
Chapter 90
Strong Interactions for Precision Nuclear
Physics

Andreas Ekström

Abstract One of the key challenges in ab initio nuclear theory is to understand
the emergence of nuclear structure from quantum chromodynamics. I will address
this challenge and focus on the statistical aspects of uncertainty quantification and
parameter estimation in chiral effective field theory.

It is well-known that quantum chromodynamics (QCD) is non-perturbative in the
low-energy region where atomic nuclei exist. This feature prevents us from direct
application of perturbation theory. Tomake progress, two complementary approaches
are presently employed; lattice QCD (LQCD) [1] and chiral effective field theory
(χEFT) [2]. The former amounts to numerical evaluation of the QCDpath integral on
a space-time lattice,while the latter is aimed at exploiting the decoupling principles of
the renormalization group (RG) to systematically formulate a potential description
of the nuclear interaction rooted in QCD. LQCD is a computationally expensive
approach that requires at least exascale resources for a realistic analysis of multi-
nucleon systems, andwillmost likely not be themost economical choice for analyzing
nuclear systems. Nevertheless, in cases where numerically converged results can be
obtained, LQCD offers a unique computational laboratory for theoretical studies of
QCD in a low-energy setting [3].

The derivation of a nuclear potential in χEFT proceeds via the construction of
an effective Lagrangian consisting of pions, nucleons, sometimes also the Δ isobar,
endowedwith all possible interactions compatiblewith the symmetries of low-energy
QCD. The details can be found in extensive reviews [4–6]. All short-distance physics,
normally associated with quarks and gluons, reside beyond a hard momentum scale
Λb ∼ 1 GeV, that remains unresolved in χEFT. Such high-momentum dynamics is
instead encoded in a set of low-energy constants (LECs) that must be determined
from experimental data, or in a future scenario hopefully computed directly from
LQCD. χEFT is the theoretical framework to calculate observables in an expan-
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sion expressed in powers of the small ratio Q/Λb, where Q is a soft momentum
scale ∼ mπ . If done right, this approach allows for a systematically improvable
description of low-energy nuclear properties in harmony with the symmetries of
low-energy QCD.

The promise of being systematically improvable is a unique selling point ofχEFT,
or anyEFT for thatmatter. Indeed, although the order-by-order expansion contains an
infinite number of terms andmust be truncated, the omitted terms represent neglected
physics and contribute to the systematic uncertainty. The upshot is that higher-order
corrections should be less important and follow a pattern determined by the EFT
expansion ratio. The organization of this expansion, such that increasingly unimpor-
tant physics appear at consecutively higher orders, is called power counting (PC).

The leading-order (LO) in this expansion consists of the well-known one-pion
exchange potential (Yukawa term) accompanied by a contact potential to describe
any unresolved short-ranged physics at this order. The potentials at higher orders, i.e.
next-to-leading order (NLO) etc., systematically introduce multiple-pion exchanges,
accompanied additional zero-ranged contact potentials, possibly Δ perturbations,
and irreducible many-nucleon interactions, see Fig. 90.1.

To achieve an accurate theoretical description of the nuclear interaction, with
quantified statistical and systematic uncertainties of the theoretical predictions, can

Fig. 90.1 Diagrammatic order-by-order representation of the Δ-full two-nucleon (NN ) and three-
nucleon (NNN ) nuclear interaction up to NNLO in χEFT based on so-called Weinberg power
counting (WPC)
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be referred to as achieving a state of precision nuclear physics. There are several
interesting facets of this ongoing endeavor:

– On a fundamental physics level, it is well-known that the nuclear potentials from
χEFT that are based onWeinberg power counting (WPC) do not generate observ-
ables that respect RG invariance, see e.g. [7] and references therein. At the same
time, there is an ongoing debate regarding the need or validity for probing large
momenta in a potential description from EFT that is only valid at low-energies to
begin with, see e.g. [8–10] for a selection of viewpoints. Presently, most ab initio
calculations of atomic nuclei, including the calculations presented here, employ
potentials based on WPC. There exist potentials with alternative PCs that fulfill
the fundamental tests of RG invariance for observables in two- and three-nucleon
systems, see e.g. [11]. Unfortunately, such potentials have not yet been employed
in nuclear many-body calculations.

– The numerical values of the LECs in χEFT must be determined from data before
any quantitative analysis can proceed. From a frequentist perspective, parameter
estimation often amounts to maximizing a likelihood. For χEFT, this turns into a
non-linear optimization problem over a high-dimensional parameter domain [12–
14]. Bayesian parameter estimation is explored more and more in ab initio nuclear
theory [15, 16]. This approach captures the entire probability distribution of the
relevant parameters, and not just the values at the maximum of the probability
mode. However, the computational demands are substantially higher compared to
most of the frequentist methods, mainly due to repeated sampling of the model
across the parameter domain.

– There are several sources of uncertainty in model calibration. For instance, the
calibration data itself come with uncertainties. Thus, any parameter estimation
process will contain covariances that must be quantified and propagated. There
exist well-known methods, frequentist as well as Bayesian, for quantifying the
statistical uncertainties at any level of the calculation, see e.g. [17, 18]. However,
it remains a challenge to achieve full uncertainty quantification in complex models
that require substantial high-performance resources for a single evaluation at one
point in the parameter domain. Well-designed surrogate models can hopefully
provide some leverage, see e.g. [19–21].

– A theoretical model will never represent nature fully. Consequently, there are
theory errors (sometimes referred to as systematic uncertainties or model discrep-
ancies). The statistical uncertainties stemming from the calibration data discussed
above are typically not the main source of error in χEFT predictions [22, 23]. It
is therefore of key importance to identify and quantify the sources of systematic
errors in χEFT. At the moment, such analyses are rarely performed in ab initio
nuclear theory. χEFT models combined with ab initio methods are often com-
putationally complex and require substantial computational resources. As such,
MarkovChainMonteCarlowith longmixing times can be prohibitively expensive.
Furthermore, it is not clear how to identify and exploit the relevant momentum
scales in descriptions of atomic nuclei.
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90.1 Ab initio Nuclear Theory with χEFT

Ab initio methods, such as the no-core shell-model (NCSM) [24], the coupled cluster
method (CC) [25], in-medium similarity renormalization (IM-SRG) [26], or lattice
EFT [27], for solving the many-nucleon Schrödinger equation
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with two-nucleon (NN ) and three-nucleon (NNN ) potentials derived from χEFT
with a set of LECs α, make use of controlled mathematical approximations. Such
many-body approaches can provide numerically exact nuclear wave functions for
several bound, resonant, and scattering states in isotopes well into the region of
medium-mass nuclei [28–31]. This development has drastically changed the agenda
in development of nuclear interactions for atomic nuclei.

In the beginning of the previous decade, a lot of effort was spent on constructing
so-called high-precision nuclear interactions, most prominently Idaho-N3LO [32],
AV18 [33], and CD-Bonn [34], that could reproduce the collected data on NN scat-
tering below the pion-production threshold with nearly surgical precision. We now
know that such interactions often fail to reproduce important bulk properties of
atomic nuclei [31, 35–37]. However, fifteen years ago, it was unclear how to gauge
the quality of the many-nucleon wave functions since they relied on a series of
involved approximations. Although it is still a challenge to quantify the theoretical
uncertainty in many-body calculations, modern ab initio methods are tremendously
refined. Indeed, their fidelity, and domain of applicability have been dramatically
extended during the recent decade. This development has led to an increased focus
on designing improved microscopic nuclear potentials that are based on novel fitting
protocols. To ensure steady progress, we need to critically examine and systemati-
cally compare the quality of different sets of interaction models and their predictive
power.

90.1.1 Optimization of LECs and Uncertainty Quantification
of Predictions from χEFT

The canonical approach to estimate the numerical values of the LECs α in χEFT is
to minimize some weighted sum of squared residuals

χ2(α) =
∑
i∈D
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whereD represents the calibration dataset, andOi denotes experimental and theoret-
ical values for observable i inDwith an obvious notation. The theoretical description
of each observable depends explicitly on the LECs α. In the limit of independent
data, the uncertainty associated with each observable is represented by σi. Known,
or estimated, correlations across the data can also be incorporated [38, 39]. Using
well-known methods from statistical regression analysis, often assuming normally
distributed residuals, it is possible to extract the covariance matrix of the parameters
that minimize the objective.

An order-by-order uncertainty analysis of chiral interactions up to NNLO was
undertaken in [13]. The objective function in that work incorporated an estimate of
the theory uncertainty from χEFT, and the datasetD comprised πN and NN scatter-
ing data as well as bound-state observables in A = 2, 3 nuclei. The total covariance
matrix for the LECs was determined for each analyzed interaction model. Additional
components of the systematic uncertainty were probed by varying the regulator cut-
off Λ ∈ [450, 600] MeV as well as the maximally allowed scattering energy in the
employed database of measured scattering cross sections. This effort resulted in a
family of 42 chiral interactions at NNLO. Together, they furnish a valuable tool for
probing uncertainties in ab initio few-nucleon predictions, see [40, 41] for represen-
tative examples of their use.

90.1.2 With an EFT, We Can Do Better

One way to estimate the effect of the first excluded term in an EFT expansion was
suggested in [42]. Building on the work in [43], this was given a Bayesian interpre-
tation in [18]. In brief, if we write the order-by-order expansion of some observable
O as

O = O0(a0q
0 + a1q

1 + a2q
2 + a3q

3 + . . .), (90.3)

where O0 is the overall scale, e.g. the leading order contribution, and we know
the expansion parameter, e.g. q = (Q/Λb), then we can compute the probability
distribution of the expansion coefficient ai provided that we know the values of
the lower-order coefficients a0, . . . , ai−1. The application of Bayes theorem with
identically distributed, independent, boundless, and uniform prior distributions of
the expansion coefficients ai, leads to a simple expression for the estimate of ai, with
(100 × i/(i + 1))% confidence, given by

ai = max{|an|}n<i. (90.4)

Although the above expression only provides an estimate, theoretical predictions
equipped with truncation errors provide important guidance and demonstrate one
of the main advantages of using an EFT. Refined methods for quantifying EFT
truncation errors in nuclear physics is of key importance.
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90.2 Muon-Capture on the Deuteron

An excellent example of where theoretical uncertainty quantification plays an impor-
tant role is in the theoretical analysis of the muon-deuteron μ − d (doublet) capture
rate ΓD, i.e. the rate of

μ− + d → νμ + n + n. (90.5)

Experimentally, this will be determined with 1.5% precision in the MuSun experi-
ment. Such precision, if attained, corresponds to a tenfold improvement over previous
experiments. The centerpiece of the MuSun experiment is to extract the two-body
weak LEC dR from a two-nucleon process. This LEC is of central importance in
several other low-energy processes that are currently studied. It is proportional to
the proton-proton (pp) fusion cross-section, an important low-energy process that
generates energy in the Sun. Given its extremely low cross-section, this cannot be
measured on earth. The LEC dR also appears in neutrino-deuteron scattering, and
once the πN couplings c3 and c4 are fixed, it determines the LEC cD which governs
the strength of the one-pion exchange plus contact piece of the leading NNN inter-
action. A thorough analysis of the uncertainties in theoretical descriptions of μ − d
capture was carried out in [44], using the covariance matrices from [13], yielding for
the S−wave contribution Γ

1S0
D = 252.4+1.5

−2.1 s
−1.

Exploiting the Roy-Steiner analysis from [45], it was also possible to quantify
the correlation between the μ − d capture rate and the pp-fusion low-energy cross
section in terms of the LEC cD. Furthermore, assuming an EFT expansion ratio q =
mπ

Λb
∼ 0.28, i.e. estimatingΛb ∼ 500MeV, allowed for an order-by-order estimate of

the EFT truncation error of the capture rate along the lines presented in Sect. 90.1.2.
The LO-NLO-NNLO predictions of the capture rate are Γ

1S0
D = 186.3 + 61.0 + 5.5

s−1, where the second and third term indicate the NLO and NNLO contributions,
respectively, to the LO result (first term). This information leads to an estimated EFT
truncation error of 4.6 s−1, with 75%-confidence. Clearly, the dominating source of
uncertainty.

90.3 From Few to Many

Increasing the number of nucleons in the system under study introduces several new
challenges. The presence of multiple scales, emergence of many-body effects such
as collectivity, clusterization, and saturation are not trivial to understand from first
principles, nor particularly easy to handle when solving the Schrödinger equation
and therefore not straightforward to incorporate when calibrating the interaction. In
[36], the LECs of a chiral NNLO interactionwas optimized to reproduce few-nucleon
data as well as binding energies and radii in 14C and selected oxygen isotopes. This
approach to parameter estimation, resulting in theNNLOsat interactionwas facilitated
by anovel application thePOUNDERsoptimization algorithm [46] coupled to jacobi-
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NCSM and CC methods. NNLOsat has enabled accurate predictions of radii and
ground-state energies in selected medium-mass nuclei [47].

It should be pointed out that the NNLOsat interaction does not provide an accurate
description of NN scattering cross-sections, in particular for pp scattering, at relative
momenta beyond ∼ mπ . At the same time, it is not obvious how to determine the
domains of applicability of an interaction model and exploit this information such
that the risk of overfitting is minimized. This, and other challenges are intimately
related to quantifying truncation errors inχEFTandpredictions fromab initio nuclear
theory.

90.3.1 Delta Isobars and Nuclear Saturation

It turns out that the inclusion of the Δ isobar as an explicit low-energy degree of
freedom in the effective Lagrangian, in addition to pions and nucleons, play an
important role for accurately reproducing the saturation properties of the nuclear
interaction. See [48] for additional details. Figure 90.2 demonstrates the effect of
incorporating the Δ up to NNLO in CC calculations of symmetric nuclear matter.
Additional advantages of including the Δ were observed in [49–51]. Such results
are not surprising from an EFT perspective, given that the Δ − N mass splitting
is only twice the pion mass and therefore below the expected breakdown scale of
χEFT potentials [52]. Thus, theΔ-full chiral interaction provides a valuable starting
point for constructing more refined χEFT interactions with improved uncertainty
estimates.
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Fig. 90.2 CC calculations of the energy per nucleon (in MeV) in symmetric nuclear matter at
NNLO in χEFT with (solid line) and without (dashed line) the Δ isobar. Both interactions employ
amomentum regulator-cutoffΛ= 450MeV. The shaded areas indicate the estimated EFT-truncation
errors following the prescription presented in Sect. 90.1.2. The diamonds mark the saturation point
and the black rectangle indicates the region E/A = 16 ± 0.5 MeV and ρ = 0.16 ± 0.01 fm3
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90.4 Discussion and Outlook

It is clear that the computational capabilities in ab initio nuclear physics exceed the
accuracy of available chiral interactions. Tomake further progress requires improved
statistical analysis and evaluation of interaction models. Hopefully, such efforts will
bring us closer to a well-founded and microscopically rooted formulation of the
nuclear interaction. There are several interesting challenges ahead of us. We must
push the frontier of accurate ab initio methods further towards exotic systems and
decays; systematically exploit information from NNN scattering data, decay prob-
abilities, and saturation properties of infinite matter when optimizing the LECs of
chiral interactions; demonstrate a connection between EFT(s) applied to nuclei and
low-energy QCD, e.g. test PCs for RG invariance; and quantify systematic and sta-
tistical uncertainties in theoretical predictions. Continuous development of efficient
computer codes to harness high-performance computing resources will hopefully
enable detailed Bayesian analyses of ab initio calculations in the near future.
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