
Chapter 123
Hadron Spectroscopy and Structure in
the Dyson-Schwinger Approach

Gernot Eichmann

Abstract The Dyson-Schwinger/Bethe-Salpeter approach and its application to
hadron spectroscopy and structure calculations are briefly summarized. The method
allows one to calculate meson and baryon spectra, form factors, scattering ampli-
tudes and other quantities fromQCD’s correlation functions. The spectrum of excited
baryons is discussed alongwith advances towards understanding their transition form
factors.

123.1 Motivation

The nucleon and its excitation spectrum have traditionally been at the heart of strong
interaction studies. The proton is the only truly stable hadron and an ubiquitous ingre-
dient in hadron structure experiments: from elastic and deep inelastic ep scattering
to pp and p p̄ reactions, Nπ scattering, pion photo- and electroproduction, nucleon
Compton scattering and more; also searches for physics beyond the Standard Model
are typically performed on protons and nuclei. In addition, these experiments create
meson and baryon resonances too and thereby allow us to extract their properties.

The data collected at Jefferson Lab, CERN and other facilities around the world
show that hadrons are more complicated than the naive quark model suggests. For
example, ostensibly simple baryon resonances may be mixtures of three-quark and
multihadron states, and even our understanding of the nucleon is far from complete.
Hadrons are complicated objects made of quarks and gluons, and it is the complexity
of their interaction described by Quantum Chromodynamics (QCD) that encodes
phenomena such as confinement and spontaneous chiral symmetry breaking. With
quarks close to being massless, the dynamics of gluons plays a key role: for all we
know today, the major fraction of the mass of the proton and other light hadrons is
produced by glue.
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A theoretical description of hadrons is tied to a thorough understanding of nonper-
turbative QCD, which requires combined efforts from lattice QCD, functional meth-
ods, amplitude analyses, phenomenologicalmodels and other theoretical approaches.
Here we give a brief account of progress with functional methods, in particular the
combination of Dyson-Schwinger equations (DSEs) and Bethe-Salpeter equations
(BSEs), in calculating hadron spectroscopy and structure properties from QCD. For
details we refer to the review [1].

123.2 From QCD’s Correlation Functions to Hadrons

The basic starting point are QCD’s correlation functions or n-point functions, some
of which are collected in Fig. 123.1: the ‘dressed’ quark and gluon propagators, the
quark-gluon vertex, three-gluon vertex and so on. In contrast to the few tree-level
propagators and interactions that define the classical Lagrangian, the full information
on the quantum field theory is encoded in its (infinitely many) correlation functions.
These can be calculated from QCD’s partition function, either directly using lattice
QCD, or by deriving coupled equations for them, namely the DSEs which are the
quantum equations of motion.

The DSEs are nonperturbative, self-consistent, exact equations which form an
infinitely coupled system. At large momenta the coupling becomes small and they
reproduce perturbation theory, as illustrated in Fig. 123.1 for the quark propagator. At
small momenta, on the other hand, they encode effects which cannot happen at any
order in perturbation theory, such as the nonperturbative generation of a quark mass
scale (a ‘constituent-quark mass’) due to spontaneous chiral symmetry breaking, or
the disappearance of the massless gluon pole and thus a gluon ‘mass gap’; see [2–5]
and references therein.

Because the correlation functions are gauge-dependent, one has to choose a gauge
and themost convenient one in practice is Landau gauge. Landau-gauge lattice results

Fig. 123.1 Top: Some of QCD’s elementary n-point functions. Bottom: Nonperturbative quark
DSE together with its perturbative expansion
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Fig. 123.2 Top: Four-point qq̄ correlator, its pole behavior and the corresponding meson Bethe-
Salpeter equation. Bottom: Covariant Faddeev equation for a baryon

for some of the elementary two- and three-point functions are available, see e.g. [6–
10] and references therein. A different approach is the functional renormalization
group (FRG), which leads to a similar tower of equations [11, 12]. To arrive at closed
equations which can be systematically improved, the functional methods require
truncations, either by neglecting higher n-point functions or higher-order terms in
the quantum effective action. For the two- and three-point functions investigated so
far [13–17] the three methods—lattice QCD, FRG equations and DSEs—provide
qualitatively similar results, which suggests that a quantitative agreement is indeed
within reach.

The properties of higher n-point functions become progressively more com-
plicated since they depend on an increasing number of kinematic variables and
Lorentz/Dirac tensors. General principles such as Lorentz invariance and gauge
invariance pose constraints on them, which should be worked out before calculating
their dynamical properties. So far, apart from the two- and three-point correlators, the
structure of higher n-point functions is still largely unknown territory but progress
is underway [12, 17–20].

Also the properties of hadrons are encoded in the correlation functions, namely
in higher n-point functions which permit a spectral representation in terms of gauge-
invariant hadron bound states andmultiparticle states. For example, the qq̄ four-point
function contains all meson poles, and so does any other n-point function that creates
meson quantum numbers (qq̄g, qq̄qq̄ etc.). Likewise, the qqq six-point function
contains all baryon poles. The residue at a pole defines the Bethe-Salpeter (BS)
wave function Ψ shown in Fig. 123.2, which encodes the properties of the respective
hadron.

The BS wave function can be calculated from its BSE, which at the same time
determines the mass of the state. The BSEs for mesons and baryons are shown in
Fig. 123.2. They are homogeneous integral equations in momentum space, which
become eigenvalue equations for the respective qq̄ and qqq kernels. The three-body
BSE is also known as the covariant Faddeev equation; in this case the kernel is the
sum of the irreducible two- and three-quark kernels.

In practice, the general strategy is to keep the full relativistic structure of the
BS wave functions intact and make approximations only at the level of the kernels.
A popular truncation is the so-called rainbow-ladder interaction, where the two-
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body kernels are approximated by a vector-vector interaction with a momentum-
dependent effective interaction α(k2). The quark propagator is solved from its DSE
in Fig. 123.1, which dynamically breaks chiral symmetry: if the interaction is strong
enough, it produces a running quark mass function which becomes large at small
momenta and transforms the current quark into a dynamical ‘constituent quark’. The
resulting mass function is what makes hadron masses large even in the chiral limit of
massless current quarks, whereas the pseudoscalar mesons remain massless because
they are the Goldstone bosons of spontaneous chiral symmetry breaking. Rainbow-
ladder has been frequently used in hadron spectrum and structure calculations [21,
22]. It provides a good overall description of heavy mesons but also light mesons in
the pseudoscalar and vector channels [23–28], their decays, form factors, scattering
amplitudes and, as it turns out, also a range of baryon properties including masses,
elastic and transition form factors and more [1]. Moreover, the analogous four-quark
equation for tetraquarks reproduces the mass pattern of the light scalar mesons [29].

To make a step forward to a quantitative understanding of hadron properties, one
must improve the description of the underlying n-point functions. For example, in
a recent beyond rainbow-ladder calculation all two- and three point functions in the
system were solved, so that the BS kernel is no longer an input but a dynamical
result [34]. This significantly improves the light meson spectrum: while the pseu-
doscalar and vector-meson ground states are less sensitive, the scalar and axialvector
mesons (which are too strongly bound in rainbow-ladder) acquire large repulsive
shifts, which puts them in the ballpark of experimental results, see Fig. 3.21 in [1].

123.3 Excited Baryons

Most baryon spectroscopy calculations so far have been performed in rainbow-ladder
and attempts to go beyond rainbow-ladder are progressing [1, 30, 35]. In fact, already
the rainbow-ladder kernels reproduce the masses of the nucleon, the Δ(1232) and
the Roper resonance N (1440), cf. Fig. 123.3. The remaining channels, however,

Fig. 123.3 Nucleon and Δ spectrum for J P = 1/2± and 3/2± states. The three-body (open
boxes [30, 31]) and quark-diquark results (filled boxes [32]) are compared to the PDG values
with their experimental uncertainties [33], see [32] for details
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come out too low, which is similar to the situation in the meson sector beyond pseu-
doscalar and vector mesons. The three-body calculations are numerically expensive
especially for excited states, because with the full structure of the relativistic Fad-
deev amplitudes the equations become eigenvalue problems for matrices of the size
106 × 106 . . . 109 × 109 depending on the numerics.

At this point a quark-diquark interpretation can provide further insight. Instead of
solving the three-body Faddeev equation directly, one can approximate it to a quark-
diquark BSE where the baryon is treated as a quark-diquark system that interacts
by quark exchange. To minimize the model input in such approaches [38–41], the
diquark ingredients in [32] were calculated self-consistently from their DSEs and
BSEs, so that also the quark-diquark systemcan be traced back to the sameunderlying
quark-gluon interaction.

As a result, the three-quark and quark-diquark results essentially agree with each
other; the N (1/2+) andΔ(3/2+) channels are described well but the remaining ones
show deficiencies. Those are due to the higher-lying diquarks: whereas N and Δ

are dominated by scalar and axialvector diquarks, the remaining channels are also
sensitive to pseudoscalar and vector diquarks [42] which are ‘too strongly bound’
just like their scalar and axialvector meson partners. By reducing the strength of
these diquarks through one parameter, which is fixed by the ρ − a1 splitting in the
meson sector, one arrives at the spectrum in Fig. 123.3 [32]. One observes a 1:1
correspondence between the number of levels with PDG states and the masses are in
almost quantitative agreement. An extension of the approach to the hyperon spectrum
is underway [43].

The Faddeev amplitudes carry a rich tensorial structure which can be organized
into eigenstates of spin and orbital angular momentum (OAM) in the rest frame [1,
38]. The resulting s, p, d and f -wave components (L = 0, . . . , 3) in Fig. 123.4
are different from the nonrelativistic quark model, where each baryon has definite
L . Relativistically, these components can mix: the nucleon and Δ(1232) have p-
wave components, the N (1535) has s waves, and p waves are even dominant for the
Roper. The subleading partial waves have consequences for form factors, for example
in the Nγ → Δ transition [44], which demonstrates that relativity is important in
the description of light baryons. Although these features should appear in other
relativistic approaches as well, they are rarely discussed; exceptions are the covariant
spectator theory [45] and light-front holographic QCD [46]. In the relativistic quark
model of [47] there is no reference to non-traditional OAM contributions in baryons,
but it is conceivable that they can appear after boosting the wave functions, e.g. in
form factor calculations [48].

In addition to spectroscopy, more detailed properties of excited baryons can be
extracted from their electromagnetic transition form factorsγ∗N → N ∗. Figure123.5
shows the generic properties of transition form factors. In the spacelike region
(Q2 > 0) they are accessible in meson photo- and electroproduction experiments
at Jefferson Lab, ELSA andMAMI [49–51]. These have been the main experimental
sources for the discovery of newnucleon resonances and the combination of precision
data with multichannel partial-wave analyses has led to the addition of several new



788 G. Eichmann

Fig. 123.4 Orbital angular-momentum contributions in the Faddeev amplitude of each baryon (in
%); all bars sum up to 100% [36]. The rectangular backgrounds are the orbital angular-momentum
assignments in the non-relativistic quark model [37]

Fig. 123.5 Top: Generic behavior of an electromagnetic transition form factor in the spacelike and
timelike regions. Bottom: Form factor diagram in the Faddeev approach

states to the PDG [33]. The timelike region (Q2 < 0) above N N̄ ∗ threshold is accessi-
ble in e+e− ↔ N N̄ ∗ reactions, whereas the near timelike region Q2 > −(m∗ − m)2

can be measured through the Dalitz decays N ∗ → Ne+e− at HADES/GSI [52].
In the Faddeev approach, whose form factor decomposition is shown in the bot-

tom panel of Fig. 123.5, these different kinematical regions are tightly connected.
Spacelike results for elastic and transition form factors are available from both three-
body [53–55] and quark-diquark calculations [41, 44], see [1] for a review. With
the exception of missing meson-cloud effects at low Q2, they describe the existing
data relatively well. The timelike structure, on the other hand, should be dominated
by ρ,ω, . . . bumps because a photon can fluctuate into vector mesons. The bumps
originate in the quark-photon vertex, which is the contraction of the qq̄ four-point
function in Fig. 123.2 with γμ and thus inherits its vector-meson poles. The mesons
in rainbow-ladder are stable hadrons and produce poles on the real axis instead of
poles in the complex plane on higher Riemann sheets. Thus, to access the time-
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like properties of form factors one must implement the proper resonance mecha-
nism beyond rainbow-ladder but also develop the necessary numerical tools in terms
of residue calculus and contour deformations. Both strategies are currently being
explored [56, 57].

123.4 Nucleon Resonances from Compton Scattering

In the last decade meson photo- and electroproduction experiments have become
the main tools for gathering information on the baryon excitation spectrum. Under-
standing the structure and dynamics of scattering amplitudes is clearly important:
dynamical reaction models and amplitude analyses based on general principles such
as unitarity, analyticity and crossing symmetry are necessary to organize the exper-
imental data and disentangle the various partial-wave contributions to extract reso-
nance properties. Moreover, scattering amplitudes contain an abundance of informa-
tion in addition to spectroscopy and thus their study also serves a purpose beyond
the extraction of resonances.

An example is nucleon Compton scattering (CS), which encodes a broad range of
applications from nucleon polarizabilities, structure functions, two-photon correc-
tions to form factors and the proton radius puzzle to generalized parton distributions,
see e.g. [58–61] for reviews. Our experimental knowledge of the CS amplitude is
restricted to a few kinematic limits where direct measurements are possible, such as
real and virtual CS and the forward limit.

Here we only focus on the nucleon resonances that appear in CS through the pro-
cess γ∗N → N ∗ → γ∗N . The absence of spurious singularities in the CS amplitude
poses constraints on the transition current matrix elements γ∗N → N ∗, which must
satisfy electromagnetic gauge invariance and spin-3/2 gauge invariance [62]. The
most general tensors according to these principles can be found in [63], along with a
structure analysis of CS including all measured nucleon resonances with J P = 1/2±
and J P = 3/2±. As a consequence, the corresponding transition form factors are free
of kinematic constraints, so their only singularities are physical poles and cuts such
as in Fig. 123.5.

An example is theRoper resonance, the first excitation of the nucleon. For timelike
Q2 its transition form factors should resemble Fig. 123.5, so that their rise at low
spacelike Q2 is due to the first ρ-meson pole. However, to see such a behavior one
must first cast the experimental data into the constraint-free form factors F1(Q2) and
F2(Q2) corresponding to the tensors in [63]. These are shown in the top panels of
Fig. 123.6 for spacelike Q2. The bands are fits to the data and analogous fits for all
nucleon resonances with J P = 1/2± and J P = 3/2± can be found in [63].

The existing reaction models usually do not extract the form factors but instead
their helicity amplitudes (bottom panels), which are linear combinations of the form
factors but not free of kinematic constraints. In particular, in the case of the Roper
both A1/2 and S1/2 must vanish at the pseudothreshold Q2 = −(m∗ − m)2, where
m and m∗ are the nucleon and Roper masses. For example, the MAID curve [67] in
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Fig. 123.6 γ∗N → N (1440) transition form factors and helicity amplitudes. The PDG [33] and
CLAS data [50, 64, 65] are shown together with the A1/MAMI point for S1/2 [66] and the MAID
parametrization (dashed) [67]. The bands are fits [63]. The form factors are dimensionless and the
helicity amplitudes carry units of 10−3 GeV−1/2

Fig. 123.6 is compatible with the recent A1/MAMImeasurement for S1/2 at very low
Q2 [66] but does not reproduce the behavior at the pseudothreshold. This translates
into a turnover of F1(Q2) at very low Q2, whichwould be difficult to explain from the
analytic structure in the timelike region if the first ρ-meson pole has a positive residue.
While such kinematic constraints must be implemented explicitly in the helicity
amplitudes, they follow automatically when using constraint-free form factors.

The Q2-dependence of several transition form factors is still poorly known, espe-
cially at low Q2: even the best known resonances such as the N (1440), N (1520)
and N (1535) do not have any data below Q2 � 0.3 GeV2. In view of connecting
the properties of form factors across the spacelike and timelike regions, this clearly
motivates the need for future measurements at low Q2.
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