data for various Lt time steps

Using the lattice action developed in [2], we have studied the neutron-proton
scattering to determine the LECs and computed the ground states energies of light
and medium-mass nuclei at lattice spacing a = 1.97 fm. Figures. 94.6 and 94.7
show the neutron-proton scattering phase shifts comparisionwith the empirical phase
shifts. Lattice results for ground state energies of light and medium-mass nuclei up
to N3LO in chiral effective field theory are given in Fig. 94.8 [13]. We stress that
these results are preliminary. Also these results do not include any three-body force,
and the relevant work is in progress.
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Fig. 94.6 Neutron-proton scattering uncoupled channel phase shifts as function of relativemomenta
at lattice spacing a = 1.97 fm

Fig. 94.7 Neutron-proton scattering coupled channel phase shifts and mixing angles as function
of relative momenta at lattice spacing a = 1.97 fm

SummaryWe have reported recent results from lattice simulations with chiral effec-
tive field theory up to next-to-next-to-next-to-leading order. We have also discussed
our investigation on the degree of locality of the short-range nucleon-nucleon inter-
actions, and algorithm that we developed recently to study the proton and neutron
density distributions.
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Fig. 94.8 PRELIMINARY RESULTS: Lattice results for ground state energies of light and
medium-mass nuclei up to N3LO in chiral effective field theory without the three-body forces

Acknowledgements The author is grateful to his collaborators, Jose Manuel Alarcón, Dechuan
Du, Evgeny Epelbaum, Nico Klein, Hermann Krebs, Timo A. Lähde, Dean Lee, Ning Li, Bing-nan
Lu, Thomas Luu, Ulf-G. Meißner, Gautam Rupak, and Alexander Rokash, for their contributions
to the work presented in this proceedings. We acknowledge partial financial support from the
Deutsche Forschungsgemeinschaft (SFB/TR 110, “Symmetries and the Emergence of Structure in
QCD”), the U.S. Department of Energy (DE-SC0018638), and the Scientific and Technological
Research Council of Turkey (TUBITAK project no. 116F400). Further support was provided by the
Chinese Academy of Sciences (CAS) Presidents International Fellowship Initiative (PIFI) (Grant
No. 2018DM0034) and by VolkswagenStiftung (Grant No. 93562). The computational resources
were provided by the Julich Supercomputing Centre at Forschungszentrum Julich, Oak Ridge
Leadership Computing Facility, RWTH Aachen, North Carolina State University, and Michigan
State University.

References

1. Epelbaum, E., Hammer, H.W., Meißner, U.G.: Modern theory of nuclear forces. Rev. Mod.
Phys. 81, 1773 (2009). https://doi.org/10.1103/RevModPhys.81.1773

2. Li,N., Elhatisari, S., Epelbaum,E., Lee,D., Lu,B.N.,Meißner,U.G.:Neutron-proton scattering
with lattice chiral effective field theory at next-to-next-to-next-to-leading order. Phys. Rev. C
98(4), 044002 (2018) https://doi.org/10.1103/PhysRevC.98.044002

3. Lee, D.: Lattice simulations for few- and many-body systems. Prog. Part. Nucl. Phys. 63, 117
(2009). https://doi.org/10.1016/j.ppnp.2008.12.001

4. Rokash, A., Pine, M., Elhatisari, S., Lee, D., Epelbaum, E., Krebs, H.: Scattering cluster wave
functions on the lattice using the adiabatic projection method. Phys. Rev. C 92(5), 054612
(2015) https://doi.org/10.1103/PhysRevC.92.054612

5. Elhatisari, S., Lee,D., Rupak,G., Epelbaum, E., Krebs,H., Lähde, T.A., Luu, T.,Meißner, U.G.:
Ab initio alpha-alpha scattering. Nature 528, 111 (2015). https://doi.org/10.1038/nature16067

6. Elhatisari, S., Lee, D., Meißner, U.G., Rupak, G.: Nucleon-deuteron scattering using the adia-
batic projectionmethod. Eur. Phys. J. A 52(6), 174 (2016). https://doi.org/10.1140/epja/i2016-
16174-2

https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/PhysRevC.98.044002
https://doi.org/10.1016/j.ppnp.2008.12.001
https://doi.org/10.1103/PhysRevC.92.054612
https://doi.org/10.1038/nature16067
https://doi.org/10.1140/epja/i2016-16174-2
https://doi.org/10.1140/epja/i2016-16174-2


94 Lattice Simulations with Chiral Effective Field Theory … 595

7. Borasoy, B., Epelbaum, E., Krebs, H., Lee, D., Meißner, U.G.: Two-particle scattering on the
lattice: phase shifts, spin-orbit coupling, and mixing angles. Eur. Phys. J. A 34, 185 (2007).
https://doi.org/10.1140/epja/i2007-10500-98

8. Epelbaum, E., Krebs, H., Lahde, T.A., Lee, D., Meißner, U.G.: Structure and rotations of the
Hoyle state. Phys. Rev. Lett. 109, 252501 (2012). https://doi.org/10.1103/PhysRevLett.109.
252501

9. Afzal, S.A., Ahmad, A.A.Z., Ali, S.: Ystematic survey of the α-α interaction. Rev. Mod. Phys.
41, 247 (1969). https://doi.org/10.1103/RevModPhys.41.247

10. Elhatisari, S., Li, N., Rokash, A., Alarcon, J.M., Du, D., Klein, N., Lu, B.N., Meißner,
U.-G., Epelbaum, E., Krebs, H., Lähde, T.A., Lee, D., Rupak, G.: Nuclear binding near a
quantum phase transition. Phys. Rev. Lett. 117(13), 132501 (2016). https://doi.org/10.1103/
PhysRevLett.117.132501

11. Elhatisari, S., Epelbaum, E., Krebs, H., Lähde, T.A., Lee, D., Li, N., Lu, B.N., Meißner, U.-G.,
Rupak, G.: Ab initio calculations of the isotopic dependence of nuclear clustering. Phys. Rev.
Lett. 119(22), 222505 (2017). https://doi.org/10.1103/PhysRevLett.119.222505

12. Kline, F.J., Crannell, H., O’Brien, J.T., Mccarthy, J., Whitney, R.R.: Elastic electron scattering
from C-14. Nucl. Phys. A 209, 381 (1973). https://doi.org/10.1016/0375-9474(73)90585-X

13. Nuclear lattice effective field theory collaboration: work in progress

https://doi.org/10.1140/epja/i2007-10500-98
https://doi.org/10.1103/PhysRevLett.109.252501
https://doi.org/10.1103/PhysRevLett.109.252501
https://doi.org/10.1103/RevModPhys.41.247
https://doi.org/10.1103/PhysRevLett.117.132501
https://doi.org/10.1103/PhysRevLett.117.132501
https://doi.org/10.1103/PhysRevLett.119.222505
https://doi.org/10.1016/0375-9474(73)90585-X

	94 Lattice Simulations with Chiral Effective Field Theory for Light  and Medium-Mass Nuclei
	94.1 Introduction
	94.2 Euclidean Time Projection Monte Carlo
	94.3 Results
	References




