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Preface

The 22nd International Conference on Few-Body Problems in Physics (FB22) was
held in Caen, Normandy, France, from the 9 to 13 July 2018. This meeting was the
most recent in a long series which had its beginnings in London in 1959. While the
early conferences concentrated on nucleon scattering, the very lightest nuclei and
hadrons, more recent editions have grown to encompass a wide and interdisci-
plinary range of topics spanning the very broadest possible energy scales from
molecular and atomic physics to high-energy particle physics. FB22 continued this
tradition and brought together some 270 participants from 33 different countries to
share and discuss ideas in few-body physics from both the experimental and the-
oretical perspectives.

The conference comprised 10 plenary sessions together with 32 parallel sessions
organised thematically:

• Few-body aspects of atomic and molecular physics.
• Hadron and related high-energy physics.
• Strange and exotic matter, including hypernuclear physics.
• Few-nucleon systems, including QCD inspired approaches.
• Few-body aspects of nuclear physics and nuclear astrophysics.
• Interdisciplinary aspects of few-body physics and techniques.

Of particular note were two parallel invited sessions focussing on the topical
subjects of lattice QCD and neutron clusters. A dedicated poster session was also
held with contributions from over 50 participants.

The programme was also marked by improved participation with respect to
earlier meetings from the female members of the few-body community, encouraged
in part by the scientific programme committee’s choice of plenary and invited
speakers. Similarly, the younger members of the community (graduate students and
postdoctoral researchers) provided a significant level of contributions to the pro-
gramme. The present volume is composed of papers covering the majority of the
presentations (oral and poster).
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FB22 was the venue, during a special plenary session, for the presentation of the
inaugural Faddeev medal. The award, which honours the renowned theorist Ludvig
Faddeev, was established by the European (ERCFBG) and North American
(APS-GRB) few-body physics communities, with sponsorship from Springer and
the APS-GFB, to recognize achievements in few-body physics. The award was
shared between two laureates: Vitaly Efimov “For the theoretical discovery of a
series of weakly-bound three-body quantum states known as Efimov states” and
Rudolf Grimm “In recognition of his ground-breaking experiments confirming the
Efimov effect”. Many of the contributions to the present volume reflect the
importance and ground breaking character of the work of Vitaly and Rudolf.

The conference was held at the “Centre de Congrès de Caen”, located near the
historical centre of Caen. Financial support was provided by the IUPAP,
LPC-Caen, GANIL, IPN-Orsay, the IN2P3/CNRS, the CEA, l’université de Caen
Normandie and the local government authority “Caen la mer”.

N. A. Orr (LPC-Caen)
Chair Organising Committee

Caen, France

M. Ploszajczak (GANIL)
Chair Scientific Programme Committee

Caen, France

J. Carbonell (IPN-Orsay)
Chair International Advisory Committee

Orsay, France

F. M. Marqués (LPC-Caen)
Scientific Secretary

Caen, France
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Chapter 1
Positronium Negative Ions: The Simplest
Three Body State Composed
of a Positron and Two Electrons

Yasuyuki Nagashima

Abstract The positronium negative ion is a three-body system of a positron and
two electrons bound via Coulomb interactions. Recently new experiments have been
accomplished for this ion, including observations of its photodetachment and shape
resonance, based on its efficient formation using alkali-metal coated surfaces.

1.1 Introduction

Several kinds of exotic systems composed of three particles with masses of the
same order of magnitude and bound via Coulomb interaction, p+μ− p+, d+μ−d+,
p+μ−d+ and the positronium negative ion (e− e+ e−, Ps−), have been studied theo-
retically for many years [1–3]. The stability of Ps− was first discussed byWheeler in
1946 [1]. He found out that this system has ground-state energy of −6.96 eV and a
mean lifetime of the order of 0.1 ns. After this work, a number of theoretical studies
on Ps− were performed. For example, the energy and the annihilation rate in vacuum
were calculated precisely [1–8]. The resonance states and the photodetachment cross
sections of Ps− were also studied [9–13].

The first observation of Ps− was made by Mills in 1981 [14]. Following this
observation, a few groups determined its decay rate [15–17]. In 2008, an efficient
production method for Ps− was developed and new experimental investigations have
been accomplished for these ten years [18, 19].

This paper reviews the developments of these experimental investigations.
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1.2 Properties of Ps−

Table 1.1 summarises the properties of Ps−. Those of positronium (e− e+, Ps) are also
shown. The Ps− properties have been studied only theoretically except for its decay
rate. The decay rate has also been obtained experimentally [15–17] and compared
theoretical values [8].

1.3 First Observation of Ps− and Measurements of Its
Decay Rate

The first observation of Ps− was made by Mills [14] in 1981. Slow positrons with
energy of 470 eV, produced using a 58Co source and a Cu(111)+S moderator, were
transported along a magnetic field to a 3.7 nm thick carbon film. A grid, positively
biased at 0.5–4.5 kV, was placed 2.5 mm from the film so that any Ps− ions emitted
from the downstream side of the film were accelerated. The Ps− produced self-
annihilated, with its short lifetime, within a few mm from the grid. A Ge detector
monitored the annihilation and blue-shifted γ-rays from the on-coming Ps−. Small
bumps on the tails of the γ-ray peaks due to pair annihilation of positrons indicated
the emission of Ps− from the carbon film. The Ps− formation efficiency was as low
as 0.028%. In his paper, the production of high-velocity Ps by the photodetachment
of accelerated Ps− was discussed.

Mills also measured the decay rate of Ps− by changing the acceleration voltages
and the distance between the carbon film and the acceleration grid [15]. The obtained

Table 1.1 Properties of Ps− and Ps

Properties Ps− Ps [20]

Binding energy (eV) 0.011 981 051 (1) au [6]
= 0.326 021 13 (3) eV
(e−−Ps)

0.25 au
= 6.8 eV (ground state)

Excited states No excited states [21]
There are many resonance
states

There are many excited states

Lifetime (ns) 0.478 933 6 (3) (th) [8]
0.479 0 (11) (exp) [17]

0.125 (para-Ps, ground state)
142 (ortho-Ps, ground state)

Principal decay mode 2γ 2γ (para-Ps)
3γ (ortho-Ps)

Mean distance between e+

and e−
5.49a0 [7] 3a0

Mean distance between two
electrons

8.55a0 [7] −
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decay rate was 2.09(9) ns−1. Its precision has been improved using a stripping-
based detection technique, which was originally developed by Mills et al. [22], to
2.086(6) ns−1 [16]. This technique was later combined with an intense slow positron
beam from a research reactor in Munich, to give a more precise decay rate value of
2.0875(50) ns−1 [17]. All these values agree with the theoretical values [7, 8].

1.4 Efficient Production of Ps−

When low-energy positrons impinge on metal surfaces, they are thermalized in bulk
and a significant fraction of them diffuse back to the surface. The positrons may be
spontaneously emitted if the positron work function φ+ is negative. Theymay also be
emitted as Ps. The energy required to emit Ps is written as φPs = φ+ +φ− − 6.8 eV,
whereφ− is the electronwork function. Thevalues ofφPs formostmetals are negative;
hence, Ps atoms are spontaneously emitted. The energy required to emit Ps− can be
written as φPs− = φ+ + 2φ− − 7.13 eV. For tungsten, this value is negative and
spontaneous emission of Ps− is expected [23].

Figure 1.1a shows an experimental setup for the observation of Ps− emitted from a
tungsten surface. Positronswith energy of 0.1 keVwere guided along amagnetic field
and impinged on the negatively biased target through a grounded grid. Emitted Ps−

(Tl) PMT

MCAINPUTAMP

-W

Ps

Earthed grid

Target

Positrons

Ge

Cs dispenser

- NaI

(a)

(b)

Fig. 1.1 a Experimental setup for the observation of Ps− emission from a tungsten surface.
b Obtained γ-ray energy spectra. Adapted from [18]
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ions were accelerated and annihilated. The emitted γ-rays weremonitored using a Ge
detector. Figure 1.1b shows the obtained γ-ray energy spectra [18]. After annealing
the tungsten, a small bump which indicates Ps− emission from the surface appeared.
The Ps− ions emission efficiency for this experiment was 0.005%, which was lower
than that obtained using a carbon film. However, after Cs deposition, the efficiency
increased up to 1.25%.

After the Cs coating, the electron and positron work functions can be written as
φ−−D and φ++D, respectively, whereD is the effect of Cs coating. The value ofD
is 3 eV for the Cs coating of 0.2–0.3 monolayer on tungsten. Accordingly the value
of φPs− changes to φPs− − D due to Cs deposition. This means that Ps− emission
from Cs coated surfaces is more favourable than from clean surfaces.

The Ps− emission efficiency decreased in only half a day because Cs is chemically
reactive. We used Na, which is less chemically reactive than Cs, to obtain durability.
While the durability of Ps− emission has been improved to a few days, the emission
efficiency was still as high as that of Cs coated surfaces [24].

1.5 Observation of Ps− Photodetachment

The efficient formation of Ps− has enabled the observation of Ps− photodetach-
ment [25]. Figure 1.3a shows an experimental setup conducted to observe this phe-
nomenon. In the setup, pulsed slow positrons produced using linac in KEK were
transported and impinged on Na-coated tungsten through grounded grids. The pro-
duced Ps− ions were accelerated and blue-shifted γ-rays were monitored by two Ge
detectors. The Ps− ions were irradiated with pulsed photons from Nd YAG laser
synchronised with the linac.

The relative amount of para-Ps to ortho-Ps formed from the Ps− photodetach-
ment was 1:3. Therefore, a fraction of the Ps− ions were converted to ortho-Ps
and did not contribute to the Ps− Doppler-shifted peak when the photodetachment
occurred. Figure 1.3b shows the obtained γ-ray energy spectra. It is shown that
the peak obtained from the annihilation of accelerated Ps− decreased by the laser
irradiation. This indicates that the Ps− photodetachment occurred (Fig. 1.2).

1.6 Observation of Ps− Shape Resonance

The process of Ps− photodetachment can also be observed by detecting produced
Ps atoms, which have almost the same velocity as photodetached Ps−, with a
microchannel plate. This method provides clean data with low background [26].

Using this technique, we observed a peak due to the shape resonance of Ps− in a
spectrum of photodetachment (Fig. 1.3) [27]. The resonant energy was 5.437(1) eV,
which is consistent with the theoretical predictions [10, 11, 13]. Further experiments,
e.g. observation of Ps− Feshbach resonance, may feasible using this method.
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Fig. 1.2 a Experimental setup for the observation of Ps− photodetachment. b Obtained spectra
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off, respectively. Reprinted with permission from [25]. Copyright 2018 by the American Physical
Society



8 Y. Nagashima

Fig. 1.3 The yield of Ps
atoms produced in the Ps−
photodetachment plotted
against the photon energy.
Adapted from [27]
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Moreover, the Ps atoms produced in the photodetachment of accelerated Ps−
provided an energy tunable Ps beam [26, 28]. This beam can provide new information
on the basic science of Ps and in material science.
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Chapter 2
Time Evolution of a Three-Body Wave
Function in Two Dimensions

D. S. Rosa, M. T. Yamashita, G. Krein and A. S. Jensen

Abstract In this article we study a three-body system in two dimensions formed by
a light particle and two identical heavy dipoles in the Born-Oppenheimer approxi-
mation. We present the time evolution of the dipoles wave function using imaginary
and real time propagation. In the first case we study the three-body ground state. In
the second case the three-body system is a superposition of two different states. The
time evolution shows that the tunneling of the wave function may be used to simulate
a qubit.

2.1 Introduction

Recently, significant progress has been made in experimental techniques to confine
atoms in ultracold traps [1]. The ability to produce such ultracold atomic clouds,
tuning the interatomic potentials through Feshbach’s resonance [2] and squeezing
the cloud through an asymmetric change of lasers and magnetic fields, putting the
system in different dimensions [3], has been made ultracold atoms good candidates
to develop and test different theories in several areas in science.

As shown in [4], a three-body system consisting of two heavy dipoles and a light
atom may present, depending on their interactions, some interesting phenomena,
such as, avoided crossing in its observables and tunnel effect in its three-body wave
function. Particularly, the possibility to tunnel the three-body wave function may
provide a playground to simulate a qubit.
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2.2 Formalism

In this section we show the formalism used to solve the three-body system formed
by two heavy dipoles with masses mA and an atom with mass mB. The Hamiltonian
is given by

H = − �
2

2μAA
∇2
R − �

2

2μB,AA
∇2
r + VB(R) + VA(r − μAA

mA
R) + VA(r + μAA

mA
R), (2.1)

where μAA = mA/2 and μB,AA = 2mAmB/ (2mA + mB). Here we are using an odd-
man-out notation that is VA and VB denote, respectively, the AB (atom/dipole) and
AA (dipole/dipole) two-body interactions. The distanceR is the separation vector of
the dipoles and r is the distance of the light atom with respect to the center of mass
of the two heavy dipoles. We are considering a severe mass asymmetry, mB � mA,
in such a way we can apply the Born-Oppenheimer approximation. This enable us
to write two independent wave function for the fast light atom and for the two heavy
dipoles.

Heavy-particle equation After making the change of variable R = (a0/2) x, and
considering the two heavy atoms as two identical dipoles in the xy-plane with dipole
moments D forming an angle θ with the z-axis and an azimuthal angle φ we can
write

[
∂2

∂x2
− (l2 − 1/4)

x2

]
χ(x) +

[
a0

2Q2
eff

ε(x) + λx30
x3 + x30

]
χ(x) = − a0

2Q2
eff

E3χ(x), (2.2)

λ ≡ e−γCD2

√
32μ4

AA|E2|
μB,AA�6

(1 − 3 sin2 θ cos2 φ), (2.3)

whereχ(x) = √
Rφ(R),a0 = �

2/μAAQ2
eff andQ2

eff = √
2e−2γ�2|E2|/μ,AA. The cubic

divergence at x = 0was regularized bymodifying the dipole interaction for distances
smaller than a constant x0, which can be thought as the dipole length. Formore details
see [4].

2.2.1 Time Dependent Schroedinger Equation

We want to solve the time dependent Schroedinger equation given by

Hφ(x, t) = i
∂

∂t
φ(x, t) −→ φ(x, t) = φ(x, t0)e

−iH (t−t0). (2.4)
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Let us start from the following two differential equations

Uφ1(x, t) = i
∂

∂t
φ1(x, t) −→ φ1(x, t) = φ1(x, t0)e

−iU (t−t0),

Kφ2(x, t) = i
∂

∂t
φ2(x, t) −→ φ2(x, t) = φ2(x, t0)e

−iK(t−t0), (2.5)

where K +U = H . Choosing the initial condition for φ2 like φ2(x, t0) = φ1(x, t)
we have

φ2(x, t) = φ1(x, t0)e
−iH (t−t0), (2.6)

which differs from (2.4) only by an initial condition for φ1. For (t − t0) ≈ 0 the
error in this approximation is going to be proportional to [K,U ] � t2. The time
evolution can then be performed studying the solution for φ2(x, t), which is found
using Split-Step Crank-Nicolson Method.

Imaginary time propagation The imaginary time propagation method has long
been used as a way to find ground state wavefunctions. It involves a replacement of
the real time by an imaginary time in the Schroedinger equation. This leads to the

(a) (b)

(c) (d)

Fig. 2.1 a: Imaginary time evolution of the strength of the potential. b: Imaginary time evolution
of the MSR for the “Oscillatory behaviour” of the strength. c: Total potential (blue solid). The
horizontal lines are the ground states and first excited states En = (a0/2Q2

eff )E
n for λ = 0.6 and

x0 = 3.16. d: MSR as a function of t[�/|E2|]. Initial wave function choosed to be a combination of
the ground and first excited states fixing λ = 0.6 and x0 = 3.16
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derivation of an imaginary time operator which results in a exponential decay of all
states excepting the ground state.

Real time propagation The real time propagation is used in this work to study the
behavior of the systemwhen we choose the initial wave function to be a combination
of two eigenstates of the system.Writing the initial wave function like a combination
of two states of the hamiltonian and computing 〈R2〉, which is estimate like

〈ψ(x, t)|R2|ψ(x, t)〉 = 1

2
〈ψ0|R2|ψ0〉 + 1

2
〈ψ1|R2|ψ1〉 + 〈ψ0|R2|ψ1〉 cos(E0 − E1)t. (2.7)

We see that this quantity is going to oscillate with a defined frequency and amplitude,
around the value of MSR of these two states (Fig. 2.1).

Conclusions The possibility to localize the dipoles wave function in the two minima
by tuning the interactions may provide an interesting possibility to simulate a qubit.
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Chapter 3
Discrete Scaling and Scattering
Properties from Atom-Dimer Collision

Lauro Tomio and M. A. Shalchi

Abstract A recent proposal on a new perspective to detect the Efimov-like discrete
scaling in ultra-cold binary mixtures with strong mass-imbalanced atomic species is
communicated. The discrete scaling can be identified by the energy dependence of an
atom-molecule elastic cross-section, when colliding a heavy atomwith massmα into
aweakly-bound heavy-light (mα,mβ) dimer. In the extrememass-imbalanced system
it was verified that the s-wave elastic cross section presents zeros at several specific
energies of the projectile, inwhich emerges a discrete behavior from the ratio between
these energies. This discrete behavior is identified with the same one predicted for
the trimer excited bound-states, when considering the samemass-imbalanced system
in the unitary limit.

3.1 Introduction

In this presentation, we are reporting some results obtained in a recent work in which
it was verified that the usual Efimov scaling factor [1], obtained in the spectrum of a
mass-imbalanced three-body system near the unitary limit, can also bewell identified
in scattering observables with a mixture of two-species strong mass-imbalanced
atomic system. In order to show that, the scattering solutions for a system with two
heavy and one light particles (ααβ) are obtained by considering the heaviest one
(α) colliding with the dimer formed the other two particles [2]. Here, we restrict the
presentation to some indicative results related to discrete scaling, which are obtained
by using zero-range interactions.
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First, we should remind that the usual Efimov scaling factor is predicted to occur
in the unitary limit, when the three-boson bound-state levels are related by an expo-
nential scaling factor exp (2π/s0), where s0 is a mass-ratio dependent constant. For
mα = mβ , the energy-ratio is predicted to be ∼ 515, such that it will be quite diffi-
cult for an experimental verification. However, more favorable conditions for pos-
sible observations are expected with strong mass-imbalanced cold-atom mixtures
[3, 4]. In this regard, we should notice that the ratio between consecutive levels of
the bound-state energy spectrum is reduced to exp (2π/s0) ≈ 4.7 for the case that
mα = 100mβ [5]. In such extreme mass-imbalanced case, one can also rely on an
analytical approach based on the Born-Oppenheimer (BO) approximation, as in [6].
This BO approachwas extended to the scattering region, in [2], considering the heavy
α particle colliding with the αβ bound system, from where it was possible to iden-
tify the same discrete Efimov scaling factor when examining the colliding energy
positions corresponding to the zeros of the s-wave cross-sections. Therefore, in view
of recent experiments in cold-atom laboratories [3, 7], considering systems such as
Lithium-Caesium (LiCs) or Lithium-Yterbium (LiYb)where themass-ratiosmβ/mα

are, respectively, 0.045 for LiCs and 0.034 for LiYb, we understand that studies with
low-energy collisions of heavy atoms in weakly-bound molecules can be relevant to
establish the predicted discrete scaling from scattering observables.

3.2 Model Description and Results

The scattering observables we consider are the s-wave phase shifts δ0 and the cor-
responding cross-sections σ, which are given as functions of the colliding energies
E , in the center-of-mass of the atom-dimer system. In order to simplify the units, all
energies are given in terms of the ground-state energy B3 of the corresponding three-
body system. The phase-shifts are expressed in terms of the function k cot δ0, where
k is the relative momentumwith respect to the heavy-light dimer, given in terms of E
by k ≡ √

2μα,αβE (our units are such that � = 1), withμα,αβ ≡ mα(1 + A)/(2 + A)
being the heavy-(light-heavy) reduced mass, where A = mβ/mα. Another relevant
observable in our treatment is the two-body dimer energy Bαβ ≡ 1/(2μαβa2αβ), where
μαβ is the light-heavy reduced mass and aαβ the corresponding scattering length,
assumed to be bound and close to the unitary limit (aαβ → ∞).

Given B3 as a scale for the three-body system and Bαβ the dimer energy, with
E being the colliding energy of the heavy particle α into the heavy-light αβ bound
subsystem, the s-wave phase shift δ0, the cross-section σ, as well as the absorption
parameter η ≤ 1 are obtained by using the on-shell scattering amplitude given by
hα = (Sα − 1)/(2ik), where Sα = η exp(2iδ0) is the scattering matrix for the s-wave
channel. With δ0 defined from Sα for the elastic case (η = 1) we obtain k cot δ0 and
the corresponding cross-section as

hα = 1/(k cot δ0 − ik), σ = 4π|hα|2. (3.1)
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Fig. 3.1 Results for the s-wave cross-section σ (in arbitrary units), in term of the colliding energies
E (given in units of B3), obtained by using zero-range two-body interactions. In the left-side frame,
the results are for fixed mass-ratio A = mβ/mα = 0.01, considering Bαβ/B3 = 0.05 (solid-blue),
0.03 (dot-dashed-black) and 0.01 (dashed-red). In the right side we have a set with eight panels, with
themass-ratio A varying from0.01 till 0.08 (as indicated inside the frames), for fixed Bαβ/B3 = 0.05

In terms of the observables and parameters, one can also express the cross-section
as a scaling function, which will be obtained numerically by solving the three-body
atom-dimer scattering equation and depends on the three- and two-body bound-state
energies, mass ratio A, and colliding energy E , such that

σ(E; Bαβ,B3, A) = S (
E/B3 , Bαβ/B3 , A

)B−1
3 . (3.2)

Results—In Fig. 3.1 we present s-wave cross-section results obtained for the scat-
tering of particle α by the dimer αβ, considering zero-range two-body interactions.
In the left-side frame, we fix the mass-ratio at A = 0.01, considering three values
for Bαβ/B3 (=0.05, 0.03 and 0.01), such that we observe that the zeros obtained for
σ are for energies E such that the ratios between consecutive ones can be identified
with the corresponding ratio (∼ 4.7), which are verified for the case of excited three-
body bound state in the unitary limit (Bαβ → 0), when considering the same mass-
imbalanced system. In the right-side frameof Fig. 3.1,we have a set of eight panels for
mass-ratios A varying from 0.01 till 0.08, for a fixed dimer energy, Bαβ/B3 = 0.05.
In this way, we can appreciate how the sequence of zeros for the cross-section σ are
emerging as the mass difference between the α and β particles are increasing from
0.08 (bottom-right) to 0.01 (top-left). In this case with Bαβ = 0.05B3, one should
noticed that, for the less-pronounced mass-imbalanced cases (A ∼ 0.06–0.08), only
one zero for σ is observed within the given energy range. A second minimum can
be verified in these cases by decreasing the two-body binding Bαβ , as pointed out in
[2]. But relevant to notice it that the number of observed zeros in σ is fast decreasing
as A increases.
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Within a similar study for a mass-imbalanced system with two light and one
heavy particles (A > 1), the relevance of a pole in k cot δ0 (corresponding to a zero
in σ) was investigated in [10], in the nuclear physics context for the neutron−19C
scattering. Related to this case and considering the results obtained in [2], partially
reproduced here, it is interesting to notice that only for extreme mass-imbalanced
systems with two heavy and one light particles, and close to the unitary limit of the
two-body system, one can verify the occurrence of a sequence of zeros in the cross-
section matching with the corresponding sequence of Efimov three-body excited
bound-state levels, in the relevant physical interval with E < B3. This behavior can
be explained from the fact that when the masses of the particles α and β approach
each other (being comparable) the Efimov discrete scaling factor, identified in the
unitary limit (Bαβ ≈ 0) of the three-body spectrum, implies in much larger energy
differences for consecutive levels, as detailed for the mass-imbalanced systems in
[5].

3.3 Summary

The results reported here are obtained by using the zero-range approach within a
Faddeev three-body formalism for atom-dimer collision, in order to show another
possible way to detect discrete scaling in three-body systems. As pointed out, the
observation of a sequence of zeros in the cross section can only be verified for quite
large mass ratios, such that the main focus for recent ultra-cold atomic experiments
are binary condensed systems combining atomic species such as Li, Yb or Rb. By
considering the mass ratio between Li and Yb, A = 0.034, the cross-section for the
Yb + LiYb collision can in principle present a couple of zeros. More details on the
result reported here,where it was also considered range effects, can be obtained in [2].
Another extension of this investigation on mass-imbalanced atom-dimer scattering
was also reported recently in [11], by considering the scattering of 4He on 4He−6,7Li
and 4He−23Na molecules.
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Chapter 4
Interaction Potential for a System of N
Charged Particles Near a Spherical
Interface

Juan Martín Randazzo and Lorenzo Ugo Ancarani

Abstract By integration of the electrostatic energy density of the system,we provide
analytical expressions of the potential for a system of N charged particles in the
presence of a surface which separates two continuous media, conductor, dielectric
or vacuum. Such situations correspond, for example, to a number of electrons inside
a spherical cavity of a conductor or interacting with a dielectric sphere. Bound states
are analyzed for different values of the sphere radius.

4.1 The Potential for N Charged Particles Near a Spherical
Interface

When under the influence of an environment, the study of N charges (e.g., an atom)
may differ considerably from the isolated case (in a vacuum). The energy spectrum
and other properties depend on the nature of the interaction between the charges
and the surrounding like, for example, in a plasma environment, confined systems
or close to metal surfaces [1, 2].

We consider here N charged particles qi , placed at ri (i = 1, . . . , N ) near a spher-
ical surface of radius R which divides two continuous media. The N = 2 case is
schematized in Fig. 4.1.

The potential energy can be approximated by the integration of the electrostatic
energy density, which depends on the electric and displacement fields, for a fixed
configuration of the system (this procedure is described in [3] (pp. 41–42) for two
Coulomb particles). The resulting interaction potential can be subdivided in two
contributions:
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Fig. 4.1 Schematic
representation of two
charged particles q1 and q2
in front of a metallic ball;
q′1 = −q1R/r1 and
q′2 = −q2R/r2 are their
image charges

q1r1

q2r2

r12

q1

q2

R

εin → ∞

εout

V (r1, r2, ..., rN ) =
N∑

i=1

Vi (ri ) +
N∑

i=1, j>i

Vi j (ri , r j , θi j )

where θi j is the angle between ri and r j .
It turns out that we can express the central potentials Vi in terms of the func-

tional form: U±(x) = 1
1−x2 ± atanh(x)

x . For the spherical surface dividing two dielec-
tric media with constant εin and εout we have:

Vi (ri ) = q2
i

2R (εout − εin)

{
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r2i ε2out
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(
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)
if ri > R

1
ε2in
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,

while for the conducting sphere or the cavity in a conductor:

Vi (ri ) = − q2
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1
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R
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)
if ri > R (metallic sphere)

1
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if ri < R (cavity in conductor)

,

where ε is the dielectric constant of the media inside the cavity or outside the sphere.
The correlation terms for the dielectric-dielectric case have the following partial
wave expansion:

Vi j (ri , r j , θi j ) = qiq j

∞∑

l=0

Pl(cos θ12)Fl(r<, r>, R, εin, εout ), (4.1)

where r< = Min[ri, rj] and r> = Max[ri, rj], and

Fl(r<, r>, R, εin, εout ) =
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Fig. 4.2 Bound states distribution for a particle interacting with a spherical conducting surface:
cavity (left) and sphere (right). The (negative) image potential is also represented

If εin = εout we obtain, as expected, the pure Coulomb interaction 1/ri j (its partial
wave expansion). The case of ametallic sphere (respectively, cavity in a conductor) is
obtained through the limit εin → ∞ (respectively, εout → ∞) in (4.1). Note that for
the isolated conducting sphere with a charge Q, onemust further add the electrostatic
term U (ri , r j ) which does not depend on θi j .

4.2 Bound States Dependence on the Radius R

Figure4.2 shows, for different values of the radius R, radial eigenfunctions of the
Schrödinger equation for a single electron placed at a distance r from the center of
a cavity in a conductor (left) and from the center of a metallic sphere (right). For the
single particle case, only the central potential is present (correlation terms appear
for N ≥ 2 cases). Homogeneous boundary conditions are imposed at r = R in both
cases and at r = 5R for the sphere. For the cavity we observe the passage from the
boxed (where the kinetic energy overcomes the potential energy) to the conductor
regimes, and a critical value R � 23.07 a.u. where E < 0; for the sphere the critical
value is R � 10.91 a.u. In both cases, the states energies decrease as R increases,
and the distributions become similar to that of a plane conductor when R → ∞.

4.3 Summary

Wederived analytically the potential energy for a system of N charged particles inter-
actingwith a spherical surface separating two continuousmedia. The result involves a
central potential for the interaction of each particle with the sphere, and a correlation
between the charged particles; it can be interpreted as the Coulomb interaction dis-
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torted by the polarization of the sphere. Details of the potentials derivation together
with an analysis of the solutions for the more challenging N = 2 case will be pre-
sented in an overcoming publication, where we will compare the present expressions
with the work needed to completely separate the particles from the sphere.
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Chapter 5
Potential Splitting Approach
for Faddeev-Merkuriev Equations:
Application to e− − H̄ (e+−H)
and e+−He+ Multichannel Scattering

V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky and S. L. Yakovlev

Abstract We solve the three-particle multichannel Coulomb scattering problem
with rearrangement channels without partial wave decomposition on the base of
Faddeev-Merkuriev equations. Highly efficient numerical approach allowed us to
perform the detailed calculations of all possible S-wave cross-sections in systems
e+e− p̄ and e+e−He++ for low-energy binary collisions.

5.1 Introduction

Highly accurate calculations of scattering processes and resonances in few-body sys-
tems of charged particles require an approach which is sound both theoretically and
computationally. The Faddeev-Merkuriev formalism [1] which fulfills this require-
ment is used to calculate all possible S-wave cross sections in systems e+e− p̄ and
e+e−He++ in the low-energy region of binary collisions. A special emphasis is made
on antihydrogen formation by antiproton impact of positronium which is currently
used in experiments on antimatter at CERN (see [2] and references therein). As in [2]
we have found Gailitis-Damburg oscillations [3] of the antihydrogen formation cross
sections for energies just above the first antihydrogen excitation threshold. Our high-
quality results allowed us to verify proper spacing of maxima of those oscillations
quantitatively.

5.2 Theory

The Faddeev-Merkuriev equations for three charged particles of masses mα and
charges Zα , α = 1, 2, 3 in reduced Jacobi coordinates read:
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{Tα + Vα(xα) +
∑

β �=α

V (l)
β (xβ) − E}ψα = −V (s)

α (xα)
∑

β �=α

ψβ. (5.1)

Here the kinetic energy operators are of the form Tα = −�xα
− � yα and the

components of the wave functionψα sum up to the solution of the Schrödinger equa-
tion. The pairwise Coulomb potentials Vα(xα) = √

2mβmγ /(mβ + mγ )Zβ Zγ /xα

(β, γ �= α) are split into the interior V (s)
α and long-range tail parts V (l)

α as proposed
in [4]:

Vα(xα) = V (s)
α (xα) + V (l)

α (xα). (5.2)

The equations are supplied with boundary conditions of the form given in [5].

5.3 Results

We have calculated cross sections of all possible scattering processes for the total
energy from −0.49973 a.u. to −0.05553 a.u. for e+e− p̄ system (6 open channels
including H̄ (n = 1, 2) and Ps(n = 1, 2) binary channels) and for the total energy from
−1.9997 a.u. to −0.12496 a.u. for e+e−He++ system (7 open channels including
He+(1, 2, 3) and Ps(1) binary channels). Hereafter H̄ (n) and H̄ (n, l) (and similar
for He ion) are shortcuts for the atom states with principal quantum number n and
angular momentum �. Cross sections of all the processes involving positronium and
antiproton (or helium ion) are presented in Figs. 5.1 and 5.2. The energy step of
calculation is 0.0007 a.u. for cross sections shown in Figs. 5.1 and 5.2 and more fine
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Fig. 5.1 Cross sections for e−e+ p̄ system. Vertical solid lines denote binary thresholds, vertical
dashed lines mark resonance positions
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Fig. 5.3 Cross sections of antihydrogen formation above the H̄(2) threshold

step of 0.0001 a.u. is used for cross sections of Fig. 5.3. The calculated cross sections
of antihydrogen formation in Fig. 5.3 exhibit prominent oscillations just above the
H̄(2) threshold, which are identified as Gailitis-Damburg oscillations [5].

In all figures the known resonances [6, 7] (and references therein) manifest
themselves as singularities in cross sections except for the two broad resonances
of e−e+He++ system at−0.371 a.u. and−0.188 a.u. [7]. We have found these broad
resonances, however, by using complex rotation method applied to the Schrödinger
equation [8]. The positions and widths (Er, �) are (−0.3704, 0.1297) and (−0.1857,
0.0395) (in a.u.), where Er = �eE and � = 2�mE .
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Chapter 6
Energy Levels of Excitons in Square
QuantumWells

Pavel A. Belov and Sergey L. Yakovlev

Abstract Numerical modeling of energy levels and corresponding wave functions
of exciton states in heterostructures with GaAs/Al0.30Ga0.70As quantum wells of dif-
ferent widths is performed. The modeling is based on an accurate finite-difference
solution of the time-independent three-dimensional Schrödinger equation. A depen-
dence of energy levels on a quantum well width as a parameter is studied. The
calculated exciton states are classified according to their quantum-confinement and
Coulomb nature. The radiative decay rates of the modeled states are also obtained.

6.1 Introduction

The electron-hole bound states, excitons, in semiconductor quantum wells (QW)
are remarkable examples of Coulomb systems, in which the external potential of
the heterostructure plays a role of “the third particle”, thus making such a system
to be of a three-body nature. The exciton states and the exciton-light coupling in
heterostructures with QWs have been experimentally and theoretically studied for
several decades [1–8]. A quality of heterostructures is permanently growing and
experimental samples with excellent properties have become available now [9–13].
Measurements of the reflectance spectra for the high-quality heterostructures show
that the accurate data on the exciton energies and radiative as well as nonradiative
broadenings can be easily obtained [10, 11]. In this context, the high quality of
samples requires the improved precision of theoretical modeling of the exciton states
and resonances. Therefore, such problems gradually draw attention of the few-body
community [14–18].

In this report, we present the results of an accurate modeling of the energy levels
and corresponding wave functions of the exciton states. The energies of the ground
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and excited states of excitons in heterostructures with GaAs/Al0.30Ga0.70As finite
square QWs of various widths (up to 80nm) are calculated. This type of QWs is
widely experimentally and theoretically studied now as a model heterostructure due
to awell-known band structure allowing to employ the envelope function approxima-
tion and perturbative methods [5, 19]. Determination of the exciton states is achieved
by solving the time-independent three-dimensional Schrödinger equation. The cor-
responding eigenvalue problem is solved numerically using the finite-difference dis-
cretization scheme [11] and properly taking into account the discontinuities of the
material parameters at the heterointerfaces [20]. Our numerical method is asymp-
totically exact and allows us to obtain accurate energies of the exciton states for a
wide range of QW widths and potential profiles [21]. The calculated bound states
of electron-hole pairs in GaAs/Al0.30Ga0.70As QWs are classified according to their
quantum-confinement and Coulomb nature [22, 23]. The accurate radiative decay
rates for the calculated s-like exciton states are also obtained [5, 7]. Calculated data
are in agreement with the experimental reflectance spectra measured for high-quality
GaAs/Al0.30Ga0.70As heterostructures with QWs [11].

6.2 Theory

In the envelope-function approximation [5], the conduction band dispersion is
parabolic and the valence band is described by the Luttinger Hamiltonian [19, 24].
We simplify the consideration by studying the uncoupled heavy-hole exciton in QW.
Then, the time-independent configuration space Schrödinger equationwith the effec-
tive Hamiltonian for s-like heavy-hole exciton states in QW reads

(
K − e2

ε
√

ρ2 + (ze − zh)2
+ Ve(ze) + Vh(zh)

)
χ(ze, zh, ρ) = EX χ(ze, zh, ρ)

(6.1)
where K is the kinetic energy term:

K = − �
2

2me

∂2

∂z2e
− �

2

2mhz

∂2

∂z2h
− �

2

2μ

(
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+ 1

ρ2

)
.

The energy EX denotes the exciton energy with respect to a value Eg of the
energy gap. The function χ is related to the exciton wave function as χ(ze, zh, ρ) =
ψ(ze, zh, ρ)/ρ, where ρ = √

(xe − xh)2 + (ye − yh)2 is the radius in the QW plane.
The massesme andmhz are the isotropic effective mass of the electron and the effec-
tivemass of the hole along the z axis, respectively. Themassμ is the reduced effective
mass of the electron and the hole in the QW plane. We omit here discontinuities of
effective masses and the dielectric constant ε for simplicity [20]. Potentials Ve,h(ze,h)
are the external finite square QW potentials
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Ve,h(ze,h) =
{
0 if |ze,h | < L/2
Ve,h if |ze,h | ≥ L/2

(6.2)

of the heterostructure and L is the QW width.
A numerical modeling is based on a solution of the eigenvalue problem for (6.1).

Using the finite-difference method and the implicitly restarted Arnoldi algorithm we
discretize the problem and obtain a part of the matrix spectrum [11, 20, 22, 23, 25].
An additional analysis of the convergence of numerical results allows us to guarantee
a good accuracy of the obtained energy levels.

6.3 Results

The energies and wave functions of s-like quantum states of the heavy-hole exciton
in QW were calculated for various QW widths, L , from 4nm up to 80nm.

For narrow QWs (L < 15 nm) the external potentials (6.2) of the heterostruc-
ture dominate and the exciton is effectively two-dimesional one. The exciton wave
function can be approximated by a product of three one-dimensional functions: the
quantum-confinement wave functions of the uncoupled electron and hole in QW and
the radial function of the 2D Coulomb potential −1/ρ. We classified the exciton
states by three indices (ei, hj, Ns), where i and j correspond to these quantum-
confinement wave functions and N is the principal number of the Coulomb function.
This classification is convenient, though it is only approximate for wider QWs since
the 2D Coulomb potential gradually changes to 3D one with increase of QW width.
The 3D Coulomb potential, in turn, couples the factorized states.

The calculated energies as a function of L as a parameter are shown in Fig. 6.1with
respect to the lower boundary of the continuous spectrum. This boundary is defined
by a sum of the lowest quantum-confinement energies Ee1 + Eh1. Since the exciton
binding energy is defined as Eb = Ee1 + Eh1 − EX , the shown zero binding energy
corresponds to the exciton energy Ee1 + Eh1. Anticrossings of energy levels of the
same symmetry of the quantum-confinement wave functions are denoted by circles.
The radiative decay rates [5] of the calculated states are additionally shown in μeV
by numbers in italic. These values characterize the magnitude of the exciton-light
coupling, thus allow us to distinguish the optically active exciton states [7].

Our numerical results can be compared with the reflectance spectroscopy data
for heterostructures with GaAs/Al0.30Ga0.70As QWs of L = 14 nm and L = 20 nm
presented in [11] (Fig. 4). The experimental data for such QWs readily show only the
exciton ground state. This is in accordance with our calculations since for L < 20 nm
there is only one optically active electron-hole bound state, namely the ground one.

Acknowledgements Financial support from RFBR (grants No. 18-32-00568 and No. 18-02-
00492) is acknowledged. The calculations were performed on resources of the Computational
Center of St. Petersburg State University.
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Chapter 7
Ultracold Neon Trimer via Faddeev
Differential Equations

A. A. Korobitsin and E. A. Kolganova

Abstract The Faddeev differential equation in the total angular momentum
representation are used to calculate the spectrum of the neon trimer. The Ne-Ne
interatomic interaction is described by modern realistic potentials. A comparison
with previously published results is done.

7.1 Introduction

Three-atomic clusters comprise a large class of molecules whose interaction is
described by means of van der Waals potentials. Studies of these clusters have been
attracting attention of theoretical and experimental physicists for a long time and
are still important today, especially due to such a unique quantum phenomenon as
the Efimov effect [1]. This effect was theoretically predicted in 1970, and it per-
fectly shows a variety of opportunities of transition from a two-body problem to
a three-particle problem. When there are at least two subsystems of zero binding
energy, the three-body system has an infinite number of weakly bound states—this
is the essence of the Efimov effect. Calculations of ultracold three-body clusters
require accurate methods suitable for solving three-body bound states and scattering
problems [2]. The aim of this paper is to develop a numerical algorithm for solv-
ing three-dimensional Faddeev differential equations in the total angular momentum
representation [3, 4] and apply it to calculation of the binding energies of the 20Ne3
triatomic system.
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7.2 Three-Atomic Clusters

One of the effective methods of studying three-particle systems is based on the
differential Faddeev equations in the total angular momentum representation [3–5].
The three-body system is described by the Hamiltonian:

H = H0 +
∑

α

Vα(xα),

where H0 stands for the kinetic energy of three particles, Vα(xα) is the interaction
potential acting in the pair α. We consider the states with zero total angular momen-
tum. The angular degrees of freedom corresponding to collective rotation of the
three-body system can be separated and the kinetic energy operator reduces to

H0 = −ρ−5∂ρρ
5∂ρ − 4

ρ2 sin−2 χα ×
× (∂χα

sin2 χα + sin−1 θα∂θα
sin θα∂θα

),
(7.1)

where ρ, χα and θα are the hyperspherical coordinates expressed through standard
Jacobi variables xα , yα , α = 1, 2, 3:

ρ = √
x2α + y2α, tan χα/2 = yα/xα, cos θα = (xα,yα)

xα yα
,

xα = |xα| , yα = |yα| , ρ ∈ [0,∞) , {χα, θα} ∈ [0, π ] ⊗ [0, π ] .
(7.2)

The total wave function Ψ of a three-body system can be written as the sum of
the Faddeev components Ψα

Ψ (ρ, χα, θα) =
∑

α

Ψα (ρ, χα, θα), (7.3)

which satisfy the Faddeev equations

(H0 + Vα − E) Ψα (ρ, χα, θα) = −Vα

∑

β �=α

Ψβ

(
ρ, χβ, θβ

)
, (7.4)

where E is the total energy of the system. For numerical solution it is suitable to use
scaled components Φα:

Φα = ρ5/2 sin χα sin θαΨα, (7.5)

which satisfy the boundary conditions:

Φα (ρ = 0) = Φα (χα = 0, π) = Φα (θα = 0, π) = 0. (7.6)

Equation (7.4) can be written in terms of the scaled components Φα as follows:
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(
H̃0 + Vα (x) − E

)
Φα (ρ, χ, θ) = −Vα (x)

∑

β �=α

Φβ

(
ρ, χβ, θβ

)
, (7.7)

where χ ≡ χα , θ ≡ θα , x = ρ cos (χα/2). The differential operator H̃0 is given by

H̃0 = −∂2
ρ − 4

ρ2

[
∂2
χ + sin−2 χ

(
∂2
θ − cot θ∂θ + sin−2 θ

) + 1

16

]
.

For calculations of the spectrum of the neon trimer we use the finite-difference
approximation for solving the differential equations (7.7)with theDirichlet boundary
conditions. To increase the speed of calculation, we used the Eigen library [6] for
linear algebra, OpenMP and CUDA technology. The developed algorithm has no
physical approximations and was applied in [7] for calculation of the ground and first
excited state energies of the neon trimer. Here we applied this numerical algorithm to
calculate the spectrum of the 20Ne three-atomic system. Atomic masses for the neon
isotope were taken from [8]. To describe the interatomic interaction, the realistic
potential models TT [9] and HFD-B [10] were used. Table7.1 contains the spectrum
for the neon trimer, which is in good agreement with the results obtained by other
authors using different methods.

Investigation of the ground and first excited state energy convergence with respect
to the number of grid points demonstrates that Nρ = 250 is sufficient for obtaining
precision up to four significant digits (see Fig. 7.1).

Table 7.1 The bound state energies (in K) for 20Ne3 calculated with TT [9] and HFD-B [10]
potentials

E(K) HFD-B TT [11]a [12]a

E0 74.13 74.07 74.10 74.11

E1 52.44 52.37 52.41 52.43

E2 49.25 49.19 49.23 49.24

E3 45.53 45.49 45.51 45.52

E4 40.37 40.31 40.34 40.35

E5 34.67 34.62 34.65 34.66

E6 32.33 32.27 32.30 32.31

E7 31.54 31.48 31.51 31.52

E8 27.66 27.61 27.64 27.65

E9 26.20 26.16 26.17 26.18

E10 24.95 24.92 24.93 25.03
aThe HFD-B [10] potential model used
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Fig. 7.1 Convergence of the neon trimer ground and first excited state energies on the grid points
Nρ for fixed value of Nθ = 100 and Nχ = 10

7.3 Conclusion

In the course of this work we have calculated the spectrum for the neon trimer using
the realistic potentials TT [9] and HFD-B [10]. In order to perform calculations, we
developed a numerical algorithm for solving the differential Faddeev equations in the
total angular momentum representation. This algorithm has been realized in the pro-
gramming language C++. Our results are in good agreement with the results obtained
by other methods. The developed numerically effective computational scheme, espe-
cially in combination with the option of using multiple processors, makes it possible
to calculate a wide range of three-body problems.
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Chapter 8
QED in the Clothed-Particle
Representation

Adam Arslanaliev, Yan Kostylenko and Aleksandr Shebeko

Abstract We have extended [1] our previous applications of the method of uni-
tary clothing transformations (UCTs) in mesodynamics to quantum electrodynamics
(QED). An analytical expression for the QED Hamiltonian in the clothed-particle
representation (CPR) has been derived. Its distinctive feature is the appearance of a
new family of the Hermitian and energy independent interaction operators built up
in the e2-order for the clothed electrons and positrons instead the primary canoni-
cal interaction between electromagnetic and electron-positron fields. The problem
of describing the bound states in QED in case of the positronium system has been
considered. Finally, the first correction to the energy of the ground state of the para-
positronium has been calculated by using the new interaction in e−e+-system.

8.1 UCT Method in Action

When realizing the clothing procedure elaborated in [2] we are starting with the QED
interaction Hamiltonian given by [3]:

Vqed =
∫

dx jk(x)ak(x) + VCoul = V (1) + VCoul ,

with the electron-positron current density operator
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jμ(x) = eψ̄(x)γμψ(x)

and the Coulomb part

VCoul = : 1

2

∫
dx

∫
dy

j0(x) j0(y)
4π|x − y| e

−λ|x−y| : ,

where the exponential factor is introduced to deal with infrared divergences. Admit-
tedly, the parameter λ > 0 is set to zero at the end of all calculations. Note also that
here we use the Coulomb gauge (CG), where the photon field aμ being transverse,
has two independent polarizations.

Following [1, 2] after removing the so-called bad terms (in our case V (1) operator)
via the corresponding UCT we get the QED Hamiltonian in CPR

H ≡ K (αc) = KF (αc) + KI (αc),

where αc denotes the set of all creation and destruction operators for the clothed
particles included. It is proved, that in the e2-order the interaction part KI (αc) is
approximated by

K (2)
I (αc) = K (e−e− → e−e−) + K (e+e+ → e+e+) + K (e+e− → e+e−)+

+K (e+e− → 2γ) + K (2γ → e+e−) + K (e−γ → e−γ) + K (e+γ → e+γ),

where the separate contributions in the r.h.s. correspond to the different interactions
between clothed particles.

8.2 Interaction Operator for the e−e+ → e−e+ Scattering

Among themwewill consider the interaction operator between clothed electrons and
positrons

K (e−e+ → e−e+) =
∫

d1′d2′d1d2Ve−e+(1′, 2′; 1, 2)b†c (1′)d†
c (2

′)bc(1)dc(2),

with

Ve−e+(1′, 2′; 1, 2) = e2m2

(2π)3
δ(p′

2 + p′
1 − p2 − p1)

[
υS(1

′, 2′; 1, 2) + υA(1′, 2′; 1, 2)
]
,

where m the physical electron (positron) mass, bc(dc) is the destruction operator for
the clothed electron (positron), the argument j of bc( j) includes the particle momen-
tum and its polarization, etc. In addition, we introduce the scattering (annihilation)
term υS (υA). The latter have the structure
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υS/A = υS/A(Feynman-like) + υS/A(off-energy-shell).

The quasipotential is

〈b†c(1′)d†
c (2

′)Ω|K (e−e+ → e−e+)|b†c(1)d†
c (2)Ω〉,

where Ω the physical vacuum state. Finally, we would like to show explicit expres-
sions

υS(Feynman-like) = −ū(1′)γμu(1)
1

2

{
1

(p′
1 − p1)2

+ 1

(p′
2 − p2)2

}
ῡ(2)γμυ(2′),

υS(off-energy-shell) = (p′
1 + p′

2 − p1 − p2)

(p′
1 − p1)2 + λ2

ū(1′)γ0u(1)

×1

2

{
(p′

1 − p1)

(p′
1 − p1)2

+ (p′
2 − p2)

(p′
2 − p2)2

}
ῡ(2)γ0υ(2′),

υA(Feynman-like) = ū(1′)γμυ(2′)1
2

{
1

(p1 + p2)2
+ 1

(p′
1 + p′

2)
2

}
ῡ(2)γμu(1),

υA(off-energy-shell) = (p′
1 + p′

2 − p1 − p2)

(p′
1 + p′

2)
2 + λ2

ū(1′)γ0υ(2′)

×1

2

{
(p′

1 + p′
2)

(p′
1 + p1)2

− (p1 + p2)

(p1 + p2)2

}
ῡ(2)γ0u(1).

Such a decomposition implies that only the Feynman-like part survives on the
energy shell, i.e. on the condition p′0

1 + p′0
2 = p01 + p02. Of course, all momenta

included are defined on the mass-shell: p2 = p20 − p2 = m2.

8.3 Corrections to the Positronium Ground State Energy

Positronium consisting of an electron and a positron is the simplest bound system in
QED. Its ground state (g.s.) has two possible configurations with total spin values S =
0, 1. The singlet (triplet) lowest-energy state with S = 0 (S = 1) is known as the para-
positronium (ortho-positronium). It is our first attempt to describe the positronium
properties within the CPR. For this exposition, we will restrict ourselves to the
consideration of the para-positronium (p-Ps) system. The corresponding g.s., being
the H eigenvector, viz.,

H |P; p-Ps〉 = E |P; p-Ps〉,

can be represented as

|P; p-Ps〉 =
∫

d1d2Ψ00(P; 1, 2)b†c(1)d†
c (2)|Ω〉,
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where Ψ00(p) ≡ Ψ00(P = 0; 1, 2) (since we work in c.m.s.) satisfies

(2p0 − mp-Ps)Ψ00(p) +
∫

dp′V (p′, p)Ψ00(p′) = 0.

Naturally, the positronium mass is connected with its bind energy εp-Ps by

mp-Ps = me− + me+ + εp-Ps ≈ 2m + εp-Ps.

We have

V (p′, p) = e2

(2π)3 p′
0 p0

(
VFeynman-like + Voff-shell

)
,

VFeynman-like = 2p0 p′
0 − m2

(p′ − p)2 − λ2
, Voff-shell = −1

2

(p′
0 − p0)2

(p′ − p)2 + λ2

(p′− + p)2

(p′ − p)2 − λ2
.

Doing sowe note Voff-shell disappears when p′
0 = p0 i.e. on the energy shell.More-

over, in the non-relativistic limit (p0 = p′
0 = m) the eigenvalue equation reduces to

the ordinary Schrödinger equation for the Coulomb potential in momentum space

p2

m
Ψ00(p) +

∫
dp′VC(p′, p)Ψ00(p′) = εp-PsΨ00(p).

Therefore, we come to the well-known Coulomb problem with the energy spec-
trum determined by

εp-Ps = −mα2

4n2
(n = 1, 2, · · · ),

where α = e2/4π the fine-structure constant and the ground state (n = 1) belongs to
the eigenvalue εg.s. ≈ −6.8eV. In this context let us rewrite our eigenvalue equation
in the form

p2

m
Ψ00(p) +

∫
dp′( VC(p′, p) +U (p′, p) + W (p′, p)

)
Ψ00(p′) = εp-PsΨ00(p),

where
U (p′, p) = V (p′, p) − VC(p′, p),

W (p′, p) = (2p0 − 2m − p2

m
)δ(p − p′).

By considering the quantityU (p′, p) + W (p′, p) as a perturbation and using the
non-perturbative wave function of the ground state Ψ00(p) from Appendix C in [4]
we have computed the energy shift Δε. It leads to the following corrections:
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〈VFeynman-like − VC 〉 ≈ −7.19711 · 10−4 eV,

〈Voff-shell〉 ≈ 3.5878 · 10−4 eV, 〈W 〉 ≈ −1.12314 · 10−4 eV.

So we get the total shift
Δε = −4.7325 · 10−4 eV.

This result is comparable with those estimations given in [4] (see formula (1.1)
therein) where, for example,

Δε = −21

64
mα4 ≈ −4.7547 · 10−4 eV.

But they are due to the completely different physical ingredients such as the fine and
hyperfine structure of the positronium energy levels. Against the background such a
relativistic correction as 〈Voff-shell〉 contributes considerably.

To concludewe remark that further applications of our approach in the positronium
spectroscopy and lifetime are under way.
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Chapter 9
Low-Dimensional Few-Body Processes in
Confined Geometry of Atomic and
Hybrid Atom-Ion Traps

Vladimir S. Melezhik

Abstract We have developed an efficient approach for treating low-dimensional
few-body processes in confined geometry of atomic and hybrid atom-ion traps. It
based on the split-operator method in 2D discrete-variable representation (DVR)
suggested by V. Melezhik for integration of the few-dimensional time-dependent
Schrödinger equation. We give a brief review of the application to resonant ultra-
cold atomic processes and discuss our latest results on hybrid atomic-ion systems.
Prospects for the application of the method in other hot problems of the physics of
low-dimensional few-particle systems are also discussed.

9.1 Introduction

Impressive progress of the physics of ultracold quantum gases has stimulated the
necessity of detailed and comprehensive investigations of collisional processes in
the confined geometry of atomic and ionic traps. The traditional free-space scat-
tering theory is no longer valid here and the development of the low-dimensional
few-body theory including the influence of the confinement is needed. In our works
we have developed quantitative models [1–4] for pair collisions in tight atomic
waveguides and have found several novel effects in its application: the confinement-
induced resonances (CIRs) in multimode regimes including effects of transverse
excitations and deexcitations [2], the so-called dual CIR yielding a complete suppres-
sion of quantum scattering [1], and resonant molecule formation with a transferred
energy to center-of-mass excitationwhile formingmolecules [5]. Last effectwas con-
firmed experimentally in [6]. Our calculations have also been used for planning and
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interpretation of the Innsbruck experiment where CIRs in ultracold Cs gas were
observed [7]. Mention also the calculation of the Feshbach resonance shifts and
widths induced by atomic waveguides [8]. In the frame of our approach we have
predicted dipolar CIRs [9] which may pave the way for the experimental realiza-
tion of, e.g., Tonks-Girardeau-like or super-Tonks-Girardeau-like phases in effective
one-dimensional dipolar gases.

Our latest results on hybrid atomic-ion systems and prospects are discussed in
this report.

9.2 Atom-Ion Collisions in Hybrid Atom-Ion Traps

Recently, we have predicted the atom-ion CIRs [10] which are important for a hot
problem of control of the confined hybrid atom-ion systems having many promis-
ing applications [11]. The condition of appearance of CIR in a atom-ion collision
confined in a harmonic waveguide-like trap was found in [10] in “static” ion approx-
imation. This approach, when one neglects by the ion motion, is well defined for
for the Li-Yb+ collision considered in [10]. However, in real experiments an actual
problem is controlling of the unremovable effect of ion micromotion in the ion Paul
traps [11].

To evaluate the effect of the ion motion on the CIR we performed full quantum
calculation for the 6Li-atom scattering by 171Yb+ for a special case of harmonic
transversal traps with ωA � ωI frequencies for atom (A) and ion (I)

U (ρA, ρI ) = 1

2
(mAω

2
Aρ

2
A + mIω

2
Iρ

2
I )

(whereρi = ri sinθi ). For that,wehave integrated the4D time-dependentSchrödinger
equation with the Hamiltonian

H(ρR, r) = HCM(ρR) + Hrel(r) + W (ρR, r). (9.1)

by using computational scheme developed earlier for confined distinguishable atom
collisions [1, 3, 5]. Here (� = 1)

HCM = − 1

2M
(

∂2

∂ρ2
R

+ 1

ρ2
R

∂2

∂φ2
+ 1

4ρ2
R

) + 1

2
(mAω

2
A + mIω

2
I )ρ

2
R (9.2)

and

Hrel = − 1

2μ

∂2

∂r2
+ L2(θ, φ)

2μr2
+ μ2

2
(
ω2

A

mA
+ ω2

I

m I
)ρ2 + VAI (r) (9.3)

describe the CM and relative (rel) atom-ion motions. The potential VAI (r) describes
the atom-ion interaction, ρR and r = rA − rI �→ (r, θ, φ) �→ (ρ, φ, z) are the polar
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Fig. 9.1 Evolution in time of the atom-ion probability density distribution W (r, ρR, t) =∫ |ψ(r, ρR, t)|2 sin θdθφ in the process of the confined collision of the 6Li atoms with 171Yb+
ions. Top row of graphs demonstrates the probability density W (r, ρR, t) calculated at three time
points during the collision and the bottom row is the corresponding contour plots of these proba-
bilities W (r, ρR, t). The time unit is t0 = 2π/ωA, ρR = ρCM

radial CM and the relative coordinates and M = mA + mI , μ = mAmI /M . The
term L2(θ,φ)

2μr2 represents the angular part of the kinetic energy operator of the relative
atom-ion motion. The term

W (ρR, r) = μ(ω2
A − ω2

I )rρR sin θ cosφ (9.4)

leads to a coupling of the CM and relative motion, i.e. to the nonseparability of the
quantum two-body problem in confined geometry of the harmonic trap.

In Fig. 9.1 we present the calculated time-evolution of the probability density
distribution of 6Li and 171Yb+ near the CIR in the harmonic waveguides. This quan-
tum calculation confirms the surviving of the CIR in the case of ion-motion and
demonstrates the molecule ion LiYb+ formation during this collision.

9.3 Conclusion

The efficiency of the splitting-up method based on the 2D DVR for the time-
dependent Schrödinger equationmakes themethod promising in application to actual
problems of low-dimensional few-body physics in atomic and atom-ion traps. One
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can mention the problem of ultracold atomic collisions in anharmonic and asym-
metric waveguides and in quasi-2D confining traps. Of great interest in connection
with possible important applications is the two-center (and N-center) problem in a
confining trap [12, 13]. Note also a collisional three-body problem in tight traps, and
non-linear time-dependent Schrödinger equation with a few spatial variables arising
in physics of Bose-Einstein condensates.
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Chapter 10
Mesoscopic Bose-Einstein Condensate
in Anharmonic Trap: Concept
of Transition Exponent

M. L. Lekala, S. Bera, G. J. Rampho, B. Chakrabarti and S. Bhattacharyya

Abstract Weutilize a two-body correlated basis function and van derWaals interac-
tion to describe interacting bosons in the anharmonic trap. We analyze the behaviour
of specific heat capacity near the transition temperature in mesoscopic region. We
calculate the transition exponent to define the quasi phase transition for different
anharmonicity. Comparison with pure harmonic trap is also addressed.

A true phase transition is signalled by a singularity in thermodynamic poten-
tial [1]. A finite discontinuity in the first derivative of the thermodynamic potentials
is usually termed as first-order phase transition. Whereas if the first derivatives are
continuous but second derivatives are discontinuous, the transition is categorized as
the higher-order. One can also define critical exponent, which characterize the nature
of the phase transition and universal scaling [1, 2]. However for the experimentally
achieved Bose-Einstein condensation (BEC), the inter-atomic interaction makes a
profound effect on the condensate properties [3]. In particular, the BEC statistics
with mesoscopic number of atoms where N ∼ 102 − 107 is challenging [4–6]. The
usually employed grand-canonical-ensemble can not take care of critical fluctua-
tions [7, 8]. It is necessary to solve the system in more complicated way in canonical
ensemble. However in vast attempt, both experimentally and theoretically, it is estab-
lished that the transition from condensate phase to Bose gas is smooth, the system
does not exhibit true phase transition.

The motivation of our present article is to revisit the problem of mesoscopic
BEC in an anharmonic trap modelled as V (r) = 1

2mω2r2 + λ0r4, λ0 > 0. For the
tight quartic confinement, the trap becomes very tight, the transition temperature
increases as expected. However our focus is to study the transition near the transition
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temperature for different anharmonicity. Although Bose-Einstein condensation is
more favourable in tight trap, the most important issue of phase transition has not
been addressed before. The main finding of the article is to discover that no dramatic
change in the lambda-structure in specific heat is possible in the tight trap.We further
define the concept of transition exponent to define this quasi phase transition and also
calculate the value of the exponent for different anharmonic parameter.

In this present communication, we adopt an ab initio, many-body technique
called, potential harmonic expansion method (PHEM) [9, 10]. PHEM takes care
of all possible two-body correlations between the atoms and thus goes beyond the
Gross-Pitaevskii theory. In our earlier calculations of thermodynamic properties and
condensate fluctuations [11, 12], PHEM was able to provide the correct effective
potential of weakly interacting BEC. As for the dilute condensate, three-body col-
lisions are ignored, the Faddeev component ψi j of the (i j)-th interacting pair is
expanded as a function of (ri j ) and the global hyperradius r as [9, 10]

φi j (ri j , r) = r−( 3N−1
2 )

∑

K

P lm
2K+l(�

i j
N )η(ri j )u

l
K (r)· (10.1)

where P lm
2K+l(�

i j
N ) is the potential harmonics basis (PH-basis) in terms of which

we expand the Faddeev component. Note we add an additional correlation function
η(ri j ) to reach fast convergence [13].Where the global hyperradius is defined through

the Jacobi coordinates as r =
[∑A

i=1 ζ2i

] 1
2
. Substituting of above equation into the

many-body Schrödinger equation and projection on to a particular PH basis we reach
in the set of coupled differential equation (CDE):

[
− �

2

m

d2

dr2
+ �

2

mr2
{L(L + 1) + 4K (K + α + β + 1)}

+ Vtrap(r) − ER

]
UKl(r) +

∑

K ′
fKlVKK ′(r) fK ′lUK ′l(r) = 0, (10.2)

where Vtrap is the external trap potential. VKK ′ is the potential matrix element [9].
The set of CDEs are further solved by hyperspherical adiabatic approximation
(HAA) [10]. In HAA, potential matrix together with hypercentrifugal repulsion is
diagonalized for fixed value of r . The lowest eigenvalue gives the lowest eigenpo-
tential ω0(r) as a parametric function of r . The energy and wavefunctions are further
calculated by solving the adiabatically separated hyperradial equation for the col-
lective motion in the effective potential. Our present work considers 87Rb atoms
in JILA trap and interatomic interaction is characterized by the scattering length
a = 100 Bohr. We choose the realistic van der Waals potential with a hard core of
radius rc and attractive 1

r6 tail. To solve the complete differential equation and to
obtain the energy eigen spectrum in the many-body effective potential we follow
the numerical steps documented in our earlier calculations [9–13]. However in this
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Fig. 10.1 Plot of specific
heat of interacting bosons
both in anharmonic and
harmonic trap with
N = 1000
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present calculation the gas is confined in the anharmonic trap with λ0 = 10−6 and
10−4. All quantities are in oscillator units.

Next utilizing the Bose-distribution function calculated from the energy spec-
trum of the many-body effective potential and following our earlier calculations
we calculate the specific heat CN (T ) for fixed N . In Fig. 10.1, we plot CN (T )

NkB
for

N = 1000 and for two different choices of anharmonic parameters. For comparison
we also present the result for harmonic trap with λ0 = 0. We observe that transi-
tion temperature increases in anharmonic trap. Thus achievement of BEC is more
favourable, however the lambda-structure in the specific heat does not change due
to this anharmonic affect. The broad maxima obtained in this mesoscopic region
truly rulled out the possibility of any true phase transition as in the case of harmonic
trap. However we define it as a quasi-phase transition and instead of critical exponent
which is valid for true phase transition, we define a transition exponent.We define the
reduced temperature as t = T−TC

TC
and the critical exponent for any thermodynamic

function is usually defined as

λc = lim
t→0

ln |F(t)|
ln |t | , (10.3)

or it can be written as F(t) ∼ tλc , it basically represent the asymptotic behaviour of
the thermodynamic function at t → 0. Thus at the transition temperature F(t) either
vanishes or be singular. However for mesoscopic BEC, as CN (T ) becomes sharper
smoothly with increase in particle number N , neither vanishes nor become singular.
Instead we follow the following prescription [1],

F(t) = F(0) + b|t |λc + ..., (10.4)

where λc is the leading exponent.
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Fig. 10.2 Exponent curves for the 87Rb atoms with N = 500 in [panel(a)] and N = 3000 in
[panel(b)] both in harmonic and anharmonic trap

We define λc as the transition exponent

λc = lim
t→0

ln |F(t) − F(0)|
ln |t | . (10.5)

In Fig. 10.2(a) and (b) we plot ln [CN (T )−CN (T=TC )

NkB
] as a function of ln |t | for N =

500 and3000.Eachgraph reports both cases of anharmonicity togetherwith harmonic
trap. For truly finite sized systems, when the number of bosons is order of few
hundreds, away from the transition temperature (close to the zero value of ln |t |),
the plots shows some curvature. However for large negative values of ln |t |, we fit
a straight line for the results for harmonic trap. We observe a single exponent λc =
1.775 fits well. For anharmonic trap, we still find a curvature near the large negative
values of ln |t | and we are unable to fit any straight line. However for higher particle
number (Fig. 10.2b), we fit a straight line and obtain the exponents. These are 1.798
for λ0 = 10−6 and 1.826 for λ0 = 10−4.

In the present work, we study the quasi phase transition of mesoscopic condensate
having few hundred to few thousands particles in the anharmonic trap. We utilize
two-body correlated basis function which clearly takes care of finite sized effect
and the methodology goes beyond the mean-field theory. Utilizing Bose-Einstein
distribution function we further calculate the specific heat capacity for finite sized
BEC.We observe, like harmonic trap, the width of specific heat curve, only decreases
with increase in particle number. We do not observe any sharp transition near the
transition temperature. We call it quasi phase transition and define the transition
exponent to characterize the smooth transition from condensate to Bose gas.

Acknowledgements Sangita Bera wants to acknowledge DST for giving financial support through
INSPIRE fellowship to complete this research work.



10 Mesoscopic Bose-Einstein Condensate … 55

References

1. Yeomans, J.M.: Statistical mechanics of phase transitions. Clarendon Press, Oxford (1992)
2. Huang, K.: Statistical mechanics, 2nd edn. Wiley, New York (1987)
3. Dalfovo, F., et al.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys.

71, 463 (1999)
4. Kocharovsky, V.V., Kocharovsky, V.V.: Analytical theory of mesoscopic Bose-Einstein con-

densation in an ideal gas. Phys. Rev. A 81, 033615 (2010)
5. Tarasov, S.V., et al.: Universal scaling in the statistics and thermodynamics of a Bose-Einstein

condensation of an ideal gas in an arbitrary trap. Phys. Rev. A 90, 033605 (2014)
6. Berrada, T., et al.: Integrated Mach-Zehner interferometer for Bose-Einstein condensates. Nat.

Commun. 4, 2077 (2013)
7. Landsberg, P.T.: Thermodynamics—with quantum statistical illustrations. Interscience, New

York (1961)
8. Mullin, W.J., Fernandez, J.P.: Bose-Einstein condensation, fluctuations, and recurrence rela-

tions in statistical mechanics. Am. J. Phys. 71, 661 (2003)
9. Das, T.K., Chakrabarti, B.: Potential harmonics expansion method for trapped interacting

bosons: inclusion of two-body correlation. Phys. Rev. A 70, 063601 (2004)
10. Das, T.K., et al.: Behavior of a Bose-Einstein condensate containing a large number of atoms

interacting through a finite-range interatomic interaction. Phys. Rev. A 78, 042705 (2007)
11. Bhattacharyya, S., et al.: Effects of interaction on thermodynamics of a repulsive Bose-Einstein

condensate. Phys. Rev. A 88, 053614 (2013)
12. Bhattacharyya, S., et al.: Energy fluctuation of a finite number of interacting bosons: a cor-

related many-body approach. Phys. Rev. A 93, 033624 (2016). Biswas, A.: Effect of realistic
interatomic interactions and two-body correlation on the heat capacity of a trapped BEC. J.
Phys. B 42, 215302 (2009); Goswami, S., Das, T.K., Biswas, A.: Thermodynamic properties of
ultracold Bose gas: transition exponents and universality. J. Low Temp. Phys. 172, 184 (2013)

13. Das, T.K., et al.: 85Rb Bose-Einstein condensate with tunable interaction: a quantum many
body approach. Phys. Lett. A 373, 258 (2009)



Chapter 11
Study of Helium and Lithium Atomic
Systems with the Discrete Variable
Representations

Vladimir Timoshenko and Evgeny Yarevsky

Abstract Significant computational resources are necessary to calculate bound and
resonance states of weakly bound systems with high accuracy. The discrete-variable
representationmethod allows to reduce the computational complexity of determining
the matrix elements of operators in the frame of variational methods. In this work,
the binding energies of the Li-He2 and He3 systems are calculated and compared
with other results.

11.1 Introduction

The study of quantum-mechanical systems consisting of few particles can be a com-
plicated problem. This is true for weakly bound systems, e.g. systems consisting
of helium and lithium atoms. In order to perform calculations faster, the discrete-
variable representations (DVR) [1, 2] of different kinds are used in this paper. The
binding energies of the Li-He2 and He3 systems are calculated and compared with
theoretical results of other authors.

11.2 Formulation of the Problem and the Discrete-Variable
Representation

For states with zero angular momentum, the Hamiltonian of a three-particle system
in the Jacobi coordinates is written as [3]

(
− 1

μ1,23y

∂2

∂y2
y + 1

μ23x

∂2

∂x2
x

)
+

(
1

μ1,23y2
+ 1

μ23x2

)(
∂2

∂θ2
+ ctgθ

∂

∂θ

)

+ V (x, y, θ).
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Here, the potential V = V (x, y, θ) is a sum of two-particle potentials that depend
on interparticle distances only. Let us rewrite the kinetic-energy operator in terms of
z = cos θ and apply the DVR method [2, 4] to the variable z. The DVR functions
ϕi (z) and their derivatives ϕ′

i (z) are constructed with orthogonal polynomials Pn(z)
and are related to the Gauss-type quadrature formulas

ϕi (z) = Pn(z)

P ′
n(zi )(z − zi )

, ϕ′
i (zk) = P ′

n(zk)

P ′
n(zi )(zk − zi )

, i �= k, ϕ′
i (zi ) = − P ′′

n (zi )

2P ′
n(zi )

.

Here z1, . . . , zn are the roots of the polynomial Pn(z). For the Jacobi polynomials
P (α,β)
n , the values of the derivatives are written as

ϕ′
i (zi ) = β − α − (α + β + 2)zi

2(1 − z2i )
. (11.1)

The wave function is represented as a linear combination of the DVR functions,
f (z) = ∑

i ciϕi (z). Using expression for the derivatives, we obtain the matrix ele-
ments of the kinetic energy matrix T

Ti j = 〈ϕi |T |ϕ j 〉 =
∑
k

wk

ρ(zk)

ϕ′
i (zk)√
wi

ϕ′
j (zk)√
w j

(1 − z2k).

Here ρ(z) = (1 − z)α(1 + z)β is the weight function for the Jacobi polynomials,
and wi are the weights of the Gauss quadrature formula. As ϕi (zk) = δik , the matrix
elements of the potential energy are diagonal:

Vi j = 〈ϕi |V |ϕ j 〉 =
∑
k

wk

ρ(zk)
V (x, y, zk)

ϕi (zk)√
wi

ϕ j (zk)√
w j

= V (x, y, zi )

ρ(zi )
δi j .

11.3 Results and Discussion

The approach combining the finite-element method [3] for the coordinates x and
y, and the DVR method for the coordinate z has been developed for calculating
the binding energies of three particle quantum systems. The energy levels of weakly
bound systems 6Li–He2 and 7Li–He2 were calculated with the DVRmethod based on
the Legendre polynomials, α = β = 0. Due to the use of the DVR, the computation
time has been significantly reduced without loss of accuracy. The results for binding
energies, computation times and relative inaccuracies δE = |(Eexact − E)/Eexact|
for the 7Li–He2 system are presented in Table11.1. One can see that the results of
calculations without the DVR demonstrate the variational behaviour while the DVR
results approach the exact value from below. Both results converge to the same exact
value when accuracy increases.



11 Study of Helium and Lithium Atomic Systems … 59

Table 11.1 The binding energies E1, computation times t , and relative errors δE1 for the different
number n of functions in the expansion. Results for the 7Li–He2 system are shown

n 5 10 15 20 25

Legendre polynomial expansion without the DVR

E1, cm−1 −3.44·10−7 −3.00·10−2 −3.94·10−2 −4.07·10−2 −4.12·10−2

δE1 1.00 2.75·10−1 4.67·10−2 1.49·10−2 2.26·10−3

t , sec 6.0 36.6 119.6 287.9 553.5

Legendre polynomial expansion with the DVR

E1, cm−1 −4.81·10−2 −4.67·10−2 −4.19·10−2 −4.15·10−2 −4.14·10−2

δE1 1.63·10−1 1.31·10−1 1.41·10−2 5.10·10−3 1.96·10−3

t , sec 2.2 8.2 19.1 35.2 65.8

Table 11.2 Binding energies of the Li–He2 system (cm−1) for different interparticle potentials:
TTY [8], LM2M2 [9], Cvetko [10]

He-He potential Li-He potential 6Li–He2 7Li–He2

Paper [5] TTY KTTY -2.18·10−2 -3.18·10−2

This work TTY KTTY -3.71·10−2 -5.41·10−2

Paper [6] LM2M2 Cvetko -3.61·10−2 -5.10·10−2

This work LM2M2 Cvetko -2.62·10−2 -4.07·10−2

Paper [7] LM2M2 KTTY -2.46·10−2 -3.54·10−2

This work LM2M2 KTTY -3.71·10−2 -5.41·10−2

Calculated binding energies for the 6Li–He2 and 7Li–He2 systems are shown in
Table11.2 together with the comparison to the theoretical results of other authors
[5–7]. For the TTY+KTTY and LM2M2+KTTY potentials, our binding energies are
considerably deeper. As our results are almost variational, we believe that they are
closer to the exact values. The situation with the potential [10] should be further
investigated.

The DVR approach has also been implemented with the DVR functions con-
structed with the Jacobi polynomials P (α,β)

n (z). These polynomials make it possible
to choose parameters α and β such that the weight ρ(z) countervails the interaction
potential. This approach has been used for calculating the binding energy of the
helium trimer. The results are presented in Table11.3. The most accurate energy val-
ues are calculated with the Chebyshev polynomials of the first kind, α = β = −0.5.

Table 11.3 Binding energies of He3 and relative inaccuracies δE for different parameters of the
Jacobi polynomials P(α,β)

n in the DVR method

α = β −0.75 −0.50 −0.25 0.0 0.25 0.50 0.75

E , cm−1 ·
10−2

−8.648 −8.372 −7.164 −9.716 −8.850 −8.627 −8.544

δE 0.049 0.015 0.131 0.178 0.073 0.046 0.035
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Chapter 12
Potential Splitting Approach for Atomic
and Molecular Systems

Evgeny Yarevsky, Sergey L. Yakovlev, Nils Elander and Åsa Larson

Abstract In order to describe few-body scattering in the case of the Coulomb inter-
action, an approach based on splitting the reaction potential into a finite range part
and a long range tail part is presented. The resulting driven Schrödinger equation
with asymptotic outgoing waves is solved with the exterior complex scaling. The
approach is illustrated with calculations of the electron scattering on the hydrogen
atom and the positive helium ion. The scattering processes in the H+ – H+

2 system
with one-state electronic energy surface have also been studied.

12.1 Introduction

Systems with Coulomb interactions are often considered in nuclear, atomic, and
molecular physics. Scattering problems for them are of great interest for many phys-
ical processes. The complicated boundary conditions at large distances are a major
difficulty for these problems [1]. Several methods have been developed for construct-
ing solutions to the three-body scattering problem [2]. Some of them avoid using the
explicit asymptotic form of the wave function.

In several recent studies, we have reported a method which is capable to correctly
treat the Coulomb scattering problem using exterior complex scaling (ECS) [3–6].
The key point of this method is splitting the long-range Coulomb potential into the
core and tail parts. The tail part is used to construct the distorted incident wave, which
is responsible for the asymptotic Coulomb dynamics. The core part of the potential
generates an inhomogeneous term in the Schrödinger equation making possible the
application of ECS for solving the equation. Here we outline the potential splitting
approach and present its application to study atomic systems and molecular systems
with ab initio potentials.
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12.2 Theoretical Approach

The three-body quantum system is described with the Schrödinger equation in Jacobi
coordinates xα , yα with the Hamiltonian

H = Txα
+ Tyα

+ V (xα, yα),

where Txα
, Tyα

are the kinetic energy operators, and V (xα, yα) is the full interac-
tion in the system. The total wave function Ψ of the system is written as the sum
Ψ = Φ + Ψ R, and the function Φ satisfies the driven equation

(H − E) Φ = −VRΨ R . (12.1)

Here the distorted incident waveΨ R(xα, yα) is introduced as a solution to the scatter-
ing problemwith the sumof the potential in the target pairVα(xα) and the tail potential
V R(xα, yα). The full potential is split into the sum of Vα(xα), the core VR(xα, yα) and
the tail V R parts: V (xα, yα) = Vα(xα) + VR + V R . Here VR = V − Vα for yα ≤ R,
and VR = 0 for yα > R. Details of the splitting procedure is described in the papers
[5, 6]. The right hand side of equation (12.1) is of finite range with respect to the
variable yα . Thus this equation can be solved numerically with the ECS transfor-
mation [7].

In order to find scattering amplitudes and cross sections, the asymptotic form of
the scattered wave function at large distances is used [1]. Projecting the asymptotic
representation on the two bodywave functions, the local representation for the partial
amplitude can be derived [6].

12.3 Applications of the Potential Splitting Method

12.3.1 Atomic Systems

First, our approach is applied to the scattering problem in the electron-H and electron-
He+ systems. These systems are of fundamental importance in atomic physics and
have been studied by various methods and approximations, see [8] and references
therein. The numerical solution of the driven equation (12.1) is performed with the
finite element method, which is described in details in [9]. The grid used in our
calculations is given in [6].

Our results for the singlet 1s→ns cross sections for the e-H and e-He+ scattering
are presented in Fig. 12.1. In both cases the calculated cross sections display com-
plicated resonance behaviour. The resonance structure of the e-He+ cross section
occur at lower energies due to the presence of the asymptotic Coulomb interaction.
The comparison of our data with other theoretical results [8, 10] shows the relative
difference less than 10−3.
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Fig. 12.1 The singlet (spin weight included) 1s→1s, 2s, 3s, 4s cross sections (from above) for the
e-H (left) and e-He+ (right) scattering as functions of the electron energy, Adapted from [6]

12.3.2 Molecular Systems

Molecular systems cannot be exactly studiedwith few-body analyticalmethods as the
total number of particles is too large. To apply such methods, additional approxima-
tions are necessary. The most obvious one is the Born-Oppenheimer approximation
where the electron degrees of freedom do not participate in the dynamical equations
but are averaged to the potential energy surfaces. For accurate calculation of pro-
cesses, numerical ab-initio potentials calculated with quantum chemistry approaches
must be used. These potentials depend on all internuclear distances, and are given
numerically. The ECS approach can be used to calculate scattering processes with
this type of potentials provided that the scaling radius is larger than the internuclear
distance where the potential is numerically calculated. For systems with asymptotic
Coulomb interactions, the potential splitting approach has been used.

In this work, we have considered the H+ – H+
2 scattering. The potential energy

surface U (r1, r2, θ) of the electronic ground state of H2+
3 depends on the two bond-

lengths r1, r2, and the angle θ between them. The potential is computed using the aug-
cc-pVQZ basis set of Dunning [11]. The ab initio calculations are carried out using
internal coordinates where the bond-lengths are varied in the range 0.8a0 ≤ ri ≤
20.0a0, and the angle θ is varied in [0, π ]. These calculations have been performed
with the MOLPRO program [12]. For the regions where two nuclei come close
together and the asymptotic regions at large internuclear distances, the ab initio
potential energy surface is extrapolating and interpolated by first introducing the
function

U (r1, r2, θ) = V (r1, r2, θ) −
3∑

i=1

EH+
2
(ri ). (12.2)

where r3 is calculated as r3 =
√
r21 + r22 − 2r1r2 cos θ . The energy EH+

2
(r) is the

energy of the Coulomb two-centre problem with the electron and two charges +1
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Fig. 12.2 The elastic and
excitation cross sections for
the H+ – H+

2 scattering

each placed at the distance r . The functionU (r1, r2, θ) has no singularities at ri = 0
and hence is much easier to interpolate and extrapolate.

Using the united atom approximations, we can find the values of U when the
distances between two or three protons approach zero. For bond-lengths in the range
ri ≤ 20.0a0, the potential energy surface is calculated at an arbitrary point with the
3D spline interpolation.

As we use the ECS, the potential energy must be represented by an analytical
function at large distances. In order to make this representation, we use a combina-
tion of the asymptotic Coulomb potential and the polarization potential 1/r2i . The
coefficients are chosen tomake the total potential energy continuous on the boundary
of the numerical grid.

We have calculated the elastic and excitation scattering cross sections H+
2 (v =

0, J = 0) + H+ → H+
2 (v

′, J ′ = 0) + H+ with the constructed potential energy sur-
face. In the calculations,weuse a rectangular product grid. For the reaction coordinate
yα , five finite elements have been used at short distance [0–4] a.u., 44 elements for
intermediate region, and ten elements of total length 40 a.u. for the discretization
beyond the splitting point R = 31 a.u. For the coordinate xα , 19, 9, and 4 elements
respectively have been used for the regions mentioned above. One element has been
used for the angular variable θα .

Our results for the elastic and excitation H+
2 (v = 0, J = 0) → H+

2 (v
′, J ′ = 0)

cross sections for the H+ – H+
2 scattering are presented in Fig. 12.2, where the energy

E is the incident energy of H+. The structure in the cross section appears because of
large number of states in the H+

2 molecule.

12.4 Conclusions

We have proposed the mathematically sound approach for calculations of scattering
processes. The potential splitting approach allows for the solution of the scatter-
ing problem with the Coulomb interaction. Besides systems with analytically given
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interactions, molecular systems with numerically defined ab initio potentials can be
studied with the combined ECS and splitting potential approaches.
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Chapter 13
Fragmentation Dynamics of Atomic
and Molecular Clusters

A. Méry, A. N. Agnihotri, J. Douady, X. Fléchard, B. Gervais, S. Guillous,
W. Iskandar, E. Jacquet, V. Kumar, J. Matsumoto, J. Rangama, F. Ropars,
C. P. Safvan, H. Shiromaru, D. Zanuttini and A. Cassimi

Abstract We report our results from collisions between multiply charged Ar9+ and
Xe20+ ions and atomic or molecular dimers. In such systems, the presence of a
surrounding environment may give rise to specific energy relaxation mechanisms.
For atomic dimers, we found that the low electron mobility along the dimer results
in an asymmetry in the charge repartition among the two ionic fragments. Specific
relaxation process such as radiative charge transfer has also been identified. For
molecular nitrogen dimers, the role of the environment on molecular fragmentation
has been investigated by comparing the fragmentation of multiply ionizedmonomers
N 2+
2 and dimers (N2)

(3)+
2 .

13.1 Introduction

Atomic or molecular clusters constitute an intermediate step from gas phase to con-
densed matter. The properties of such systems under ion irradiation are of growing
interest in the fields of atmospheric science, hadron-therapy or astrophysics. Here
we focus on dimers consisting of two identical argon atoms or two identical nitrogen
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molecules. Low energy highly charged ions are used as ionizing particles. These
projectile ions have energies of about 3 keV/nucleon corresponding to velocities of
0.4 atomic units. In this velocity regime, electron capture is by far the dominant
process and allows producing multiply ionized targets with low amount of excitation
[1]. Moreover, the electron capture radii can be much larger than the dimer bond
length so that electrons may be captured from the two atomic or molecular sites of
the dimer. The resulting ionized target further dissociates either by direct coulomb
explosion if dissociative states have been populated or through intermediate relax-
ation processes such as radiative charge transfer (RCT). In the case of molecular
dimers, molecular fragmentation can also occur if more than one electron have been
removed from one of the constitutive molecules resulting in both van der Waals and
covalent bond cleavages. Such dissociation pathways allow to investigate the role of
the environment on molecular fragmentation.

13.2 Experiment

The weakly bound van der Waals dimers are produced in the supersonic expansion
of a gas jet and irradiated by low energy keV ions delivered by the ARIBE-GANIL
beam line. The supersonic jet target is composed mainly by monomers and contains
only about 1% of dimers. A COLTRIMS (COLd Target Recoil IonMomentum Spec-
troscopy) setup is used to measure in coincidence the three-dimension momentum
vectors of the charged fragments produced in the collision [2]. Coincidencemeasure-
ments and specially momentum conservation laws allow to make a very clean data
selection and to take out random coincidences originating frommonomer targets ion-
ization. For each fragmentation channel, we then derive several relevant observables
such as the Kinetic Energy Release (KER) and the relative orientation of fragment
momentum.

13.3 Ar2 Rare Gas Dimers

Argon dimers are weakly bound van der Waals atomic systems resulting from the
induced dipole interaction between the two atoms. The van der Waals bond length
RAr2 = 3.8Å [3] is significantly larger than the atomic radius and there is very small
overlap between the two atomic electron clouds. As a consequence, low electron
mobility is expected between the two centers of the dimer in contrast to covalently
bound molecules. This property has been used to shed new light on the electron
capture process. However, some cluster specific relaxation pathways such as RCT
can lead to charge transfer between the two sites of the dimer [4].
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13.3.1 Electron Capture Process

Following the collision, several fragmentation channels could be identifieddepending
on the charge state of each detected fragment. The following notation (i, j)F is used to
refer to the fragmentation channel Ar(i+j)+

2 → Ari+ + Arj+. As an example, (3, 1)F
refers to asymmetric fragmentation Ar4+2 → Ar3+ + Ar+ following quadruple elec-
tron capture.After data selection, the branching ratios can be directly deduced by inte-
grating the number of events in each channel [4] and are presented in Table 13.1. Low
charge state channels clearly dominate because multiple electron capture requires
smaller impact parameters and has thus a lower probability to occur.

In the case of quadruple electron capture, two different fragmentation channels
can be observed: a symmetric (2, 2)F and an asymmetric (3, 1)F one. It appears that
asymmetric fragmentation dominates. This is an unusual behavior in comparison to
the fragmentation of diatomic covalent molecule such as N2 for which symmetric
dissociation is known to be by far the dominant process [5]. In covalent diatomic
molecules, fast intramolecular electron rearrangement usually takes place prior dis-
sociation leading to equal charge sharing. Contrarily, in van der Waals molecules,
charge rearrangement is expected to be small. If at least one electron is removed from
each atom, the potential energy curves (PECs) are purely dissociative and no charge
exchange is expected during the dissociation process. However, the very asymmetric
capture channel (Ar4+ − Ar0) has curve crossings with excited states Ar3+∗ − Ar1+
and also contributes to the (3, 1)F channel [4]. Nevertheless, when slow highly
charged ions collide with rare gas dimers, the low electron mobility allows to keep
the memory of the initial capture process. Thus, for quadruple electron capture,
symmetric (resp. asymmetric) electron capture will give rise to symmetric (resp.
asymmetric) fragmentation. As a consequence, the predominance of asymmetric
fragmentation reflects the predominance of asymmetric electron capture. This last
point is possible because the internuclear distance in Ar dimers RAr2 = 3.8Å is of
the same order of magnitude as the projectile capture radii. These values have been
calculated using an extended Classical Over the Barrier Model (COBM) and are
listed in Table 13.2 [6]. The experimental branching ratios are fairly reproduced in
the model by considering the dimer as two independent atoms and by integrating
over all possible orientation and impact parameters using a Monte-Carlo approach
(MC-COBM).

The MC-COBM also gives access to the impact parameter distribution associated
to each capture channel. For asymmetric channels, it appears that the projectile pref-

Table 13.1 Relative fragmentation branching ratios for the Ar9+ + Ar2 andXe20+ + Ar2 collision
systems

Channel (1, 1)F (2, 1)F (3, 1)F (2, 2)F

Ar9+ 0.42 0.30 0.19 0.09

Xe20+ 0.41 0.39 0.11 0.09
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Table 13.2 Capture radii estimated from the Classical Over the Barrier Model for the Ar9+ + Ar2
and Xe20+ + Ar2 collision systems (see details in [6]). Rin

i values are given in Å

Projectile Rin
1 [3p−1] Rin

2 [3p−2] Rin
3 [3p−3]

Ar9+ 6.4 5.5 4.7

Xe20+ 9.1 7.6 6.5

erentially captures electrons from the atom closest to its trajectory while symmetric
channels are essentially produced when the projectile ion trajectory is in the median
plan of the dimer [7]. Even if the projectile impact parameter is not directly accessible
from the experimental data, this information can be deduced from the direction of the
scattered projectile with respect to the emission of the mostly charged fragment. This
observable can also be derived from the MC-COBM and shows a very nice quanti-
tative agreement with experimental measurement proving that the electron capture
process can be successfully described assuming that the dimer is the juxtaposition
of two independent atoms [7].

13.3.2 Relaxation Pathways

The experimental KER distributions are used to get information about the frag-
mentation dynamics of each channel. For the (2, 1)F , (2, 2)F , and (3, 1)F channels
associated to the Ar9+ + Ar2 collision system, the KER spectra show only one peak
corresponding to the direct Coulomb Explosion (CE) at the equilibrium interatomic
distance of the neutral dimer. This is consistent with the fact that the potential energy
curves of these dissociative states are purely Coulombic. As already mentioned, the
(3, 1)F fragmentation channel is also fed by the Ar4+ − Ar0 capture channel but, as
curve crossings take place in the Franck-Condon region, these events also ends up
with the same Coulombic KER value.

In contrast, the KER spectrum of the (1, 1)F channel shows two different contri-
butions (Fig. 13.1). The low energy peak corresponds to Coulomb Explosion (CE)
following two-site single electron capture for which the ground state Ar+ − Ar+
potential energy curve is also purely Coulombic. The high energy peak corresponds
to shorter interatomic distance when dissociation occurs. These events have been
identified as the result of one-site double electron capture for which the Ar2+ − Ar0

PEC is attractive in the Frank-Condon region and has a minimum close to 2.9 Å. This
state can decay through RCT to the dissociative Ar+ − Ar+ state within a nanosec-
ond timescale thus giving rise to the high energy peak in the KER spectrum. Thus,
even if leading to the same (1, 1)F dissociation channel, two-site (CE peak) and
one-site (RCT peak) electron capture can be distinguished using the KER spectra.
The relative intensity of the two processes depends on the projectile charge state and
two-site capture is more likely to occur for projectiles with higher charge state such
as Xe20+ ions (see Fig. 13.1). This can also be qualitatively explained by geometrical
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Fig. 13.1 KER spectra corresponding to (1, 1)F fragmentation channel from the Xe20+ + Ar2
(upper panel) and Ar9+ + Ar2 (lower panel) collision systems. Vertical dashed lines indicate the
central position of the CE and RCT peaks. Dashed curves correspond to theoretical calculations of
the KER distribution associated to the CE and RCT processes as described in [4]

considerations taking into account that Xe20+ projectiles offer larger capture radii
than Ar9+ (see Table13.2).

13.4 (N2)2 Nitrogen Dimers

Van derWaals nitrogen (N2)2 dimers are also bound by the induced dipole interaction
between the two non-polar N2 molecules. The intermolecular distance is predicted to
be about 4 Å but the three dimensional conformation of the two molecules is still not
well known [8]. Quantum chemistry calculations of the potential energy surface of
the neutral N2 dimer have shown that it might exist several isomeric conformations
with very close interaction energies [9, 10].
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We measured the KER distribution of the dimer fragmentation (N2)
2+
2 → N+

2 +
N+

2 following two-site single electron capture. The spectrum exhibits one main peak
located at 3.35 eVassociated to an equilibrium intermolecular distanceofRe = 4.3Å.
This value would more likely correspond to either a S or T shape structure according
to theoretical predictions [9, 10].

In comparison with atomic dimers, when several electron are removed from one
site, the resulting molecular ion also likely undergoes fragmentation. Such a molecu-
lar dimer thus constitutes a clean experimental system for the investigation of the role
of the environment on molecular fragmentation. Here we focus on the three-body
fragmentation channel (N2)

3+
2 → N+

2 + N+ + N+ resulting from a triple electron
capture event where one electron is removed from the first molecule and two elec-
trons from the second molecule. As most of the N2+

2 dication states are dissociative
[5, 11], the multi ionized target will mainly undergo a concerted fragmentation in
which both the van der Waals and the covalent bonds break at the same time. In
order to get information on the influence of a neighbor ion on the fragmentation of
the N2+

2 dication, the KER spectra of the three-body dissociation from dimer targets
has been compared to the KER spectrum of the dication from monomer targets:
N2+

2 → N+ + N+. A complete description of this study is given in [12]. It shows
that the three-body spectrum exhibits the same peak structure as the one from the
monomers but is shifted towards higher energies by about 6.7 eV. This shift is inter-
preted using a pure Coulomb model where all three ions are considered as point
charges located initially at their equilibrium distance from each other. The additional
potential energy results from the interaction of the N+

2 ion with the two N+ ions.
For this particular fragmentation channel, the expected extra potential energy calcu-
lated within this Coulomb model is: 2 × 3.35 = 6.7eV, in perfect agreement with
the experimental measurement [12].

13.5 Conclusion

Low energy multiply charged ions are a powerful tool to produce multiply ionized
targets. Here, collisions with rare gas Ar2 dimers have allowed to shed light on
both the electron capture process and on cluster specific relaxation mechanisms. For
such a collision system, projectiles mainly capture electrons from the nearest atom.
Moreover, the low electron mobility along the dimer allows to keep the memory of
the initial capture process and lead to the predominance of asymmetric fragmentation
as predicted by MC-COBM calculations. Diatomic molecular dimers offer a rather
simple system to study the effect of a surrounding environment on the molecular
fragmentation dynamics. For (N2)2 molecular dimers, it has been demonstrated that
the presence of a neighbor N+

2 ion does not affect much the molecular fragmentation
of the dication and that the initial capture process populates the same electronic
states of the dication as for monomer N2 targets. The present study will be extended
to other diatomic molecular dimers such as (CO)2 in which concerted and sequential
fragmentation has recently been observed [13].
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Chapter 14
Precision Calculations for Three-Body
Molecular Bound States

Jean-Philippe Karr, Mohammad Haidar, Laurent Hilico
and Vladimir I. Korobov

Abstract Although they do not lend themselves to analytical resolution, three-body
atomic or molecular systems are still simple enough to allow for very precise the-
oretical predictions of their energy levels, which makes them attractive candidates
for fundamental tests and determination of fundamental physical constants. Focus-
ing on the hydrogen molecular ions (H+

2 , HD
+, D+

2 ), we outline the methods which
have been used to improve the theoretical accuracy by several orders of magnitude
over the last two decades. The three-body Schrödinger equation can be solved with
extreme precision by variational methods with trial functions involving exponentials
of interparticle distances. Quantum electrodynamics (QED) corrections are evalu-
ated in the framework of nonrelativistic QED (NRQED). The current status of theory
and possibilities of further improvement are briefly sketched.

14.1 Introduction

Precision spectroscopy of two-body (hydrogenlike) atoms, combined with QED cal-
culations of their energy levels, has been a very successful way to test fundamental
physics at a low-energy scale and has led to precise determinations of the Rydberg
constant and proton charge radius [1]. In the last decade, the still unresolved discrep-
ancy between results fromH spectroscopy [2, 3], muonic hydrogen spectroscopy [4],
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and electron-proton scattering experiments [5], known as the “proton-radius puzzle”,
has been a subject of intense activity. Three-body atoms ormolecules have rich poten-
tial for further investigations in this field. Although theoretically more complex, they
can have experimentally favorable features like the existence of narrow transitions,
and can be sensitive to different physics or fundamental constants. For example,
spectroscopy of antiprotonic helium has been used to determine the antiproton-
to-electron mass ratio and test the CPT symmetry [6], and experiments in pionic
helium [7] are underway to determine the charged pion mass. Measurements in He
have recently allowed extracting the 3He−4He nuclear charge radius difference [8,
9], to be compared with the value deduced from muonic helium spectroscopy [10];
future theoretical progress would allow extraction of individual radii [11]. Spec-
troscopy of ro-vibrational transitions in the hydrogen molecular ions (HMI), H+

2 and
its isotopes HD+ and D+

2 , can be used for determination of the proton-electron and
deuteron-electron mass ratios [12–14], and, if an appropriate set of transitions is
measured, of the proton and deuteron charge radii and Rydberg constant [15]. Mea-
surements in the antihydrogen molecular ion H̄−

2 compared with its normal matter
counterpart have also been proposed for improved CPT symmetry tests [16].

Themain purpose of this paper is to introduce the reader to the theoreticalmethods
used to calculate the energy levels of three-body Coulomb bound states with very
high accuracy, with emphasis on the case of HMI. The first part is devoted to the
Schrödinger equation and its resolution by variational methods, and the second part
deals with the calculation of QED corrections. An outline of the NRQED approach is
given, afterwhich the current status of theoretical predictions inHMIandperspectives
of further improvement are briefly discussed.

14.2 Variational Solutions of the Schrödinger Equation

HMI play the role of benchmark systems in quantum chemistry, and the calculation of
their nonrelativistic energy levels have been studied in hundreds of theoretical papers.
Calculations were initially performed in the framework of the Born-Oppenheimer
approximation; nonadiabatic calculations appeared in the 1970s [17], motivated by
the first precise spectroscopic measurements in HD+ [18]. Since then, refinements in
theoreticalmethods and constant increase of available computing power have allowed
improving the precision by many orders of magnitude, as illustrated in Table14.1
for the ground-state energy of H+

2 . A majority of the most accurate results have been
obtained using the variational approach and different variants of “exponential” basis
sets [19–23], which we will now present.

Let us consider a rovibrational state of a HMI supported by the ground 1sσg elec-
tronic curve. Its total spatial parity is Π = (−1)L where L is the rotational quantum
number. The wavefunction ψΠ

LM of such a state may be written using the following
separation of angular and radial degrees of freedom [24]:
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Table 14.1 Selected theoretical results for the nonrelativistic energy of the H+
2 ground state (i.e.

the (v = 0,L = 0) rovibrational state supported by the 1sσg electronic curve). The CODATA 1986
value of the mass ratio, mp/me = 1836.152 701, was used in all works excepted for [17] where
me/mp = 5.446 17 10−4. N is the number of terms in the expansion of the wave function. Stars (*)
signal cases where the eigenvalue problem in (14.6) involves sparse-band matrices, which greatly
reduces its complexity
Author (year) References Method N Energy (a.u.)

Bishop (1977) [17] Var. elliptic 515 −0.5971390625

Moss (1993) [25] Transformed H −0.59713906312(5)

Grémaud (1998) [26] Var. perimetric 31746∗ −0.597139063123(1)

Moss (1999) [27] Var. elliptic −0.5971390631234(1)

Hilico (2000) [28] Var. perimetric 66046∗ −0.59713906312340(1)

Korobov (2000) [19] Var. exponential 2200 −0.597139063123405074

Bailey (2002) [20] Var. exponential 3500 −0.59713906312340507483

Cassar (2004) [21] Var. exponential 1052 −0.597139063123405074834338(3)

Li (2007) [22] Var. exponential 8381 −0.597139063123405074834134096026(5)

Hijikata (2009) [29] Free complement 19286 −0.5971390631234050748341340960260

Ning (2014) [23] Var. exponential 3806 −0.5971390631234050748341340960261899(1)

ψΠ
LM (R, r1) =

∑

l1+l2=L

Y l1l2
LM (R, r1)GLΠ

l1l2 (R, r1, r2), (14.1)

Y l1l2
LM (R, r1) = rl11 r

l2
2

{
Yl1 ⊗ Yl2

}
LM . (14.2)

Here, ri (i = 1, 2) is the position of the electron with respect to nucleus i, and
R = r1 − r2 is the internuclear vector. The radial functions GLΠ

l1l2
(R, r1, r2) are then

expanded in a basis set involving exponentials of inter-particle distances. Two dif-
ferent types of expansion have been used with particular success. The first one uses
pure exponential functions [19, 20]:

GLΠ
l1l2 (R, r1, r2) =

Nl2∑

n=1

[
CnRe(e

−αnR−βnr1−γnr2) + DnIm(e−αnR−βnr1−γnr2)
]

(14.3)

where the exponents αn, βn, γn are complex numbers. In practice, it is essential to
use complex αn in order to reproduce the oscillatory behavior of the vibrational part
of the wavefunction, but βn and γn can be kept real. The real and imaginary parts of
exponents are generated pseudo-randomly in several intervals, the bounds of which
play the role of variational parameters and need to be optimized. The second type of
expansion is [21, 23, 30]

GLΠ
l1l2 (R, r1, r2) =

2∑

p=1

Ω∑

i,j=0

Ωhigh∑

k=Ωlow

C(p)
ijk ri1r

j
2R

k e−αpR−βpr1−γpr2 (14.4)
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where all exponents are real, and their values are fully optimized through calculation
of the first derivatives of the energy with respect to αp, βp, γp.

According to the basic variational theorem, the quantity

E = 〈ψ |H |ψ〉
〈ψ |ψ〉 (14.5)

provides an upper bound for the exact ground-state energy E0. Finding the extrema
of E with respect to the linear parameters (Cn, Dn in (14.3) or C(p)

ijk in (14.4)) is
equivalent to solving the generalized eigenvalue problem

Ac = λBc (14.6)

where c is a columnvector of coefficients (ψ = ∑N
i=1 ciψi),A theHamiltonianmatrix

(Aij = 〈ψi|H |ψj〉), and B the overlap matrix (Bij = 〈ψi|ψj〉). The lowest eigenvalue
λ0 is an upper bound to E0; a less widely known property called the Hylleraas-
Undheim-MacDonald theorem [31, 32], crucial for the applicability of variational
methods to excited states, is that the other eigenvaluesλ1, λ2 . . . are also upper bounds
to the exact energies E1,E2 . . ..

An essential property of the above “exponential” expansions allowing to get high-
precision results is that the matrix elements of the Hamiltonian, as well as those
appearing in calculation of relativistic and QED corrections, can be evaluated ana-
lytically [30, 33, 34].

The efficiency of variational methods is not limited to the first few excited states,
contrary to a common misconception. For example, in the recent work [35], the
energies of all bound and quasibound states of H+

2 supported by the 1sσg electronic
curvewere calculatedwith an uncertainty of 10−7cm−1, using the complex coordinate
rotation method for quasibound states. An important technical point is that the quasi-
adiabaticity of HMI greatly helps reducing the complexity of the calculation for high
rotational states as it allows restricting the sum in (14.1) to low values of l2 (which
is related to the electronic orbital momentum).

One may wonder what kind of accuracy is actually required for fundamental
metrology applications. Typically, an uncertainty of 10−20 a.u. on the nonrelativistic
energy level allows calculation of leading-order (α2) corrections with 10 significant
digits, and with an absolute uncertainty < 10−14 a.u. The resulting relative uncer-
tainty on rovibrational transition frequencies (ν ∼ 0.01 a.u.) is < 10−12, which is
still smaller than the uncertainty from unevaluated high-order QED corrections (see
next Section). Since such (or even better) accuracies can be obtained with modest
computing resources, the nonrelativistic three-body bound-state problem may be
regarded as solved from a practical viewpoint.
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14.3 Calculation of QED Corrections

We now give a basic introduction to nonrelativistic quantum electrodynamics
(NRQED) and its application toHMI. TheNRQED approach, originally proposed by
Caswell and Lepage [36] and further developed by other authors (see e.g. [37–39])
is a powerful tool to study QED corrections in weakly bound few-body systems. In
brief, it consists in constructing from QED a nonrelativistic Lagrangian describing
the interaction of an electron or a nucleus with the electromagnetic field, and then
using it to calculate the QED corrections by applying the nonrelativistic perturbation
theory. One way of constructing the NRQED Lagrangian [36, 37] is to write all pos-
sible interactions satisfying the required symmetries, such as gauge invariance, parity
invariance, time reversal, Galilean invariance, hermiticity, and locality. In principle
this is an infinite expansion, but it may be truncated according to the order of the
correction one wants to calculate. Its first few terms are

L=ψ†

{
iDt+ D2

2m
+ D4

8m3
+cFq

σ ·B
2m

+cDq
∇ ·E
8m2

+icSq
σ ·(D×E−E×D)

8m2

}
ψ

(14.7)
where q,m are the particle’s mass and charge, Dt = ∂t + iqA0, and D = ∇ − iqA.

The coefficients of this Lagrangian are regularized by introducing a cutoff on the
photon momentum of the order of the electron’s rest energy. Physics at relativistic
energy scales is incorporated in the theory in the form of contact terms. Finally, the
coefficients of the Lagrangian are fixed by imposing that the NRQED and QED scat-
tering amplitudes coincide up to the desired order—this is the so-called “matching”
procedure. An alternative approach [38, 39] is to obtain the NRQED Hamiltonian
directly from the Dirac Hamiltonian through a Foldy-Wouthuysen transformation.

It is important to note that the matching is the only stage of the method which
involves calculation of QED diagrams. It is done using only the scattering of free
particles, and does not involve any bound states. This separation of the matching
from the bound-state calculations is a key simplification allowed by the NRQED
approach.

After the Lagrangian has been constructed, the next step is to apply the nonrel-
ativistic perturbation theory. This can be formalized in terms of NRQED Feynman
rules similarly to QED (see Fig. 3 in [37]). The number of interaction vertices is
much higher than in QED since there are many terms in the NRQED Lagrangian,
but each diagram is much simpler to calculate. To illustrate this procedure, all dia-
grams contributing to the leading-order (Breit-Pauli) hyperfine Hamiltonian of HMI
are shown in Fig. 14.1. The interaction potential corresponding to each diagram is
directly obtained in impulse space through application of NRQED Feynman rules,
and Fourier transform gives the potentials in coordinate space (see equation (2)
of [40]).

Application of the NRQED approach to HMI has allowed calculation of leading-
order relativistic and radiative corrections at the mα4 and mα5 orders [42]. Among
these, the most difficult contribution to evaluate is the Bethe logarithm, which may
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Fig. 14.1 Leading-orderNRQEDdiagrams contributing to the hyperfine structure ofHMI. Particles
1 and 2 may be either an electron or one of the nuclei. Left: Coulomb photon exchange (dashed line)
where 1 and 2 respectively interact via Coulomb and spin-orbit vertices. Center: transverse photon
exchange (wiggly line)where 1 and 2 interact via dipole and Fermi vertices. Right: transverse photon
exchange where both particles interact via a Fermi vertex. The photon impulse is q = p′

2 − p2. The

matching with QED yields c(e)
F = 1 + ae, c

(e)
S = 1 + 2ae for an electron [37], and c

(N )
F = Z + aN ,

c(N )
S = Z + 2aN for a spin 1/2 nucleon of charge Z [41], where ae (resp. aN ) is the anomalous
magnetic moment of the electron (resp. nucleus)

be expressed as a sum over intermediate states converging very slowly as the max-
imal energy of the states included in the sum is increased. Its evaluation therefore
requires an accurate representation of scattering states lying high in the contin-
uum. An efficient numerical scheme for calculating the Bethe logarithm is presented
in [43].

Corrections of order mα6, mα7, and (partially) mα8 have been calculated in the
framework of the adiabatic approximation [44–46], including only corrections to
the bound electron in a two-center potential. Spin-averaged rovibrational transition
frequencies are now predicted with a relative uncertainty of 7.6 10−12 [46], which
already allows for an improved determination of the proton-electron mass ratio if a
measurement of similar accuracy is performed in ongoingDoppler-free spectroscopy
experiments. Further progress in accuracyby a factor 2–3would allowan independent
cross-check of the values of the Rydberg constant and nuclear radii [15].

The highest precision reached in experiments so far is 3.8 10−10 on the funda-
mental rotational transition in HD+ [13]. In this case, a single hyperfine component
was measured, and comparison with theory is limited by hyperfine structure calcu-
lations [13, 47]. Calculation of mα6(m/M ) order corrections to the spin-orbit and
spin-spin tensor interactions in the three-body framework is currently in progress
to improve this, following previous work on the spin-spin contact Fermi interac-
tion [48]. Spin-averaged interaction potentials at the same order have been recently
derived [49].

Regarding spin-averaged transition frequencies, the largest source of theoretical
uncertainty is the one-loop self-energy contribution at the mα8 order [35] which has
not been calculated yet even in hydrogenlike systems. One possible way forward
would be to calculate the one-loop self-energy of a bound electron in a two-center
potential, without performing the expansion in powers of the binding potential, as
previously done in hydrogenlike atoms [50, 51].
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Chapter 15
Tensor Correlations in α Clustering
Studied with Antisymmetrized Quasi
Cluster Model

Yoshiko Kanada-En’yo, Hideaki Matsuno and Naoyuki Itagaki

Abstract We investigate the tensor and short-range correlations in 4He and 8Be
with the AQCM-T framework using a realistic nuclear interaction of the G3RS force
and an effective interaction. The tensor suppression is found to contribute to the α-α
repulsion at short distances.

The tensor correlation in many-nucleon systems is one of the long-standing prob-
lems in nuclear physics. Thanks to recent development of ab initio approaches,
remarkable progress has been made in study of the tensor correlation. In physics
of nuclear clustering, the tensor correlation is considered to play important roles
in cluster structures. Various approaches have been developed to explicitly treat the
tensor correlation in cluster states [1–6]. Recently, a new framework using imaginary
centroid Gaussians has been proposed to efficiently deal with the tensor correlation
in 4He firstly by Itagaki et al. [5], and later by Myo et al. [6]. The framework is a
version of antisymmetrized quasi cluster model (AQCM), which has been developed
by one of the authors (N. I.) and extended for the tensor correlation (see [5] and
references therein). Very recently, we newly proposed an improved version of the
AQCM so as to explicitly treat the tensor correlation in the two-nucleon pairs [7] and
call it “AQCM-T”. It is also regarded as a specific version of the antisymmetrized
molecular dynamics (AMD) and called high-momentum AMD by Myo et al. [6].
In this paper, we apply the AQCM-T method to 4He and 8Be using a realistic NN
interaction of the G3RS [8] containing the tensor part and a repulsive core for the
central part, and compare results of a new effective NN interaction with the tensor
interaction proposed in [7] to discuss the NN tensor and short-range correlations in
α clusters.
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The procedures of the calculation based on AQCM-T is, in principle, the same as
those presented in [7]. In order to take into account theNN correlations, a basis wave
function for 4He is given with the parameter k in the momentum vector k = (0, 0, k)
and the channel β = {1S, 3S, and 3D} as

Φ
AQCM-T
4He,0+ (k,β) = ̂P0+A{φ ik

2ν
φ− ik

2ν
φ0φ0 ⊗ Xβ}, (15.1)

where the single-particle wave function φZ is the imaginary-centroid Gaussian wave
packet (see [7] for the detailed definition). The totalwave function of 4He is expressed
by linear combination of various k values and β channels.

For 8Be we place an α cluster at R = d
2 and the other α at R′ = − d

2 with d =
(d sin θα, 0, d cos θα). The total wave function of 2α is given with a correlated α
(αk ) wave function and an uncorrelated α (α0) one as

Φ
AQCM-T
2α,0+ (k,β, d) = ̂P0+A {

Φαk (k,β,R)Φα0(R
′)
}

, (15.2)

where the αk is expressed using the AQCM-T wave function for 4He as

Φαk (k,β,R) = 1 + ̂Pk

2
A{φR+ ik

2ν
φR− ik

2ν
φRφR ⊗ Xβ}. (15.3)

Here the operator ̂Pk is the transformation operator of the intrinsic parity of the αk

cluster. It should be noted that the present AQCM-T wave function for 8Be is equiv-
alent to the symmetric state α0(R) ⊗ αk(R′) + αk(R′) ⊗ α0(R) of two α clusters
because of the total parity projection. In order to obtain the total wave function of
8Be, we perform calculation of the generator coordinate method (GCM) by super-
posing all the AQCM-T wave functions with various k, θα, β, and d values. We also
perform the fixed-d calculation by superposing various k, θα, β for a given value of
d (the relative distance) .

We use the G3RS interaction of “case 1” (G3RS1) and “case 2” (G3RS2) param-
eters. The G3RS1 (G2RS2) is designed so as to reproduce the NN -scattering phase
shift up to 600 MeV (150 MeV) and its central-even parts have repulsive cores of
2000 MeV (500–630 MeV) height. We also use an effective interaction of V2m-3R
introduced in [7] containing the tensor part but no repulsive core for the central part.
For the tensor term of the G3RS1, the radial function is approximated by the three-
range Gaussian function [7]. We use the same function of the tensor part for cases
of the G3RS2 and V2m interactions.

Table15.1 shows the results of 4He. For 4He, the G3RS2 and V2m interactions
give similar results for contribution of the tensor interaction and D-state probability.
Figure15.1 shows the pair wave functions φ

β
NN (r) for the β = 3S and 3D chan-

nels. In the G3RS1 and G3RS2 results, φ
3D
NN (r) shows a peak in the middle-range

region, r ∼ 1 fm. φ
3S
NN (r) is also peaked in the middle-range (r ∼ 1 fm) region cor-

responding to the potential pocket of the central-even interaction but strongly sup-
pressed in the r < 1 fm region because of the short-range repulsion. The short-range
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Table 15.1 Energies (total energy, kinetic, central, and tensor terms) and 0s and D-state probabil-
ities (P0s,3D) of 4He obtained by AQCM-T. The result of the (0s)4 configuration with the Volkov
No. 2 (m = 0.60) interaction (an effective interaction without the tensor interaction) is also shown
for comparison (labeled by V2:0s).

V2m G3RS2 G3RS1 V2:0s Exp.

E (MeV) −30.3 −26.5 −16.2 −27.9 −28.296

T (MeV) 64.6 72.3 70.9 46.7

Vc (MeV) −56.7 −58.4 −54.6 −75.3

Vt (MeV) −39.9 −41.7 −33.9

P0s 0.901 0.881 0.897

P3D 0.077 0.082 0.063
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Fig. 15.1 Pair wave functions φNN (r) of 4He(g.s.) for the 3D, 3S, and 0s component obtained
with the full configurations. The result obtained with the truncated model space of the momentum
parameter k ≤ kmax for the cases of kmax = 1 fm−1 and 3 fm−1 are also shown in the G3RS1 and
G3RS2 results.

suppression and middle-range peak in the 3S channel is a unique feature of the real-
istic interactions, G3RS1 and G3RS2, but cannot be seen in the V2m-3R result for
the case of effective interactions with no repulsive core of the central part. We found
that medium momentum (k ∼ 2 fm−1) components contribute to the tensor correla-
tion in the 3D channel, whereas high-momentum (k = 3 ∼ 4 fm−1) components are
essential for the short-range correlation in the 1,3S channel as seen in the results of
the momentum truncation k ≤ kmax shown in Fig. 15.1a and b.

Table15.2 shows the results of the fixed-d and GCM calculations of 8Be obtained
with the G3RS2 and V2m interactions. At short distances, the tensor suppression
occurs as can be seen in the reduction of the tensor energy and 3D probability. This
tensor suppression gives a repulsive effect to the two-α system in the region of the
distance d � 2 fm. The G3RS2-3R result shows additional repulsive effect in the
same d region, which comes from the reduction of the central-even interaction. Such
the repulsive effect from the central-even interaction cannot be seen in V2m-3R
without the repulsive core of the central part.

The total energy of 8Be obtainedwith theGCMcalculation is 5–8MeVhigher than
the 2α threshold energy. This overestimation of the total energy mainly originates in
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Table 15.2 Energies (MeV), and 0s and 3D probabilities of 8Be obtained with the fixed-d and
GCM calculations. For the values at d = 8 fm, the total and kinetic energies after the subtraction
of the relative kinetic (�ω/4 = 5.2 MeV) energy and Coulomb energy (0.72 MeV) are also shown
in parentheses

Interaction d (fm) E T Vc Vt P0s P3D

G3RS2 2 −2.7 157.8 −121.0 −43.8 0.89 0.09

4 −39.0 144.5 −117.6 −69.9 0.84 0.12

8 −40.7 (−46.6) 139.2 (134.0) −113.4 −69.7 0.84 0.12

GCM −44.2 136.2 −114.1 −69.8 0.84 0.12

2α thres. −52.0 147.2 −118.3 −83.6 0.78

V2m 2 −18.6 149.1 −132.3 −40.0 0.90 0.09

4 −47.4 132.3 −119.7 −64.4 0.86 0.12

8 −47.3 (−53.2) 126.7 (121.5) −113.6 −64.1 0.86 0.12

GCM −51.3 124.2 −115.4 −64.2 0.86 0.12

2α thres. −56.4 129.7 −114.9 −74.5 0.82

V2:0s 2 −45.7 132.1 −181.4 0 1 0

4 −53.0 104.1 −160.2 0 1 0

8 −49.9 (−55.8) 98.5 (93.3) −150.7 0 1 0

GCM −55.5 100.7 −159.2 0 1 0

2α thres. −55.8 93.3 −150.7 0 1 0

the overestimation of the 2α energy in the asymptotic region in the present frame-
work. The present model for 8Be omits the second-order correlation, where both of
two α clusters contain the D-state component, even though it significantly contains
correlations beyond α0(R) ⊗ αk(R′), where one of the α clusters stays merely as α0.
Because of the missing part, it is not be able to completely describe the exact solution
of the asymptotic 2α state with the present 2α wave function, and the asymptotic 2α
energy is artificially raised by several MeV from the value evaluated by twice of the
energy of the 4He ground state.

In summary, we studied the tensor and short-range correlations in 4He and 8Be
with AQCM-T and showed important contributions of the NN correlations to the
α-α repulsion at short distances.
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Chapter 16
The First Unbound States in the A = 9
Mirror Nuclei 9B and 9Be

Myagmarjav Odsuren, Yuma Kikuchi, Takayuki Myo and Kiyoshi Katō

Abstract The structures of the first 1/2+ unbound states of A = 9 mirror nuclei are
studied in the complex scaled α + α + N three-bodymodel. The results indicate that
the 1/2+ state of 9Be is a virtual state of the s-wave neutron around the 8Be (α − α)
cluster. But the corresponding analog 9B(1/2+) state is predicted as a resonant state
due to the Coulomb barrier.

16.1 Introduction

Studies of mirror nuclei are important in understanding of the nuclear structure.
However, in spite of considerable experimental [1–5] and theoretical [6] efforts, the
location of the first excited state of the 9B nuclei has not yet determined and the
structures of the first excited 1/2+ states in mirror nuclei 9Be and 9B are still an
open problem. The nuclei 9Be and 9B are considered to have an α + α + N (N =
neutron or proton) structure according to the lowest three-body thresholds, and to be
the Borromean systems. Except for the ground state 3/2− of 9Be, all states including
the ground state of 9B are unbound. Therefore, in order to study the first excited
states of 9Be and 9B, it is necessary to calculate the α + α + N three-cluster systems
under a correct boundary condition for unbound states.
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Nuclear Reaction Data Centre, Hokkaido University, Sapporo 060-0810, Japan

© Springer Nature Switzerland AG 2020
N. A. Orr et al. (eds.), Recent Progress in Few-Body Physics,
Springer Proceedings in Physics 238,
https://doi.org/10.1007/978-3-030-32357-8_16

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32357-8_16&domain=pdf
mailto:odsuren@seas.num.edu.mn
https://doi.org/10.1007/978-3-030-32357-8_16


92 M. Odsuren et al.

Recently, we investigated the structure of the first unbound state of 9Be located just
above the α + α + n threshold energy applying the α + α + n three-body model [6]
and the complex scaling method (CSM) [7, 8]. In the results, we found that the
9Be(1/2+) state has a virtual-state character of an s-wave neutron around the 8Be(0+)

cluster.
It is particularly interesting to study the 9B(1/2+) state using the same model that

reproduces the observed photo-disintegration cross section of 9Be(1/2+) [9] on the
basis of the picture of the virtual state for 9Be(1/2+).

In this study, we discuss the structure of the first excited 1/2+ state of 9B together
with the mirror state in 9Be. Considering the virtual and resonance characters of the
states for A = 9 systems, we investigate the nature of first excited 1/2+ states of 9Be
and 9B mirror nuclei.

16.2 Three-Body Model and Complex Scaling Method

TheHamiltonian for the relativemotion of theα + α + N three-body system is given
as

Ĥ =
3∑

i=1

ti − Tc.m. +
2∑

i=1

VαN (ξ i ) + Vαα + VPF + V3, (16.1)

where ti and Tc.m. are kinetic energy operators for each particle and the center-of-mass
of the system, respectively. The interactions between the valence nucleon and the i-th
α particle is given as VαN (ξ i ) [10], where ξ i is the relative coordinate between them.
The inter-α potential is expressed by Vαα [11], and we introduce the three-cluster
potential V3 to reproduce the energies of 9Be states measured from the α + α + n
threshold energy. The Pauli-forbidden states for α − α and α − N are projected out
by using the pseudo-potential VPF . The details of this model are explained in [6, 9].

In the present calculation, we use the α + α + N three-body potential V3 given
as

V3 = v3 exp (−μρ2), (16.2)

where ρ is the hyperradius of the α + α + N system, and defined as

ρ2 = 2r2 + 8

9
R2, (16.3)

where r is the distance between two α’s and R is that between the nucleon and the
center-of-mass of the α + α subsystem.

We investigate the properties of the unbound states of A = 9 mirror nuclei using
the CSM [7, 8]. The complex-scaled Schrödingier equation is expressed by using
the complex-scaled Hamiltonian H θ as

Ĥ θ�ν
J (θ) = Eθ

ν �ν
J (θ). (16.4)
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The relative coordinates of the three-body system α + α + N are transformed as
r → r eiθ and R → R eiθ with a real parameter θ . By solving the complex-scaled
Schrödingier equation with appropriate L2-basis functions, we obtain the energy
eigenvalues and eigenstates [8].

16.3 Results

The 3/2− ground state of 9Be is calculated at−1.57MeV from the α + α + n thresh-
old with the repulsive three-body potential, whose parameters are given as v3 = 1.10
MeV and μ = 0.02 fm2 in (16.2) [6]. The Hamiltonian in (16.1) reproduces all the
threshold energies of three-body and two-body subsystems. Using this Hamiltonian,
we obtain the ground state energy 0.277 MeV with the width 1.73 × 10−3 MeV of
9B, which well correspond to the observed 0.277 MeV and 0.54 × 10−3 MeV [2],
respectively. On the other hand, the 1/2+ resonance of 9Be is not found in our pre-
vious work [6]. However, the photo-disintegration cross section from the ground
3/2− to the unbound 1/2+ states of 9Be is calculated as the sharp peak just above
the 8Be + n threshold, and well reproduces the observed distribution [12, 13]. The
origin of the low-lying peak of the cross section above the 8Be + n threshold is
investigated to be a consequence of a 8Be + n virtual state but not resonant one.

In this calculation we try to obtain the 1/2+ state in 9B based on our well-defined
methodology considering its analog state in 9Be [6] as well. In Fig. 16.1, we show
the distribution of the energy eigenvalues for the 1/2+ state calculated with v3 =
−1.02 MeV, which reproduces the photo-disintegration of 9Be, in the α + α + p
model. We find a resonance solution at the energy Eres = 2.42 MeV with a decay
width Γ = 1.61 MeV, which is presented with a triangle in Fig. 16.1. In addition to
the resonance solution, the α + α + p three-body, 8Be(0+) + p, 8Be(2+) + p and
5Li(3/2−) + p two-body continuum solutions are obtained separately.

We investigate the consistency between the results of the 9Be(1/2+) and the
experiments of 9B. First we calculate the 9B(1/2+) state without three-body potential

Fig. 16.1 Distribution of
energy eigenvalues of the
9B(1/2+) state. Red triangle
displays the resonance. The
continuum states of the
three- and two-body
subsystems are given
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Fig. 16.2 The open circles
and open diamonds are
represents distribution of
energy eigenvalues of the
9B(1/2+) and 9Be(1/2+)

states, respectively
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(v3 = 0), and obtain Eres = 2.59 MeV with a decay width Γ = 1.51 MeV. This
implies that the 9B(1/2+) solutionhas aweakdependenceon the three-bodypotential.
The reason is considered to come from the additional Coulomb interaction due to
the valence proton in the α + α + p system.

We perform the calculation of 9B by reducing the charge of the valence proton
gradually. In Fig. 16.2, the calculated energies by reducing the charge of the valence
proton is shown. The open triangles and open circles display the calculated eigenval-
ues of the 1/2+ states of 9Be and 9B, respectively. The filled red triangles present the
resonance solutions, are obtained decreasing the point charge of the valence proton
up to 50%. At present, the analytical continuation to zero charge was not succeeded
to evaluate the solutions of the 1/2+ state.

16.4 Summary

The structures of the first excited states of mirror 9Be and 9B nuclei are studied by
using the α + α + N three-body model and the complex scaling method. The first
excited states of 9Be nuclei observed in photo-disintegration cross sections showing
a sharp peak just above the 8Be(0+) + n threshold [6]. Its analog 9B(1/2+) state
is obtained as the resonance with the resonance energy Eres = 2.42 MeV with the
decay width Γ = 1.61 MeV.
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Chapter 17
Gamow Shell Model Description
of 4He(d,d)

N. Michel, A. Mercenne and M. Płoszajczak

Abstract The Gamow Shell Model (GSM) has been recently developed to describe
the structure of drip-line nuclei within a configuration interaction framework. The
Resonating GroupMethod (RGM), implemented in GSM and applied to the descrip-
tion of one-nucleon reactions, is extended to deuteron scattering in the context
of GSM-RGM. Applications consist in the study of the 4He(d,d) scattering cross
sections.

17.1 Introduction

GSM [1–4] is a configuration interaction approach based on the use of the Berggren
basis, which comprises one-body bound, resonant and scattering states [5]. For the
description of nuclear reactions, GSM-RGM has firstly been formulated with one-
nucleon projectiles [6–10], and is extended here to reactions involving deuteron
projectiles. As a first application of GSM-RGMwith deuteron projectiles, the elastic
scattering of deuteron on α-particle at low center of mass (CM) energies will be
considered.
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17.2 Cluster States Definition in Relative and Laboratory
Frames

Projectile states read:

|Ψ Jp
p 〉HO = [|NCM , LCM 〉HO ⊗ |Kint , Jint 〉HO

]Jp
Mp

(17.1)

where the HO (harmonic oscillator) indicates that a basis of HO states is used therein,
NHO
CM and LCM are respectively the linearmomentumand angularmomenta of theHO

CM state, Kint is the intrinsic linear momentum of the projectile, and Jint represent
the intrinsic angular momenta, so that we have Jp = Jint + LCM. The use of a basis
of HO states at this level is justified by the finite range of the nuclear interaction,
as (17.1) will be used only to generate the GSM-RGM nuclear Hamiltonian matrix.
|Kint , Jint 〉HO projectile intrinsic states are then firstly calculated from the Berggren
basis diagonalization of the relative deuteron Hamiltonian Ĥint , to provide with
|Kint , Jint 〉 eigenstates, and projected afterwards on a basis of relative HO states.
Its expansion in terms of Slater determinants is then obtained using the Brody-
Moshinsky transformation.

In order to properly deal with the asymptotic behavior of the scattering states solu-
tions of the coupled-channel equations of the Hamiltonian, we will compute projec-
tile Berggren basis states of the form |KCM , LCM 〉 |Kint , Jint 〉, where |KCM , LCM 〉
must be generated by a finite-range potential. For this, one uses the basis-generating

projectile Hamiltonian Ĥp = Ĥint + ĤCM , with ĤCM = PCM
2

2Mp
+ ÛCM , where PCM

is the CM linear momentum of the projectile, Mp is its mass and ÛCM is a spheri-
cal potential acting on |KCM , LCM 〉, issued from a mean-field approximation of the
projectile Hamiltonian at cluster approximation level.

17.3 Hamiltonian Coupled-Channel Equations

We consider an A-body state decomposed in reaction channels:

|(c, R)〉 = Â |{|Ψ JT
T 〉 ⊗ |R L Jint Jp〉}JAMA

〉 (17.2)

|Ψ JA
MA

〉 =
∑

c

∫ +∞

0
|(c, R)

JA
MA

〉 uc(R)

R
R2 dR , (17.3)

where the channel index c stands for the {A − a, JT ; a, L , Jint , Jp} quantum num-
bers, is an antimmetrized tensor product of the |Ψ JT

T 〉 target state, and projectile chan-
nel state |R L Jint Jp〉, where Jp = Jint + L and JA = Jp + L, the CM subscript is
dropped for convenience and uc(R) is the radial amplitude to be determined.
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The coupled-channel equations can be formally derived from the Schrödinger
equation H |Ψ JA

MA
〉 = E |Ψ JA

MA
〉, and read:

∑

c

∫ ∞

0
R2 (

Hcc′(R, R′) − ENcc′(R, R′)
) uc(R)

R
= 0 (17.4)

where Hcc′(R, R′) and Ncc′(R, R′) are calculated by integrating out all degrees of
freedom except R, so that:

H JAMA
cc′ (R, R′) = �

2

2Mp

(

− d2

dR2 + L(L + 1)

R2

)
δ(R − R′)

RR′ δcc′

+ (ET + Eint )
δ(R − R′)

RR′ δcc′ +UL
CM (R, R′) δcc′ + Ṽ JAMA

cc′ (R, R′)

N JAMA
cc′ (R, R′) = δ(R − R′)

RR′ δcc′ + ΔN JAMA
cc′ (R, R′) (17.5)

where Ṽ JAMA
cc′ and ΔN JAMA

cc′ (R, R′) include the remaining short-range terms of the
Hamiltonian and norm kernels. They are handled using shell model formulas as
both target and projectiles are expanded in Slater determinants. The treatment of the
non-orthogonality of channels is the same as in the one-nucleon projectile case [6,
7].

Equation (17.4) is conveniently solved by representing H with the Berggren basis
of cluster CM states |KCM , LCM 〉 (see Sect. 17.2). Indeed, as H becomes a matrix
therein, bound, resonant and scattering states are obtained with matrix diagonaliza-
tion and linear system solutions, respectively, so that the integro-differential equa-
tions of (17.4) are quickly and precisely calculated.

17.4 Differential Cross Sections

The internal structure of deuteron is taken into account using the N3LO interaction
[11], building intrinsic Berggren bases bearing (Jπ )int = 1+, 3+, which are the most
important channels.CMparts of deuteronprojectiles bear LCM ≤ 4 for (Jπ )int = 1+,
LCM = 0 for (Jπ )int = 3+, and Jp ≤ 3 [12].

Our GSM model space consists of a 4He core with two valence nucleons, using
partial waves up to � = 4. The 4He core is mimicked by aWood-Saxon potential and
the interaction used is that of FHT type [13–15],where two sets of FHTparameters are
used. In the first set of parameters, denoted as FHT(E), one fits only the energies of the
lowest states of 6Li. However, by doing so, the asymptotic normalization coefficient
(ANC) of its ground state, sensitive to its S and D contents, are poorly reproduced,
probably because of the lack of three-body forces in our model. Consequently, in
the second set of parameters, denoted as FHT(ANC), the S and D ANCs are fitted
instead, so that the ground state of 6Li is overbound by about 1 MeV.
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Fig. 17.1 Center of mass angular distributions of the 4He(2H,2H) elastic scattering reaction cal-
culated at two different energies (laboratory frame) using both the FHT(E) (dashed line) and
FHT(ANC) (solid line) interactions are compared with the experimental data (symbols) [16, 17]

The center of mass differential cross sections of the 4He(2H,2H) elastic scattering
process have been calculated using both FHT(E) and FHT(ANC) interactions at two
different deuteron kinetic energies in laboratory frame: 6.476 and 8.971 MeV (see
Fig.17.1). The ability of the FHT(ANC) interaction to describe experimental data
better than the FHT(E) interaction is very clear. The only discrepancy therein is that
minima and maxima are slightly shifted to larger angles, and not deep enough for
the first minimum at 8.971 MeV.

Results are of comparable quality with those obtained in [12]. However, an addi-
tional fit of the ANCs of 6Li was necessary in our approach, pointing out the absence
of three-body force.

17.5 Conclusion

GSM incorporates both continuumand nucleon inter-correlations degrees of freedom
by using the Berggren basis in a configuration interaction picture. While initially
formuled for structure [4], it has been successfully extended to the study of reaction
cross sections with one-nucleon projectiles using the GSM-RGM approach [6, 7, 9].
The inclusion of many-nucleon clusters was nevertheless more difficult to devise,
that due to their internal structure, which demands a precise treatment of their relative
and CM parts. Applications have been considered with the example of the 4He(d,d)
elastic scattering reaction. Experimental data are well reproduced with our fitting
methods, but they suggest that three-body forces should be more efficiently included
of in our model.

We wish to thank P. Descouvemont and G. Hupin for useful discussions.
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Chapter 18
Boron Isotopes at the Drip-Line: The 19B
Case

J. Gibelin, S. Leblond, F. M. Marqués, N. A. Orr, Y. Kondo, T. Nakamura,
J. Bonnard, N. Michel, N. L. Achouri, T. Aumann, H. Baba, F. Delaunay,
P. Doornenbal, N. Fukuda, J. W. Hwang, N. Inabe, T. Isobe, D. Kameda,
D. Kanno, S. Kim, N. Kobayashi, T. Kobayashi, T. Kubo, J. Lee, R. Minakata,
T. Motobayashi, D. Murai, T. Murakami, K. Muto, T. Nakashima,
N. Nakatsuka, A. Navin, S. Nishi, S. Ogoshi, H. Otsu, H. Sato, Y. Satou,
Y. Shimizu, H. Suzuki, K. Takahashi, H. Takeda, S. Takeuchi, R. Tanaka,
Y. Togano, A. G. Tuff, M. Vandebrouck and K. Yoneda

Abstract We report here results for SAMURAI Dayone campaign which, by using
knock-out reaction and invariant mass method, allowed to obtain the first measure-
ment of exited states of the most neutron rich boron isotope 19B.
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18.1 Introduction

Neutron rich light nuclei, especially those with halos, are one of the main themes
of the physics of nuclear structure in the past decades. These studies have, however,
been largely limited to helium, lithium and beryllium isotopes due to the difficulty in
producing heavier nuclei around the drip-line. We report here the first measurement
of excited states of 19B for which little is known.

18.2 Experimental Stup

The experiment, performed at the Radioactive Isotope Beam Factory (RIBF) of the
RIKEN Nishina Center, was part of the SAMURAI [1–3] DayOne campaign aiming
to investigate the structure of light neutron-rich nuclei at and beyond the neutron
drip-line. Details on the experimental setup were presented in several articles [4–6]
and Ph.D. theses [7–10] and the reader is referred to these publications for details.
Here the 19B of interest was produced via proton knock out of a secondary 20C beam
at 280A MeV, which impinged on a 1.8 g/cm2 carbon reaction target.

18.3 Analysis and Interpretation

General analysis procedures for SAMURAI are given in great details in [4–10]. Here,
in order to obtain information on the unbound excited states of 19B we rebuilt the
relative energy (Er ) between the core of 17B and two neutrons, from their respective
four-momenta. In this particular case, special attention is paid in rejecting the cross-
talk that arises when one neutron diffuses from one detector to another. We present
in Fig. 18.1 the experimental Er distribution. We clearly see a sharp structure at low
energy and a wider one around 3 MeV.
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Fig. 18.1 17B+2n relative energy spectrum adjusted using five Breit-Wigner distributions and a
uncorrelated distribution. All contributions have been folded with the experimental response. Error
bars are statistical

Analysis of the coincidence between relative energy and gamma emission shows
that the first excited state decays to the ground state of 17B and a clear structure around
Er = 3.5 MeV decays to the excited state of 17B (measured here at 1110 ± 25 keV).
The systematic study of the Dalitz distributions for all energies between 0 and 6MeV
(similarly to what is described in [11]) suggests also that another state is located
around 1.5 MeV.

Since Gamow shell model (GSM) [12–14] calculations performed here predict
widths qualitatively smaller than 0.5 MeV, we adjusted the spectrum with five Breit-
Wigner distributions (green) and an uncorrelated—simulated—background (black).
All Breit-Wigner distributions include the energy dependence of the observed width,
as well as the level-shift term and these contributions are convoluted with the exper-
imental resolutions. Results of the fit are listed in the first column of Table18.1.

In order to interpret our results we compare them with the configuration-mixing
shell model (SM) calculations [15] with the two-body interactions YSOX [16]. The
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Table 18.1 Summary of the relative energies measured, with their assigned excitation energies and
spin-parity

Er (MeV) Ex (MeV) Jπ

0.68 ± 0.01 0.82 ± 0.40 1/2−

1.60 ± 0.01 1.74 ± 0.40 3/2−

2.37 ± 0.01 2.51 ± 0.40 3/2−

3.12 ± 0.02

4.38 ± 0.01

}
4.39 ± 0.42 1/2−, 3/2−

considered active space is composed of the (0p3/2, 0p1/2, 0d5/2, 1s1/2, 0d3/2) orbits,
and the center-of-mass spurious contributions are removed via the Lawson pre-
scription. Configurations corresponding up to 5 particle-hole excitations (5�ω) are
included in the many-body space.

Calculations show that the ground state is Jπ = 3/2−, which directly comes from
the proton configuration, as the number of neutrons is even. The SM gives a first
excited state right above the neutron threshold, with Jπ = 1/2−; and several states.
Due to the small energy differences and our experimental resolution, we can not
conclude on the nature of the 19B states solely on energy basis. Spectroscopic factors
suggest that coming from 20C mainly Jπ = 1/2− and Jπ = 3/2− are populated. We
then tentatively assign a Jπ = 3/2− to the second and third states observed here. As
for the two remaining structures, since they are measured at an energy difference of
≈1.1 MeV compatible with the energy of the first excited state of 17B and that the
lowest one does decay to this excited state, we assumed they belong to the same state
around Ex = 4.4 MeV. This is also dictated by the energy (>7 MeV) of the next
3/2−. Results are summarized in Table18.1.

18.4 Conclusion

We presented for the first time experimental results for the structure of neutron-rich
19B isotope above its two neutron emission threshold. Our results show a first excited
state close to this threshold and three other states above. Comparison with state-of-
the-art shell model calculations allow us to tentatively determine their nature.
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Chapter 19
Elastic α-12C Scattering at Low Energies
with the Bound States of 16O in EFT

Shung-Ichi Ando

Abstract We study the elastic α-12C scattering at low energies, including the ener-
gies of excited bound states of 16O, in effective field theory. After fitting the param-
eters to the phase shift data, we calculate the asymptotic normalization constants of
the 0+

2 , 1
−
1 , 2

+
1 , 3

−
1 states of 16O and compare themwith those in the previous studies.

19.1 Introduction

The elasticα-12C scattering at low energies is an important reaction to fix somemodel
parameters for the study of the radiativeα capture on carbon-12, 12C(α, γ )16O,which
determines theC/O ratio synthesized in the stars [1]. The reaction rate of the radiative
capture process at the Gamow peak energy, TG = 0.3 MeV, cannot be determined in
experiment due to the Coulomb barrier. A theoretical model is necessary to employ
in order to extrapolate the reaction rate down to TG by fitting model parameters
to experimental data. Accurate measurements of the elastic scattering have been
reported in [2, 3]. Elastic scattering data at low energies in general can be used for
deducing an asymptotic normalization constant (ANC), which determines an overall
strength of a nuclear reaction involving bound states [4–6]. ANCs for the excited
bound states of 16O are important inputs for an estimate of the reaction rate of the
radiative capture process.

Effective field theories (EFTs) provide us a model independent and systematic
method for theoretical calculations, in which one introduces a scale to separate rel-
evant degrees of freedom at low energies from irrelevant degrees of freedom at high
energies for a reaction in question. For review, one may refer to [7, 8]. In this talk,
we briefly discuss a construction of EFT for the radiative capture process and apply
it to the study of the elastic α-12C scattering process below resonance energies [9].
We then calculate the ANCs for the bound states of 16O and compare themwith those
reported in the previous studies [10, 11].
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19.2 Formalism

In the study of the radiative capture process, 12C(α,γ )16O, at TG = 0.3MeV employ-
ing an EFT, at such a low energy, the ground states of α and 12C can be regarded as
point-like particles whereas the first excited states of α and 12C are chosen as irrel-
evant degrees of freedom, by which a large scale of the theory is determined. The
effective Lagrangian for the process is constructed in terms of two spinless scalar
fields for α and 12C, and the terms of the Lagrangian are expanded in terms of the
number of derivatives. An expression of the effective Lagrangian has been obtained
in Eq. 1 in [9]. The expansion parameter of the theory is Q/ΛH ∼ 1/3 where Q
denotes a typical momentum scale Q ∼ kG : kG is the Gamow peak momentum,
kG = √

2μTG � 41 MeV, where μ is the reduced mass of α and 12C. ΛH denotes a
large momentum scale ΛH ∼ 150 MeV determined from the first excited energy of
α or 12C.

In the study of the elastic α-12C scattering in EFT, the amplitudes of the elastic
scattering are calculated fromdiagramsdepicted inFigs. 19.1 and19.2. The scattering
amplitudes for l-th partial wave states are obtained as [9, 12, 13]

Al = 2π

μ

(2l + 1)Pl(cos θ)e2iσl Wl(η)C2
η

Kl(k) − 2κHl(k)
, (19.1)

where k is the magnitude of relative momentum between α and 12C and θ is the scat-
tering angle in the C.M. frame. In addition, η is the Sommerfeld parameter, η = κ/k,
where κ is the inverse of the Bohr radius, κ = Z2Z6μα, and C2

η = 2πη

e2πη−1 , Wl(η) =
κ2l

(l!)2
∏l

n=0

(
1 + n2

η2

)
, Hl(k) = Wl(η)H(η),with H(η) = ψ(iη) + 1

2iη − ln(iη).ψ(z)

Fig. 19.1 Diagrams for dressed 16O propagator. A thick (thin) dashed line represents a propagator
of 12C (α), and a thick and thin double dashed line with and without a filled blob represent a
dressed and bare 16O propagator, respectively. A shaded blob represents a set of diagrams for
non-perturbative Coulomb interaction

Fig. 19.2 Diagram of the scattering amplitude. See the caption of Fig. 19.1 as well
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is the digamma function, Pl(x) are the Legendre polynomials, andσl are theCoulomb
phase shifts. The function Kl(k) represents the interaction due to the short range
nuclear force, which is obtained in terms of the effective range parameters as

Kl(k) = − 1

al
+ 1

2
rlk

2 − 1

4
Plk

4 + Qlk
6 − Rlk

8 + · · · (19.2)

where al are fixed by using the binding energies of 16O, and the other effective range
parameters are fitted to the phase shift δl by using a relation

Wl(η)C2
ηk cot δl = Kl(k) − 2κReHl(k) . (19.3)

Because of the modification of the counting rules discussed in [10], we include three
effective range parameters, rl , Pl , and Ql , for l = 0, 1, 2, and four effective range
parameters, r3, P3, Q3, and R3, for l = 3.

19.3 Results and Discussion

The effective range parameters are fitted to the phase shift data [3] where we employ
three data sets, which have different energy ranges below the resonance energies,
denoted as L0, L1, and L2where L = S, P, D, F for l = 0, 1, 2, 3, respectively [10].
To estimate the ANC, |Cb|, for the 0+

2 , 1
−
1 , 2

+
1 , 3

−
1 states of 16O, we employ the

definition of |Cb| from (14) in [14]:

|Cb| = γ l
l

Γ (l + 1 + |ηb|)
l!

(∣
∣
∣
∣−

d[Kl (k) − 2κHl (k)]
dk2

∣
∣
∣
∣
k2=−γ 2

l

)− 1
2

(fm−1/2) , (19.4)

where ηb = κ/kb. We show our results for the ANCs in Table 19.1.
For the ANC for the 1−

1 state, one finds that the result of the present study,
|Cb| = (1.6 − 1.9) × 1014 (fm−1/2), is in good agreement with experimental val-
ues, (2.10 ± 0.14) × 1014, (2.00 ± 0.35) × 1014, (2.08 ± 0.20) × 1014, obtained by
Avila et al. [15], Oulebsir et al. [16], Brune et al. [17], respectively. One also finds
good agreement with theoretical estimates, (2.22 − 2.24) × 1014, obtained from a
potential model calculation by Katsuma [18], and 2.14(6) × 1014 and 2.073 × 1014

Table 19.1 ANC for the 0+
2 , 1

−
1 , 2

+
1 , and 3

−
1 states of 16O in the unit of fm−1/2 estimated from the

fitted parameters by using data of the three data sets L0, L1, and L2

|Cb(0
+
2 )| × 102 |Cb(1

−
1 )| × 1014 |Cb(2

+
1 )| × 104 |Cb(3

−
1 )| × 102

L0 6.8(16) 1.9(4) 2.4(3) 1.2(1)

L1 7.4(15) 1.8(1) 2.3(2) 1.3(1)

L2 6.4(7) 1.6(1) 2.1(1) 1.5(1)
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from the newmethod of the parameterization byRamirez Suarez and Sparenberg [19]
and by Orlov et al. [20], respectively. Thus, estimates of the ANC for the 1−

1 state
appear converging in both theory and experiment.

For the ANC for the 2+
1 state, the result of the present study, |Cb| = (2.1 − 2.4) ×

104 (fm−1/2), underestimates the experimental values, (12.2 ± 0.7) × 104 [15],
(14.4 ± 2.8) × 104 [16], (11 ± 1) × 104 [17]. On the other hand, the result of the
present study is in good agreement with theoretical estimates, (2.41 ± 0.38) × 104

and 2.106 × 104, from the effective range analysis up to the r2 term by Konig et
al. [21] and up to the P2 term by Orlov et al. [22], respectively, and underestimates
the other theoretical results, (14.45 ± 0.85) × 104 from the supersymmetric potential
model by Sparenberg [23] and (12.6 ± 0.5) × 104 from the R matrix analysis with
a microscopic cluster model by Dufour and Descouvemont [24] and 5.050 × 104

from the new method of the parameterization by Orlov et al. [20]. Thus, the effective
range expansion may not be reliable for estimates of the ANC for the 2+

1 state.
For the ANCs for the 0+

2 and 3−
1 states, the result of the present study, |Cb| =

(6.4 − 7.4) × 102 (fm−1/2) for the 0+
2 state underestimates an experimental value,

(15.6 ± 1.0) × 102 [15] and overestimates a theoretical value, 4.057 × 102 [20].
Meanwhile, the result of the present study, |Cb| = (1.2 − 1.5) × 102 (fm−1/2) for
the 3−

1 state is in good agreement to the experimental value, (1.39 ± 0.09) × 102,
recently reported by Avila et al. [15]. Further studies would be necessary for the
ANCs for the 0+

2 and 3−
1 states.

This work was supported by the Basic Science Research Program through the
National Research Foundation of Korea funded by the Ministry of Education of
Korea Grant No. NRF-2016R1D1A1B03930122.
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Chapter 20
The SE1 Factor of Radiative α Capture
on 12C in Effective Field Theory

Shung-Ichi Ando

Abstract The SE1 factor of radiative α capture on 12C is studied in effective field
theory. We briefly discuss the strategy for the calculation of the reaction and report
a first result of SE1 at the Gamow-peak energy, EG = 0.3 MeV.

20.1 Introduction

The radiative α capture on carbon-12, 12C(α, γ )16O, is a fundamental reaction in
nuclear-astrophysics, which determines the C/O ratio created in the stars [1]. The
reaction rate, equivalently the astrophysical S-factor, of the process at the Gamow
peak energy, EG = 0.3 MeV, however, cannot be determined in experiment due
to the Coulomb barrier. A theoretical model is necessary to employ in order to
extrapolate the reaction rate down to EG by fitting model parameters to experimental
data typically measured at a few MeV. In constructing a model for the study, one
needs to take account of excited states of 16O [2], particularly, two excited bound
states for lπi-th = 1−

1 and 2+
1 just below the α-12C breakup threshold at E = −0.045

and −0.24 MeV,1 respectively, as well as two resonant (second excited) 1−
2 and 2+

2
states at E = 2.42 and 2.68 MeV, respectively. The capture reaction to the ground
state of 16O at EG is expected to be E1 and E2 transition dominant due to the
subthreshold 1−

1 and 2+
1 states. See [2, 3] for review.

Theoretical frameworks employed for the previous studies are mainly catego-
rized into two [3]: the cluster models using generalized coordinate method [4] or
potential model [5] and the phenomenological models using the parameterization of
Breit-Wigner, R-matrix [6], or K -matrix [7]. A recent trend of the study is to rely
on intensive numerical analysis, in which a large amount of the experimental data
relevant to the study are accumulated, and a significant number of parameters of the

1The energy E denotes that of the α-12C system in center of mass frame.
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models are fitted to the data by using computational power [3, 8, 9]. In the present
work, we discuss an alternative approach to estimate the S-factor at EG ; we employ
a new method for the study and briefly discuss a calculation of the SE1 factor at EG

based on an effective field theory [10, 11].

20.2 Diagrams

In the study of the radiative capture process, 12C(α,γ )16O, at EG = 0.3MeV employ-
ing an EFT, one may regard the ground states of α and 12C as point-like particles
whereas the first excited states of α and 12C are chosen as irrelevant degrees of free-
dom, from which a large scale of the theory is determined [12]. Thus the expansion
parameter of the theory is Q/ΛH ∼ 1/3 where Q denotes a typical momentum scale
Q ∼ kG ; kG is the Gamow peak momentum, kG = √

2μEG � 41 MeV, where μ is
the reducedmass of α and 12C.ΛH denotes a largemomentum scaleΛH � 150MeV
obtained from the first excited energy of α or 12C. An effective Lagrangian for the
study is obtained in (1) in [13].

The capture amplitudes are calculated from the Feynman diagrams depicted in
Figs. 20.1 and 20.2. One can find an expression of the amplitudes in (6), (7), (8),
and (9) in [13]. We note that the loop diagrams (a) and (b) in Fig. 20.1 are finite
whereas those (d), (e), and (f) diverge. The divergence terms are renormalized by a
counter term h(1) in a contact vertex in the diagram (c). Six parameters remain in the
amplitudes. Four of them are effective range parameters of elastic α-12C scattering

(a) (b)

(d) (f)(e)

(c)

Fig. 20.1 Diagrams for the radiative capture process from the initial p-wave α-12C state. A wavy
line denotes the outgoing photon, and the same part of the diagram displayed in Fig. 20.2 is the
dressed composite propagator for l = 1 state. A thick dashed line in the final state denotes the
ground (0+

1 ) state of
16O. See the caption of Fig. 20.2 as well
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= + + + ...

Fig. 20.2 Diagrams for dressed 16O propagator. A thick (thin) dashed line represents a propagator
of 12C (α), and a thick and thin double dashed line with and without a filled blob represent a
dressed and bare 16O propagator, respectively. A shaded blob represents a set of diagrams for
non-perturbative Coulomb interaction

for l = 1 [14]. One of them is fixed by using the binding energy of the subthreshold
l = 1 state of 16O, and the others are fitted to the phase shift data of the elastic
scattering [15].

20.3 Result

In the left panel of Fig. 20.3, we show the data and the fitted curve of the phase
shift and find that the fitted curve well reproduces the data. The remaining two
parameters, h(1)R and y(0), in the amplitudes are fitted to the SE1 data [3], and we
obtain h(1)R = −6.95(11) × 102 MeV3 and y(0) = 0.495(18) MeV−1/2, where the
number of the data is N = 151 and χ2/N � 1.72. In the right panel of Fig. 20.3, we
show the data and thefitted curve for SE1.At theGamowpeak energy, EG = 0.3MeV,
thus, we obtain SE1 � 58 keV b. An error estimate of SE1 is now under investigation.
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Fig. 20.3 (Left panel) Phase shift, δ1, plotted by using the fitted effective range parameters as a
function of Eα . (Right panel) SE1 factor plotted by using the fitted parameters as a function of E .
The experimental data are also displayed in the figures
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Chapter 21
Astrophysical S-Factor of the Direct
α(d, γ )6Li Capture Reaction
in a Three-Body Model

E. M. Tursunov, D. Baye and S. A. Turakulov

Abstract At the long-wavelength approximation, electric dipole transitions are for-
bidden between isospin-zero states. In anα + n + pmodelwith T = 1 contributions,
the α(d, γ )6Li astrophysical S-factor is in agreement with the experimental data of
the LUNA collaboration, without adjustable parameter. The exact-masses prescrip-
tion used to avoid the disappearance of E1 transitions in potential models is not
founded at the microscopic level.

21.1 Introduction

A radiative-capture reaction is an electromagnetic transition between an initial scat-
tering state and a final bound state. Astrophysical collision energies can be very
low with respect to the Coulomb barrier and cross sections are then tiny. The domi-
nant multipolarity is E1 in general. In the special case of reactions between N = Z
nuclei however, E1 transitions are forbidden by an isospin selection rule at the long-
wavelength approximation (LWA) and E2 transitions become crucial. Nevertheless,
E1 transitions are not exactly forbidden since isospin is an approximate symmetry.
The analysis of the recent LUNA data [1, 2] for the α(d, γ )6Li reaction indicates
that E1 cross sections dominate the E2 cross sections below about 0.1 MeV. Since
E1 transitions vanish in many models, recent calculations use the exact-masses pre-
scription to avoid their disappearance [3]. Here we present results of the simplest
model allowing E1 transitions thanks to small T = 1 components, i.e. the α + n + p
three-body model.
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21.2 Isospin-Forbidden E1 Transitions

The electric multipole operators read at the LWA,

MEλ
μ = e

A∑

j=1

(
1

2
− t j3

)
r ′λ
j Yλμ(Ω ′

j ), (21.1)

where A is the number of nucleons, r ′
j = (r ′

j ,Ω
′
j ) is the coordinate of nucleon j

with respect to the centre of mass of the system, and t j3 is the third component of its
isospin operator t j . The isoscalar (IS) part of the E1 operator vanishes at the LWA
since

∑A
j=1 r

′
j Y1μ(Ω ′

j ) = 0 and this operator becomes an isovector (IV),

ME1
μ = −e

A∑

j=1

t j3 r
′
j Y1μ(Ω ′

j ) = ME1,IV
μ . (21.2)

At the LWA, E1 matrix elements thus vanish between isospin-zero states. This
leads to the total isospin T selection rule in N = Z nuclei and reactions: Ti = 0 →
T f = 0 is forbidden. But E1 transitions are not exactly forbidden in these N = Z
systems because isospin is not an exact quantum number. Small T = 1 admixtures
appear in the wave functions. The main isovector E1 contributions are due to T f = 1
admixtures in the final state or to Ti = 1 admixtures in the initial state. Moreover,
the isoscalar E1 operator reads beyond the LWA,

ME1,IS
μ ≈ − 1

60
ek2γ

A∑

j=1

r ′3
j Y1μ(Ω ′

j ), (21.3)

up to terms that should give only a small contribution [4], contrary to other expres-
sions often used in the literature. The isoscalar E1 contribution to the capture involves
the T = 0 parts of the wave functions.

21.3 Three-Body Model of α(d, γ )6Li Reaction

The present wave functions [5] are adapted from the α + n + p model of [3]. The
J f = 1+ final bound state is described in hyperspherical coordinates and the initial
scattering states are described in Jacobi coordinates. Three-body effective E1 and
E2 operators are constructed which assume that the α particle or cluster is in its 0+
ground state. For example, the isovector part of the effective three-body E1 operator
reads at the LWA,
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Fig. 21.1 E2 overlap
integral |I0(R)| with and
without correction beyond
7.75 fm

M̃E1,IV
μ = 1

2
erY1μ(Ωr ), (21.4)

where r is the Jacobi coordinate between n and p. The expressions of the isoscalar
part of the E1 operator beyond the LWA and of the E2 operator can be found in [5].

The three-body states contain S = 0 and 1 components. Because of the isospin
zero of the α particle and the antisymmetry of the n + p subsystem with orbital
momentum l, the components with l + S odd correspond to T = 0 and those with
l + S even to T = 1. The initial scattering state is described by the product of a
frozen deuteron wave function (li = 0, Si = 1) and α + d L partial scattering waves.
Hence, it is purely Ti = 0. The J f = 1+ final bound state contains a small T f = 1
component (about 0.5%). The E1 transitions start from Li = 1 and the E2 transitions
from Li = 0 and 2.

This model requires an asymptotic correction to the E2 matrix elements. Indeed
the overlap integrals IL(R) of the deuteron and α + n + p final wave functions
decrease too fast beyond 10 fm as shown for L = 0 by Fig. 21.1. This is corrected
by matching at 7.75 fm the overlap integrals with the exact Whittaker asymptotic
function multiplied by realistic asymptotic normalization coefficients.

Total E1 + E2 astrophysical S factors calculated in the three-body model with
the E2 correction are compared in Fig. 21.2 with experimental data. The isoscalar E1
capture contribution is small and can be neglected in first approximation. The isovec-
tor E1 contribution dominates below about 0.1 MeV. Model A and B correspond to
different α + N potentials (see [5] for details).
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Fig. 21.2 Total E1 + E2
astrophysical S factor (full
and dashed lines).
Experimental data from [6]
(triangles), [7] (open circles),
and [2] (full circles).
Adapted from [5]

21.4 Comment on the Exact-Masses Prescription

To obtain non-vanishing E1 transitions in the two-body or potential model, experi-
mental masses are used in the effective charge of N = Z nuclei,

Z (E1)
eff ∝

(
Z1

A1
− Z2

A2

)
→ Z (E1)

eff ∝ mN

(
Z1

M1
− Z2

M2

)
(21.5)

wheremN is the nucleonmass and Z1,2, A1,2 and M1,2 are the charges, mass numbers
and experimental masses of the colliding nuclei, respectively. This exact-masses
prescription is unfounded.

(i) E1 transitions would remain exactly forbidden in the d(d, γ )4He reaction, in
contradiction with ab initio calculations.

(ii) Using the mass expression M = AmN + (N − Z) 12 (mn − mp) − B(A, Z)/c2,
effective charges would depend on the binding energies B(A1,2, Z1,2),

mN

(
Z1

M1
− Z2

M2

)
≈ 1

2mNc2

(
B(A1, Z1)

A1
− B(A2, Z2)

A2

)
. (21.6)

Binding energies per nucleon B(A, Z)/A mostly depend on the main T = 0
components of the wave functions and not on the small T = 1 components
physically responsible for the non vanishing of “forbidden” E1 transitions.

(iii) E1 matrix elements would be unphysically sensitive to the long T f = 0 α + d
tail of the 6Li wave function.
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21.5 Conclusion

Isovector E1 transitions with T = 1 admixtures in the final state and E2 transi-
tions explain the order of magnitude of the LUNA data [1, 2], without any adjustable
parameter. Isoscalar E1 transitions beyond the LWAare negligible for the α(d, γ )6Li
reaction. The exact-masses prescription is not founded and should not be trusted for
reactions between N = Z nuclei, such asα(d, γ )6Li and 12C(α, γ )16O.A three-body
model with T = 1 admixtures in both initial and final states should be developed.
Microscopic six-body and ab initio calculations are difficult but possible and neces-
sary for a deeper understanding of this reaction.
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Chapter 22
Observation of New Neutron Resonances
in 17,19C

Y. Satou, S. Kim, J. W. Hwang, N. A. Orr, T. Nakamura, Y. Kondo, J. Gibelin,
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S. Nishi, S. Ogoshi, H. Otsu, H. Sato, Y. Shimizu, H. Suzuki, K. Takahashi,
H. Takeda, S. Takeuchi, R. Tanaka, Y. Togano, A. G. Tuff, M. Vandebrouck
and K. Yoneda

Abstract High-lying isolated neutron resonances have been observed in 17,19C.
Analyses of the decay properties utilizing shell-model calculations suggest that they
could be interpreted as possible variants of proton core excited states. The spins of
these states are likely to be originating from anti-parallel coupling of spins of the
d5/2 neutron and the proton 2+ state in the assumed respective core nuclei, 16,18C.
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22.1 Introduction

There is currently awide interest in investigating the structure of nuclei under extreme
conditions, i.e., in terms of high isospin Tz and excitation energy Ex . Firstly, the spec-
troscopy of nuclei with A < 20 meets a frontier of ab initio structure calculations
including continuum and three-body forces [1]. Secondly, nucleon-nucleon corre-
lations, which manifest in the reduction of spectroscopic factors, C2S, can best be
examined in such nuclei [2, 3]. Thirdly, new insights into the nuclear many-body
dynamics can be obtained from decay properties of deep hole states of bothmajor and
minor nucleon species [4, 5]. This study focuses on reporting newneutron resonances
in 17,19C, observed, respectively, by neutron-knockout from 18C (245 MeV/nucleon)
and proton-knockout from 20N (257MeV/nucleon) channels on carbon. A high-lying
state populated by the (p, p′) inelastic scattering at 70 MeV/nucleon [6] is revisited.

22.2 Experiment and Results

The SAMURAI spectrometer [7] at RIKEN-RIBF [8] was utilized for the mea-
surement, which was based on the invariant mass method involving detection of a
neutron and a charged fragment emitted from the unbound knockout residue. The
experimental setup shared that described in [9–11].

The new states were observed above the one-neutron (1n) threshold of Sn = 0.735
MeV in 17C: Ex ∼ 1.55MeV [12], and the three-neutron threshold of S3n = 5.5MeV
in 19C: Ex ∼ 6.6MeV [13], in the 1n decay channels. The Ex ∼ 1.55-MeV state did
not appear as an isolated resonance; its presence was inferred from a comparison of
the spectra obtained with and without requiring coincidence detection of the 16C(2+)

de-excitation γ rays, with the consequence for this state to appear only in the former
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inclusive relative energy spectrum [12]. The Ex ∼ 6.6-MeVstate in 19Cwas observed
to reside on a structure-less continuum background, and seemingly to feed 18Cg.s. in
its decay. Such a high-lying isolated state reminds us of a state at Ex = 6.13(9)MeV
(Γr = 0.26+0.4

−0.26 MeV) in 17C, observed in a (p, p′) study, to be feeding 16C(2+) after
neutron emission [6].

22.3 Discussion

Analyses on the above three states based on shell model and eikonal/DWBA reaction
model, taking account of the resonance energy, population strength, and decay prop-
erties were attempted to characterize their microscopic structures. The results are
summarized in Table 22.1. Branching ratio B.R.th (values for the most and second
most dominant branches are given together with the decay energy E th

rel in Table 22.1)
and width Γ th for 1n emission to energetically allowed states in the daughter nucleus
were calculated using the analytic formulas assuming a square well potential with
centrifugal barrier [16]:

Γs.p. ≈ 2�
2/(μR2) · kR · vl(kR) · (2l − 1)/(2l + 1) (l > 0, kR < l1/2),

(22.1)

Γs.p. ≈ 2�
2/(μR2) · kR · v0(kR) (l = 0), (22.2)

Γi = � jC
2Si ( j) · Γs.p., Γ th = �iΓi , B.R.th = Γi/Γ

th. (22.3)

The radius R was that of the daughter nucleus. The wave number was calculated
by k = (2μE th

rel)
1/2/�c, with μ the reduced mass of the decay products. vl deals in

the transmission of a neutron through the centrifugal barrier. C2Si ( j) refers to the
spectroscopic overlap between the initial state and the i-th daughter state, with j the

Table 22.1 Experimental resonance parameters compared with those from shell model utilizing
the YSOX interaction [14], as calculated using nushellx@msu [15]. Theoretical excitation energy
E th
x refers to the energy interval from the predicted lowest energy state. The experimental values

for the Eexp
rel = 3.63(9)-MeV state in 17C are from [6]. σ th refers to the theoretical population cross

section for the relevant reaction

Nucleus Eexp
rel

(MeV)
Eexp
x

(MeV)
σ exp

(mb)
Jπ
SM E th

x
(MeV)

B.R.th(%) E th
rel

(MeV)
Γ th

(MeV)
σ th

(mb)
17C ∼0.81 ∼1.55 ∼0.57 5/2+

2 1.69 100 (0+
1 ) 0.96 3.2 ×

10−4
0.43

3.63(9) 6.13(9) 0.8(1) 1/2+
4 6.85

{
18 (0+

1 )

76 (2+
1 )

6.11

4.35

}
0.33 0.14

19C ∼6.0 ∼6.6 ∼1.5 1/2+
3 7.51

{
54 (0+

1 )

24 (2+
1 )

6.93

5.34

}
1.53 2.11
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Fig. 22.1 Energy level diagrams of a 17C and b 19C compared with YSOX shell-model spec-
troscopy. States discussed are marked by red. c One-body transition densities in the proton-neutron
representation |a(pp/nn)| for quadrupole transitions in 16C (top) and 18C (bottom)

angular momentum involved in the decay. The dependence on j of Γs.p. (through l)
is implicit in the first relationship of (22.3). σ th for the Ex = 6.13-MeV state was
calculated as in [6] including the quadrupole correction [17], while those for the
other states as in [11].

Figure 22.1 shows the comparison in excitation energy between experiment and
shell model for the states in (a) 17C and (b) 19C. Energy levels of the 1n decay
products 16,18C are also depicted (shell-model excitation energies, colored, substitute
experimental ones in the Ex region where the latter are unavailable). A reported
negative parity 2− state at 5.45 MeV in 16C [18] has been incorporated in Fig. 22.1a.
Shell-model one-body transition density coefficients for the 0+

1 → 2+ quadrupole
transitions in 18,20C are depicted in panel (c), where the decomposed strengths of
proton and neutron amplitudes facilitate identifying the dominant excitation mode
for each 2+ state.

The Ex ∼ 1.55-MeV state in 17C was well explained in terms of the excitation
energy, population cross section, and decay scheme by assuming 5/2+

2 . Decay pattern
for the Ex = 6.13-MeV state turned out to fit well with that of the 1/2+

4 state at
E th
x = 6.85MeV (YSOX [14]). The finite width of this state could be due to low spin

of J = 1/2. For the state with such a low spin, the coupling to high-lying proton
core excited 2+ states in 16C (especially 2+

3 ), which are well above the two neutron
threshold of 16C and could have appreciable widths, via s wave is hampered due to
the angular momentum selection rule, leading to less chances for its destruction. A
large calculated d-wave spectroscopic overlap (C2S) between the 2+

3 state in 16C and
the 1/2+

4 state in 17C: 〈2+
3 |d5/2|1/2+

4 〉 = 0.1773 is noted. The predicted (p, p′) cross
section (σ th

(p,p′) = 0.14 mb) seems to be not fully consistent with the observation. It
is noted that the corresponding cross section leading to 1/2+

3 predicted byWBT [19]
within the psd model space (in WBT adopted in [6], the third 1/2+ state exhibited
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the observed decay pattern) is calculated to be σ th
(p,p′) = 0.17 mb, slightly closer to

the experimental value of 0.8(1) mb.
The knockout of a p3/2 proton from 20N, whose Jπ

g.s. = 2− [20–22], creates
a variety of states in the excitation energy range of Ex = 6 − 10 MeV in 19C:
20N(2−) ⊗ πp−1

3/2 → 1/2+, 3/2+, 5/2+, 7/2+. Among them, again the low-spin
J = 1/2 state is preferred as the candidate for the narrow width state at Ex ∼ 6.6
MeV in 19C, since it couples to the high-lying proton core exited 2+ states in 18C
only via d wave. The 7/2+ state is calculated to populate via 1n decay largely higher
spin states predicted above Sn in 18C, and thus is unlikely to be observed in the 1n
emission channel. It turned out that in the YSOX spectroscopy the third 1/2+ well
matches the Ex ∼ 6.6-MeV state in the light of the present comparisons between
theory and experiment. Large d-wave spectroscopic overlaps (C2S) between the
2+
4,6 states in 18C, which exhibit enhanced proton amplitudes (as seen, especially,
in the πp1/2 p

−1
3/2 amplitude), and the 1/2+

3 state in 19C have been calculated as
〈2+

4 |d5/2|1/2+
3 〉 = 0.2128 and 〈2+

6 |d5/2|1/2+
3 〉 = 0.1249.

22.4 Summary

An attempt to characterize high-lying isolated states, which appeared above Ex = 6
MeV in 17,19C and were observed to decay by 1n emission, was made referring to
shell-model excitation energy, population strength, and spectroscopic overlap (with
both high- and low-lying states in daughter nuclei). Tentative 1/2+ assignments
would be preferred for them. The Ex = 6.13-MeV state in 17C was formerly sug-
gested to be 5/2+

4 in WBT [6], thus a new candidate for its Jπ was added in this
study. The first neutron unbound state in 17C was also noted. The decay pattern of
the presently observed high-lying (1/2+) states resembles that of the Auger effect,
where the disintegration of an atomic inner hole state is associated with emission of
an Auger electron. Detailed and systematic investigation of this category of (proton
core exited) state will provide new insights into the aspect of nuclei as a highly cor-
related open quantum system, and into the evolution of deeply bound proton orbits
in neutron-rich isotopic chains.
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Chapter 23
Two-Nucleon Emitters Within
a Pseudostate Approach

J. Casal and J. Gómez-Camacho

Abstract Amethod to identify and characterize three-body resonances in a discrete
basis is discussed in the context of two-nucleon emitters. For this purpose, a resonance
operator is introduced and diagonalized in a basis of energy pseudostates within the
hyperspherical formalism. Then, the energy and width of the resonance are obtained
from its time dependence. The approach is illustrated for 16Be (14Be + n + n).

23.1 Introduction

The study of two-nucleon correlations beyond the driplines has gained renewed
attention since the recent experimental observation of direct two-proton [1, 2] and
two-neutron [3, 4] decays. These are typically discussed in terms of different pos-
sible paths: The so-called sequential, direct and democratic decays [5]. From the
theoretical point of view, a proper description of three-body resonances can help in
understanding these correlations [6, 7]. The description of few-body resonant states,
however, is not an easy task. In this work, we briefly describe a robust approach to
identify and characterize three-body resonances in a discrete basis within the hyper-
spherical formalism, and we apply the method to 16Be (14Be + n + n). For further
details, see [8].
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23.2 Resonance Operator

In general, resonances correspond to a range of continuum energy eigenstates whose
probabilities are concentrated within the potential well. Since these continuum struc-
tures will be very sensitive to changes in the potential, we introduce the resonance
operator

̂M = ̂H−1/2
̂V ̂H−1/2, ̂M |ψ〉 = m|ψ〉 (23.1)

whose eigenstates |ψ〉 can be expanded in Hamiltonian pseudostates |n〉,

|ψ〉 =
∑

n

Cn|n〉, ̂H |n〉 = εn|n〉. (23.2)

Note that, if the system has no bound states, all energies ε are positive. Therefore,
sincem ∼ V/ε, resonances canbe identified from the eigenstates of ̂M corresponding
to large negative eigenvalues.

We apply the method to study 16Be(0+) states in a three-body (14Be + n + n)
model using the potentials in [6, 7]. Calculations are performed within the hyper-
spherical formalism [9], where the relevant parameters are the maximum hypermo-
mentum Kmax (which determines the number of angular components in the wave-
function expansion), the number of basis functions N , and the scale parameter γ

controlling the radial extension of the basis [10]. Here, smaller γ values correspond
to more extended basis functions and a larger concentration of energy pseudostates
just above the breakup threshold. In Fig. 23.1, we present the spectra of ̂M for three
different bases, where the lowest eigenstate is stable and clearly separated from the
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Fig. 23.1 a Eigenvalues of ̂M for 16Be(0+) as a function of the basis parameter γ . The right panel
shows the convergence of the lowest eigenstate as a function of b the maximum hypermomentum
Kmax and c the number of basis functions N . In each case, the other two parameters are fixed
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rest. This state represents the ground-state resonance of 16Be, which shows a fast
convergence with respect to the size of the model space, as shown in the right panel.
As discussed in [7, 8], the corresponding wave function presents a dominant dineu-
tron component, which favors the picture of a correlated two-neutron emission from
the ground state of 16Be.

23.3 Time Dependence and Resonance Parameters

As time evolves, the state given by (23.2) loses its character, and we can define a
time-dependent amplitude

|ψ(t)〉 =
∑

n

Cne−iεn t |n〉, a(t) = 〈ψ(0)|ψ(t)〉 =
∑

n

|Cn|2e−iεn t . (23.3)

For an ideal Breit-Wigner resonance, we would expect

ar (t) = e−iεr t− Γ
2 t , (23.4)

given by the resonance energy εr and its width Γ . These parameters can be chosen
so that (23.4) is as close as possible to the amplitude in (23.3). We define a resonance
quality parameter with the meaning of a quadratic deviation

δ2(εr , Γ ) =
∫ ∞
0 e−xt |a(t) − ar (t)|2 dt

∫ ∞
0 e−xt |a(t)|2 dt , (23.5)

where 1/x corresponds to a relevant time scale for the resonance formation. Thus,
small values of x will be related to long times associated to the decay. The resonance
parameters, as a function of x , can be obtained by minimizing (23.5),

∂

∂εr
δ2(εr , Γ ) = 0,

∂

∂Γ
δ2(εr , Γ ) = 0. (23.6)

Details on the derivation of the relevant equations can be found in [8].
For the 0+ ground state of 16Be, we obtain the results presented in Fig. 23.2. Here

we show the convergence of the resonance parameters εr (x) and Γ (x) with respect
to Kmax , N and γ as in the preceding section. With Kmax = 30 and N = 20, we
show that the resonance energy and width are fully converged. Both functions follow
approximately a linear trend, with a small slope, for small values of x . Then, a sudden
drop of the width is observed close to zero. As discussed in [8], this occurs when
a pseudostate energy εn matches the resonance energy and is a consequence of the
discrete nature of the basis. By increasing the level density near the threshold (i.e.,
choosing smaller values ofγ ), the linear trend explores smaller values of x . Therefore,
it is reasonable to fix the resonance parameters εr and Γ by extrapolating this linear
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Fig. 23.2 Convergence of the resonance parameters εr and Γ with respect to a Kmax , b N and
c γ . In each case, the other two parameters are fixed

Table 23.1 Convergence of εr and Γ as a function of Kmax and N , with γ = 1.1 fm1/2

Kmax εr (MeV) Γ (MeV) N εr (MeV) Γ (MeV)

22 1.403 0.163 8 1.489 0.228

24 1.379 0.160 12 1.399 0.188

26 1.363 0.159 16 1.359 0.168

28 1.347 0.159 20 1.342 0.160

30 1.341 0.160 24 1.341 0.160

behavior to x = 0. Following this prescription, for an energy of εr (0+) = 1.341
MeV we obtain Γ (0+) = 0.160 MeV. The convergence of these values with respect
to Kmax and N is shown in Table23.1. The computed width is consistent with the
results in [6] from the three-body eigenphases within the hyperspherical R-matrix
method to solve the actual three-body scattering problem.This is an indication that the
method here presented provides a reasonable description of three-body resonances
in a discrete basis.
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Chapter 24
The Hoyle State in Relativistic 12C
Dissociation

D. A. Artemenkov, M. Haiduc, N. K. Kornegrutsa, E. Mitsova,
N. G. Peresadko, V. V. Rusakova, R. Stanoeva, A. A. Zaitsev, P. I. Zarubin
and I. G. Zarubina

Abstract Production of α-particle triples in the Hoyle state (HS) in dissociation
of 12C nuclei at 3.65 and 0.42 A GeV in nuclear track emulsion is revealed by the
invariant mass approach. Contribution of the HS to the dissociation 12C → 3α is
(11 ± 3)%. Reanalysis of data on coherent dissociation 16O → 4α at 3.65 A GeV is
revealed the HS contribution of (22 ± 2)%.

Events of dissociation of relativistic light nuclei observable in detail in the nuclear
track emulsion (NTE) contain holistic information on ensembles of lightest nuclei
which is of interest to the nuclear cluster physics [1]. The best spatial resolution
provided by the NTE technique turns out to be a decisive factor for recognition
relativistic 8Be and 9B decays among the projectile fragments [2]. The decays are
identified by the invariant mass M∗ defined by the sum of all products of 4-momenta
Pi of relativistic fragments He and H. Subtracting the sum of the residual masses
M is a matter of convenience Q = M∗ − M . The components Pi are determined
by the fragment emission angles under the assumption of conservation a projectile
momentum per nucleon. In such an approach the contribution of the decays 9B →
8Bep → 2α p in relativistic dissociation of the isotopes 10B and 10,11C is revealed
and, then, an indication to the resonance around 4 MeV in the channel 10C → 9Bp
found [2].
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This experience gave confidence to search in the relativistic dissociation 12C →
3α for the Hoyle state (HS) or the second 12C exited state exceeding just 378 keV
the 3α-threshold [3–5]. The HS studies are reviewed in [6]. This search is inspired
by the concept of the α-particle Bose-Einstein condensate whose status is discussed
most recently in [6]. In the 90s, the 8Be contribution was determined by smallest
α-pair opening angles in “white” stars (coherent dissociation not accompanied by
any target fragment or produced meson) 12C → 3α [7] and 16O → 4α [8] at energy
of 3.65 A GeV. Nowadays, the persisted NTE plates and the relevant data files
[7, 8] are reused to obtain distributions over the α-triple invariant mass Q3α . Data on
the 72 (G.M. Chernov’s group, Tashkent) and 114 “white” stars 12C → 3α (A.Sh.
Gaitinov’s group, Alma-Ata) underwent reanalysis. Besides, additional data on 238
3α stars including 130 “white” ones are obtained recently in this exposure. Then,
the NTE layers exposed to 420 A MeV 12C nuclei allow one to verify the invariant
mass approach [5]. In the latter case the α-particle emission angles are measured in
the 86 found 3α events including the 36 “white” stars.

The distribution Q3α for all 510 stars is shown in Fig. 24.1. There is a peak in the
region Q3α < 1 MeV for the 51 stars where HS signal is expected. For events at 3.65
A GeV the mean value for the events contributed in the peak 〈Q3α〉 (RMS) is 397 ±
26 (166) keV, and at 420 A MeV, respectively, 346 ± 28 (85) keV. According to the
condition Q3α < 0.7 MeV 42 (of 424) events at 3.65 A GeV can be attributed to HS
and 420 AMeV–9 (of 86), including 5 “white” stars (of 36). In sum, the contribution
of the HS decays to the dissociation of 12C → 3α is (11 ± 3)%.

HS could emerge in the dissociation 16O → 12C∗ (→ 3α) + α. Figure24.2 shows
the distribution Q3α of all 3α combinations in the 641 “white” stars [8]. While its
main part limited Q3α < 10 MeV is described by the Rayleigh distribution there is
the peak at Q3α < 700 keV. The condition Q2α < 200 keV meaning at least one 8Be
per 4α-event does not affect the statistics in this region. The main part contribution
in the peak estimated at 8% is excluded. The remaining 139 events have an average
value 〈Q3α〉 = (349± 14) keV corresponding to HS and RMS 174 keV defined by the

Fig. 24.1 Distribution over
invariant mass Q3α of all
α-triples in dissociation of
12C → 3α at 3.65 A GeV
(shaded) and 420 A MeV
(added by dashed line);
line—approximation by the
Rayleigh distribution with
the parameter σQ3α = (3.9 ±
0.4) MeV
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Fig. 24.2 Distribution over
invariant mass Q3α of all 3α
combinations in 641 events
of “white” stars 16O → 4α;
line—approximation by the
Rayleigh distribution with
the parameter σQ3α = (3.8 ±
0.2) MeV

, MeV
α3

Q
0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

evN

method resolution. In 9 of them more than one 3α-combination meets the condition
Q3α < 700 keV. In sum, the contribution of HS decays to coherent dissociation of
16O → 4α is (22 ± 2)%. Besides, HS can arise the α-decay product of the 16O 0+

6
state [9] (in an analogy with the HS decay 8Be + α). The condition Q4α < 1 MeV
allocates 9 events satisfying with a mean value 〈Q4α〉 = (624 ± 84) keV at RMS 252
keV. Then, the estimate of the 0+

6 contribution is (7 ± 2)%.
Thus, HS identified in the relativistic 12C dissociation is manifested in the 16O

case. These observations indicate that it is not reduced to the unusual 12C excitation
and, like 8Be, is a more universal object of nuclear molecular nature. The closest
confirmation of this assumption would be the HS observation in relativistic frag-
mentation 14N → 3α. The analysis of the NTE layers exposed to relativistic 14N
nuclei [10] is resumed in the HS context.
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Chapter 25
Differential Cross Sections and
Analyzing Powers of the Three-Body
Break-Up Channel in Deuteron-Deuteron
Scattering at 65 MeV/nucleon
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St. Kistryn, A. Kozela, M. Mahjour-Shafiei, J. G. Messchendorp,
M. Mohammadi-Dadkan, A. Ramazani Moghaddam Arani, E. Stephan
and H. Tavakoli Zaniani

Abstract In this contribution, the results for the differential cross sections and a rich
set of vector and tensor analyzing powers are presented for various configurations
of the three-body break-up channel of 2H(d, dp)n. The data were obtained at KVI
using a polarised deuteron beam with a beam energy of 65 MeV/nucleon and a
liquid deuterium target in combination with a 4π detection system carrying the
name Big-Instrument for Nuclear-Polarization Analysis (BINA). This work extends
the results from an earlier study reported in [1]. In particular, additional kinematical
configurations and spin observables were analyzed and obtained.
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Compared to the three nucleon (3N) systems, there is a limited experimental database
for the four nucleon (4N) at intermediate energies. To enrich the experimental
database, different scattering experiments including a study of the deuteron-deuteron
elastic and inelastic scattering processes [2–8] were carried out at various labora-
tories. The new data allow to study various aspects of three-nucleon force (3NF)
effects, especially for its spin-dependent part. In this paper, we present the results of
an investigation of the 2H(d, dp)n break-up scattering process at a deuteron-beam
energy of 65 MeV/nucleon.

The prerequisites of the analysis of the three-body break-up channel are the par-
ticle identification (PID) in which the time-of-flight information of the particles was
used, and the energy calibration of the E-scintillator bars in which two energy cal-
ibration procedures have been exploited to extract the observables. To measure the
number of counts for each configuration, the obtained S-Curve (energy correlation
between outgoing deuteron and proton) [9] after PID is divided into S-bins with a
width of 10 MeV. The number of break-up events for each S-bin is extracted by
subtracting the background to obtain the signal after the projection of events on the
axis perpendicular to the S-Curve. The extracted number of counts is corrected for
efficiencies of the system such as the computer live-time of 40%, MWPC efficien-
cies for the deuteron of 99% and the proton of 97%, hadronic interactions of 84%,
and down-scale factor that was used in the hardware trigger to measure the cross
section [1].

To extract the analyzing powers, the spectrum of the ratio of the cross section
of the reaction using a pure vector (tensor) polarized deuteron beam to the cross
section of an unpolarized beam as a function of φ was used to fit a cosφ-dependent
(cos 2φ-dependent with a possible offset from one) of the azimuthal asymmetry. The
amplitude of the cosφ (cos 2φ) is proportional to Re(iT11) (Re(T22)). Also, Re(T20)

is proportional to the offset from one for the cos 2φ azimuthal asymmetry.

25.1 Experimental Results

The preliminary results of the differential cross sections and analyzing powers of the
three-body breakup process in the 2H(d, dp)n reaction as a function of S for a num-
ber of kinematic configurations (θd = 28◦, θp = 28◦, φdp = 180◦, 160◦, and 140◦)
have been extracted; see Fig. 25.1. Two energy calibration methods have been used
to extract the observables. The preliminary results of the [9] had a normalization
mistake of a factor of 2000 which is corrected in the present analysis. The results of
the two calibrations have been averaged to yield the final results and the difference
between the two calibrations (2σ ) is indicated by a gray band for each configuration.
The scattering angles of each configuration are shown at the top of the figures.

The results of the coplanar configuration in the Fig. 25.1 are compared with the
recent theoretical calculations based on SSA by using CD-Bonn+� potential. In
SSA, the break-up amplitude is calculated using the first term in the Neumann
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Fig. 25.1 The results of the cross section and analyzing powers for the kinematic configurations
(θd = 28◦, θp = 28◦, φdp = 180◦, 160◦, and 140◦) of the 2H(d, dp)n reaction. The red (black)
solid line shows the SSA1 (SSA4) approximation. The blue dashed-line indicates the energy of the
neutron in units of MeV using the same scale on the left axis. The gray bands show the systematic
uncertainty due to the calibration processes

series expansion of the corresponding exact four-nucleon scattering. We expect this
single-scattering approximation to provide a rough estimation of three-body break-
up observables in quasi-free configurations. The single-scattering break-up ampli-
tude consists of four terms. Two of them are related to the break-up of the incident
deuteron. The remaining two terms are related to the break-up of the target deuteron.
In SSA1, only the term that corresponds to the breaking of the deuteron target with a
spectator neutron is included,while in theSSA4approximation, all terms are included
[10–12]. The red (black) lines correspond to SSA1 (SSA4). The blue dashed lines
indicate the energy of the outgoing neutron in units of MeV using the same scale
on the left axis. The quasi-free scattering (QFS) region corresponds to the cases at
which the neutron energy is at its minimum (less than 0.3 MeV). Clearly, the cross
section peaks at this point and the SSA1 calculations coincide with the predictions
of SSA4. Moreover, the measured cross section matches very well at the correspond-
ing value of S. Also, the two measured tensor analyzing powers are well described
by the calculation at the QFS regime. Strikingly, the vector analyzing power data
deviate strongly from the predictions. In general, we conclude that the SSA gives a
reasonable description of the QFS regime.
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Chapter 26
Analyzing Powers of the Proton-Deuteron
Break-Up Reaction at Large Proton
Scattering Angles at 135 MeV

M. T. Bayat, M. Eslami-Kalantari, N. Kalantar-Nayestanaki, St. Kistryn,
A. Kozela, J. G. Messchendorp, M. Mohammadi-Dadkan,
R. Ramazani-Sharifabadi, E. Stephan and H. Tavakoli-Zaniani

Abstract A measurement of the analyzing powers for the 2H(p, pp)n break-up
reaction was carried out at KVI exploiting a polarized-proton beam at 135 MeV.
The results are compared with theoretical calculations. The theoretical calculations
describe the main features of the measured distributions, but none of them can repro-
duce the details. This indicates the need for further development of the three-nucleon
force (3NF) models.

The underlying dynamics of three-nucleon forces (3NF) is mainly investigated by
the measurements of differential cross sections and polarization observables (vector
and tensor analyzing powers, spin-correlation coefficients and polarization transfer
coefficients) in elastic Nd scattering and break-up of the deuteron in its collision with
a nucleon. In the past three decades, many measurements have been carried out at
KVI and at other laboratories to obtain high-precision and rich data sets. An overview
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of the results can be found in [1, 2]. The discrepancies between the measured data
and theory predictions with currently available 3NF models demonstrate that spin-
dependent parts of the 3NFs are not completely understood [3].

Based on these observations, and considering the rich phase space in the break-
up reaction, it was decided to extend the analysis of the data taken in 2006 at KVI.
These measurements were performed with the use of the Big Instrument for Nuclear-
polarizationAnalysis (BINA). In thiswork,we extended the earliermeasurements [1]
that were done for kinematical configurations in which protons scatter to small for-
ward angles up to 35◦ angles by analyzing configurations at which one of the final-
state protons scatters to the backward part of BINA.

BINA is composed of two parts: The Wall (forward) and the Ball (backward).
The Wall consists of a Multi-Wire Proportional Chamber (MWPC) and a segmented
hodoscope of thin (2 mm) and thick (12 cm) scintillators for determination of the
energy of the charged reaction products. TheWall covers the polar angles, θ , between
10◦ and 35◦, and the full range of the azimuthal angle φ. The Ball has 149 phoswich
scintillator elements which are glued together and cover polar angles between 40◦
and 160◦. These detectors also act as the scattering chamber holding the target in
the middle. A beam of polarized protons produced in an atomic-beam type polarized
ion source from the AGOR accelerator impinged on liquid-deuterium target with a
thickness of 3.85 ± 0.2 mm which was mounted in the center of the Ball of BINA;
see the Fig. 26.1.

In this work, break-up events were selected in which one of the final-state protons
was detected in the Wall and the second one in the Ball. For each configuration θ1,
θ2, φ12 = φ1 − φ2 of the two outgoing protons, the kinematical spectra E1 versus
E2 were built. The angular bins for events were chosen to be Δθ1 = 20◦, Δθ2 =
4◦ and Δφ12 = 20◦. These bin sizes reflect the angular resolution of the detector.
The bin size along the kinematical S-curve is set to be ∼10 MeV. The background
of accidental coincidences and the hadronic contribution, which originates from
hadronic interactions inside the detector or in the material between the target and
the detector are considered as a background and are subtracted in the procedure. The
hadronic interactions can, subsequently, be corrected for using simulations.

The experimental results for two analyzing powers, Ax and Ay for some selected
configurations are presented in Fig. 26.2. In this figure, the error bars are statistical
and they arise mainly from the number of counts for the break-up coincidences. The
systematic error stems primarily from the uncertainty in the measurement of the
beam polarization via the proton-deuteron elastic-scattering and the corresponding
values were∼3 and∼6% for up and down polarizations, respectively. Themaximum
systematic uncertainty was less than 7%. The theoretical predictions obtained based
on the realistic charge-dependent (CD) Bonn potential only (red dash-dotted lines)
and within the coupled-channel framework with the CD Bonn+Δ without (green
dashed lines) and with (black solid lines) Coulomb force. These curves take the
effects of the finite size of solid angles into account.

The experimental results for Ax show in general good agreement with the theo-
retical calculations where the effects of the 3NF are also shown to be small. For Ay ,
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Fig. 26.1 A side view of BINA. The top panel shows a photograph of BINA side-view and the
bottom one presents schematic drawing of the forward wall and the backward ball

however, there are sizable discrepancies for small φ12 and the inclusion of the 3NF
makes the discrepancies even larger.

In conclusion, it can be claimed that the spin-structure of the 3NF is not well
understood. Therefore, the origin of these discrepancies must lie in the treatment of
three-nucleon potentials (3NPs).
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Fig. 26.2 The analyzing powers at (θ1, θ2) = (50◦, 28◦) as a function of S for different azimuthal
opening angles. Error bars reflect only statistical uncertainties. See the text for details
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R., Witała, H., Wörtche, H.J.: Phy. Rev. C 71, 064004 (2005)



Chapter 27
Ab initio Folding Potentials
for Proton-Nucleus Scattering with
NCSM Nonlocal One-Body Densities

Ch. Elster, M. Burrows, S. P. Weppner, K. D. Launey, P. Maris and G. Popa

Abstract Based on the spectator expansion of the multiple scattering series we
employ a nonlocal translationally invariant nuclear density derived froma chiral next-
to-next-to-leading order (NNLO) and the very same interaction for consistent full-
folding calculations of the effective (optical) potential for nucleon-nucleus scattering
for light nuclei.

The theoretical approach to the elastic scattering of a nucleon from a nucleus, pio-
neered by Watson [1], made familiar by Kerman, McManus, and Thaler (KMT) [2]
and further developed as the spectator expansion [3, 4] is now being applied together
with ab initio structure calculations to obtain effective folding nucleon-nucleus (NA)
potentials. The spectator expansion is predicated upon the idea that at projectile ener-
gies higher than about 100MeV the two-body interactions between the projectile and
the nucleons in the target dominate elastic scattering, for which a transition operator
can be defined as

Tel ≡ PT P = PU P + PU PG0(E)Tel . (27.1)

Theprojector P = |ΦA〉〈ΦA |
〈ΦA |ΦA〉 is conventionally taken to project on the elastic channel

so that [G0, P] = 0. Here |ΦA〉 stands for the ground state of the target so that
HA|ΦA〉 = EA|ΦA〉, and G0(E) = (E − H0 + iε)−1, where H0 = h0 + HA, being
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the free propagator for the projectile+target system. The effective (optical) potential
is given by

U = V + VG0(E)QU, (27.2)

where the operator Q is defined via the relation P + Q = 1. The first-order term
involves two-body interactions between the projectile and one of the target nucleons,
i.e. U = ∑A

i=1 τi , where the operator τi is derived to be

τi = v0i + v0iG0(E)Qτi

= v0i + v0iG0(E)τi − v0iG0(E)Pτi (27.3)

= τ̂i − τ̂iG0(E)Pτi .

Here τ̂i is the NN t-matrix and is defined as the solution of τ̂i = v0i + v0iG0(E)τ̂i . In
lowest order τ̂i ≈ t0i , which corresponds to the conventional impulse approximation.
Here the operator t0i stands for the standard solution of a Lippmann-Schwinger
equation with the NN interaction as driving term.

For elastic scattering only Pτi P needs to be considered,

〈ΦA|τi |ΦA〉 = 〈ΦA|τ̂i |ΦA〉 − 〈ΦA|τ̂i |ΦA〉 1

(E − EA) − h0 + iε
〈ΦA|τi |ΦA〉,

(27.4)
and this matrix element determines the full-folding effective (optical) potential when
summing over all target nuclei,

〈k′|U |k〉 = 〈k′ΦA|
∑

i

τi |kΦA〉. (27.5)

Since 〈k′|U |k〉 is the solution of the sum of one-body integral equations represented
by (27.4), it is sufficient to consider the driving term

〈k′|Û |k〉 = 〈k′ΦA|
∑

i

τ̂i |kΦA〉, (27.6)

where τ̂i ≈ t0i when considering the first order single scattering term. Inserting a
complete set of momenta for the struck target nucleon before and after the collision,
representing the sumover target protons and neutrons byα, evaluating themomentum
conserving delta function and changing variables to q = k′ − k,K = 1

2 (k + k′) and
P = 1

2 (p
′ + p) + K

A , the final expression for the full-folding effective potential is
given by

Û (q,K) =
∑

α=p,n

∫

d3P η(P,q,K) τ̂α

(

q,
1

2

(
A + 1

A
K − P

)

; ε

)

× ρα

(

P − A − 1

A

q
2
,P + A − 1

A

q
2

)

. (27.7)
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Here η(P,q,K) is the Møller factor for the frame transformation [5] relating the
NN zero-momentum frame to the NA zero-momentum frame. Further details can
be found in [6]. The quantity ρα, with α = p(n), represents a nonlocal one-body
density matrix (OBD) for the proton (neutron) distribution, and must be given in a
translationally invariant fashion [7]. An important product of this work is that the NN
t-matrix and OBD now use the same underlying NN interaction. For this we choose
the optimized chiral NN interaction at next-to-next-to-leading order NNLOopt from
[8]. In the A = 3, 4 nucleon systems the contributions of the 3NFs are smaller than
in most other parameterizations of chiral interactions. From this point of view, the
NNLOopt interaction is very well suited for our calculations, since the first-order
folding potential does not contain any explicit 3NF contributions. We calculated the
full-folding integral for the first-order effective (optical) potential for NA scattering
ab initio. i.e. they are based consistently on one single NN interaction, in our case
the chiral NNLOopt interaction from [8], which is fitted to NN data up to 125 MeV
laboratory kinetic energy with χ2 ≈ 1 per degree of freedom. Based on this interac-
tion the one-body nonlocal, translationally invariant nuclear densities are calculated
as laid out in [7]. Further details of the calculations of the effective potential and the
NA scattering are described in [6].

First, we want to illustrate the difference in employing U or Û as effective NA
potential in Fig. 27.1 for proton scattering from 4He and 16O at 200 MeV projectile
laboratory kinetic energy. The figure shows that taking into account the effect of the
operator Q by solving (27.4) to obtain U is clearly visible for the light nucleus 4He,
while very small for a heavier nucleus like 16O.

Fig. 27.1 Angular distribution of the differential cross section divided by the Rutherford cross
section, analyzing power Ay and spin rotation function Q for elastic proton scattering from 4He
(left) and 16O (right) as function of the momentum transfer and the c.m. angle calculated with the
NNLOopt chiral interaction [8]. The solid line represents the calculation based on τi (27.5), the
dashed line the one based on τ̂i (27.6)
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Fig. 27.2 Angular distribution of the differential cross section divided by the Rutherford cross
section for elastic proton scattering from 4He (left) and 16O (right) as function of the c.m. angle
calculated with the NNLOopt chiral interaction [8]. The calculations for 4He are carried out with
Nmax = 18, while the ones for 16O with Nmax = 10. The values of �ω are indicated in the lower
panels. The 4He data for 100 MeV are taken from [9] and for 200 MeV from [10]. The 16O data for
100 MeV are taken from [11] and for 200 MeV from [12]

As examples for elastic proton scattering based on an ab initio effective potential
we show in Fig. 27.2 the angular distributions (divided by the Rutherford amplitude)
for 4He and 16O for energies between 100 and 200MeV laboratory kinetic energy.We
find them in very good agreement with the data in the angle and momentum transfer
regimewhere thefirst order termof the full-folding effective potential should be valid.
We also want to point out that the first order term in the multiple scattering expansion
does not explicitly contain any 3NF contributions, thus the choice of the NNLOopt

interaction works well with the theoretical content of the effective potential. Further
in the future with different interactions will have to shed more light on the effect of
including 3NFs in the one-body density for the first-order effective potential.
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Chapter 28
Few-Body Reactions and Processes
in Neutron Star Envelopes

N. Takibayev, V. O. Kurmangaliyeva, Kiyoshi Katō and V. S. Vasilevsky

Abstract We consider the processes and reactions in the crusts of neutron star
envelopes and analyze the density oscillations in the layers of this volume-centered
crystalline structure, and the dynamics of stimulated reactions, including the trans-
formations of nuclei. The action of acoustic waves that spread in the crystalline
structure and can start up the different threshold reactions are considered. It is stated
that the threshold reactions with capture of Fermi electrons in own cells by even-
even nuclei stop after emission of two neutrinos. Other types of nuclei have also the
own threshold cells, where the direct and inverse reactions can generate neutrino and
anti-neutrino for a very long time. We believe this effect intensively contributes to
the process of the neutron star rapid cooling.

28.1 Introduction

Let us first consider the processes and reactions which can be stimulated by huge
pressure in the neutron star envelopes. In the outer crust of envelopes free neutrons
decay n → p + e− + νe, but in the inner crust the reactions p + e− → n + νe create
free neutrons because the pressure is enough high. The ordered structure allows us
to consider the behavior and properties of the crystalline cells as the function of the
layer depth [1]. We investigate the nuclear reactions initiated by the capture of Fermi
electrons by nucleus in own cells with emission of neutrinos by the new nucleus.
Each cell contains a nucleus A(Z, N) and Z electrons with zero total charge of the
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cell. Every type of nuclei has its own threshold energy for the reaction in which a
Fermi electron can be captured by a nucleus in own cell. It means that the energy of
the Fermi electron must be equal or exceed this threshold energy, i.e. the pressure
waves in the layer must be strong enough.

The properties of matter in the inner crusts are very important: creation of neutron
rich nuclei, the appearance of free neutrons inside of the crystalline layers in inner
crusts, and the neutron resonances of the few-body type. It is very important to take
into account the long-term generation of neutrino and anti-neutrino near the threshold
layers of the certain nuclei.

28.2 Two Types of Electron-Nucleus Threshold Reactions

In the case of the parent even-even nucleus like 56
26Fe the two-step chain of successive

reactions with capture electrons and emission of neutrinos happened in own cell that
leads to irreversible transformation of the nuclei: 5626Fe → 56

25Mn → 56
24Cr (see also

Table28.1).

Table 28.1 The chains of some reactions generated by Fermi electrons with even-even nuclei. Here
and below the energies are given in MeV. Intermediate states have to be considered like the virtual
ones. All pairs of successive reactions are stopped

Main reactions Ee;th Daughter reactions Ee;th
28
14Si

0+ + e− → 28
13Al

3+ + νe 4.643 → 28
13Al

3+ + e− → 28
12Mg0+ + νe 2.131

52
24Cr

0+ + e− → 52
23V

3+ + νe 3.97 → 52
23V

3+ + e− → 52
22T i

0+ + νe 1.977
56
26Fe

0+ + e− → 56
25Mn3+ + νe 3.695 → 56

25Mn3+ + e− → 56
24Cr

0+ + νe 1.629
64
30Zn

0+ + e− → 64
29Cu1+ + νe 0.579 → 64

29Cu1+ + e− → 64
28Ni0+ + νe −1.675

Table 28.2 The one-step reactions generated by Fermi electrons with odd-odd, odd-even and
even-odd nuclei. The symbol ←↩ means that the second reactions are impossible, but the way back
becomes open, i.e. when the pressure is down, Fermi-electron and an anti-neutrino can be emitted
by daughter nuclei, for example: 5524Cr

3/2− → 55
25Mn5/2− + e− + νe

Main reactions Ee;th Daughter reactions Ee;th
45
21Sc

7/2− + e− → 45
20Ca7/2− +

νe

0.256 ←↩ 45
20Ca7/2− + e− → 45

19K
3/2+ + νe 4.203

55
25Mn5/2− + e− → 55

24Cr
3/2− +

νe

2.603 ←↩ 55
24Cr

3/2− + e− → 55
23V

7/2− + νe 5.957

63
29Cu3/2− + e− → 63

28Ni1/2− +
νe

0.066 ←↩ 63
28Ni1/2− + e− → 63

27Co7/2− + νe 3.673

69
31Ga3/2− + e− → 69

30Zn
1/2− +

νe

0.909 ←↩ 69
30Zn

1/2− + e− → 69
29Cu3/2− + νe 2.682
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Meanwhile, the reactionswith the odd-even, odd-odd and even-odd nuclei demon-
strate some specific features in the particular layers of the crystalline envelopes: these
are the one-step reactions (Table28.2). In the phase of cell compression, a nucleus
captures a Fermi-electron and emits a neutrino. Then in the expansion phase of the
cell, the new nucleus emits a Fermi electron and an anti-neutrino transforming itself
back into the previous nucleus. It is quite remarkable that this process can repeat
many times.

The pressure oscillation P = P0(N ) + �P is the current pressure, where P0(N )

is the average pressure in the N -layer of the crust, and �P corresponds to the value
of the oscillations in this layer. Acoustic waves create pressure oscillations that lead
to the oscillations of the Fermi electron energy inside the cell.

It is very important that the behavior of the above mentioned nuclei shows the
exclusive properties when the layers are situated in the area of the critical states for
these nuclei. Then in the first phase, the nucleus starts to capture the Fermi electron
and emits the neutrino when the pressure increases. After that, the behavior of even-
even nuclei becomes different in the second phase as compared to other types of
nuclei.

Numerous collisions of the Fermi electron with the nucleus inside the cell lead to
virtual rearrangement in the nucleus preserving the total sum of all quantum numbers
in the cell. When the energy EF of the Fermi electron increases nearly approach-
ing to the inelastic reaction threshold Eth , the exponential tail: exp(−[kth − k]R)

called the “excitation of threshold swelling” [2] is formed in the elastic reactions:
e−
F + A(Z , N ) → e−

F + A(Z , N ), where k ≤ kth . Here k and kth are the wave num-
ber of electron and the threshold one, R = R(P) is the current radius of the cell,
respectively.

Real changes occur only when the energy of the Fermi electron is over the thresh-
old energy of the inelastic reaction. In this case, the nucleus, by absorbing the Fermi
electron, emits a neutrino that has an energy equal to the difference between the
Fermi energy of the electron and the threshold energy of electron capture by the
nucleus.

Then, we can consider the two-step reactions of the even-even parent nuclei, when
each of them sequentially captures consecutively two Fermi electrons:

(1) If the energy threshold is open, the daughter reaction proceeds also. Here the
threshold of the daughter reaction is significantly lower than the energy threshold
of the parent reaction. That is why two neutrinos are sequentially emitted. In this
case, the energy of the second neutrino is high enough and it can be registered
in some cases. After that the chain of reactions is ruptured.
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(2) The reaction ceases because the third threshold is already much higher, and it
could go on only in the deeper layers of the crystalline envelopeswhere the Fermi
energy of the electrons can be sufficient. However, such reactions are impossible
within the given layer of envelopes.

In the case of the parent even-even nuclei, the two-steps chain of successive
reactions with capture of electrons and emission of neutrinos leads to irreversible
transformation of the nuclei A(Z , N ):

e−
F + A(Z , N ) → A′(Z − 1, N + 1) + νe , EF ≥ Eth; (28.1)

e−
F + A′(Z − 1, N + 1) → A′′(Z − 2, N + 2) + νe , EF ≥ E ′

th . (28.2)

Each even-even nuclide A(Z , N ) has its own threshold energy to capture one Fermi
electron and emits the neutrino of small energy. A new nuclide A′(Z − 1, N + 1)
turns immediately into another nuclide, which has the smaller threshold energy, and
then easily captures the second Fermi electron and also emits the second neutrino
of higher energy. After that, the reactions cannot continue in this cell, except for the
extra case when additional energy comes from outside of the cell.

The capture reactions of Fermi electrons by even-even nuclei demonstrate the
exclusive property connected with the two-step successive reactions, where the inter-
mediate nuclei can be considered as virtual swelled states with indeterminate quan-
tum numbers. These reactions cannot go back because the even-even nucleus turns
to another nucleus and takes part in the next electron capture reaction in this cell.
These reactions happen at the first stage of the neutron star cooling.

Table28.1 presents the reaction chains with parental even-even nuclei and the
Table28.2 presents the chains of the other types of reactions (the tables include only
a small part of the reactions).

Now, let us consider the other types of nuclei: even-odd, odd-even and odd-odd.
The nuclei of these groups capture the Fermi electrons in own cells and emit neutrinos
like in the equation (28.1). But in the second step, when the pressure is down, every
daughter nucleus emits an electron and an anti-neutrino and becomes the same initial
nucleus.

A′(Z − 1, N + 1) → A(Z , N ) + e−
F + νe , E ′

th > EF . (28.3)

The difference in the behavior of the first and the second phase is connected with
properties of nuclei and the action of acoustic waves that spread in the crystalline
structure. The acoustic waves in the layers of the crystalline crusts create the oscilla-
tions of density in the layers of the neutron star envelopes. The changing of pressure
stimulates the direct and reverse reactions in the threshold cells: at squeeze of the
cell the nucleus captures the Fermi electron and emits the neutrino (28.1), then on
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the expansion phase of the cell the daughter nucleus emits the Fermi electron and an
anti-neutrino and returns back to the previous state (28.3).

The reactionswith such nuclei have their own unique properties—they support the
cyclic processes. Then, only the one-step and reverse reactions are realized in these
cells: the neutron captures the Fermi electron and emits a neutrino, and then in the
next phase the daughter nucleus emits Fermi electron and an anti-neutrino to return
to the previous state, for example: 5725Mn → 57

26Fe + e− + νe. These processes can
continue for a long time. These types of the nuclei take part in direct and reverse
reactions in the correspondent critical cells and emit successively neutrinos and anti-
neutrinos.

28.3 Conclusion

Density oscillations in the critical layers lead to direct and reverse reactions that arise
in cells with the nucleus whose energy threshold is crossed by the Fermi electron
energy. So, the increase in pressure squeezes the cell, and the energy of the Fermi
electron rises in the cell. In the opposite phase at the drop in cell pressure, the Fermi-
electron energy decreases. Each type of the nuclei with the odd number of protons
or neutrons takes part in such direct and reverse reactions in corresponding critical
layers and generates neutrinos and anti-neutrinos. In this case, the direct and reverse
reactions can work as a permanent generator of neutrinos and anti-neutrinos for a
very long time. Such emissions, therefore, contribute to fast cooling of neutron stars.

Neutron resonances of a few-body type, for example, in three-body systems:
n + A1 + A2, lead to own oscillations in neighboring cells of the inner crust which
propagate in the envelopes [3].

Acknowledgements The researches are supported by the program IRNBR05236494 and the grant
AP05130476 of MES RK.
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Chapter 29
Five-Nucleon Systems with an
Hyperspherical Harmonic Method

Jérémy Dohet-Eraly, Michele Viviani, Alejandro Kievsky,
Laura Elisa Marcucci and Alex Gnech

Abstract A bound-state variational method based on fully-antisymmetric hyper-
spherical harmonics and an hyperradial Lagrange mesh is presented and applied to
the five-nucleon system with an effective nucleon-nucleon interaction, which artifi-
cially bounds this system.

29.1 Introduction

The hyperspherical harmonic (HH)method has been proved to be an efficient tool for
studying bound states, via the Rayleigh-Ritz variational principle, and low-energy
scattering, via the Kohn variational principle, of three- and four-nucleon systems (see
[1] for a review). Although themethod can be applied to systemsmade of an arbitrary
number of nucleons (A), the fast increase with A of computational needs, time and
memory, makes the application of the HHmethod to five- and more-nucleon systems
particularly challenging. This requires not only a well-balanced parallelization of
the computational tasks but also the improvement of the existing algorithms or the
development of new ones, valid for any number of nucleons. We report here some
progress made in the building of orthonormal bases of fully-antisymmetrized HH,
which have enabled us to apply the HH approach to five-body systems. In particular,
we present here the study of the five-nucleon ground state obtained from a central
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nucleon-nucleon potential [2], which unrealistically bounds this system. This work
is a preliminary step before the application of the fully-antisymmetric HH method
to the α + n scattering.

29.2 Hyperspherical Harmonics

For a five-nucleon system, the internal Jacobi coordinates can be defined as

x5−j =
√

2j

j + 1

(
rj+1 − 1

j

j∑
i=1

ri

)
, (29.1)

where ri is the coordinate of nucleon i and j = 1, 2, 3, 4. From them, the hyperradius
ρ reads

ρ =
√
x21 + x22 + x23 + x24. (29.2)

The hyperangular coordinates (Ω) are constituted by the angular parts of the
Jacobi vectors (x̂1, x̂2, x̂3, x̂4) and by the hyperangles (φ2,φ3,φ4) defined by

cosφi = xi√∑i
j=1 x

2
j

, (29.3)

where xi is themodule of xi and i = 2, 3, 4. In hyperspherical coordinates, the internal
kinetic-energy operator of five-nucleon systems reads [1]

T = −�
2

m

4∑
i=1

Δxi = −�
2

m

(
∂2

∂ρ2
+ 11

ρ

∂

∂ρ
+ Λ2(Ω)

ρ2

)
, (29.4)

where m is the nucleon mass, Δxi is the Laplacian associated with xi and Λ2(Ω) is
the grand angular momentum operator. The hyperspherical harmonics Y[K](Ω) are
eigenvectors of the grand angular momentum operator,

Λ2(Ω)Y[K](Ω) = −K(K + 10)Y[K](Ω), (29.5)

where K is the grand angular momentum. They are explicitly given by Kievsky et
al. [1]

YKLM
[K] (Ω) = [[[Yl1(x̂1)Yl2(x̂2)]L2Yl3(x̂3)]L3Yl4(x̂4)]LM

4∏
j=2

(j)PKj−1,lj
nj (φj),

(29.6)
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where L is the total orbital angular momentum, M is its projection on the z axis,
the functions Yl are the spherical harmonics,Kj = l1 + ∑j

i=2(2ni + li), the functions
(j)PKj−1,lj

nj are related to some Jacobi polynomials (see [1] for their explicit definitions),
the notation [K] stands for l1, l2, l3, l4,L2,L3, n2, n3, n4, and K = n2 + n3 + n4 +
lsum with lsum = l1 + l2 + l3 + l4. The HH have a well-defined parity given by π =
(−1)lsum .

The spin functions χSMS
S2S3S4

with total spin S and total spin projection MS can be
built by coupling the individual spin functions χ1/2,±1/2 of each nucleon,

χSMS
S2S3S4

= [[[[χ1/2χ1/2]S2χ1/2]S3χ1/2]S4χ1/2]SMS . (29.7)

The isospin functions ξTMT
T2T3T4

with total isospin T and total isospin projection
MT can be built in a similar way. Taking the spin and isospin into account, the
hyperspherical harmonics functions are defined by

Y
KLSTMMSMT
[KST ] (Ω) = YKLM

[K] (Ω)χSMS
[S] ξTMT

[T ] , (29.8)

where [S] stands for S2, S3, S4, [T ] for T2,T3,T4, and [KST ] for [K][S][T ]. These
functions are orthonormal and constitute a complete basis. However, they do not
respect the Pauli principle. To build antisymmetric states, one can apply to the HH
the antisymmetrization operator A = ∑

P sign(P)P, where the sum is over all per-
mutations of the nucleons. This requires to compute PχSMS

[S] and PξTMT
[T ] , which is

easily done by uncoupling the spin and isospin functions, and PYKLM
[K] . The grand

angular momentum K being invariant with respect to any permutation, one has

PYKLM
[K] (Ω) =

∑
[K ′]

aKL[K];[K ′]YKLM
[K ′] (Ω). (29.9)

The transformation coefficients aKL[K];[K ′] are obtained by recurrence relations [3],
which generalize the approach of [4] to an arbitrary number of particles. The anti-
symmetricHHdefined byY

KLSTMMSMT ,A
[KST ] = AY

KLSTMMSMT
[KST ] are not orthogonal and are

linearly dependent. The set of antisymmetric HH Y
KLSTMMSMT ,A
[KST ] is highly redundant

as shown in Table29.1. Considering only the antisymmetric HH allows a reduc-
tion of the basis size by a factor 60, approximately. To get an orthonormal basis of
antisymmetric states, a new strategy has been developed [3]. First, a complete set
of linearly-independent antisymmetric HH is extracted by a method based on their
evaluation on random coordinates. At this step, the transformation coefficients are
not needed. Then, the selected antisymmetric HH are built after having computed the
associated transformation coefficients. Finally, they are orthonormalized by means
of the Gram-Schmidt algorithm. The resulting HH are denoted by Y

KLSTMMSMT ,A,⊥
i

where i varies from 1 to the dimension of the antisymmetric space for quantum
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Table 29.1 Number of HH functions Y
KLSTMMSMT
[KST ] antisymmetric with respect to the exchange of

nucleons 1 and 2, i.e. with l4 + S2 + T2 odd, compared to the number of linearly-independent
fully-antisymmetric HH functions Y

KLSTMMSMT ,A
[KST ] for (L, S,T )π = (1, 1/2, 1/2)− and given

(M ,MS ,MT ), as a function of K

K 1 3 5 7 9 11 13

HH (l4 + S2 + T2
odd)

49 447 2241 8182 24,264 62040 141,800

HH (A) 1 7 36 134 399 1025 2349

Ratio 49 64 62 61 61 61 60

numbers (K,L, S,T ,M ,MS ,MT ). In practice, a truncated antisymmetric space can
also be used by, for instance, considering only the space spanned by the functions
AY

KLSTMMSMT
[KST ] with lsum smaller than some value lmax.

29.3 Variational Approach

The five-nucleon system is described by a microscopic Hamiltonian

H = T +
5∑

i>j=1

v(|ri − rj|), (29.10)

where v is the Volkov potential [2]. With this potential, the five-nucleon system has
one bound state characterized by (L, S,T )π = (1, 1/2, 1/2)− [5]. The Schrödinger
equation is solved variationally by expanding the wave function ψ as

ψ =
∑
Kij

cKijY
KLSTMMSMT ,A,⊥
i (Ω)

fj(ρ)

ρ11/2
, (29.11)

where the functions fj(ρ) constitue a Lagrange-Laguerre mesh regularized by
√

ρ
[6–9]. Using the Gauss-Laguerre quadrature associated with this mesh to compute
the potential matrix elements leads to a sparse Hamiltonian matrix. The ground-
state energies are given in Table29.2 (see the caption for computational details) and
compared with the results obtained with a nonsymmetrized HH basis [5]. The small
difference between both approaches is due to the truncation over the antisymmetric
HH space, restricted to lsum = 1.
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Table 29.2 Ground-state energy in MeV of the five-nucleon system computed with the Volkov
potential [2] and �

2/m = 41.47 MeV fm. The HH expansion (29.11) is restricted to K ≤ Kmax.
Twenty-five Lagrange-Laguerre functions have been used. The antisymmetric HH spaces are trun-
cated at lmax = 1

Kmax lmax = 1 [5]

1 −39.635 −39.635

3 −40.001 −40.001

5 −41.022 −41.022

7 −41.785 −41.785

9 −42.383 −42.384

11 −42.681 −42.682

13 −42.867 −42.868

15 −42.951 −42.952

17 −42.990 −42.996
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Chapter 30
S-factor and Scattering Parameters
from 3He + 4He → 7Be + γ Data

Xilin Zhang, Kenneth M. Nollett and Daniel R. Phillips

Abstract We use the next-to-leading-order (NLO) amplitude in an effective field
theory (EFT) for 3He + 4He → 7Be + γ to perform the extrapolation of higher-
energydata to solar energies.At this order theEFTdescribes the capture process using
an s-wave scattering length and effective range, the asymptotic behavior of 7Be and
its excited state, and short-distance contributions to the E1 capture amplitude.We use
a Bayesian analysis to infer themulti-dimensional posterior of these parameters from
capture data below 2MeV. The total S factor S(0) = 0.578+0.015

−0.016 keV b at 68%degree
of belief. We also find significant constraints on 3He–4He scattering parameters.

The solar-fusion reaction 3He + 4He → 7Be + γ has not been measured directly at
solar energies, due to the exponential suppression of the cross section there. Solar
models use cross sections for it based on extrapolations that are derived using poten-
tial models or R-matrix, and constrained by S-factor and 3He–4He scattering data, as
well as 7Be bound-state properties. Adelberger et al. [1] reviews the most prominent
efforts before 2011; additional evaluations have emerged since [2, 3].
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30.1 Formalism for E1 Capture

We use Halo Effective Field Theory (EFT) [4], treating 3He ( 12
+
) and 4He (0+) as

fundamental degrees of freedom and 7Be (ground state, GS, 3
2

−
) and 7Be∗ (excited

state, ES, 1
2

−
) as shallow p-wave bound states of the two. From the breakup energies

of 3He and 4He we infer an EFT breakdown scale Λ of about 200MeV. The energy
range E ∼< 2MeV implies a low-momentum scale Q of 70–80MeV, thus we have
Q/Λ ≈ 0.4. We systematically expand both scattering and reaction amplitudes in
this small parameter. The NLO S-factor for E1 capture to the 7Be GS can then be
written [5]

SP3/2
(E) = e2πη

e2πη − 1

8π

9

(
e Zef f

)2
kCω3C2

(P3/2)

(| S |2 +2 | D |2) , (30.1)

with the same result, mutatis mutandis for capture to the P1/2 ES. This is analogous
to our results for 7Be + p → 8B + γ [6, 7]. Here, kC ≡ αemZ2MR with MR the
reduced mass of the 3He–4He system; η ≡ kC/p is the well-known Sommerfeld
parameter; ω is the energy of the photon produced in the reaction; and the “effective
charge” Zef f ≡ (Z/M4 − Z/M3) MR. The factors C2

(P3/2)
(C2

(P1/2)
) are the squared

p-wave asymptotic normalization coefficients (ANCs) of the GS (ES) [7]. The two
reduced matrix elements, S and D, are for the E1 transition from initial s- and d-
wave states. At NLO, S consists of the well-known external capture contributions
plus a short-distance piece similar to R-matrix internal capture. We parameterize the
latter contribution to capture to the GS (ES) by a single number, L (L∗). The d-wave
reducedmatrix elementD is given by the standard asymptotic expression for external
capture, but integrated all the way to zero radius. Explicit formulae for S and D can
be found in [5, 7].

Capture reactions to the ground and excited state share the same initial state for
s-waves ( 12

+
), so S depends on the scattering length, a0 and effective range, r0. Up

to NLO there are then 6 EFT parameters, henceforth denoted as the vector g: C2
(P3/2)

(fm−1), C2
(P1/2)

(fm−1), a0 (fm), r0 (fm), L (fm), and L∗ (fm).

30.2 Data, Bayesian Analysis, and Results

There are six total S-factor data sets, here labeled Seattle, Weizmann, Luna, Erna,
Notre Dame (ND), and Atomki. There are four branching-ratio data sets: Seattle,
Luna, Erna, and Notre Dame. In order to ensure that the data used are within the
domain of validity of the EFT we only employ data with E ≤ 2MeV. This, together
with other data-selection criteria, yields 59 S-factor and 32 Br data, see Fig. 30.1.
(Details, including original references and a full listing of these data, will appear in
[5].) To account for the common-mode errorswe introduce normalization corrections,



30 S-factor and Scattering Parameters … 171

Fig. 30.1 Total S-factor and
branching-ratio results. The
data is denoted in the legend,
and summarized in [2]. The
green band shows the 68%
interval for S(E) and Br(E)

in our NLO Halo EFT
analysis. The mean is
denoted by the blue line

{ξJ : J = 1 . . . Nexp}, for the S-factor data. Such errors mostly cancel for Br data,
so this correction is not used for them.

We take the EFT expressions such as (30.1) and employ Bayesian analysis—
implemented via Markov-Chain-Monte-Carlo (MCMC) sampling—to infer proba-
bility distribution functions (PDFs) for the EFT parameters g from these data. Taking
box priors with ranges considerably larger than those suggested by naive dimensional
analysis for g, and gaussian priors for the ξJ ’s, we can write the desired PDF as
pr (g, {ξJ }|D; T ; I ) ≡ c exp

(−χ2/2
)
. The χ2 is non-standard because it includes

not only contributions from S-factor and branching-ratio measurements, but also the
effect of the normalization corrections [5, 7].

The MCMC sampling produces the full twelve-dimensional pdf for g and {ξJ }.
These samples can then be used to compute a histogram for S(E) and Br(E) at
any energy, E . Figure30.1 shows the resulting 68% intervals: the mean is denoted
by the blue line. The data is shown without re-scaling by the factors 1/(1 − ξJ ),
so Fig. 30.1 under-represents the quality of our final result. Adopting values for the
ξJ ’s that maximize their posterior pdf produces a distribution of χ2’s in our MCMC
sample that peaks at 1.04 per degree of freedom.

At NLO we have S(0) = 0.578+0.015
−0.016 keV b. The recommended value from [1]

is 0.56 ± 0.02(exp) ± 0.02(theory)—consistent with our result, but with an uncer-
tainty that is almost a factor of two larger. Other recent analyses are broadly consis-
tent, but also have somewhat bigger errors [2, 3]. We also find Br(0) = 0.406+0.013

−0.011.
There are two essential differences between this paper and another, recent, EFT eval-
uation of the same reaction [8]. First, we employ Bayesian methods. Second, we do
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Fig. 30.2 a0–r0–LT (all in
fm) 3D scatter plot based on
MCMC samples

not include existing scattering phase shift analyses in our constraints because their
systematic errors are poorly quantified.

Figure30.2 displays a three-dimensional scatter plot of the NLOMCMC samples,
projected to the a0–r0–LT subspace. Projecting further onto the a0-r0 subspace shows
that significant constraints on 3He–4He scattering parameters can be obtained from
the extant radiative capture data—in contrast to cases such as 7Be(p, γ) [6]. The
corresponding effective-range function can be tested against future high-quality 3He–
4He scattering data at low energy.

We conclude that data on 3He + 4He → 7Be + γ already tightly constrain impor-
tant aspects of the dynamics needed for extrapolation of this reaction’s S-factor: we
find quite small uncertainties on the s-wave elastic scattering parameters and the
ANCs of the final states. Better measurements of scattering cross sections will test
the EFT approach to the reaction presented here.
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Chapter 31
Analysis of 74−82Se Within the
Framework of the IBM and the
Few-Body Aspects

Su Youn Lee, Young Jun Lee and J. H. Lee

Abstract An analysis of 74−82Se within the framework of the interacting boson
model (IBM) and the few-body aspects are presented. Selenium isotopes with mass
number (A) ranging from 74 to 82 are typical vibrational nuclei that can be explained
by the U(5) limit of the IBM. However, they are not fully symmetrical nuclei, and
are represented by adding a perturbation term to account for the symmetry breaking.
These nuclei tend to exhibit properties of a harmonic oscillator and an asymmet-
ric deformed rotor. The low-energy level and B(E2) ratios are calculated using the
IBM via direct diagonalization of the perturbed Hamiltonian and the E(5) symme-
try breaking. Comparisons between the theoretical and experimental results of the
even-even selenium isotopes with A ranging from 74 to 82 are presented.

31.1 Introduction

Selenium compound, recognized by the World Health Organization and the U.N.
Food and Agriculture Organization in 1978, is composed of antioxidants and is an
important part of the immune system, especially in cancer prevention and anti-cancer
treatment. Selenium isotopes are created during the process of nuclear fission or beta
decay of uranium and plutonium, both of which are used as nuclear fuels in the
reactors.

The interacting boson model (IBM) proposed by Arima and Ichcello [1, 2] is
algebraically described in terms of the unitary group in six-dimensional space, with
U(6) as the highest group, and is divided into the three limits of dynamic symmetry
through group reductionwithU(6) as the group, which are theU(5) [2], SU(3) [3] and
O(6) limits [4]. They correspond to the geometric models of the harmonic oscillator
nuclei, deformed rotator nuclei, and asymmetric deformed rotor nuclei, respectively.
U(5) and O(6) limits have many similar properties in their eigenstate classification
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and energy spectra [5], and in some cases, two limits are mixed rather than separate
symmetries in a given nucleus. As the most noticeable difference between the two
limits, U(5) symmetry shows almost triplets of similar energy in 4+

1 , 2
+
2 and 0+

2 states,
while 0+

2 has a high energy of nearly 3+
1 state in O(6) symmetry. The energy ratio

between 2+
1 and 4+

1 is 2 in U(5) limit and 2.5 in O(6) limit [5].
74−82Se tend to show both limits [2, 6, 7]. The Hamiltonian in this work is com-

posed by adding the pairing term with Casimir operator of the O(6) limit to the
U(5) Hamiltonian [8] to explain the structure of the even-even selenium isotopes.
We measured the degree of symmetry breaking of 74−82Se nuclei and compared it to
the results of the experiment.

31.2 Theoretical Approach

In the IBM, collective properties about the low-lying energy level of an even-even
nuclei is explained by using the two types of boson creation and annihilation opera-
tors,which combines s-bosonwith zero angularmomentumandd-bosonwith angular
momentum of two. The Hamiltonian of U(5) limit is [5]

HU (5) = E0 + ε′(d† · d̃) +
∑

L=0,2,4

1

2
(2L + 1)

1
2 cL

[
[d† × d†](L) × [d̃ × d̃](L)

](0)

0

(31.1)
where d† and d̃ represent creation and annihilation of d-boson respectively. The basis
state expressed by the quantumnumber corresponding to the subgroup of group chain
in the U(5) limit of IBM is

|[N ] nd v nΔ L〉 . (31.2)

where N is total boson number, nd is d-boson number, while v is the number of
coupled d-bosons whose angular momentum is not zero; nΔ is triplet number of
d-boson whose angular momentum is zero and L is angular momentum.

The energy eigenvalue of U(5) limit is [5]

E = E0 + εnd + αnd(nd + 4) + 2βv(v + 3) + 2γ L(L + 1.) (31.3)

where, E0 is binding energy, while the relation between the parameters in (31.1) and
(31.3) is defined by [5]

ε = 1
190 (190ε

′ + 589c0 − 790c2 + 676c4),

α = 1
190 (133c0 − 170c2 + 132c4),

β = 1
380 (19c0 + 30c2 − 11c4),

γ = − 1
38 (c2 − c4).

(31.4)
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In this work, the Hamiltonian that represents the nucleus within the framework of
the IBM, where the properties of a harmonic oscillator and an asymmetric deformed
rotor occur simultaneously, is given as

H = HU(5) + λP6, (31.5)

to which the perturbation term Casimir operator P6 of O(6) limit is added

P6 = 1

4

∑

m

[
(−)md†

md
†
m − 1

2
s†s†

]
×

∑

m ′

[
(−)m

′
dm ′d−m ′ − 1

2
ss

]
, (31.6)

where, s†(s) is s-boson creation (annihilation) operator.
The eigenvalue is produced by SU(1,1) [2, 9], which is a boson quasi-spin group,

while the Casimir operator P6 of O(6) limit is the pairing operator of O(6) group.
The perturbed wave function is [8]

|[N ]ndvnΔL〉per = [N ]ndvnΔL〉
+ ∑

n′
dv

′n′
ΔL ′

〈[N ]n′
dv

′n′
ΔL ′|λP6|[N ]ndvnΔL〉

E−E ′ × |[N ]n′
dv

′n′
ΔL

′〉 , (31.7)

this corresponds only to first-order. Electric quadrupole operator is needed for cal-
culation of E2 transition rates

T (E2)
μ = α2[(d† × s̃) + (s† × d̃)](2)μ + β2[d† × d̃](2)μ , (31.8)

and the general expression of E2 transition rates between |i〉 and | f 〉 is

B(E2; i, Li → f, L f ) =
∣∣〈 f, L f ||T (E2)||i, Li 〉

∣∣2

2Li + 1
. (31.9)

The calculation results of the intraband and interband transition rates by the per-
turbed effect in this work are represented in [8, 10].

31.3 Nuclear Structures of 74−82Se Isotopes

The calculations of this study were applied to 74−82Se corresponding to the typical
nuclei, inwhich the twoproperties ofU(5) andO(6) symmetries in IBMappear simul-
taneously, and were compared with the experimental values. 74Se isotopes consist
of three proton bosons and five neutron bosons, i.e., eight bosons in total, in outside
excluding core. 76−82Se can also be used to calculate the total boson number. The
energy level corresponding to each spin is expressed with the parameters of (31.4).
The parameters can be determined from the experimental data of 74−82Se isotopes
and the parameters for 74−82Se are given in Table31.1. The energy levels calculated
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Table 31.1 Values of parameters for the energy spectra of 74−82Se (keV)

N ε α β γ λ

74Se 8 596.554 −10.199 5 6.093 −82.487
76Se 7 570.101 −0.803 −4 8.887 87.126
78Se 6 654.657 15.871 −23 14.846 −1758.1
80Se 5 1025.043 −47.265 0.135 7.794 544.57
82Se 4 1005.311 −47.775 13.243 3.198 100.34

Table 31.2 Energy spectra of 74−82Se of the present model and experimental data [13–17] (keV)
74Se 76Se 78Se 80Se 82Se

Spin Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp.

2+
1 659 635 641 559 728 614 883 666 911 655

4+
1 1414 1363 1406 1332 1634 1503 1797 1701 1830 1735

6+
1 2267 2231 2296 2262 2716 2547 2742 2896 2758 3145

8+
1 3217 3198 3310 3270 3976 4121 3718 3636 3695 3519

2+
2 1244 1269 1157 1216 1218 1309 1579 1731 1741 1732

4+
2 1999 2108 1905 2026 2063 2191 2399 2550 – –

6+
2 2852 2987 2777 2976 3086 3140 – – – –

3+
1 1902 1884 1763 1689 1826 1854 2274 2121 – –

5+
1 2705 2662 2564 2489 2729 2735 – – – –

7+
1 3606 3525 3490 3432 3810 3704 – – – –

0+
2 1071 854 1131 1122 1500 1499 1483 1479 1437 1440

2+
3 1689 1838 – – – – – – – –

using (31.3), by substituting the values of the determined parameters fromTable31.1,
are displayed in Table31.2 and Fig. 31.1 in comparison to the experimental results.

TheHamiltonian proposed in this studywas successfully reproduced in the energy
spectrum of the selenium nucleus. The energy spectrum of the nucleus corresponding
to the typical U(5) limit is similar in E(4+

1 ), E(2+
2 ) and E(0+

2 ), but 78Se shows that
E(0+

2 ) has a higher value near E(3+
1 ). This means that 78Se tends to have the U(5)

limit energy spectrum. Additionally, the trend of ratio between each energy level,
R4/2(E(4+

1 )/E(2+
1 )) of 74Se is 2.15, and the experimental value is 2.15. In the U(5)

limit, R4/2 is 2 and in the O(6) limit, R4/2 is 2.5. Then, R0/2(E(0+
2 )/E(2+

1 )) is 2.06
for 78Se and 2 and 4.5 for U(5) and O(6) limit, respectively. 78Se has R4/2 of 2.24
and an experimental value of 2.45. 78Se values are between the U(5) and O(6) limit.

The E2 transition rates are calculated from [10] and arranged in Table31.3. The
parameters α2 and β2 of (31.8) can be determined from the experimental values of
the E2 transition rate and the electric quadrupole moment. However, in this study,
the determination of parameters α2 and β2 was not necessary due to the transition
rate between the states and the ratio between B(E2; 2+

1 → 0+
1 ). The parameter λ



31 Analysis of 74−82Se Within the Framework … 179

Fig. 31.1 Energy spectra of the U(5) → O(6) limit and the corresponding experimental data for
74−82Se [13–17]

Table 31.3 Transition rates
B(E2;Li→L f )

B(E2;2+
1 →0+

1 )
in 74−82Se, compared to the calculations of this work

and the experimental data [18–20]

Li = 4+
1 L f = 2+

1 Li = 2+
2 L f = 2+

1 Li = 0+
2 L f = 0+

1

Theor. Exp. Theor. Exp. Theor. Exp.
74Se 2.01 1.92 2.01 1.14 0.83 1.94
76Se 1.62 1.62 1.62 1.43 0.55 0.11
78Se 1.18 1.45 1.18 0.99 0.69 0.86
80Se 1.44 1.42 1.62 1.43 0.67 0.28
82Se 1.43 1.1 – – 0.37 0.21

that is included in the E2 transition rate was determined by comparing with the
experimental data in B(E2;Li→L f )

B(E2;2+
1 →0+

1 )
for 74−82Se. λ is a parameter for the perturbation

effect as shown in Table31.1. This means that 78Se has a greater symmetry breaking
than 74,76Se. The calculation of 74,76Se can be done through a process similar to
that for 78Se. The results are presented in Fig. 31.1 and Table31.3. R4/2 of 80,82Se
is 2.03 and 2.01 respectively, and R0/2 is 1.68 and 1.58, respectively. Particularly
noticeable from the theoretical values of the energy of 74−82Se is that the greater the
spin, the greater the B(E2) value, which is one of the characteristics [12] shown
in the critical point symmetric nucleus [11] between the U(5) and O(6) limit. This
trend is a characteristic that cannot be explained by a single limit such as the U(5)
and O(6) limit, but it has been reproduced by adding perturbation term in this study.
80,82Se are nuclei that exhibit typical U(5) symmetry and break symmetry in the O(6)
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direction. From the λ values calculated in this study, the values of λ for 74,76Se are
82.487 keV and 87.126 keV, respectively. A comparison shows that 78Se is more
symmetry breaking in the U(5)-O(6) direction than 74,76Se.

31.4 Summary

To account for the energy levels and E2 transition rates of 74−82Se, a perturbation term
P6 was added to the U(5) Hamiltonian. The U(5) symmetry proposed here does not
affect the energy spectrum by considering the first-order perturbation, but it allows
for some E2 transitions that are forbidden in U(5) symmetry through symmetry
breaking. 74−82Se are identified from the energy spectrum and the parameter λ of the
perturbation term, in which the properties in the direction of the U(5) to O(6) limit
are shown. There was not sufficient experimental data on the E2 transition of 82Se
to discuss the U(5) symmetry breaking. Calculations using IBM-2(proton-neutron
interacting bosonmodel) to explain the nuclear structure that separates proton bosons
from neutron bosons will be an interesting subject for future research.

Acknowledgements This work was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2017R1D1A3A03080968).
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Chapter 32
Microscopic Optical Potentials from First
Principles

J. Rotureau, P. Danielewicz, G. Hagen, G. Jansen, F. Nunes and T. Papenbrock

Abstract We construct nucleonic microscopic optical potentials by combining the
Green’s function approach with the coupled-cluster method for 40Ca and 48Ca. We
work with the chiral nucleon-nucleon and three-nucleon interaction NNLOsat which
reproduces the charge radii of 40Ca and 48Ca. The overall form of the neutron scatter-
ing cross section is reproduced for both nuclei, but the imaginary part of the calculated
potential, which reflects the loss of flux in the elastic channel, is negligible. The lat-
ter points to many-body correlations that would appear beyond the coupled-cluster
truncation level considered in this work. We show that, by artificially increasing the
parameter η in the Green’s function, practical results can be further improved.

32.1 Introduction

Nuclear reactions are the primary experimental tool to study nuclei. With the recent
progress in the development of rare-isotopes beams (RIBs), regions of the nuclear
chart, previously out of reach, are now becoming accessible. Even more progress is
expected, with future projects at RIB facilities, to explore systems far from stability
[1–3]. In parallel to the progress on the experimental side, efforts should be pursued
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on the theoretical front to develop or extend reaction models to nuclei far from
stability. In reaction theory, one usually reduces the many-body problem to a few-
body one where only the most relevant degrees of freedom are retained [4]. In that
case, the Hamiltonian is given in terms of effective interactions, the so-called optical
potentials, among the different clusters. Traditionally, the optical potentials have been
constrained by data, especially data on stable isotopes. As a consequence, using these
potentials to study exotic nuclei is unreliable and has uncontrolled uncertainties. It
is then critical, in order to advance the field of reactions, to connect the effective
interaction to an underlying microscopic theory, so that extrapolations to exotic
regions are better under control, together with rigorous assessment of uncertainties.

In this paper, we present ab-initio calculations of nucleon-nucleus optical poten-
tials by combining the Green’s function (GF) approach with the coupled-cluster
(CC) method. We will show results for the doubly magic nuclei 40Ca and 48Ca with
the chiral nucleon-nucleon (NN) and three-nucleon (3NFs) interaction NNLOsat.
The optical potential enters the Dyson equation together with the one-body Green’s
function. Assuming some approximations for the self-energy, the standard way of
obtaining the optical potential is to iterate the non-linear Dyson equation until a self-
consistent solution is obtained. This is known as the self-consistent Green’s function
approach [5–8]. Our approach here differs in that the optical potential is obtained
directly by inverting the Dyson equation [9, 10].

This paper is organized as follows. In Sect. 32.2, we briefly revisit the formalism
of the Green’s function and the coupled-cluster method. In Sect. 32.3 we present
results for the bound states in 41Ca and 49Ca and cross sections results for the neutron
elastic scattering on 40Ca and 48Ca. Finally, we conclude and discuss future possible
applications in Sect. 32.4.

32.2 Formalism

Let us consider a nucleuswith A nucleons. The corresponding single-particleGreen’s
function has matrix elements

G(α, β, E) =
〈
Ψ0|aα

1

E − (H − E A
gs) + iη

a†β |Ψ0

〉

+
〈
Ψ0|a†β

1

E − (E A
gs − H) − iη

aα|Ψ0

〉
, (32.1)

where α and β represent single-particle states, and |Ψ0〉 is the ground state of the
nucleus with energy E A

gs solution of the Hamiltonian H . We work here with the
single-particle states of the Hartree–Fock (HF) potential generated by H and we
recall that the HF basis is a good starting point for coupled-cluster calculations and
that the HF Green’s function denoted as G(0) is a first order approximation to the
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Green’s function (32.1). By definition, the parameter η is such that in the physical
limit η → 0+.

The Green’s function fulfills the Dyson equation

G(α, β, E) = G(0)(α, β, E) +
∑
γ,δ

G(0)(α, γ, E)Σ∗(γ, δ, E)G(δ, β, E). (32.2)

Here, Σ∗(γ, δ, E) is the self energy, which can be obtained from the inversion of
(32.2). Finally, one obtains the optical potential as Σ ′ ≡ Σ∗ +U where U is the
HF potential. For E ≤ E A

gs , Σ ′ in (32.2) has a discrete number of solutions which
correspond to the bound states in the A+1 nucleus. For E ≥ E A

gs , Σ
′ is the optical

potential for the elastic scattering from the ground state of the target A [11, 12]. The
optical potential is non-local, energy-dependent and complex [12]; for E ≥ E A

gs , its
imaginary component describes, by construction, the loss of flux due to absorption
into channels other than the elastic channel.

In this paper, the optical potential is obtained by inverting the Dyson equation
(32.2) after a direct computation of the Green’s function (32.1) with the coupled-
cluster method [13]. In coupled-cluster theory, the ground state is represented as

|Ψ0〉 = eT |Φ0〉, (32.3)

where T denotes the cluster operator which is expanded in the number of particle-
hole excitations. In practice, T is truncated. In this paper all results are obtained from
coupled-cluster with singles and doubles (CCSD) for which all operators beyond
2p − 2h are neglected. For a more detailed account on CC and the construction of
the GF with the CC we refer the reader to [9, 10, 13, 14].

Our goal is to compute the optical potential for elastic scattering at arbitrary
energies. However, as η → 0+, theGreens’ function (see (32.1)) has poles at energies
E = (E A+1

i − E A
gs) (with E A+1

i the eigenvalues of the A+1 system), which make
the numerical calculation unstable. In order to avoid this issue, we consider [9],
an analytic continuation of the Green’s function in the complex-energy plane by
working in the complex Berggren basis (generated from the HF potential), which
includes bound-, resonant, and discretized non-resonant continuum states [15–19].
In that case, the Green’s function matrix elements for E ≥ 0 smoothly will converge
to a finite value as η → 0+.

32.3 Results

Before presenting results for elastic scattering, we focus on the bound states in 41Ca
and 49Ca. As we wrote previously, we work with the NNLOsat chiral interaction
[20] which reproduces the binding energy and charge radius in both systems [21,
22]. Table32.1 shows the calculated energy for bound states in 41Ca and 49Ca as
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Table 32.1 Energies (in MeV) for bound states in 41Ca and 49Ca calculated with the particle-
attached equation of motion (PA-EOM) [13, 14] CCSD using the chiral NNLOsat interaction as a
function of Nmax (see text)

Nmax E(7/2−) E(3/2−) E(1/2−)

41Ca

12 −7.35 −3.47 −1.31

14 −7.62 −3.87 −1.80

14 (N3 = 16) −7.84 −4.07 −2.15

Exp −8.36 −6.42 −4.74
49Ca E(3/2−) E(1/2−) E(5/2−)

12 −3.88 −2.02 −0.37

14 −4.35 −2.40 −1.00

14 (N3 = 16) −4.56 −2.45 −1.42

Exp −5.14 −3.12 −1.56

a function of Nmax . First, we perform HF calculations in a single-particle basis
that employs a mixed representation of harmonic oscillator (we include harmonic
oscillator shellswith 2n + l ≤ Nmax ) and discretizedBerggren states [10].We denote
N2 and N3, the cutoffs of the interaction terms defined respectively as the maximum
number of quanta allowed in the relative motion of two nucleons and three nucleons.
In all calculations here, we always take N2 = Nmax and N3 is taken equal to Nmax ,
except for the most extensive calculations considered here where Nmax = 14 and
N3 = 16.Moreover, the three-nucleon terms in NNLOsat are truncated at the normal-
ordered two-body level in the HF basis [23]. We work at �ω = 16MeV. For both
nuclei, there are only three bound states supported by the NNLOsat Hamiltonian.
As expected (see Table32.1), convergence is slower for the higher-energy states: in
the case of 41Ca, the difference between the energies for (Nmax , N3) = (14, 14) and
(14, 16) is∼ 220keV for the ground-state, whereas it is∼350 keV for the Jπ = 1/2−
second excited state. For 49Ca, the difference is ∼210 keV for the ground state and
∼420 keV for the Jπ = 5/2− excited state. Even though the absolute binding energy
is underestimated in the CCSD approximation, when compared to experiment the
neutron separation energies are consistently within 600 keV of the experimental
values.

Let us now discuss predictions for the neutron elastic cross section for 40Ca and
48Ca at respectively 5.17 and 7.81MeV and compare with experimental data. In both
cases, one expects the scattering phase shifts obtained from the calculated optical
potential to have a finite imaginary part which reflects the loss of flux in the elastic
channel. For instance, in the case of neutron scattering on 40Ca at E= 5.17 MeV,
there is a potential absorption due to excitation of 40Ca to either its first excited
state E(0+) = 3.35MeV or second excited state E(3−) = 3.74MeV. However, our
calculations yield a negligible value for the absorption in all partial waves [10]. The
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position of the 0+ excited state (which is known to have significant 4p − 4h com-
ponents) is not properly captured in the EOM-CCSD approximation: its calculated
energy is at 15.98MeV above the ground state. This implies that absorption due to the
excitation to the 0+ excited state cannot be captured at that level of truncation in the
CC.On the other hand, the energy of the second excited state is well reproduced at the
EOM-CCSD level with EEOM−CCSD(3−) =3.94MeV. Consequently, potential exci-
tation to the second excited state could in principle be accounted for. The fact that the
calculated absorption is nevertheless negligible implies that the CCSD and PA-EOM
wave functions are not sufficiently correlated. In other words, correlations beyond
the singles and doubles truncation level are needed to account for the absorption due
to the target excitation. A similar situation occurs for the neutron scattering off 48Ca
at 7.81 MeV: in that case, the position of the first excited state E(2+) = 3.83MeV is
fairly well reproduced at the EOM-CCSD level with EEOM−CCSD(2+) =4.65MeV,
but the calculated absorption is still negligible pointing out again to a lack of corre-
lations in the CCSD and PA-EOM wavefunctions.

In order to make up for the lack of absorption at the CCSD level, one could
artificially increase it by considering finite values of η instead of taking the limit
η → 0+ (see (32.1)). In the following, we explore the impact of using finite η values
for the neutron elastic scattering on 40Ca and 48Ca.

The calculated differential elastic cross sections for neutron scattering on 40Ca
at E= 5.17MeV and on 48Ca at 7.81 MeV are shown in Fig. 32.1. All calculations
here correspond to the largest model space discussed previously that is, Nmax = 14
and N3 = 16. For comparison, we also show the angular distributions calculated with
the phenomenological Koning–Delaroche (KD) potential [24] and also the measured
cross sections (errors on the data are smaller than the symbols). As expected, when
η increases, the elastic scattering cross section decreases with a more pronounced
(relative) reduction at larger angles and the agreement with data improves. The level
of disagreement between the experimental data and the result obtained with KD is
an illustration of the level of accuracy that can be expected from a phenomenological
interaction. We want to point out that the value of η we use should not be interpreted
as the effective width of the states, but rather as a means to compensate for the
truncations inherent to our approach.

32.4 Conclusions

We construct microscopic nucleon-nucleus optical potentials by combining the
Green’s function approach with the coupled-cluster method at the singles and dou-
bles truncation level. By working in the Berggren basis, we obtain an analytical
continuation of the Green’s function in the complex-energy plane which allows to
efficiently solve the Dyson equation and compute the optical potential.

We showed applications for 40Ca and 48Ca with the chiral NN and 3NF interaction
NNLOsat. The choice of this interaction was motivated by the fact that it allows for
a good description of masses and radii in a wide mass-range and, furthermore, it
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Fig. 32.1 Differential elastic cross section for 40Ca(n, n)40Ca at 5.17MeV (top) and 48Ca(n, n)48Ca
at 7.81MeV (bottom) calculated with the NNLOsat interaction. Calculations are shown for η =
0, 2, 5MeV. and results obtained using the KD potential are shown for comparison. Data points
are taken from [24]

reproduces the charge radii of 40Ca and 48Ca. We first showed results for the bound
states in 41Ca and 49Ca and then presented applications to the neutron scattering.
We have seen that the overall form of the scattering cross section is reproduced
for both nuclei. However, at that level of truncation, the absorption is practically
negligible which points to a lack of many-body correlations in the wave functions
of the coupled-cluster method at the singles and doubles approximation level. We
showed that, by increasing the parameter η in the Green’s function, results can be
somewhat improved.

This work can be extended further by considering higher-order correlations in the
coupled-cluster Green’s function calculations as was recently done for the dipole
response of 48Ca [25], and excited states in 101Sn [26]. It would also be interesting
to investigate optical potentials constructed by starting with the singles and doubles
coupled-cluster Green’s function potential and add an ad hoc polarization terms
whichwould effectively account for themissing physics such as collective excitations
and formation of compound nucleus.
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Chapter 33
Beryllium-9 in Cluster Effective Field
Theory

Paolo Andreatta, Carlo A. Manzata, Chen Ji, Winfried Leidemann
and Giuseppina Orlandini

Abstract It is aimed to describe the nucleus of 9Be in anα-α-neutron cluster model,
where theα-α andα-neutron interactions are determined via an effective field theory
(EFT) for halo nuclei (halo-EFT). Here, only the α-α case is discussed more detailed
and hence results are given forα-α phase shifts and for the ground-state energy of 12C
as a threeα cluster. The calculation of the 12Cwave function ismade via an expansion
on nonsymmetrized hyperspherical harmonics (NSHH) in momentum space.

33.1 Introduction

The nucleus of 9Be is a typical example of a multi-nucleon system that can be
described by a cluster ansatz, namely by two α-particles plus an additional neutron.
Excitations of 9Be can still be treated in such an approach if the excitation energy is
sufficiently lower than the first excitation energy of the α-particle of about 20MeV.
Our final aim is to make use of such a cluster ansatz not only for 9Be but also for
its low-energy excitations into the n-α-α continuum with a future plan to calculate
low-energy 9Be photodisintegration.

In order to determine α-α and α-n interactions we use an effective field theory,
named cluster (or halo) EFT [1, 2]. The theoretical ansatz to describe these poten-
tials is given in Sect. 33.2, where also the momentum space NSHH calculation is
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briefly illustrated. Section33.3 contains results for α-α phase shifts in comparison
to experimental data and for the binding energy of 12C as a three-α cluster. In both
cases the regulation cutoff dependence of the results is discussed.

33.2 Halo-EFT Approach

In the n-α-α system the interaction between the n-α is dominated by the 3/2−
p-wave interaction; whileα-α interaction is driven by a combination of s-wave short-
range interaction and a long-range Coulomb repulsion. The strengths and ranges of
the inter-cluster interactions determine the two-body scattering phase shifts, which
can be extracted from scattering experiments. In general, one can introduce partial-
wave decomposition to themomentum-space potential to emphasize on the dominant
partial-wave channel with an angular momentum l,

Vl(p, p
′) = plp′lg(p)g(p′)

1∑

i,j=0

(2l + 1)p2iΩijp
′2jPl(p̂ · p̂′) , (33.1)

where the Ω matrix is defined as

Ω =
(

λ0 λ1

λ1 0

)
. (33.2)

The potential Vl(p, p′) is in a separable form, which represents only the short-range
parts of the interactions. There one includes the regulator g(p), which modifies the
large-momentum (short-distance) behavior of Vl(p, p′), such that g(p = 0) = 1 and
g(p → ∞) = 0. In principle, the indices i and j appearing in (33.1) could be larger
than 1. Since we are only interested in the potential at very low energies they are
limited in order to get a phase shift expansion up to the effective range order setting
l = 0 and l = 1 for α-α and α-n interactions, respectively. Besides Vl , a long-range
Coulomb interaction exists in the α-α system.

The parameters λi were determined by solving the corresponding scattering states
with the Lippmann-Schwinger equation. For the α-α interaction, in order to include
the Coulomb final-state interactions, we proceed along the lines of [3] separating the
T -matrix in two parts

T (p,p′) = TC(p,p′) + TSC(p,p′), (33.3)

where TC(p,p′) is a genuine Coulomb T -matrix, whereas TSC(p,p′) originates from
a Coulomb-modified short-range amplitude. To facilitate the calculation we take
here the step function g(p) = Θ(Λ − p) as regulator. Finally, λ0 and λ1 are fitted
to describe the experimental data for scattering length and effective range of α-α
scattering. More details on the calculation are given in [4].
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TheNSHH expansion inmomentum space is similar to that in coordinate space [5,
6], but instead of a hyperradius ρ one has a hypermomentum Q. Since our EFT
potentials do not depend only on the relative momentum p, but also on a relative
momentum p′ one needs to introduce a hypermomentum Q′ and additional primed
hyperspherical variables.

33.3 Results

In Fig. 33.1 we show results for theα-α phase shifts obtained with our EFT potential.
One finds a very nice agreement with experimental data [7] for the regulation cutoffs
withΛ = 120 and 160MeV,whereas the phase shifts forΛ = 90MeVstart to deviate
from the experimental datawith the increase of scattering energy due to the remaining
regularization effects. Note that there appears an upper limit forΛ due to theWigner
bound condition. In Fig. 33.1 one also sees the effect of the 8Be resonance at an
energy of about 0.2MeV. In fact at this energy the phase shift jumps from 0 to π/2
and a narrow resonance peak appears in the α-α s-wave scattering cross section (see
inset of figure). In Fig. 33.2 we show the α-α-α ground-state energy, there is a rather
flat minimum at about Λ = 160MeV with a binding energy of almost 1MeV and
one observes that below Λ = 110MeV and above about Λ = 195MeV the three-α
system becomes unbound.

Fig. 33.1 α-α phase shift δ0 obtainedwith theα-α potential in comparison to experimental data [7];
in the inset α-α s-wave cross section for Λ = 200MeV
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Fig. 33.2 Ground-state
energy Eg.s. of the α-α-α
system as function of Λ
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Chapter 34
Cluster Configuration Effects in the
Elastic Scattering of Boron Isotopes 8B,
10B, 11B and 12B on 58Ni
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R. Lichtenthaler Filho, K. C. C. Pires, U. Umbelino, S. Appannababu,
N. Added, D. S. Monteiro and V. Morcelle

Abstract In this contribution, we report on effects due to the cluster configuration
of boron isotopes, 8B, 10B, 11B and 12B, in the elastic scattering on 58Ni target at
energies close to the Coulomb barrier. The results of coupled channel calculations,
where the different configurations of the boron isotopes, 8B= 7Be+p, 10B= 6Li+α,
11B= 7Li+α and 12B= 11B+n, have been attributed to different effects in the angular
distributions for the elastic scattering process, are present.

34.1 Introduction

The investigation of nuclear structure and reaction mechanisms induced by radioac-
tive nuclei (proton-rich and neutron-rich) has attracted much interest in the recent
years [1, 2]. In particular, elastic scattering and breakup measurements are good
tools to investigate the unusual static features, as extended halos and neutron skin,
present in some light nuclei, and as dynamic effects related to coupling between
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Table 34.1 The configuration of each nucleus of the boron isotope chain and its relation with the
important effect and/or channel in the reaction

Projectile Spin Cluster
configuration

Binding
energy (MeV)

Quadrupole
moment (fm2)

Channel

8B 2+ 7Be+p 0.138 6.83 Breakup
10B 3+ 6Li+α 4.462 8.47 Spin-orbit
11B 3/2+ 7Li+α 8.866 4.07 Inelastic + reo
12B 1+ 11B+n 3.337 1.32 Transfer

different channels [1, 3, 4]. These statics and dynamics effects are manifested in
the angular distribution for the elastic scattering process at energies close to the
Coulomb barrier. By comparing the experimental angular distributions with coupled
channel calculations it is possible to infer about the importance of these effects. For
instance, for weakly-bound projectile, with halo structure, correlations of the valence
particles can significantly distort the shell structure and/or the collective properties
of the nucleus with drastic effect in the angular distribution. Cluster configurations
can produce strong couplings to the continuum introducing characteristic dynamic
polarization (attractive or repulsive) in the optical potential, which is not present for
elastic induced by strongly-bound projectiles. For nuclei with halo structure and low
binding energy, the breakup and transfer reactions may strongly compete with the
elastic scattering process. The effect of the breakup on the elastic scattering would
be damping the Fresnel peak in the elastic angular distribution at energies close to
the Coulomb barrier [5]. Tightly-bound nuclei can also have cluster configurations,
but in this case, the effect in the angular distribution may be more related to the
deformation. Elastic scattering induced by deformed nuclei may have strong effect
of couplings with inelastic channels. Reorientation effects can also play a role in the
description of the elastic process. In this contribution we report on the investigation
of these static and dynamic features in the elastic scattering of the boron isotopes, 8B,
10B, 11B and 12B on 58Ni target. The boron isotopes chain consists of nuclei with quite
diverse cluster configuration as shown in Table34.1. For instance, the proton-rich
nucleus 8B has a very low proton binding energy, Sp = 0.138MeV, for the 7Be+p
decay, while 11B is quite tightly-bound with binding energy of Sα = 8.884MeV. The
10B is a well deformed nucleus, with the largest spin (3+) among boron isotope chain.
The 12B nucleus is radioactive with a low deformation, low spin and with binding
energy of Sn = 3.370MeV for the 11B+n decay. Each of the configuration of the
boron isotopes can lead to a different prevalent effect in elastic scattering. In this
contribution, we present a discussion about possible correlation between configura-
tion of the projectile and dynamic effects in the angular distribution for the elastic
process. In addition, new preliminary experimental data on the elastic scattering of
12B+58Ni, are present.
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34.2 Systematic for Boron Isotopes Elastic Scattering

The data for the elastic scattering of 8B+58Ni is presented in [4]. The 8B has
already been established to have halo configuration. Due to its low binding energy
(Sp = 0.138MeV), this nucleus can easily breaks up (7Be+p) in the presence of an
electromagnetic interaction of the target. The effect of the breakup channel in the
angular distributions of the elastic scattering on 58Ni target was investigated through
CDCC (Continuum Discretization Coupled Channel) calculations in the [7, 8]. This
effect showed to be very important, indicating that the most striking feature in the
elastic scattering distribution for the 8B+58Ni system is the low binding energy of the
8B projectile. The 10B nucleus, by its turn, is described as 6Li+α cluster configura-
tion, with a binding energy of Sα = 4.461MeV. It also has the largest spin among the
Boron isotopes, Jπ = 3+. The results of the coupled channel calculation analysis for
the elastic scattering of 10B+58Ni system, at energies close to theCoulombbarrier, are
reported in [9]. Despite of the large deformation, Q(10B)= 8.47 fm2, of this nucleus,
the most important effect for the description of the elastic scattering was the spin-
orbit interaction [9]. The other stable boron isotope, 11B, is a tightly-bound nucleus
with predominant 7Li+α cluster configuration (Sα = 8.664MeV). This nucleus can
be considered one of the most strongly bound nucleus and this high binding energy
prevents the breakup channel to be important. Data for elastic scattering of 11B+58Ni
were obtained at energies close to the barrier and reported in [10]. The analysis of
the elastic scattering angular distributions with coupled channel calculation showed
that inelastic channels and reorientation of the 11B, due to its quadrupole deforma-
tion, Q(11B)= 4.07 fm2, were important to describe the elastic scattering data. To
complete the systematic investigation on the elastic scattering with boron isotopes
on nickel target, we recently measured angular distributions for the 12B+58Ni system
at energies close to the barrier (30.0 and 33.0MeV). The neutron-rich 12B isotope
can be described as 11B+n cluster configuration (Sn = 3.370MeV). This nucleus is
radioactive and with lifetime of about 20ms. Its configuration resembles more the
proton-rich isotope 8B than the other two stable isotopes, 10B and 11B. The neutron
binding energy put this nucleus in the border between weakly- and tightly-bound
nuclei. In this contribution we present some partial and preliminary results for the
elastic scattering of 12B+58Ni. The full analysis is being published in [11]. The
12B radioactive beam was produced by the RIBRAS system installed in the Physics
Institute of the University of São Paulo, Brazil [12]. The angular distributions were
analyzed in the terms of coupled channel calculations. By considering the couplings
to inelastic channels, reorientation and spin-orbit terms, we were able to describe
the angular distribution measured at 30.0MeV. However, these channels were not
sufficient to describe the experimental angular distribution measured at the energy
of 33.0MeV. A better agreement between the calculation and data at 33.0MeV was
obtainedwhen transfer reactionswere consideredwith CRC (Coupled Reaction Cou-
pled) calculations. The main results for these calculations are shown in Fig. 34.1. As
can be observed, the 1-n transfer, (12B,11B) Q = +5.629MeV, has been found to be
of particular importance due to the 11B+n configuration for the 12B.
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Fig. 34.1 Angular
distributions for the
12B+58Ni system at 30.0 and
33.0MeV. The curves
correspond to coupled
channel calculations with the
channels and effect indicated
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34.3 Summary

Wehave investigated the cluster configuration effects in the elastic scattering of boron
isotopes, 8B, 10B, 11B and 12B, nuclei as projectiles on 58Ni target, with coupled-
channel calculations. The proton and neutron rich boron isotope, 8B and 12B are
radioactive with short lifetime, of 770 and 20ms, respectively. The possibility of
producing radioactive beams out of these nuclei has offered new and unique oppor-
tunities for research in nuclear physics. The description of the cross sections for
elastic scattering has shown to be sensitive to the cluster configurations of the pro-
jectiles. The different configurations of the boron isotopes have shown to produce
different effects in the angular distributions for the elastic scattering.
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Chapter 35
Inclusive Breakup Reaction of a
Two-Cluster Projectile on a
Two-Fragment Target: A Genuine
Four-Body Problem

M. S. Hussein, C. A. Bertulani, B. V. Carlson and T. Frederico

Abstract We develop a four-body model for the inclusive breakup of two-fragment
projectiles collidingwith two-fragment targets. In the case of a short lived projectiles,
such as halo nuclei, on adeuteron target, themodel allows the extractionof the neutron
capture cross section of such projectiles. We supply examples.

35.1 Introduction

The ongoing research on the reaction of radioactive nuclei has supplied us with
invaluable information about the structure of nuclei near the drip line. Further, they
produced important capture reactions and other direct reactions needed to fill the gaps
in the chain of reactions in the r and s processes in astrophysics. The neutron capture
reactions referred to above involve capture by stable nuclei.Neutron capture reactions
on radioactive nuclei, especially near the drip nuclei are not available. A possible way
to obtain these cross sections is through indirect hybrid reactions. One such method
is the Surrogate Method [1]. So far this method was mostly used to obtain neutron
capture cross section of fast neutrons by actinide nuclei for use in research in fast
breeder reactors. Recently, the Surrogate Method was proposed to obtain the neutron
capture cross section of radioactive nuclei [2]. A recent review gives an account of the
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(d, p) inclusive breakup reaction which is the basis of the Surrogate Method [3]. The
theory employed for this is the Inclusive Nonelastic Breakup (INEB) Reaction theory
[4–8]. In this contribution we report on recent work that extends the application of
the INEB to the case of capture by a radioactive target or projectile. In our approach
we consider first the three-body case of a non-cluster projectile interacting with a
two-cluster target, such as the deuteron. In this case the reaction is a neutron pickup.
Through the measurement of the inclusive proton spectrum one is able to extract the
neutron capture cross section. This cross section is not the free capture cross section
as several factors come into play owing to the fact that the neutron is bound in the
deuteron. The second case we consider is the four-body one involving three-cluster
projectile and no-cluster target [9]. In this contribution we propose an extension of
the theory of [9] to the case of a two-fragment projectile on a two-fragment target.
One such reaction involves the one proton halo nucleus 8B, 8B + d → p + 9B or
p+ (7Be+ d). So the inclusive proton spectrumwill exhibit two groups a low proton
energy one associated with the incomplete fusion 7Be + d and a higher proton energy
group connected with the capture reaction. We also consider the one-neutron halo
projectiles on the deuteron target, 11Be + d and the 19C + d. Our work reported
here should be useful to assess the applicability of the INEB theory to isotopes such
as 135Xe whose lifetime is 9.8h, which is a notorious nuclear reactor poison as its
thermal neutron capture cross section is huge, 2.5×106 barns. Several other nuclei
exhibit very large thermal neutron capture cross sections [10], whose explanation
was attempted in [11]. Our aim is to use 135Xe as a benchmark to test the inclusive
proton spectrum in a reaction of the type d + 135Xe → p + 136Xe.

35.2 Two-Fragment Projectile on a One-Fragment Target
Nucleus

We will consider the scattering of a radioactive projectile with a two-cluster target
(deuteron). Let us take 135Xe as an example. Its life time is 9.6h (very long). The
reaction we want to describe is 135Xe + d → p + 136Xe. A pickup reaction. The
spectrum of the protons is measured, and the theory for this inclusive reaction is
available. The quantity which is extracted from the measurement and the analysis
is the total reaction cross section n + 135Xe → 136Xe, the neutron capture reaction.
The cross section is given by the Austern or Hussein–McVoy (HM) expression

d2σp

dEpdΩp
= ρp(Ep)σ̂

n
R, (35.1)

where σ̂n
R is the medium-modified total reaction cross section of the process n + A,

σ̂n
R = σ̂R(n + A). (35.2)
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More explicitly, the Inclusive Nonelastic Breakup theory gives for the reaction
a + A → b + (x + A)

d2σINEB
b

dEbdΩb
= σ̂x

R ρb(Eb), (35.3)

where σ̂x
R is the total reaction cross section of the interacting fragment, x, and

ρb(Eb) ≡ dkb
(2π)3

1

dEbdΩb
= μbkb

(2π)3�2
(35.4)

is the density of state of the observed, spectator fragment, b. The reaction cross
section σ̂x

R is given by [12]

σ̂x
R = − kx

Ex
〈ρ̂x(rx) |Wx(rx)| ρ̂x(rx)〉, (35.5)

whereWx is the imaginary part of the complex optical potential,Ux, of the interacting
fragment, x, in the field of the target, A. The source function ρ̂x(rx) is the overlap of
the distorted wave of the interacting fragment, x, and the total wave function of the
incident channel. In the DWBA limit of the this latter wave function and using the
post form of the interaction, Vxb, the source function in the HM approach [7], is just

ρ̂x(rx) = (χ(−)

b |χ(+)
a Φa > (rx). (35.6)

In the IAV theory [4], based on the post form of the interaction, Vxb, the source
function contains a Green’s function referring to the propagation of x,

ρ̂x(rx) = 1

Ex −Ux + iε
(χ(−)

b |Vxb|χ(+)
a Φa〉. (35.7)

The cross section in (35.5), according to the Hussein–McVoy model [7], can be
decomposed into partial waves giving

Ex

kx
σ̂x
R =

∫
drx|Ŝb(rx)|2W (rx)|χ(+)

x (rx)|2, (35.8)

where

Ŝb(rx) ≡
∫

drb〈χ(−)

b |χ(+)

b 〉(rb)Φa(rb, rx), (35.9)

and Φa(rb, rx) is the internal wave function of the projectile which carries the
observed spectator fragment, b. The above formalism has recently been employed to
calculate the (d, p) inclusive proton spectrum in (d, p) reactions [13–18].

In applying the above formalism to the reaction involving the deuteron as a projec-
tile and 135Xe as the target, or vice versa, one is reminded once again of the lifetime
of the latter, 9.8h. So there is the practical question which of these two reactions
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is feasible. In any case the final result in either case is the medium-modified total
reaction cross section of the system n+ 135Xe. The capture cross section is the differ-
ence between this cross section and the contributions of other direct reactions, such
as inelastic excitation of 135Xe. In passing we remind the reader once again that in
free space the thermal neutron capture cross sections of several nuclei is abnormally
large, [10, 11].

35.3 Inclusive Non-elastic Breakup Reactions of Three
Fragment Projectiles

Recently we have developed the theory of INEB involving a three-fragment projec-
tiles, a = b + x1 + x2, such as 9Be = 4He + 4He + n and Borromean nuclei such as
11Li = 9Li + n + n, The cross section for this four-body process, b + x1 + x2 + A,
where b is the observed spectator fragment and x1 and x2 are the interacting partici-
pants fragments, is

d2σINEB
b

dEbdΩb
= ρb(Eb)σ

4B
R , (35.10)

σ4B
R = ka

Ea

[
Ex1

kx1
σx1
R + Ex2

kx2
σx2
R + ECM (x1, x2)

(kx1 + kx2)
σ3B
R

]
, (35.11)

where, the form of the reaction or fusion cross section as derived in [12] is used,

σx1
R = kx1

Ex1

〈ρ̂x1,x2 |Wx1 |ρ̂x1,x2〉, (35.12)

σx2
R = kx2

Ex2

〈ρ̂x1,x2 |Wx2 |ρ̂x1,x2〉, (35.13)

and,

σ3B
R = (kx1 + kx2)

ECM (x1, x2)
〈ρ̂x1,x2 |W3B|ρ̂x1,x2〉, (35.14)

is a three-body, x1 + x2 + A, reaction cross section. The energies of the different frag-
ments are defined through the beam energy, since the projectiles we are considering
are weakly bound and thus the binding energy is marginally important in deciding the
energies of the three fragments. Thus, e.g., Ex1,Lab = Ea,Lab(Mx1/Ma), where by Ma

and Mx1 we mean the mass numbers of the projectile and fragment x1, respectively.
The three-body source function, ρ̂x1,x2 , is a generalisation of the two-body source
function in (35.6), (35.7),

ρ̂x1,x2(rx1 , rx2) = (χ(−)

b (rb)|χ(+)
a (rb, rx1 , rx2)Φa(rb, rx1 , rx2)〉. (35.15)
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The cross sections σx1
R and σx2

R are the reaction cross sections of x1 + A and
x2 + A individually, while the other fragments, x2 and x1 respectively, are scattered
and not observed.

Ex1

kx1
σx1
R =

∫
drx1drx2 |Ŝb(rx1 , rx2)|2|χ(+)

x2 (rx2)|2W (rx1)|χ(+)
x1 (rx1)|2, (35.16)

Ex2

kx2
σx2
R =

∫
drx1drx2 |Ŝb(rx1 , rx2)|2|χ(+)

x1 (rx1)|2W (rx2)|χ(+)
x2 (rx2)|2. (35.17)

35.4 The Case of a Two-Fragment Projectile on a
Two-Fragment Target

In the following we treat another four-body breakup problem: the case of two-
fragment projectile and two-fragment target. Both projectile and target can break
into their two fragments. This is a genuine four-body scattering problem. In princi-
ple the formalism of [9] can be applied after several modifications. Thus the target
is a = b + x2, and the projectile is A = x1 + B. Thus the inclusive spectrum of
b will contain breakup of the projectile with x1 interacting with the target a, x1 +
d, and the breakup of the target with x2 interacting with the projectile, x2 + A. In
principle this process is a complicated four-body reaction. Here, however we take a
simpler approach and treat the process as a two three-body problems. As such we
have the breakup of the projectile without affecting the target and the breakup of the
target without affecting the projectile. In the calculation of the inclusive non-elastic
breakup, one would obtain two distinct groups of detected spectator fragments, one
related to the target and the other to the projectile. This method would be valuable
in the case of a projectile being an exotic, neutron or proton-rich nucleus.

In the following we consider the reaction 8B + d, which leads to p + (n + 8B) →
p + 9B, and p + (7Be + d). We remind the reader that 8B is a one proton halo with a
halo separation energy of 0.137MeV. The first reaction results in the neutron capture
by a one-proton halo nucleus, while the second reaction results in the incomplete
fusion of the core of this halo nucleus with the deuteron target. The inclusive non-
elastic proton spectrum can be written as (denoting the proton originating from the
radioactive projectile by p1 and that from the deuteron target breakup by p2)

d2σp

dEpdΩp
= ρ(Ep2)σ̂R(n + 8B) + ρ(Ep1)σ̂R(d + 7Be) + · · · (35.18)

The first term on the RHS of the above equation contains the neutron capture cross
section of the halo nucleus and would be concentrated at higher proton energy (the
proton separation energy of the deuteron is 2.22MeV) in its spectrum, while the
second term corresponds to the incomplete fusion, 7Be + d, which involves the
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emission of the halo proton in 8B and the collision of its core 7Be with the deuteron.
This process should dominate the low energy part of the inclusive proton spectrum.

In the case of a one-neutron halo projectile such as 11Be or 19C, with halo neutron
separation energies, Es = 0.501MeV and Es = 0.530MeV, respectively, the same
type of reaction will results in an inclusive proton spectrum which should exhibit a
now low energy peak related to the target deuteron breakup at 2.22MeV, and a higher
energy and weaker peak connected with removing a proton from the tightly bound
cores, 10Be, 18C.

d2σp

dEpdΩp
= ρ(Ep2)σ̂R(n + 11Be) + ρ(Ep1)σ̂R(d + 10Be) + · · · (35.19)

d2σp

dEpdΩp
= ρ(Ep2)σ̂R(n + 19C) + ρ(Ep1)σ̂R(d + 18B) + · · · (35.20)

The cross sections, σ̂R(n+11Be), σ̂R(n+19C), σ̂R(d+10Be), σ̂R(d+18B), are given by
expressions similar to (35.8). One needs the S-matrix elements, Ŝp1(rp1) and Ŝp2(rp2)
in order to evaluate the above cross sections. These matrix elements can be evaluated
once appropriate optical potentials for protons on deuteron and on the different halo
projectiles are given. Further, optical potentials for the projectile target systems are
needed, as well as those for the generation of the participant fragment distorted
waves. These are n+11Be, n+19C, d+10Be, d+18B.

For the proton halo nucleus 8B, we need similar ingredients: Ŝp1(rp1) for p + d
elastic scattering and Ŝp2(rp2) for p + 8B. Similarly one needs the d + 8B optical
potential and the n+ 8B and d+ 7Be optical potentials. These potentials in principle
are known from elastic scattering data.

Once the incomplete fusion cross sections are calculated from fusion theory [19],
the neutron capture cross sections can be obtained from the general form of the
breakup cross sections, (35.18)–(35.20). Thus the Inclusive Non-Elastic Breakup is
a potentially powerful method to extract the neutron capture cross section of short-
lived radioactive nuclei [20–25].

The coefficients A and B are related to the density of states of the observed proton,

ρp(Ep) = mpkp
(2π)3�2

(35.21)

In 8B + d, due to the low value of the halo proton separation energy, of Es, in the
inclusive nonelastic breakup reaction, we expect a low energy peak in the inclusive
proton spectrum connected with the incomplete fusion d + 7Be, and a higher energy
peak connected with the neutron capture n + 8B reaction.

In 11Be + d, with Es = 0.5MeV, we expect a lower energy peak associated with
the neutron capture n + 11Be and a much higher energy peak connected with the
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incomplete fusion d+ 10Li. The higher energy peak is connected to the proton emitted
from the core, 10Be with a separation energy of Es = 5MeV Similarly, for 19C + d:
a low energy peak n + 19C with a higher energy peak d + 18B.

35.5 Outline of the Derivation of (35.18)–(35.20)

Herewe present an outline of the derivation of (35.18)–(35.20).We take the projectile
A to be a bound system of two fragments, x1 and B, and the target a as similarly
composed of a bound system of two fragments, x2 and b. In this derivation we follow
the works of [4, 8, 9].

We invoke the spectator model in the sense that the observed fragment is only
optically scattered from the projectile or target. Thus we take the Hamiltonian to be

H = Kx1 + Kx2 + Kb + Ka + Vx1x2 + Vx2A + Vx2b + Vx1b +Ux1A +UbA. (35.22)

The steps to be followed to obtain (35.18)–(35.20) are lengthy but rest on a general-
ization of the case of three-fragment projectile breakup formalison of [9], and will
be reported elsewhere [26].
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Chapter 36
Glauber Model Analysis for the 22C
Nuclear Radius

T. Nagahisa and W. Horiuchi

Abstract In this contribution, we report our recent analysis of the nuclear radius of
22C with total reaction cross sections on 12C and 1H targets. The total reaction cross
sections are calculated consistently for both the targets within a reliable microscopic
framework, the Glauber theory. Themultiple-scattering processes within the Glauber
theory is fully taken into account using a Monte Carlo technique. We show that the
simultaneous reproduction of the two recent cross section data are not feasible within
the error bar and unlikely to obtain the huge matter radius ∼5 fm.

36.1 Introduction

A 22C nucleus is the neutron dripline of carbon isotopes and is the heaviest two-
neutron halo nucleus which has been found so far. This nucleus is the so-called
Borromean in which neither of the 20C-n and n-n subsystems are bound and has
attracted much attention not only to nuclear physics but also atomic physics in con-
nection to the Efimov physics. However, the nuclear radius, which is one of the most
basic properties of atomic nuclei, has been under discussion: The two recent interac-
tion cross section measurements show the quite different 22C radii, 5.4±0.9 fm [1]
and 3.44±0.08 fm [2]. Since the nuclear radius has often used as one of the inputs to
some theoretical models, this demands appropriate evaluation of the nuclear radius.

In this contribution, we present our recent analysis of the nuclear radius of 22C
with total reaction cross sections to resolve the radius problem [3]. The nuclear radius
of unstable nuclei has often been determined by the total reaction or interaction
cross section measurement incident at several tens MeV to 1GeV on a stable target
nucleus such as 12C and 1H. We prepare the 22C wave function based on a simple
20C+n + n picture and calculate the total reaction cross sections as a function of its
nuclear radius. The total reaction cross sections are obtained in a reliablemicroscopic
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theoretical framework, the Glauber theory, consistently for 12C and 1H target nuclei.
We carefully evaluate the recent interaction cross sections measured in [1, 2] and
discuss possible uncertainties in the radius determination of 22C.

36.2 Models

Here we consider a high-energy collision of the projectile (P) and target (T ) nuclei
withmass numbers AP and AT , respectively. TheGlauber theory [5] is amicroscopic
multiple-scattering and widely accepted theory to describe high-energy nucleus-
nucleus collisions. In this theory, the final state wave function of a projectile and
target system is greatly simplified by the adiabatic and eikonal approximations, and
the total reaction cross section is evaluated by

σR =
∫

db
(
1 − |eiχ(b)|2) , (36.1)

where b is the impact parameter vector perpendicular to the beam direction z. Here
we only need to evaluate the optical phase-shift function or the Glauber amplitude,
eiχ(b), which includes all information of the elastic processes in the high-energy
nuclear collision

eiχ(b) = 〈
Φ P

0 ΦT
0

∣∣ AP∏
j=1

AT∏
k=1

[
1 − ΓNN (b + ŝPj − ŝTk )

] ∣∣Φ P
0 ΦT

0

〉
, (36.2)

where ŝPj (ŝTk ) denotes the two-dimensional single-particle coordinate operator pro-
jected onto the xy-plane of the j th (kth) nucleon from the center-of-mass of the pro-
jectile (target), and ΓNN is the so-called profile function which is determined based
on the nucleon-nucleon scattering cross sections. In this contribution, we employ
incident-energy-dependent parameter sets listed in [6]. The other inputs to the the-
ory are the ground-state wave function of the projectile, Φ P

0 , and target and ΦT
0

nuclei. Once these inputs are set, the theory has no adjustable parameter. We do
not consider the Coulomb breakup contributions since the effects are negligible in
systems involving small Z nuclei.

In the present work, we consider the three nuclei, 12C, 20C, and 22C. A con-
figuration of the 12C wave function is assumed to be (0s1/2)2(0p3/2)4 for both
proton and neutron with the harmonic-oscillator (HO) single-particle wave func-
tions whose length parameter is fixed to reproduce the measured charge radius.
For 20C and 22C, single particle wave functions of 20C and 22C systems are gen-
erated from the phenomenological Woods–Saxon potential [8] with diffuseness
and radius parameters being a = 0.65 fm and R = 1.25A1/3

P fm, respectively. A
proton configuration is assumed to be (0s1/2)2(0p3/2)4. The subshell closure of
the neutron number 14 and 16 is assumed for neutron configurations of 20C and
22C and are taken respectively as (0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)6 for 20C and
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(0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)6(1s1/2)2 for 22C. These assumptions can be reason-
able to describe 22C as 20C+n + n s-wave two-neutron halo structure [9]. To simulate
the two neutron halo structure of 22C, we firstly take the central mean-field poten-
tial strength commonly to all angular-momentum l states and fix it in such a way
so as to reproduce the interaction reaction cross section of 20C+12C measured at
∼900MeV [4]. We vary the central potential strength only for l = 0 state as a free
parameter that controls the radius of 22C.

In general, the explicit evaluation of the Glauber amplitude of (36.2) is diffi-
cult because the expression involves 3(AP + AT )-dimensional integration. Here we
directly evaluate it by using Monte Carlo (MC) integration. To perform the MC inte-
gration accurately, we need to generate a large number of points, typically 106−8. We
confirmed in [3] that 108 configurations for the MC integration are actually needed
in order to ensure the accuracy of the total reaction cross sections of 22C on 1H target
within 1% level, whereas an ordinary nuclear system, e.g., 12C and 20C, only needs
typically 106 or 107 configurations. More MC configurations are needed to have
sufficient statistics in the tail regions of the extended wave function of 22C.

36.3 Results and Discussions

Figure36.1 displays the total reaction cross sections of 12,20,22C on 12C and 1H
targets as a function of incident energies together with the available experimental
data. It clearly shows that our results reasonably agree with the total reaction and
interaction cross section data for both 12C and 1H targets in this consistent theoretical
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The figure is plotted based on the data of [3]
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framework. The nuclear radius of 22C is set to be 3.38 fm consistently with the recent
interaction cross section data [2]. We find that the simultaneous reproduction of the
cross section data by Tanaka et al. [1] is not feasible within 1σ, that is, for 1H target,
the experimental data is far from the theoretical values (However, it is consistent
with 2σ as mentioned in [2]). We also extrapolate the rms radius using the data of
[1] which is found to be huge �5 fm even at the lower limit (1σ) of the experimental
cross section, and never reach the central value of the experimental data 1338mb [1]
with the extrapolated function based on our theoretical cross sections.

At the end, we discuss the possible uncertainties in the radius determination:

– How good is the approximation used in the experimental analysis?
Wealso calculate the total reaction cross section on 1H targetwith the optical-

limit approximation (OLA) which was employed in the analysis of [1]. The differ-
ence between the present complete Glauber and the OLA cross sections is small
approximately 1%, being the situation unchanged.

– Is the incident energy of 40MeV too low in the Glauber calculation?
As shown in the figure, the theory reproduces fairly well the total reaction

cross section of 20C on 1H target even at 40MeV.
– What about the difference between the total reaction and interaction cross sections?

Since any excited bound state of 22C has not been observed so far, the total
reaction and interaction cross sections are equal for 1H target and its difference is
expected to be small for 12C target.

– What about the Coulomb breakup effect?
The Coulomb breakup effect is expected to be small. For instance, the con-

tribution is estimated less than 1% in the case of a one-neutron halo nucleus, 31Ne
on 12C target [7]. It becomes even smaller in the case of 1H target.

36.4 Conclusion

In order to resolve the radius puzzle in 22C, we have investigated the total reaction
cross sections of 22C on 12C and 1H targets incident at medium- to high-incident
energies within the framework of a microscopic high-energy reaction theory, the
Glauber model. The complete optical phase-shift function or Glauber amplitude in
the Glauber model is evaluated with use of a Monte Carlo technique.

The calculated total reaction cross sections on 12C and 1H targets reasonably
reproduce the available experimental cross section data for 12C and 20C. The root-
mean-square (rms) matter radius of 22C deduced from our analysis is consistent with
the radius given in [2] using the interaction cross section on 12C target at 240MeV,
which corresponds to that of an A ∼ 40 nucleus.We investigate possible uncertainties
in the theoretical model and they are actually small. To conclude, the simultaneous
reproduction of both the experimental interaction cross section data on 12C and
1H obtained by [1, 2] is not possible within the error bar (1σ). Since only two
experimental cross section data are available, it is desired to have another data at
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different incident energy or target in order to clarify that the 22C size is equivalent
to a radius of medium- (A ∼ 40) or heavy- (A ∼ 200) mass nuclei. However, we
already see theoretical consistency with the 20C cross section data for both 1H and
12C target. It is unlikely to have a huge matter radius ∼5.4 fm (A ∼ 200) of 22C.

Acknowledgements This work was in part supported by JSPS KAKENHI Grant Numbers
18K03635 and 18H04569.

References

1. Tanaka, K., et al.: Phys. Rev. Lett. 104, 062701 (2010)
2. Togano, Y., et al.: Phys. Lett. B 761, 412–418 (2016)
3. Nagahisa, T., Horiuchi, W.: Phys. Rev. C 97, 054614 (2018)
4. Ozawa, A., et al.: Nucl. Phys. A 691, 599 (2001)
5. Glauber, R.J.: Brittin, W.E., Dunham, L.G. (eds.) Lectures in Theoretical Physics, vol. 1,

p. 315. Interscience, New York (1959)
6. Abu-Ibrahim, B., et al.: Phys. Rev. C 77, 034607 (2008)
7. Horiuchi, W., Suzuki, Y., Capel, P., Baye, D.: Phys. Rev. C 81, 024606 (2010)
8. Horiuchi, W., et al.: Phys. Rev. C 75, 044607 (2007)
9. Horiuchi, W., Suzuki, Y.: Phys. Rev. C 74, 034311 (2006)



Chapter 37
Properties of Supersymmetric
Transformed Alpha-Nucleus Potentials
Studied with Electric-Multipole
Transitions

T. Arai, W. Horiuchi and D. Baye

Abstract Towards applications to multi-cluster systems involving heavy clusters,
we study properties of a shallow-singular potential generated by supersymmetric
transformations from an original deep potential. Changes of the relative wave func-
tions by the transformations are quantified with electric-multipole transitions which
give a different radial sensitivity to the wave function depending on their multipo-
larity. Despite the fact that the original and transformed potentials give exactly the
same phase shift, some observables are unfavorably modified. We propose another
possible way to obtain a desired supersymmetric potential.

Cluster degrees-of-freedom is one of the most characteristic features of an atomic
nucleus. Alpha(4He or α)-cluster models have often been used to describe light
nuclei. However, the computation becomes much involved in heavier cluster sys-
tems. In this contribution, we present our recent work [1] studying the relative wave
functions of the α+16O and α+40Ca systems generated from phase-shift-equivalent
potentials towards the application to multi-cluster systems involving heavy clusters
such as 21Ne (21Na)=16O+α + n (p), 24Mg =16O+α + α, 45Ti (45V)=40Ca+α + n
(p), and 48Cr=40Ca+α + α.

In general, a potential between clusters is deep accommodating several redun-
dant bound states which should be removed in an appropriate way. To avoid such a
complicated computation, we generate a shallow-singular potential by using super-
symmetric transformations [2] from the original deep potential. For details, a reader
is referred to [1].

Let us consider a two-spinless-cluster system that interacts only with a cen-
tral, local, regular and deep potential which accommodates n forbidden (unphys-
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ical) bound-state solutions. The one-dimensional radial differential equation is

written as Hχ(E) =
(
− d2

dr2 + V
)

χ(E) = Eχ(E). The ground state is eliminated

by supersymmetric transformations with a two-step procedure: The initial Hamil-
tonian is factorized into two first-order operators L±

0 = ±d/dr + d lnχ(E0)/dr as
H = L+

0 L
−
0 + E0 where the ground-state energy E0 is taken as factorization energy

and χ(E0) is the ground-state wave function. The SUSY partner, H1, of H0 is
defined by H1 = L−

0 L
+
0 + E0. The lowest bound state is removed inH1 but the phase

shift is also modified. To recover the original phase shift, one performs another
SUSY transformation by factorizing H1 in the form H1 = L+

1 L
−
1 + E0 with L±

1 =
±d/dr + d{ln ∫ r

0 dt [χ(E0)]2/χ(E0)}/dr and defining its partner H2 = L−
1 L

+
1 + E0.

The corresponding potential obtained by those two steps can be summarized in
the form V2 = V − 2 d2

dr2 ln
∫ r
0 dt [χ(E0)]2. This potential provides exactly the same

phase shifts obtainedwith the original potential. The aboveprocedurewill be repeated
until all the unphysical bound states are removed.

For a deep potential we assume a parity-dependent-single Gaussian form as
V (r) = (V0 + VrP̂r) exp(−μrr2) where P̂r is the parity operator that changes r into
−r. The potential strengths should be deep enough to accommodate a number of for-
bidden bound states with the total harmonic oscillator quanta of the cluster relative
motion, Q = 2nr + l < 8 and 12 for the α+16O and α+40Ca systems, respectively.
The three parameters, V0, Vr , and μr , are fixed so as to reproduce the ground state
energy, its root-mean-square (rms) radius and the energy of the 1− state. These poten-
tials nicely reproduce the rotational spectra aswell as the reduced electric-quadrupole
transition probabilities, B(E2), of 20Ne and 44Ti (Set C of [1]). See, also Fig. 37.1 of
this contribution.

To help the understanding of a reader, here we formally define the modifications
of observables caused by the SUSY transformation. For the calculation of matrix
elements, we usually use a bare operator, i.e., we make the approximation that the
operator is left unchanged by the SUSY transformation. IfΨ is the initial wave func-
tion, the transformed wave function is Φ = T Ψ , where T denotes an appropriate
SUSY transformation. The ground-state wave function Ψ can be written formally

Fig. 37.1 Energy spectra of (left) 20Ne and (right) 44Ti with the original (Set C [1]), l-independent
SUSY potentials, and the l-independent potential plus the l2 term
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as Ψ = T −1Φ. The expectation value with an operator O can be evaluated with
〈Ψ |O|Ψ 〉 = 〈

Φ|(T −1)†OT −1|Φ〉
. In principle, any expectation value is also identi-

cal if one evaluates this expectation value with the correlated operator (T −1)†OT −1

consistently derived from the transformation. However, it is not practical because the
transformation employed in the present contribution, T = L−

n . . . L−
1 L

−
0 , is too much

involved. Hence, in practice, we actually evaluate 〈Φ|O|Φ〉. Therefore, expectation
values must change with the SUSY transformation, T .

Let us briefly review the findings in [1]. With the deep potential, the relative
wave functions exhibit several nodes due to the orthogonality to the forbidden states,
whereas the ones with the SUSY potentials have no node at short distances. Despite
the fact that the SUSY and deep potentials give exactly the same phase shift, the rms
radii and the B(E2) values are actually modified and increased by the standard SUSY
transformation. Those observables are somewhat sensitive to the wave function at
short distances. On the contrary, the changes in the reduced electric-hexadecapole
transition probabilities, B(E4), are relatively smaller than that of B(E2). Since the
operator is proportional to r4, theB(E4)values are less sensitive to the internal regions
of the wave function, whereas the external regions contribute largely to the B(E4)
matrix element. Recalling that we fix the parameters of the deep potential in such a
way so as to reproduce the binding energy and rms radius of the ground-state wave
function, the standard SUSY transformation is no longer a desired potential. There-
fore, we consider another SUSY transformation with one arbitrary parameter being
fixed so as to reproduce the rms radius of the ground state. By this transformation,
the B(E2) values and rms radii of the bound 2+ and 4+ states are remedied. However,
the B(E4) value shows some deviation from the deep potential case. To conclude,
though one always needs to check how observables of interest are modified by the
transformation, as long as the rms radius and B(E2) values are of interest, this SUSY
transformation (SUSY-β in [1]) seems to provide a reasonable forbidden-state-free
shallow potential which can be used for studying multi-cluster systems.

The SUSY potentials proposed in [1] are shallow and have no unphysical bound
state but angular-momentum (l)-dependent which causes complications in practical
computations. Here we propose another potential model which may be useful to
reduce the computational cost. Figure37.1 plots the original energy spectra and the
one obtained by ignoring the l-dependence, i.e., a potential with l = 0 is used to
compute all the l-states. Since the l = 0 state has the largest number of forbidden
states, the excitation energies for higher l-state become higher. One may simulate the
l-dependence by introducing an l2 term Vll l2 exp(−μrr2), whose parameter is fixed
so as to reproduce the energy of the 2+ state: Vll = −1.2732 and −0.75965MeV for
the α+16O and α+40Ca systems, respectively. As shown in the figure, the energy
spectra become almost identical to the original spectra by adding the l2 term to the
potential for l = 0. These potential sets are also useful for practical computations,
although the phase-shift-equivalency to the original deep potential is lost for l > 0.

Acknowledgements This work was in part supported by JSPS KAKENHI Grant Numbers
18K03635 and 18H04569.
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Chapter 38
Two-Neutron Correlations in 6He
Studied with Spin-Flip Charge-Exchange
Transitions

N. Kawamura and W. Horiuchi

Abstract We investigate the spin-flip charge-exchange type nuclear excitations,
that are, Gamow-Teller (GT) and isovector-spin-monopole (IVSM) transitions, to
explore a possible probe to study the two-neutron correlations in the halo nuclei. A
typical light halo nucleus, 6He, is studiedwith 4He (α)+ two-nucleon (N ) three-body
model. We show that the IVSM transitions are superior to the GT ones to obtain the
information on the structure of 6He: The strong IVSM strengths, which are sensitive
to the binding energy of 6He, are found in the low-lying region below theα+deuteron
(d ) threshold, whereas the GT strengths have almost no peak due to small overlap
between the wave functions of the ground state of 6He and the α + d continuum
of 6Li.

The neutron-halo structure has been observed as one of the unique phenomena in
neutron-rich unstable nuclei near the neutron dripline. Strong two-neutron correla-
tions, the so-called dineutron correlations, are predicted in such halo nuclei [1] and
have attracted much interest to observe the evidence of the correlations. However, its
direct measurement is difficult partly because the two neutrons do not form a bound
state.

Exploring such observables that reflects the dineutron correlations has gained
interest. Here we study the spin-flip charge-exchange transitions from the ground
state of 6He to the continuum states of 6Li and discuss the possibility of being
observables to study the dineutron correlations. We consider two types of the opera-
tors, Gamow-Teller (GT) and isovector spin-monopole (IVSM), which give different
sensitivity to the spatial overlap between the initial ground and the spin-flipped final
states. Since the low-lying states of 6Li are expected to have the α + d (dinucleon)
structure, if the two valence neutrons in the ground state of 6He are spatially localized,
the transition strengths to these states could be enhanced.

6He and 6Li systems are described with the α + N + N three-body system [2].
We employ Minnesota (MN) potential [3] as an NN interaction, and the KKNN
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potential [4] for the αN system. In order to see the binding energy dependence of the
nuclear responses, we employ the modifiedMN potential (MMN) [2] which is set so
as to reproduce the two-neutron separation energy of 6He. The orthogonal condition
to the 0s1/2 orbit in the α core is imposed to the two-nucleon motions.

The total wave functions of the A = 6 systems are expanded in many basis func-
tions in the LS coupling scheme. The spatial part of the wave function is represented
by the correlated Gaussian function with two global vectors [5]. The power of this
approach is confirmed in many interesting examples, see recent review papers [6, 7].
The diagonal part of theGaussian fall-off parameters are chosen by a geometrical pro-
gression that covers from0.2 to about 20 fm.The correlations among the relative coor-
dinates are taken into account by mixing of the rearrangement channels. All possible
(LS) values are considered, i.e., (LS) = (00), (11) for 6He, (LS) = (01), (10), (11),
and (21) for 6Li. We take intermediate angular momenta up to 4. In the end, the
total number of basis is 2114 for 6He and 4334 for 6Li. The calculated ground state
properties are all in consistent with those obtained in [2].

In this paper, we consider spin-flip charge-exchange transitions from the ground
state of 6He to 6Li systems through GT and IVSM operators, MGT− = ∑2

i=1 σiτ
−
i

and MIVSM− = ∑2
i=1 r̄

2
i σiτ

−
i , where σi, τ−

i , and r̄i denote spin, particle exchange
from neutron to proton, and single-particle coordinate from the center-of-mass (cm)
operators, respectively.

We calculate the probabilities of finding the α + d component in the wave func-
tions of 6Li (S2

d ), which are evaluated by

S2
d =

∣
∣
∣
∣

∫

dr〈Ψd (x1)δ(x2 − r)|Ψ6Li(x1, x2)〉
∣
∣
∣
∣

2

, (38.1)

where Ψd (x1) and Ψ6Li(x1, x2) are the wave functions of d and α + n + p state with
the MN potential. Figure38.1a plots S2

d for the α + n + p states as a function of the
excitation energy. In the ground state, the S2

d is 0.629. The d subsystem is distorted
by the interaction as well as the Pauli principle from the α core. For several states,
it appears that the S2

d is almost unity between the α + d and α + n + p threshold
energies, which are of our interest.

Figure38.1b, c display the reduced GT transition probabilities (BGT) from the
ground state of 6He to the continuum states of 6Li with the MN and MMN poten-
tials. The validity of our model is confirmed by calculating the life time for the
beta decay of 6He to 6Li, which can be evaluated by the formula [8] (ft1/2)−1 =
(2 ln 2)π3(mec2/�)G2

βγ2BGT, where me is the electron mass, Gβ = 3.002 × 10−12,
and γ = 1.226. The calculated life times are 757.1 and 796.5ms with the MMN and
MN potentials, respectively, which are in reasonable agreement with the observation
(806.7 ± 0.15ms [9]). Since most of the transition strengths are exhausted by the
ground-state to ground-state transition, in the figure, the ground state transition is
omitted for the sake of visibility. The other states are fragmented in the energy regions
beyond 5MeV. No prominent peak appears between the two thresholds. Though the
S2
d values are large for the states between the two thresholds, root-mean-square dis-
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Fig. 38.1 a Probability of
finding α + d component in
the wave function of 6Li,
reduced, b, c Gamow-Teller
and d, e
isovector-spin-monopole
transition probabilities as a
function of excitation energy
of 6Li. The b, d MMN and c,
e MN potentials are
employed for the ground
state of 6He. Arrows indicate
the α + d and α + p + n
threshold energies
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tances between α and the cm of the two nucleons of those continuum states are very
large ∼20–140 fm. Therefore, the spatial overlaps with the ground state of 6He and
the these continuum states become small. This can be understood in the early study
of the beta-delayed deuteron emission of 6He [10]. The GT strength to the α + d
continuum states are strongly suppressed due to the orthogonality to the ground
state. These oscillating α + d wave functions leads to the strong cancellation. In
Fig. 38.1c, since the spatial distribution of the ground state of 6He is extended with
theMN interaction, theBGT values become larger than those obtained with theMMN
interaction, although the values are small. Fig. 38.1d, e display the reduced IVSM
transition probabilities (BIVSM). Contrary to the BGT case, prominent peaks appear
between the two thresholds. As compared in Fig. 38.1d, e, the low-lying strengths
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are very sensitive to the spatial extension of the ground state. We also calculate the
transition strength to the ground state of 6Li are 472 and 482 (fm4) for the MMN and
MN interactions, respectively. They are not sensitive to theNN interaction employed.

In summary, to explore possible probes of the two-neutron correlations, we have
investigated spin-flip-charge-exchange transitions of 6He. The initial and final states
are described with an α + N + N three-body model. Three-body dynamics with
Pauli constraint are taken into account by superposing many correlated Gaussian
basis functions. We find strong IVSM transition strengths in the low-lying energy
region below the α + d threshold, whereas almost no GT strength is found due to
small overlap between the 6He and α + d continuum wave functions. We show the
sensitivity of the GT and IVSM transition strengths to the binding energy of 6He.
We need more analysis to conclude this story. Especially, appropriate treatment of
the three-body continuum states is necessary.
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Chapter 39
R-Mode Instability of Neutron Stars
Using Nuclear EoS from DDM3Y

D. Atta, S. Mukhopadhyay and D. N. Basu

Abstract The r-mode instability windows and the gravitational wave signatures of
neutron stars have been studied usingβ-equilibrated neutron-proton-electron neutron
star matter at the core with a rigid crust. The fiducial gravitational and viscous
timescales, the critical frequencies and the time evolutions of the frequencies and the
rates of frequency change are calculated for a range of neutron star masses. It is found
that the young and hot rotating massive neutron stars (NSs) are more susceptible to
r-mode instability through gravitational radiation. We also find that NS for equation
of state (EoS) with low L value lie in the r-mode instability region.

39.1 Introduction

The oscillations of rotating neutron stars have gained much importance because of
the information they send about the properties of the high-density Equation of State
(EoS) through electromagnetic and gravitational wave signals. In the present work
the r-mode instability has been discussedwith reference to the EoS obtained using the
density dependent M3Y (DDM3Y) effective nucleon-nucleon (NN) interaction [1].
This EoS provides good descriptions for proton, α and cluster radioactivities, elastic
and inelastic scattering, symmetric and isospin asymmetric nuclear matter, neutron
star masses and radii, their core-crust transition and crustal fraction of moment of
inertia [2, 3].
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39.2 Dissipative Time Scales

The dissipative time scale τ of an r-mode arises from various dissipative mech-
anisms such as gravitational wave emissions and viscosity (bulk and shear) and
hence 1

τ (Ω,T )
= 1

τGR(Ω,T )
+ 1

τBV (Ω,T )
+ 1

τSV (Ω,T )
where 1/τGR , 1/τBV and 1/τSV are

the contributions from gravitational radiation, bulk viscosity and shear viscosity,
respectively. The dissipative time scales τGR and τSV are given by

1

τGR
= −32πGΩ2l+2

c2l+3

(l − 1)2l

[(2l + 1)!!]2
(
l + 2

l + 1

)(2l+2)
Rc∫
0

ρ(r)r2l+2dr, (39.1)

1

τSV
=

⎡
⎣ 1

2Ω

2l+3/2(l + 1)!
l(2l + 1)!!Il

√
2ΩR2

cρc

ηc

⎤
⎦

−1 ⎡
⎣

Rc∫
0

ρ(r)

ρc

(
r

Rc

)2l+2 dr

Rc

⎤
⎦

−1

,

(39.2)

where Ω is the angular velocity of the star in the inertial frame, G and c are the
gravitational constant and velocity of light respectively; Rc, ρc, ηc in (39.1) are
the radius, density and shear viscosity of the fluid at the outer edge of the core
respectively and bulk viscosity contribution being small have been neglected. The
quadrupole l = 2 r-mode is more strongly unstable to gravitational radiation than
any other mode in neutron stars.

39.3 Theoretical Calculations and R-Mode Instability

The r-mode oscillation is analogous to Rossby waves in the ocean and results from
perturbation in the velocity field of a star with little disturbance in the star’s den-
sity (Fig. 39.1). The evolution of the angular velocity, as the angular momentum is
radiated to infinity by the gravitational radiation is given by

dΩ

dt
= 2Ω

τGR

α2
r Q

1− α2
r Q

, (39.3)

where αr is the dimensionless r-mode amplitude and Q = 3 J̃/2 Ĩ with,

J̃ = 1

MR4

R∫
0

ρ(r)r6dr, Ĩ = 8π

3MR2

R∫
0

ρ(r)r4dr. (39.4)

αr is treated as free parameter whose value varies within a wide range 1− 10−8.
Under the ideal consideration that the heat generated by the shear viscosity is same
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Fig. 39.1 Plots of critical
frequency with temperature
for different masses of
neutron stars. The square
dots represent observational
data [6]
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as that taken out by the emission of neutrinos [4, 5], (39.3) can be solved for the
angular frequency Ω(t) as

Ω(t) = (
Ω−6

in − Ct
)−1/6

where C = 12α2
r Q

τ̃GR
(
1− α2

r Q
) 1

Ω6
0

, (39.5)

and Ωin is considered as a free parameter whose value corresponds to be the initial
angular velocity. The spin down rate can be obtained from (39.3) to be,

dΩ

dt
= C

6

(
Ω−6

in − Ct
)−7/6

. (39.6)

The neutron star spin shall decrease continually until it approaches its critical
angular velocity Ωc. The time tc taken by neutron star to evolve from its initial value
Ωin to its minimum value Ωc is given by (39.5)

tc = 1

C

(
Ω−6

in − Ω−6
c

)
. (39.7)

39.4 Results and Discussion

The r-mode damping mechanism is calculated using the shear viscosity timescale
acting along the boundary layer between the rigid crust and fluid core. We have
calculated the fiducial gravitational radiation and shear viscosity timescales within
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the DDM3Y framework for a wide range of neutron star masses. It is observed that
the gravitational radiation timescale decreases rapidly with increasing neutron star
mass while the viscous damping timescales exhibit an approximate linear increase.
Next, we have studied the temperature dependence of the critical angular frequency
for different neutron star masses. The implication is that for neutron stars rotating
with frequencies greater than their corresponding critical frequencies have unsta-
ble r-modes leading to the emission of gravitational waves. Further, our study of
the variation of the critical temperature as a function of mass shows that both the
critical frequency and temperature decrease with increasing mass. The conclusion
is that massive hot neutron stars are more susceptible to r-mode instability through
gravitational radiation. Finally we have calculated the spin down rates and angular
frequency evolution of the neutron stars through r-mode instability. We have also
pointed out the fact that the critical frequency depends on the EoS through the radius
and the symmetry energy slope parameter L . If the dissipation of r-modes from shear
viscosity acts along the boundary layer of the crust-core interface then the r-mode
instability region is enlarged to lower values of L [7].

39.5 Summary and Conclusions

In this work we study the r-mode instability windows and the gravitational wave
signatures of neutron stars in the slow rotation approximation using the equation of
state obtained from the density dependent M3Y effective interaction. The fiducial
gravitational and viscous timescales, the critical frequencies and the time evolutions
of the frequencies and the rates of frequency change are calculated for a range of
neutron star masses. We show that the young and hot rotating neutron stars lie in the
r-mode instability region.Wealso stress that if the dominant dissipativemechanismof
the r-mode is the shear viscosity along the boundary layer of the crust-core interface,
then the neutron stars with low L value lie in the r-mode instability region and hence
emit gravitational radiation.
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Chapter 40
Radiative 3He(2H,γ)5Li Capture
at Astrophysical Energy and Its Possible
Role in Accumulation of 6Li at the BBN

S. B. Dubovichenko, N. A. Burkova, A. V. Dzhazairov-Kakhramanov,
A. S. Tkachenko and R. Ya. Kezerashvili

Abstract TheBigBangNucleosynthesis (BBN) relevance reactions 3He(2H, γ )5Li,
3H(3He, γ )6Li, and 5Li(n, γ )6Li are treated as a source of 6Li formation. Comparison
of the numerical reaction rates of these processes, the prevalence of light elements
suggest that the two-step process 2H + 3He → 5Li + γ and n + 5Li → 6Li + γ can
make a significant contribution, of the order of unity, to the formation of 6Li nuclei
at the BBN at least at temperatures T 9. Calculations of the total cross sections, astro-
physical S-factor, and reaction rates have been performed for 3He(2H, γ )5Li radiative
capture reaction within the framework of the modified potential cluster model with
forbidden states, which follow from the classification of the orbital cluster states
according to Young diagrams. Numerical data and corresponding parametrizations
cover the energy range 100 keV < E c.m. < 5 MeV and temperature ranges 0.01 <
T9 < 10. Detailed up-to-date experimental data for the reaction 3He(2H, γ )5Li are
analyzed.

The interest in radiative capture reactions in the isobar-analogue channels 3He(2H,
γ )5Li and 3H(2H, γ )5He is due to two factors: i. The new data [1] on the diagnostics
of nuclear fusion efficiencies of 2H(3H, n)4He and 2H(3He, p)4He reactions used
for study of tokamak plasmas in experiments on Joint European Torus (JET) and
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International Thermonuclear Experimental Reactor (ITER); ii. The latest data on
plasma diagnostics are presented in [2].

These reactions are also parts of the nucleosynthesis chain of processes occurring
in the early stage of stable stars formation, as well as are identified as possible
candidates for overcoming the well-known problem of the A= 5 gap in the synthesis
of light elements in the primordial Universe [3].

There is an unambiguous opinion: due to the small cross section of the 3He(2H,
γ )5Li reaction, it does not contribute to astrophysical processes [4]. However, this
statement is not entirely true, since the rate of this reaction is not negligible. To
address this, we consider a possible scenario of 6Li formation involving a short-lived
5Li isotope in astrophysical processes.

The radiative 3He(2H, γ )5Li capture is considered on the basis of the modified
potential cluster model [5] and new results are obtained for dipole E1 and M1 tran-
sitions, taking into account the mixing of the doublet and quartet spin channels, both
in scattering states and for the bound ground state. The potentials of the intercluster
interaction were constructed on the basis of the description of the known scatter-
ing phase shifts and the main characteristics of the ground state (GS) of 5Li. The
total cross sections of 3He(2H, γ )5Li capture on the GS of 5Li at energies from
5 keV to 5 MeV in c.m. are calculated. For the astrophysical S-factor and the rate
of this reaction, obtained in these calculations, simple analytic parametrizations are
proposed.

In Fig. 40.1 one can see that at energies above 400 keV the results of calculation
are much lower than the available experimental data [6], and at energies less than
2 MeV they lie below the results from [11]. This difference in the cross sections
can be due to the following reasons: in our calculations, we considered 12 different
electromagnetic transitions, but perhaps some additional valuable processes were
not taken into account; in [6, 11] in the energy range from 0.4 to 2 MeV the effect
of capture on the first excited state (FES) is not entirely excluded. In addition, the
maximum of the calculated cross section in the 3 MeV region is lower than the data
from [11], which can be explained by the inaccuracy of the spectra [14] known by the
authors of [11]. We use this data anyway, as it was the most accurate measurement
reported in [15]. In both cases, the results of [6, 11] require refinement on the basis
of modern methods of experimental measurements.

The value of the calculated S-factor at an energy of 6–30 keV in c.m. turned out
to be relatively stable and equal to 0.125(2) keV b, which is noticeably less than
the experimental value reported in [6]. The error of the calculated S-factor shown
here is obtained by averaging it over the indicated energy interval. The value of the
calculated S-factor is 0.125 keV b at the energy of 6 keV. At a maximum energy of
230 keV in c.m. the S-factor is equal to 0.43 keV b.

To summarize, in this work the parametrization of the cross sections for the
3H(3He, γ )6Li and 5Li(n, γ )6Li processes of radiative capture is carried out. The cor-
responding rates of these processes are calculated, their parametrization is performed,
and a comparison with the 3He(2H, γ )5Li and 4He(2H, γ )6Li capture reactions rate
is made.



40 Radiative 3He(2H,γ)5Li Capture at Astrophysical Energy … 229

Fig. 40.1 Total cross section and astrophysical S-factor for 3He(2H,γ)5Li below 5.0 MeV. Exper-
imental data: ●—[6]; ▲—[7]; ˛—[8, 9]; �—[10, 11]; �—[11]; ★—[12]; �—[13]; cyan band
5—results from [1]. Curves: 1—the cross section for the E1 transition from the 2S and 4S scattering
states to the GS 2+4P3/2: 2—the cross section for the E1 transition to the GS from the resonating
2+4D5/2 waves; 3—the contribution of the M1 transitions from the resonating 2+4P3/2 and 2+4P5/2
waves, 4—the total cross section included all E1 and M1 transitions

On the basis of comparisons of the rates of these reactions and the prevalence of
light elements, it is assumed that the two-step process 2H + 3He → 5Li + γ and n
+ 5Li → 6Li + γ can make a definite contribution, of order unity, to the production
of 6Li at the BBN at least at temperatures T 9. In this temperature range the number
of neutrons has not yet begun to decrease, and the number of 2H and 3He nuclei is
already reaching its maximum, which leads to the increase in the reaction yield 2H
+ 3He → 5Li + γ .
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Chapter 41
Experimental Studies of Unbound
Neutron-Rich Nuclei

Yosuke Kondo

Abstract The unbound nuclei 25–28O have been studied by the invariant-mass
method with SAMURAI at RIBF, RIKEN. The unbound nuclei are produced by
one- and two-proton removal reactions from neutron-rich fluorine and neon isotopes
at around 200 MeV/nucleon. The decay energies of the ground and first excited
states of 26O are determined for the first time. Preliminary results of the 27O and 28O
measurements are presented.

41.1 Introduction

The structure of atomic nuclei near the limit of binding, called the drip-line, has
attracted much attention since exotic phenomena such as neutron halos and neutron-
neutron correlations have been found and discussed. Neutron-unbound oxygen iso-
topes located beyond the neutron drip line provide good examples of few-body sys-
tems, consisting of the subshell closed nucleus 24O [1] and a fewneutrons. Theoretical
study of the unbound 26O nucleus using a three-body model (an inert 24O core and
two valence neutrons) predicts an enhancement of back-to-back two neutron emis-
sion in the decay of the 26O ground state. Such a correlation of neutrons can be
interpreted as evidence for spatial neutron-neutron correlation, called the dineutron
correlation [2]. In addition, a recent experiment [3] observed candidate events of
a tetra neutron system. Therefore, it is interesting to investigate whether 28O has a
structure of a 24O core and two dineutrons or a tetra neutron.

The unbound oxygen isotopes are also interesting in terms of the sudden drip-line
gap, called the oxygen anomaly [4]. It is experimentally known that the neutron drip
line for oxygen (Z = 8) is located at 24O (N = 16), while it extends more 6 neutrons
to 31F (N = 22) for fluorine (Z = 9). Currently, the origin of the oxygen anomaly has
not yet been understood. While the theoretical study [4] suggests that three-nucleon
forces play an important role in the binding of the oxygen isotopes especially in

Y. Kondo (B)
Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8551, Japan
e-mail: kondo@phys.titech.ac.jp

© Springer Nature Switzerland AG 2020
N. A. Orr et al. (eds.), Recent Progress in Few-Body Physics,
Springer Proceedings in Physics 238,
https://doi.org/10.1007/978-3-030-32357-8_41

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32357-8_41&domain=pdf
mailto:kondo@phys.titech.ac.jp
https://doi.org/10.1007/978-3-030-32357-8_41


232 Y. Kondo

the N > 16 region, little is known experimentally about 25O and 26O, and the more
neutron-rich isotopes 27O and 28O have never been observed. The experimental study
of the unbound oxygen isotopes towards 28O is therefore strongly desired to examine
the theoretical predictions.

Shell evolution is one of other important factors in understanding the oxygen
anomaly. It has been established that the conventional magic number N = 20 disap-
pears in the region of Z = 10 − 12. This is called the island of inversion. Since the
disappearance of the shell closure emerges with decrease in atomic number along
N = 20 from the β-stability line, the shell evolution in more proton-deficient nuclei
towards the possible doubly magic nucleus 28O at Z = 8 is an interesting topic.
Recent in-beam γ-ray spectroscopy [5] has suggested that the island of inversion
extends to Z = 9 from the comparison of themeasured excitation energy (1.08MeV)
of the first excited state in the N = 20 nucleus 29F with shell model calculations. It
should be noted that the shell model calculations with the SDPF-M effective inter-
action [6, 7], which well reproduce the measured excitation energy of 29F, gives
small fraction of 0p-0h configuration in the ground and first excited states of 29F as
well as the ground state of 28O. In this context, it is of great importance to study the
doubly-magic candidate nucleus 28O (Z = 8, N = 20) experimentally.

41.2 Experiment for 25O and 26O

The first experiment [8] was carried out for 25O and 26O at the RI Beam Factory
(RIBF) operated by the RIKEN Nishina Center and the Center for Nuclear Study
(CNS), University of Tokyo. The unbound nuclei 25O and 26O were produced by
one-proton removal reactions from 26F and 27F respectively, at 201 MeV/nucleon.
Unbound states were identified by the invariant mass method by measuring the
momentum vectors of the 24O and neutron(s) decay particles. The secondary beams
of 26F and 27F were produced by projectile fragmentation of a primary 48Ca beam at
345 MeV/nucleon. The beams were purified by the BigRIPS fragment separator [9]
and transported to the experimental area of SAMURAI [10]. The incident beam
particles were detected by two plastic scintillators, an ionization chamber, and two
multi-wire drift chambers (MWDCs) before impinging on a carbon reaction target
(1.8 g/cm2). The outgoing 24O and neutron(s) were separated by the superconduct-
ing dipole magnet. The 24O ions were detected by two MWDCs before and after the
magnet, and a plastic scintillator hodoscope. The decay neutron(s) were detected in
coincidence byNEBULA. It consists of 120 plastic scintillation detectors. Each scin-
tillator bar has a dimension of 12×12×180 cm, equipped with two photo multiplier
tubes (PMTs) and light guides at each end. The detectors are arranged in a two-wall
configuration. Each wall is equipped with thin (1 cm thickness) plastic scintillators
for a charged particle veto. Thanks to the two-wall configuration, it is possible to
detect two neutrons emitted with zero relative energy by eliminating the crosstalk
background using velocity between the two walls [11].
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The ground state resonance of 25O was observed at 749(10) keV in the one-proton
removal reaction from 26F. The observed energy is consistent with the previous mea-
surements [12, 13]. In the one-proton removal reaction from 27F, the ground state res-
onance of 26Owas observed near the neutron decay threshold. The statistics obtained
in this experiment was about 5 times higher than the previous measurement [14]. The
finite decay energy of 18±3(stat)±4(syst) keV for the ground state was determined.
In addition, the first excited state was observed for the first time at 1.28+0.11

−0.08 MeV.
This is most probably the first 2+ state.

The fact that the excitation energy of the 2+ state of 26O is much lower than that
of 24O (4.7 MeV [15]) confirms the presence of the N = 16 subshell closure. Shell
model calculations with the USDB effective interaction [16] reproduce the trend of
the energies of the 2+ states of the even-even oxygen isotopes, including the local
maximum at 24O. The calculations also reproduce the trend of the even-even N = 18
isotones in the range of 12 ≤ Z ≤ 18. However, the calculations do not reproduce the
gradual decrease in the 2+ energies observed experimentally. Instead themodel shows
an increase in the 2+ energies from Z = 12 to Z = 8. This discrepancy suggests the
importance of effects not included in the calculation. The 2+ energy of 26O has also
been compared to three-body model calculations [17, 18], shell model calculations
including continuumeffects [19, 20], and ab-initio type shellmodel calculations [21].
These calculations give closer energies to the experimental value than the USDB
calculation as shown in Fig. 5 in [8]. To pin down the various effects quantitatively,
further theoretical study is desired to disentangle the effects which are important to
describe the nuclear structure of 26O.

41.3 Experiment for 27O and 28O

The second experiment was also performed with the SAMURAI setup. The unbound
nuclei 27O and 28O were produced by two- and one-proton removal reactions from
29Ne and 29F, respectively, at ∼230 MeV/nucleon. The secondary beams were pro-
duced by the projectile fragmentation of a 48Ca primary beam at 345 MeV/nucleon
on a 15-mm thick beryllium target, and they were purified by the BigRIPS fragment
separator with two aluminum energy degraders (15 and 7mm thicknesses) at the F1
and F5 dispersive focal planes. A plastic scintillator with a thickness of 3mm was
installed at the F5 dispersive focal plane for measuring the magnetic rigidity. The
typical intensities of the 29Ne and 29F beams were 8000 and 90 counts/s.

Figure41.1 shows the experimental setup at SAMURAI. The field strength of the
superconducting dipole magnet was 2.9T at the center. To realize the detection of
3 and 4 neutrons from the decay of 27O and 28O, MINOS [22] and NeuLAND [23]
were additionally installed to the experimental setup for 25O and 26O. MINOS con-
sists of a liquid hydrogen target (thickness 15 cm) and time projection chamber
(TPC), which were surrounded by the γ-ray detector array DALI2 [24]. The reac-
tion vertex can be determined from proton track(s) measured in the MINOS TPC
and the track of the incident beam determined by the MWDCs placed before the
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Fig. 41.1 Experimental setup for the 27O and 28O measurements. To show the target region, the
top half of DALI2 is not shown

target. The MINOS device provides a high luminosity of the reaction without los-
ing invariant mass resolution by calculating the energy loss in the target using the
reconstructed reaction vertex. NeuLAND is a neutron detector array developed at
GSI. In the present experiment, an array of prototype detectors, called the NeuLAND
demonstrator, was installed in front of NEBULA. Four hundred detectors, consisting
of 5×5×250 cm plastic scintillators each with two PMTs, are arranged in 8 lay-
ers of alternating horizontal and vertical planes, providing 40-cm thickness in total.
A layer of 1-cm thick plastic scintillators were installed in front of the NeuLAND
demonstrator for charged particle veto. The combination of the NeuLAND demon-
strator with NEBULA provides high neutron detection efficiency (about 50% for
single neutron detection).

Figures41.2 and 41.3 show the preliminary two-body decay energy (E f n) spectra
of 24O and a neutron observed in the reactions from 29Ne and 29F. These plots are
expected to include the 27O and 28O decay events as well as decays from 25O and
26O which are directly populated by multiple-nucleon removal reactions and/or by
sequential decays from heavier oxygen isotopes. In both spectra, two prominent
peaks are seen at E f n ∼ 0 and 0.8 MeV, corresponding to the decay of the 26O and
25O ground state resonances. The spectra show quite different intensities of the peaks.

Since the decay of the 26O ground state resonance is identified by the events with
E f n ∼ 0 obtained from the 24O and single neutron coincidence, possible sequential
decay through the resonance is investigated by a Dalitz-plot-like analysis of the 24O
and two neutron coincidence events. Candidate events of the sequential decay from
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Fig. 41.2 Preliminary
two-body decay energy
spectrum of 24O and neutron
observed in the nucleon(s)
removal reaction from 29Ne
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Fig. 41.3 Preliminary
two-body decay energy
spectrum of 24O and neutron
observed in the nucleon(s)
removal reaction from 29F
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27O and 28O can be seen in the two-body decay energy spectra of 24O and neutron
by gating E f n ∼ 0 for 24O and another neutron. Further analysis of 3- and 4-neutron
coincidence events as well as simulation is now in progress to examine the candidate
events.
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Chapter 42
Extraction of Nucleon Polarisabilities
from Light Nuclei

Judith A. McGovern, Harald W. Grießhammer and Daniel R. Phillips

Abstract We consider the response of nucleons and light nuclei to electromagnetic
fields to test the ability of chiral effective field theory to describe such systems in a
consistent and systematically-improvable manner.

42.1 Introduction

At sufficiently low energy, gauge and Lorentz invariance require that Compton scat-
tering from a composite target reduces to Thomson scattering, depending only on the
charge and mass. At somewhat higher energies, deviations become apparent, and the
formof these deviations is a sensitive test of the important low-energy degrees of free-
dom determining the target’s structure. The aims of Compton scattering experiments
from light nuclei at photon energies around 50–150 MeV are therefore two-fold: an
exploration both of nucleon and of nuclear structure. For a proton target, the princi-
pal such effects at low energy (after well-understood relativistic corrections, π0 pole
contributions and the anomalous magnetic moment) are the nucleon’s electric and
magnetic dipole polarisabilities,αE1 andβM1. These reveal the extent towhich charge
and current distributions in the target shift under the influence of external electro-
magnetic fields and parametrise the strength of the induced radiation dipoles. Then,
in the amplitudes that are sensitive to the target’s spin, four “spin polarisabilities” γi
govern the departure from point-like scattering and parametrise the response of the
spin degrees of freedom. For light nuclei (d, 3He, 4He) the deviations from Thom-
son scattering set in much earlier, at energies around the break-up energy, and by
50MeV the response involves an interplay of both nucleonic and nuclear excitations.
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A satisfactory description of such experiments both validates the underlying theory,
and allows for an extraction of the otherwise-inaccessible neutron polarisabilities
[1].

For reference we reproduce the low-energy non-relativistic effective Hamiltonian
that indicates how polarisabilities affect the response of the nucleon to external
electric and magnetic fields [2]:

Heff = − 1

2
4π

(
αE1E

2 + βM1H
2 (42.1)

+ γE1E1σ · E × Ė + γM1M1σ · H × Ḣ − 2γM1E2Ei jσi H j + 2γE1M2Hi jσi E j

)
,

where dots mean a time derivative and Xi j = 1
2 (∇i X j + ∇ j Xi ). The scalar polaris-

abilities will be given throughout in units of 10−4 fm3, and the spin polarisabilities
in units of 10−4 fm4.

In recent years there has been an upsurge in interest in the polarisabilities of
the nucleon, both scalar and spin, with a number of new experiments planned, run-
ning or completed at MAX-Lab, MAMI and HIγS [3–7]. In addition the magnetic
polarisability β

p
M1 has been shown to be a crucial input in the determination of the

two-photon-exchange contribution to the Lamb shift in muonic hydrogen and the
isovector β

p
M1 − βn

M1 has been connected to the nucleon electromagnetic mass dif-
ference (see [8]). The calculation of nucleon polarisabilities is also an aim of lattice
QCD, and several groups now have published results, albeit almost all at large pion
masses (see [9]). In this contribution we report on the results of high-precision EFT
fits of scalar polarisabilities to current data, and on prospects for the determination
of spin polarisabilities. For more details and in particular for more complete ref-
erences to earlier work the reader is referred to our review [1], and to subsequent
papers [5, 8–10]. For related work see the contribution of H. W. G. and J. McG. in
these proceedings [11].

42.2 Chiral Effective Field Theory

The framework we use in our calculations is based on heavy-baryon chiral perturba-
tion theory (HBχPT) [12]. This is an effective field theory involving hadronic degrees
of freedom rather than elementary quarks and gluons. It exploits the full symmetry of
the QCD Lagrangian which arises from the fact that the up and down quarks are not
only close in mass (hence isospin symmetry) but also very light compared to typical
hadronic masses. Contrary to what one may read, the mass of ordinary matter does
not arise primarily from coupling to the Higgs field. In fact if that were turned off,
the proton and neutron would remain massive and would not change dramatically. In
that limit the symmetry of isospin would be doubled, with one copy for each of the
unmixed massless left- and right-handed quarks: the assumption of chiral perturba-
tion theory is that we can treat the real world by expanding perturbatively about that
limit. The symmetry is realised in the hidden mode, so the hadron spectrum does not
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contain degenerate parity doublets; instead pions, which are much lighter than other
hadrons, can be interpreted as Goldstone bosons, massless in the chiral limit. The
symmetry also requires their interactions with one another and with other hadrons to
vanish in the low-momentum (soft) limit. Hence, somewhat surprisingly, a theory of
the strong interaction turns into a theory of weakly interacting hadrons, provided we
confine ourselves to energies below some breakdown scale, and in practice not too
much greater than the pion mass. Being a field theory, the incorporation of coupling
to photons (and indeed W and Z bosons) is straightforward, and gauge-invariance
is built in. The theory is renormalisable order-by-order in the following sense. The
Lagrangian consists of infinitely many terms but with a finite number at each order
in a counting of derivatives and the pion mass, and predictions to a given order are
generated from tree diagrams using vertices from the Lagrangian to that order, and
from pion loops involving vertices of up to two orders lower. The divergences from
the loops can be consistently absorbed into the parameters (“low-energy constants”,
LECs) at the relevant order. The field theory at its simplest contains only pions and
nucleons; the effects of heavier mesons and nucleon excitations, being short-range,
are encoded in the LECs.

A major advantage of a systematic, EFT-based approach is the ability to use the
power-counting to estimate theoretical uncertainties. Though recognised from the
earliest days, there has been a recent upsurge in interest in this point. A natural
framework is the Bayesian one, see [13].

Of course in such a theory we give up any attempt to model quark substructure
of hadrons. Any property which is dominated by such short-distance physics (the
anomalous magnetic moments of the nucleons is an example) is encoded in low-
energy constants in the Lagrangian. The electric polarisability on the other hand
arises primarily from pionic fluctuations, and indeed would diverge in the chiral
limit. It turns out to be very well described in leading-order HBχPT, as was famously
demonstrated by Bernard et al. a number of years ago now [14]. The magnetic
polarisability on the other hand seems to have comparable contributions from both
longer and shorter distance physics. However working to NNLO in HBχPT allows
for prediction of the full set of six energy- and scattering-angle-dependent amplitudes
of Compton scattering from the nucleon in terms of only two free parameters, namely
the fourth-order LECs which constitute the leading short-distance contribution to the
electric and magnetic polarisabilities [15]. A fit of these parameters to experimental
data is equivalent to an extraction of the polarisabilities, as we now describe.

42.3 Compton Scattering from the Nucleon

Chiral descriptions of Compton scattering [12, 16], and extractions of polarisabilities
[17, 18], date back some years. Details of the calculations reported here are given in
[10] including the specification of the chiral Lagrangian used (Fig. 42.1). One impor-
tant point is that we included the �(1232) as an explicit degree of freedom; with
an excitation energy of not much more than 2mπ it clearly stretches the definition
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Fig. 42.1 Tree, �(1232) pole, leading Nπ, and �π loop diagrams that contribute to Compton
scattering. The double line represents the �(1232). A number of fourth-order Nπ loop diagrams
are included but not depicted. Permuted and crossed diagrams not shown. Figure adapted from [10]

of “high-energy”, and a cursory glance at Compton scattering data shows its over-
whelming importance above about 200MeV photon energy. The power counting that
obtains in the low-energy region is no longer correct around the Delta peak [19] and
our theory there is only good to NLO; hence we only use data from the resonance
region to constrain the Delta parameters and not for our fits.

Grießhammer et al. [1] contains a critical evaluation of the data for Compton
scattering from the proton below about 200 MeV, they are quite numerous but not all
consistent, and some degree of selection was required. Our results for α

p
E1 and β

p
M1

were compatible with the Baldin sum rule α
p
E1 + β

p
M1 = 13.8 ± 0.4, so we reduced

our statistical errors by imposing that constraint, giving

α
p
E1 = 10.65 ± 0.35(stat) ± 0.2(Baldin) ± 0.3(theory),

β
p
M1 = 3.15 ∓ 0.35(stat) ± 0.2(Baldin) ∓ 0.3(theory),

(42.2)

The predictions of the chiral theory with these fit parameters are shown together with
world data in Fig. 42.2. Work on fitting polarisabilities to world data has also been
done recently in dispersion-relation [20] and low-energy-expansion [21] frameworks.

42.4 Compton Scattering from the Deuteron

From a nuclear-physics point of view, a great merit of the chiral perturbation theory
framework is that it allows for a description of nuclear forces from a starting-point
which is better alignedwithQCD than the traditional approaches, and very substantial
progress has been made in describing light and even medium-mass nuclei starting
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Fig. 42.2 World proton Compton scattering data and chiral EFT predictions. The labelled photon
laboratory energy is the central value of 8 MeV bins, and the shaded bands span the same range
(variation due to the errors on the extracted polarisabilities is small in comparison). The symbols
are explained in Table3.1 of [1]

with chiral forces that also do a good job of describing few-body systems (see for
example [22]). In the current context the ability to describe the contribution of pions
to both nucleon and nuclear Compton scattering on the same footing is of immense
benefit. The extension of the work described above to light nuclei, therefore, has
two aims: one is to extract the neutron polarisabilities in the absence of a free target,
but the other, perhaps more relevant for this conference, is to test the efficacy of a
chiral description of nuclear forces to describe a dynamical process, by comparing
to experimental data and, if a good description can be given, comparing the neutron
polarisabilities extracted from different targets.

The various diagrams which contribute are shown in Fig. 42.3. At chiral energies
Eγ ∼ mπ the rescattering diagram (c) is higher-order. However at very low energies
the same enhancement of the two-nucleon propagator that gives rise to the existence
of a bound state in the first place requires this graph to be included. Only with
the complete set is the correct Thomson limit reproduced; (a) and (b) alone give a
result which is out by around a factor of two. As required by the power-counting
the contribution of (c) rapidly diminishes with energy. However given that the NN
force used in practice has regulatorswhich introducemomentum-dependence beyond
that arising from the Lagrangian, the inclusion of (c) even at higher energies allows
consistency with Siegert’s theorem and markedly reduces the spread between the
results using different forces [23].
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Fig. 42.3 Diagrams that contribute to Compton scattering on the deuteron. The green blob in the
one-body diagram a represents the graphs of Fig. 42.1 while the red blob in c represents the full NN
rescattering, including no interaction. The blue hemisphere represents the deuteron wave function.
Figure adapted from [1]

Fig. 42.4 World deuteron Compton scattering data and the chiral EFT fit. The new data of [5] are
the red crosses. Figure adapted from [5]

In [1] we fittedα(s)
E1 and β(s)

M1 to the pre-2014 world deuteron data, then in [5] the fit
was updated to include the newMAX-Lab data which almost doubled the size of the
database. The one-body diagrams were implemented to NNLO, rather than N3LO
as in the proton case, and the main consequence of this lower-order fit is a larger
theory error than for the proton; however the statistical error still dominates. The
isoscalar Baldin sum rule of α(s)

E1 + β(s)
M1 = 14.5 ± 0.4, [24] was used as a constraint.

Weobtainedα(s)
E1 − β(s)

M1 = 7.8 ± 1.2(stat) ± 0.8(th), with aχ2 of 45.2 for 44 degrees
of freedom.

This was then combined with the proton value to extract numbers for the neutron:

αn
E1 = 11.65 ± 1.25(stat) ± 0.2(Baldin) ± 0.8(theory),

βn
M1 = 3.55 ∓ 1.25(stat) ± 0.2(Baldin) ∓ 0.8(theory),

(42.3)

The world data and chiral EFT cross sections are shown in Fig. 42.4.
As can be seen from Fig. 42.4, the description of the data is good. Even more so

thanwith the proton, the inclusion of theDelta is required to reproduce the backwards
angle cross section, which otherwise falls too low. The results for the polarisabilities
are very close to those of the proton (as expected in chiral perturbation theory, since
the dominant effects are isoscalar) and indeed a significant isovector contribution is
driven entirely by the Baldin sum rule and would be absent in a two-parameter fit.
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42.5 Compton Scattering from 3He

In principle the calculation for 3He mirrors that of the deuteron, and the first studies
were done by Shukla (née Choudhury) Nogga and Phillips [25, 26] and improved and
extended byMargaryan et al. [27]. This is the subject of another contribution in these
proceedings [11], so I will not show any results here. I will just comment that the
equivalent of diagram (c) in Fig. 42.3, in which the three nucleons rescatter between
absorbing and emitting the photons, is not yet included. Based on experience with
the deuteron we expect that for energies above 50–60 MeV the results will still be
qualitatively reliable, but work is in progress to correct this deficit.

42.6 Spin Polarisabilities

The effective Hamiltonian of (42.1) contains not only the easily-interpreted electric
and magnetic polarisabilities, but also four spin-dependent polarisabilities. Because
their contributions to the low-energy amplitudes go as ω3, and also because they are
not enhanced by interference with the leading Thomson amplitude, their influence
on the cross section is rather small. They are predicted to the order at which we
work in χEFT , and the existing data does not provide enough sensitivity to extract
them without further constraints (see also [21]). A summary of our knowledge of
these is given in [9, 28]. The natural observables for this purpose are those obtained
with polarised targets and photons. Few such experiments have been done, and some
are at energies sufficiently high (around 280 MeV lab energy) that realistic theory
errors on polarisability extractions in a chiral framework would be very large. As an
indication of this, it is helpful to consider the so-called “dynamical polarisabilities”,
which are linear combinations of Compton scattering multipoles, with the leading
dependence onω factored out, so that theω → 0 limit coincides with the correspond-
ing (static) polarisability (see [18, 28] and references therein). Figure42.5 shows the
the first 8 multipoles in the present theory (after fitting as described above), in the
O(e2δ3) covariant framework of Lensky et al. [28] (without fitting to data), and in
the dispersion-relation framework of Pasquini et al. [18], based on integrals over
pion-photoproduction multipoles (with αE1 − βM1 and γπ fit to Compton scattering
data). Varying a static polarisability is identical to simply shifting the corresponding
dynamical polarisability up or down.

For low-energy scattering, the message of this plot is very positive. There is a sub-
stantial degree of agreement on the shape of the polarisabilities among the approaches
up to around 250 MeV lab energy (200 MeV cm energy in the figure). Furthermore,
after adjusting the static polarisabilities to a common value, the results generically lie
very close to one another. Indeed, the same pion-loop and Delta-resonance physics
is encoded in all three calculations. In the Delta-dominated multipoles, this agree-
ment continues up to surprisingly high energies, but overall disagreement becomes
quite pronounced above 250 MeV lab energy. Thus at these energies, a reliable link
between the amplitudes and the static polarisability is lost.
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Fig. 42.5 Real parts of the dominant dynamical polarisabilities for low-energy Compton scattering
from the proton, plotted as a function of cm photon energy. The units are 10−4 fmn where n = 3 for
αE1 and βM1, n = 4 for the γi , and n = 5 for αE2 and βE2. Red (solid): this work; green (dashed):
DR-based by Pasquini et al. [29]; blue (dotted) 3rd-order covariant χPT by Lensky et al. [28].
Note that each row has its distinct plot scale. Figure reproduced from [8]

In our recent paper [8]we explored the sensitivity of various target-beam asymme-
tries to the spin polarisabilities. As an advertisement for our results I here show one
of the sensitivity “heat-plots” from that paper in Fig. 42.6. It concerns the asymmetry
�2x , which involves circularly polarised photons and a target polarised perpendicu-
larly to the scattering plane, and the colour indicates the derivative of the observable
with respect to the polarisability (or combination), with deep red and deep blue
indicating large positive and negative values respectively. A grey mist over the high-
energy, right-hand end of the plots indicates the region where the different theoretical
approaches considered no longer agree, as discussed above. This observable is partic-
ularly sensitive to the combination γE1E1 − γE1M2, with little confounding sensitivity
to other combinations if the Baldin Sum rule is used to fix αE1 + βM1. The plot also
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Fig. 42.6 Sensitivity of the double asymmetry�2x (circularly polarised photons on a proton target
polarised along the x axis) to varying the polarisabilities; see text for details. Circles indicate the
approximate location of the data of [3]; their size does not reflect the error bars, nor the size of
energy or angle bins. Figure reproduced from [8]

shows that the extant data (circles) is not at the best kinematics (even leaving aside
the theory disagreement at such high energy). For an fuller explanation of the plot,
the reader is referred to the original paper.
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In conclusion, chiral effective field theory provides a highly effective tool for
the exploration of Compton scattering on light nuclei. Up-coming analyses and new
experiments at MAMI and HIγS will provide accurate date on several targets, so
that multiple extractions of neutron polarisabilities should soon be possible, along
with further confirmation of the extent to which the same theory describes few-body
system in a systematically improvable framework.
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Chapter 43
The Quest for New Data on the Space
Star Anomaly in Pd Breakup

A. Wilczek, N. Kalantar-Nayestanaki, St. Kistryn, A. Kozela,
J. Messchendorp, I. Skwira-Chalot and E. Stephan

Abstract Even though the development of the theories providing a precise descrip-
tion of few-nucleon interactions is well advanced, certain inconsistencies between
experimental data and theoretical predictions are still to be resolved, one of which is
the Space StarAnomaly in deuteron-proton breakup.As the cross-sections for the star
configurations are measured mainly for the energy range below 20MeV, new mea-
surements at higher energies could give an important hint for a possible source of the
discrepancy between experimental data and the theoretical predictions. In this con-
tribution, the very first preliminary 160MeV deuteron on proton p(d , pp)n breakup
cross-sections for the star configuration measured with the BINA experimental setup
are presented.

43.1 Introduction

The Space Star Anomaly, the most known discrepancy between the theoretical and
the experimental cross-sections in the proton-deuteron breakup reaction, is named
after the specific configuration for which it is observed [1].

The configuration is defined as a final state, for which the center-of-massmomenta
form an equilateral triangle. Depending on the angle of inclination with respect to
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the beamaxis (α), one distinguishes between theSpaceStar, forα = 90◦, the Forward
Plane Star α = 0◦, and the Backward Plane Star α = 180◦.

The highest ever energies, for which an analysis of the star configurations in pd-
breakup was done, are 19MeV [2] and 65MeV [3]. Therefore due to a poor coverage
of the energy range above 20MeV it was not possible to draw clear conclusions about
the source of the effect. The comparison of the measurement and the calculations
at 65MeV show lack of the Space Star Anomaly.

The systematic studies of cross-section as a function of energy for various orien-
tations of the star relatively to the beam direction are important for better understand-
ing of the process dynamics. The Big Instrument for Nuclear-polarization Analysis
(BINA) [4], currently at the Cyclotron Centre Bronowice (CCB) in Krakow, is one
of the detectors well suited for such studies [5]. The research program of the exper-
iment aims i.a. at providing some additional data on the star cross-sections.

43.2 The BINA Experimental Setup

The detector consists of a scattering chamber equipped with a target system enabling
to use liquid hydrogen or deuterium. The detection system is divided into two parts:
the Ball surrounding the target, and the Wall. The Ball is build out of 149 detectors
(polyhedrons of triangular cross-section) made of two kinds of scintillating poly-
mers in the phoswich configuration. The polar angles θ ∈ (40◦, 165◦) are within the
acceptance of the detector.

The track reconstruction for forward angles is based upon the charge detection
in aMultiWire ProportionalChamber,whichmakes use of 3 detection layers.Option-
ally, it is possible to place the ΔE Wall just next to the MWPC. The ΔE detector
works in combination with the Wall of energy detectors as a particle identification
system. The Wall covers polar angles θ ∈ (10◦, 40◦)

Such a combination of detectors covers a solid angle of almost 4π, what makes
the system outstandingly fitted to the measurements of the Space Star geometry.

The experiments performed with BINA at KVI, Groningen, and the ongoing
measurements at CCB, Krakow, make possible to extend the experimental data
on Space Star cross-section with the measurements taken at 50, 80, 108, 135, and
160MeV/nucleon. New measurements will be carried out in 2019.

43.3 Results

The very first preliminary results are obtained for p(d(160MeV), pp)n reaction.
The analysis [6] relies on reconstruction of proton energies, polar angles, and
the relative azimuthal angle of the proton pair. Since the configurational correc-
tion for the star configuration (e.g. for loss of coincidences due to double-hits) was
not fully implemented, the cross-section was normalized to the theoretical results
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Fig. 43.1 Cross-section for p(d(160MeV), pp)n breakup θ1 = θ2 = 25.11◦, φ12 = 147.80◦
(α = 30◦) configuration, plotted against arc length measured anti-clockwise along the kinemat-
ics (S). The starting point (S = 0) is arbitrarily chosen as the point where energy of the second
proton is minimal and starts to increase. The star configuration corresponds to the axis of symmetry
of the plot. Theoretical predictions are plotted as lines (red solid: CD-Bonn+Δ+Coulomb, green
chain: CD-Bonn+Δ, blue dashed: CD-Bonn+Coulomb) [7]. The normalization of the experimental
data is arbitrary

(CD-Bonn+Δ+Coulomb) [7]. This makes possible to check the feasibility of pro-
viding new good-quality results on the star configurations.

The symmetry axis in the Fig. 43.1 corresponds to the star configuration at incli-
nation angle α = 30◦. The statistics corresponds to about 1.5days of continuous
measurement, and the statistical error equals to 8%. Although the statistical errors
do not allow distinguishing between the models based upon CD-Bonn, one has to
take into account that the cross-section for the star configurations in deuteron on pro-
ton breakup increases with α, until it reaches the value corresponding to α = 180◦,
which is about 3 times higher than for α = 30◦. On the other hand, the statistical
error for α = 0◦ was still below 10%.

In order to reduce the statistical error for α = 30◦ to 5%, the next measurements
with BINA should consist of about 4days of continuous data-taking. One might
consider 10days of acquisition to reach the statistical error of about 2.5%.

Acknowledgements This project is supported by the National Science Centre, Poland (grant
2016/23/D/ST2/01703 and 2012/05/B/ST2/02556).

References

1. Strate, J., et al.: Differential cross section of the 2H(n, nnp)-reaction at En = 13MeV. Nucl. Phys.
A 501, 51 (1989)

2. Ley, J., et al.: Cross sections and tensor analyzing powers Ayy of the reaction 1H(
→
d , pp)n in

“symmetric constant relative energy” geometries at Ed = 19 MeV. Phys. Rev. C 73, 064001
(2006)



252 A. Wilczek et al.

3. Zejma, J., et al.: Cross sections and analyzing powers Ay in the breakup reaction 2H (p, pp)n at
65 MeV: star configurations. Phys. Rev. C 55, 42 (1997)

4. Kistryn, St., Stephan, E.: Deuteron–proton breakup at medium energies, J. Phys. G 40, 063101
(2013)

5. Wilczek, A.: Towards an explanation of the space star anomaly. Acta Phys. Pol. B 49, 458 (2018)
6. Parol, W.: Investigation of three-nucleon force effects in the reaction of deuteron proton breakup

at the energy of 80 MeV/nucleon (in Polish). Ph.D. thesis, Jagiellonian University, Krakow
(2015)

7. Deltuva, A.: Momentum-space calculation of proton-deuteron scattering including Coulomb
and irreducible three-nucleon forces. Phys. Rev. C 80, 064002 (2009)



Chapter 44
New Ab Initio Approach to Nuclear
Reactions Based on the
Symmetry-Adapted No-Core Shell Model

Alexis Mercenne, Kristina D. Launey, Jutta E. Escher, Tomas Dytrych
and Jerry P. Draayer

Abstract Wepresent the current development of a newab initio approach for nuclear
reactions that takes advantage of SU(3) symmetry and its relevant dynamics com-
bined with the resonating group method. In this model, the structure of the clusters
is based on the ab initio symmetry-adapted no-core shell model, which enables the
description of spatially enhanced nuclear configurations. We will present the formal-
ism that involves the expression of the norm kernels in the SU(3) symmetry-adapted
basis, in addition to first results for the p-α, p-16O and p-20Ne scattering reactions.

44.1 Introduction

The development of new experimental facilities has highlighted the need for new
microscopic nuclear reaction models. In addition, recent progresses in ab initio
nuclear theory using realistic, QCD inspired, interactions as well as many devel-
opments in high performance computing (HPC) have given the necessary tools
to theoretical approaches such as the no-core shell model to provide an ab initio
description of the structure of light nuclei [1, 2]. Its recent implementation within
the resonating group method (RGM) [3] has allowed a microscopic study of nuclear
reactions [4, 5], pursuing the long-lasting goal to unify the nuclear structure and
reactions. However, even with the development of more advanced HPC techniques,
the nuclear structure and reactions for certain mass region remain out of reach for ab
initio approaches mainly due to the the size of the configuration space. Recently, the
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symmetry-adapted no-core shell model (SA-NCSM) [6, 7] which considers a more
physically relevant basis, has proven its efficacy and has been successfully applied to
the description of nuclear structure for nuclei up to medium mass. Motivated by the
need for calculated nuclear cross sections in experimental research and astrophysics
studies, and following the spirit of the NCSM/RGM, we combine the SA-NCSM
with the RGM, with the view toward providing a complete description of structure
and reactions for binary reactions in which the projectile is a nucleon.

44.2 Unified Ab Initio Approach for Medium-Mass Nuclei

In the RGM, the wave function is expanded within a cluster basis:

|Ψ J πT 〉 =
∑

ν

∫

r
drr2

gJ
πT

ν (r)

r
Â|ΦJ πT

νr 〉 , (44.1)

where the index ν gathers all quantum numbers defining channels and partitions:
ν = {(A − a)α1I1T1; aα2I2T2; �s}, and the cluster states are defined as |ΦJ πT

νr 〉 =[
(|(A − a)α1I1T1〉 ⊗ |aα2I2T2〉)(sT )× Y�(r̂A−a,a)

](J πT ) δ(r−rA−a,a)

rrA−a,a
. The wave functions

gJ
πT

ν (r) in (44.1) are the quantities to be determined. They describe the relativemotion
between the target and the projectile for all channels ν, and the cross section can be
extracted from their asymptotic behavior. The determination of gJ

πT
ν (r) is achieved

by solving the Schrödinger equation:

∑

ν

∫
drr2

[
HJ πT

ν ′ν (r, r′) − ENJ πT
ν ′ν (r′, r)

] gJ
πT

ν (r)

r
= 0 . (44.2)

Here, the Hamiltonian HJ πT
ν ′ν (r′, r) and norm NJ πT

ν ′ν (r′, r) kernels are expressed as:
〈ΦJ πT

ν ′r′ |ÂÔÂ|ΦJ πT
νr 〉, where Â is the antisymmetrizer ensuring the Pauli exclusion

principle, and they are computed using the wave functions of the clusters. Once
the kernels are computed within a given basis, (44.2) can then be solved using an
R-matrix approach.

An ab initio application of this approach is the NCSM/RGM which uses ab initio
NCSM wave functions generated using realistic interactions in order to compute
the kernels. The NCSM/RGM has then been successfully applied to the description
of several nuclear reactions involving light nuclei. However the method becomes
numerically challenging for heavier systems due to the size and complexity of the
configuration space. In addition, the inversion of the norm kernel as well as the
treatment of the center-of-mass excitations become challenging tasks when the num-
ber of channels increases. In this context, the SA-NCSM combined with the RGM
holds promise to obtain a unified ab initio description of structure and reaction for
intermediate- up to medium-mass nuclei.
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In the SA-NCSM, the microscopic many-body basis (Slater determinants) is
based on the spherical harmonic oscillator single particle basis. In our case, we
consider a basis made of the irreductible representations according to the group
chain: SU(3)(λμ) ⊃

κ
SO(3)L ⊃ SO(2)ML

. Consequently, for any given total spin and

its projection JM , the wave function of a nucleus will be described within a basis
{|αi(λiμi)κi(LiSi)JiMi〉} with each component weighted by a coefficient Ci, and
where αi gathers additional quantum numbers needed to enumerate the complete
shell model space.

In the symmetry-adapted RGM (SA-RGM), the channels are defined by coupling
each component f theSA-NCSMwave functions between the projectile and the target.
Consequently, the channels with good SU(3), spin and isospin quantum numbers are
given in the case of one nucleon projectile as:

|Φρ(λμ)κ(LS)JMTMT
γn 〉 =

{
|α1(λ1μ1)S1T1〉 ⊗ |(n0)1

2

1

2
〉
}ρ(λμ)κ(LS)JMTMT

, (44.3)

where the index: γ ≡ {(A − a)α1(λ1μ1)S1T1; a 1
2
1
2 } label our channel basis, (n0)

represents the SU(3) relative motion of the projectile, and
(
1
2
1
2

)
its spin and isospin

respectively. In this basis, the exchangematrix,which ensures the antisymmetrization
in the kernels, has the following form (in conventional notations [8]):

〈Φρ′(λ′μ′)κ′(L′S ′)JMTMT
γ′n′ 〉P̂A,A−1|Φρ(λμ)κ(LS)JMTMT

γn 〉
= 1

A − 1
δρρ′δ(λμ)(λ′μ′)δκκ′δLL′δSS ′

∑

τρo(λoμo)
Soρ̄

�τSoS ′
1T

′
1
(−1)n+n′−(λo+μo)

× (−1)T1+
1
2 +T ′

(−1)S1+
1
2 +S ′

{
S1 So S ′

1
1
2 S 1

2
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T1 τ T ′

1
1
2 T 1

2

}

×
√
dim(λoμo)

dim(n0)
U

[
(λ1μ1)(λoμo)(λ

′μ′)(n′0); (λ′
1μ

′
1)ρ̄ρ′(n0)ρoρ′′]

× 〈α′
1(λ

′
1μ

′
1)S

′
1T

′
1〉||

{
a†

(n0) 1
2
1
2
⊗ ã( ˜0n′) 1

2
1
2

}ρo(λoμo)Soτ |||α1(λ1μ1)S1T1〉ρ̄. (44.4)

An important advantage here is that the exchangematrix is diagonalwithin this SU(3)
basis, and this allows one to overcome numerical inversion of the norm. So with such
an approach, the dependence on angular momentum is deferred to the very last step
in the calculations, and in turn, facilitates quick calculations [9]. Then, only at the end
we transform back to the partial waves expansion, i.e |Φρ(λμ)K(LS)JMTMT

γn 〉 → |ΦJ πT
νn 〉

using the coefficients Ci, and calculate the norm NJ πT
ν ′ν (r′, r) using the conventional

formula [4].
In order to demonstrate the efficacy of the approach, we present a benchmark

calculation for p-4He. We compare the exchange part of the norm (see in [4]) using
the two NCSM/RGM and SA-RGM approaches Fig. 44.1a. The SA-RGM result has
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(a) (b)

Fig. 44.1 a Exchange part of the norm kernel for p-4He. The target wave function is calculated in a
Nmax = 4 model space, and is truncated in the SA-RGM calculation by selecting only components
greater than 1%. The calculation of 4He was performed using the chiral N2LOopt NN interaction. b
Exchange part of the norm calculated for two heavier system using SA-RGM. Target wave function
has been generated using the chiral N2LOsat NN in 10 shells (�Ω = 16MeV) for 16O and the chiral
N2LOopt NN in 13 shells (�Ω = 15 MeV) for 20Ne, with selected SU(3) configurations that have
a contribution greater than 2%. In all calculations, the spurious center-of-mass motion has been
removed from the ab initio wave functions, but not from the cluster system

been obtained using a 4He wave function truncated to only several SU(3) shapes.
To illustrate the potential of applying this approach to heavier systems, we present
calculations of this exchange part for heavier system in Fig. 44.1b, for p-16O and
p-20Ne.

Hence those results show that the use of a physically relevant basis through the
SA-RGM is a promising approach, where truncated target wave functions can be
implemented to reach heavier system for nuclear reactions. So far, the spurious
center-of-mass motion between the clusters has not been removed, but it is expected
to be negligible for reactions involving one nucleon plus an A > 16 target. This work
presents the method to implement the RGMwithin an SU(3) basis, more specifically
how to take advantage of the SU(3) basis to calculate the norm kernel. The same
procedure will be used for the Hamiltonian kernel.
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Chapter 45
Cluster Structure of the Ground
and Excited States of 9Be and 10B Nuclei

M. A. Zhusupov, K. A. Zhaksybekova, R. S. Kabatayeva
and A. S. Kopenbayeva

Abstract Reactions of quasielastic (p, px), (e, ex) knockout and reactions of (γ, x)
photodisintegration show that particles x—deuterons, tritons, α-particles and nucle-
ons—escape with a comparable probability out of light nuclei. The significant values
of spectroscopic S-factors in these channels are evidence of this. This situation is
well interpreted by the wave functions of multiparticle shell model which allows
considering from the unified positions both cluster and nucleonic degrees of free-
dom. The situation in 9Be and 10B nuclei is of peculiar interest. In these nuclei from
analysis of symmetry of orbital part of wave functions of states at high energies it was
suggested for instance in 9Be nucleus to search three-cluster αtd-states in reactions
with 6,7Li ions on the same target nuclei. Our calculations showed that in excitation
spectra of 9Be nucleus there are three-cluster αtd-states situating in range of both
17–19 and 10–11 MeV. These states have large S-factors in triton, deuteron (and α-
particle) channels simultaneously, moreover the last ones appear exactly due to [441]
states. Similar conclusions were also obtained for 10B nucleus where three-particle
ατt-levels are connected not only to states with Young [433] scheme, but to [442].

45.1 Multicluster Structure of 9Be Nucleus

A calculation of spectroscopic factors includes in wave functions of 9Be levels the
configurationswithYoung [441] and [432] schemes [1]. In transfer reactions the cross
section σ of excitation of levels of final nucleus can be presented by an expression
(in assumption of direct mechanism) σ ~ (2 J + 1)� SL · �, here SL—respective
spectroscopic factors and �—a factor depending on kinematic characteristics. If
one considers the quantity � to be more or less smooth quantity depending on
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(a) (b)

Fig. 45.1 Spectra of excitation of 9Be nucleus in reactions: a–7Li(6Li, α)9Be, b - 6Li(7Li, α)9Be;
adapted from [6]

energy, then the maxima observable in reactions should be connected with maxima
of spectroscopic factors.

In Fig. 45.1 there are spectroscopic factors in form of histograms including the
sums of values of S-factors over energy region of 1 MeV. A comparison with exper-
imental data [2] shows, that the theory describes well the main maxima at energies
E = 11.8, 15.2, 17.8 and 22 MeV. There are faint peaks at E = 0 and 3 MeV due to
Young [441] scheme as well.

Thus three-cluster states having αtd-nature can respond to not only orbital Young
[432] scheme but with no less weight to Young [441] scheme. That is why there is
no surprise in successful description of photonuclear (γ, d) and (γ, t) processes on
9Be nucleus achieved by the authors in ααn-model [3].

Our calculations showed that in spectrum of excitation of 9Be nucleus there are
three-cluster αtd-states in region both 17–19 and 10–11MeV. These states have large
S-factors in triton and deuteron channels simultaneously, and the last ones appear
due to states [441] exactly. In [4] authors analyzed wave functions and suggested
searching the three-cluster αtd-states in reactions with 6,7Li ions on the same target
nuclei.

45.2 Cluster Structure of 10B Nucleus

The wave function of 10B nucleus contains in the ground state two components with
Young [442] and [433] schemes with contribution of the second one of slightly more
than 3% [1]. Because of the smallness of binding energy of nuclei 7Li in (α + t)-
channel and 6Li in (α + d)-channel the dominating mechanisms in both 6Li(6Li,
d)10B and 7Li(7Li, α)10B cases are the transfer of alpha-particle and triton clusters
respectively.
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(a) (b)

Fig. 45.2 Spectra of excitation of 10B nucleus in reactions: a–7Be+ t→ 10B*, b–6Li+ α → 10B*

In Fig. 45.2 there are values of summarized spectroscopic factors. A comparison
with experimental data shows that in whole the theory describes the main maxima
observed at energies E = 7, 11 and 13 MeV for joining tritons and at energies E =
7, 11 and 16 MeV for alpha-particles.

45.3 Conclusion

With aim of study of cluster structure of 9Be and 10B nuclei the reactions of lithium
isotopes interaction with each other were considered, such reactions lead to the
ground and excited states of 9Be and 10B nuclei. The fact that the main mechanism
in reaction with lithium ions is the mechanism of transfer of weakly bound deuteron,
triton and alpha-particle was used. It is turned out that the energy dependence of
excitation spectrum is well described by the summarized spectroscopic factors.

For calculations we used the wave functions of multiparticle shell model [1]. For
9Be nucleus the ground state has a strongly pronounced ααn-structure [5]. And αdt-
configuration in the ground state practically has no contribution. That is why some
calculations for 9Be nucleus on the base of αdt-model are simply mistaken. This is
confirmed by the fact that in αdt-model the main transitions with neutron escape
out of 9Be nucleus with formation of 8Be nucleus in the ground and the first excited
states (with Young [44] scheme) are forbidden, and also the observable alpha-particle
escape with formation of 5He nucleus in the ground and the first excited states with
Young [41] scheme. For 10B nucleus the analogous calculations give the dominating
ααd-structure.
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Chapter 46
Characteristics of 6Li Nucleus Cluster
Photodisintegration Reactions

M. A. Zhusupov, K. A. Zhaksybekova and R. S. Kabatayeva

Abstract On the base of potential theory the characteristics of Lithiumnuclei cluster
photodisintegration reactions are considered in the range of very lowand intermediate
energies. At low energies the important role of E1-multipole and its interference
with E2-multipole were considered. The essential point is the different character of
interference of E1- and E2-amplitude for the direct and inverse reactions. If for the
direct reaction the interference at scattering in forward hemisphere has a constructive
character, then in backward hemisphere the interference of E1- and E2-amplitudes
is destructive. For the inverse reaction the interference has an opposite character: in
forward hemisphere it is destructive, and in backward hemisphere it is constructive.
In the energy range above several MeV the E2-multipole becomes dominating.

46.1 Introduction

The processes of two-particle photodisintegration of light self-conjugated (N = Z)
nuclei with formation of particles with zero isotopic spin like 4He(γ , d)d and 6Li(γ ,
d)α are of peculiar interest for the theory of photonuclear reactions. The cross sections
of the reactions are unusually small because according to selection rules by isotopic
spin the E1-transitions in case�T= 0 are strongly suppressed and the E2-multipoles
begin to play the determining role.

The reaction αd → 6Liγ represents peculiar interest as a unique source of for-
mation of 6Li nuclei in the Big Bang [1]. Its study is important for thermonuclear
applications as well. Despite the fact that the E1-transitions in the reaction αd →
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6Liγ are strongly suppressed due to selection rules by isospin, a violation of symme-
try of angular distribution of γ -quanta with respect to angle θ = 900, characteristic
for the case of “pure” E2-transitions, shows the noticeable interference of these mul-
tipoles at low energies [2]. That is why a natural question about reasons leading to
appearance of E1-multipole appears.

46.2 E1-Transitions at Low Energies

We think that in this case the appearance of E1-multipole is due to a clearly
pronounced αd-structure of 6Li nucleus, as a consequence of which the center
of the charge does not coincide with the center of mass of the system. For a
nucleus consisting of subsystems a and b the dipole operator can be presented
in form of a sum dipole operators acting in each of the subsystems and �dρ =
e �ρ · mamb/(ma + mb) · (Za/ma − Zb/mb), here �ρ – is a coordinate of relative
motion of clusters a and b. Applying this formula for calculation of the reaction α

+ d → 6Li + γ one finds that in αd-system because of the fact that mα − 2md �= 0
the dipole moment dρ = 4.3 · 10−4 · eρ appears and it gives the appearance of
E1-multipole [3]. The wave function of the ground state of 6Li nucleus was cho-
sen in αnp-model [4]. When constructing the wave function of αd-scattering a deep
potential with forbidden states was used [3].

One can observe the E1-transition in angular distributions of processes 6Liγ ↔αd
in the interference with E2-multipole. In Fig. 46.1 there are our calculations in cluster
model. As it is seen in Fig. 46.1b the theoretical calculation agrees qualitatively with
experimental data [2]. Note the different character of interference of E1- and E2-
amplitudes for direct 6Liγ → αd and inverse αd → 6Liγ reactions. If for the direct
reaction the interference at scattering in the forward hemisphere (until π/2) has a
constructive character, then in the backward hemisphere the interference of E1- and

(a) (b)

Fig. 46.1 Angular distributions in processes: a—6Liγ → αd; b—αd → 6Liγ . Dashed—
pure E2-transition, dash-and-dot—E1-transition, solid curve—total result accounting E1- and
E2-multipoles. Experiment—[2]
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(a) (b)

Fig. 46.2 Total cross sections (a) and astrophysical rates (b) of αd → 6Liγ process. Experiment -
[8]. Theory: a 1—calculation [6]; 2—[7]; 3—[8]; b 1—calculation [6]; 2 – [9]; 3—[8]

E2-amplitudes is destructive. For the inverse reaction the interference has opposite
character. Concerning the reaction αd → 6Liγ the region lower than 700 keV is still
important. In this region only data obtained as a result of coulomb dissociation of
lithium nuclei in the field of a heavy nucleus (Pb) is available that is using themethod
of virtual photons [5].

To answer the question about the role of E1-multipole it is necessary alongwith the
angular distributions of deuterons to measure the total cross sections. Calculations in
works [6, 7] reproduce the experimental data on total cross sections and astrophysical
factor approximately in the sameway (Fig. 46.2). The result inwork [6] is a theoretical
prediction since it had been obtained before the authors got acquainted with the
experimental work [5].

46.3 Conclusion

The cluster E1-transition appears due to large difference in masses 2md–mα , that
is because of large binding energy of α-particle in dd-channel which is equal to
24.5 MeV. Because of the difference in penetrability of potential barrier the E1-
multipole appears in astrophysical region where the interference effects of E1 and
E2 multipoles in the angular distributions of particles are the strongest. In such a
case the character of interference of E1- and E2-multipoles in the direct and inverse
photonuclear reactions is different.

The work was financially supported by the Grant No. AP05132952.



266 M. A. Zhusupov et al.

References

1. Schramm, D.N., Wagoner, R.V.: Element production in early universe. Ann. Rev. Nucl. Sci. 27,
37 (1997)

2. Robertson, R.G.H., et al.: Observation of the capture reaction H-2(Alpha-Gamma)Li-6 and its
role in production of Li-6 in the Big-Bang. Phys. Rev. Lett. 47, 1867 (1981)

3. Burkova, N.A., et al.: Is it possible to observe an isoscalar E1-multipole in Li-6-Gamma-
Reversible-Alpha-D reactions. Phys. Lett. B 248, 15 (1990)

4. Kukulin, V.I. et al.: Detailed study of the cluster structure of light-nuclei in a 3-body model. 1.
Ground state of Li-6. Nucl. Phys. A 417, 128 (1984)

5. Kiener, J., et al.: Measurements of the Coulomb dissociation cross-section of 156 MeV Li-6
projectiles at extremely low relative fragment energies of astrophysical interest. Phys. Rev. C
44, 2195 (1991)

6. Zhusupov, M.A. et al.: One particle spectroscopic characteristics of Li-6 and Be-9 in the three
particle models. Izv. Akad. Nauk Kaz. SSR. Ser. Fiz. 62, 985 (1998)

7. Igamov, S.B., Yarmukhamedov, R.K.: Analysis of the nuclear astrophysical reaction Alpha-D—
Li-6 + Gamma. Phys. At. Nucl. 58, 1317 (1995)

8. Langanke, K.H.: Microscopic potential model studies of light nuclear capture reactions. Nucl.
Phys. A 457, 351 (1986)

9. Caughlan, G.R., Fowler, W.A.: Thermonuclear reaction rates. At. Data Nucl. Data Tables 40,
283 (1988)



Chapter 47
Three-Body Approach to
Deuteron-Alpha Scattering Using
Realistic Forces in a Separable or
Non-separable Representation

L. Hlophe, Jin Lei, Ch. Elster, A. Nogga and F. M. Nunes

Abstract Starting from an effective three-body Hamiltonian consisting of realistic
two-body potentials, we solve the Faddeev-AGS equations for d + α scattering using
the separable expansion method. First, we construct separable representations of
the two-body interactions and solve one-dimensional integral equations to obtain
angular distributions for elastic scattering. We find that the latter converge rapidly
with the number of separable terms. Moreover, we observe that these cross sections
are in excellent agreementwith those calculated by directly solving the Faddeev-AGS
equations using the original interactions. This result demonstrates that the separable
expansion method can be used to obtain accurate solutions of the Faddeev-AGS
equations.

47.1 Introduction

Deuteron-induced reactions are a powerful tool for probing nuclear structure as well
as extracting neutron capture rates needed to determine r -process abundances. From
a theoretical perspective, (d, p) reactions can be viewed as a three-body problem
consisting of the neutron (n), proton (p), and nucleus (A). Exact solutions of the
three-body scattering problem are given by the Faddeev equations. Since this work
is carried out in momentum space, we adopt the Alt-Grassberger-Sandhas (AGS) [1]
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formulation of the Faddeev equations. Obtaining numerical solutions of these
equations is complicated by the presence of the Coulomb potential, particularly
for heavy systems and low beam energies. Those difficulties can be addressed by
recasting the Faddeev-AGS equations in a Coulomb basis using separable effective
two-body potentials [2]. In this work we demonstrate that using the Faddeev-AGS
equations with separable two-body interactions based on the Ernst-Shakin-Thaler
(EST) [3] scheme provides solutions for d + α scattering identical to those in which
no separable representation is employed. We point out that an identical study [4]
validated the method for the three-body bound state equations.

47.2 Faddeev-AGS Equations

The effective three-body Hamiltonian for the n + p + α system has the form

H3B = H0 + Vnp + Vpα + Vnα, (47.1)

where Vnp, Vpα , and Vnα represent the two-body subsystem interactions. To describe
deuteron-alpha scattering we adopt the AGS formulation of the Faddeev equations

Ui j (z) = δ̄i j G
−1
0 (z) +

3∑

k=1

δ̄ik tk(z) G0(z)Ukj (z), (47.2)

where δ̄i j = 1 − δi j , z = E3 + iε, and E3 the available three-body energy in the
center-of-mass (c.m.) frame. Here ti (z) is the effective two-body t-matrix for the i th
pair and G0(z) the free propagator. The AGS transition amplitudes Ui j (z) describe
all possible three-body processes which include elastic scattering, transfer reactions,
and deuteron breakup. The momentum space representation of (47.2) results in a
set of coupled integral equations that depend on the Jacobi momenta pi and qi .
The former corresponds to the momentum of the pair, while the latter describes the
momentum of the third particle relative to the pair. A great simplification occurs if
the two-body t-matrix has a separable form

t
αiα

′
i

i (pi , pi ; Eqi ) =
rank∑

m,n=1

hαi
m (pi ) τ

αiα
′
i

mn (z, qk) h
α′
i

n (p′
i ), (47.3)

where m(n) is the rank index and αi (α
′
i ) represents an angular momentum channel.

The separability of the t-matrix allows to integrate out the pair momentum pi leading
to effective two-body transition amplitudes Xi j

mn(z) which fulfill

Xi j
mαi ,nα j

(qi , q j ; z) = Zi j
mαi ,nα j

(qi , q j ; z) +
∑

km ′n′

∑

αkα
′
k

∫
dqk q

2
k Z ik

mαi ,m ′αk
(qi , qk; z)
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× τ
αk ,α

′
k

m ′n′ (z, qk) Xkj
n′α′

k ,nα j
(qk, q j ; z). (47.4)

The three-body dynamics are contained in the so-called effective two-body transition
potentials Z (i j)

nα′
i ,να′

j
(qi , q j ; z).

47.3 Results and Discussion

To evaluate d + α scattering observables, we need to specify the effective three-
body Hamiltonian H3B . For this purpose, the CD-Bonn [5] high precision potential
is adopted in thenp subsystemand theBang [6] interaction in then/p − α subsystem.
The latter potential is fitted to low-energy phase shifts for n/p − α elastic scattering.
The two-body model space is restricted to li ≤ 2 and Ji ≤ 2, with li and Ji being the
orbital and total angular momenta for each subsystem respectively. The Coulomb
potential is omitted in all calculations. Reference [7] showed that EST separable
expansion of effective two-body nucleon-nucleus interactions works equally well in
both the plane wave and Coulomb bases. We thus expect that the observations made
in this study will hold when solving the Faddeev-AGS equations in the presence of
the Coulomb potential.

The idea of the EST separable representation scheme is to perform an expan-
sion of the two-body t-matrix (or equivalently the potential) using solutions of
the Schrödinger equation as basis functions. Specifically, we proceed by fixing the
asymptotic momentum pin , and the two-body energy Eqin , so that the form factors

are given by h
α′
i

n (p′
i ) ≡ t

α′
i ,αin

i (p′
i , pin; Eqin ), where αin indicates the channels that are

included in the expansion. The fixed momenta and energies constitute the so-called
EST support points (ESPs). The index n represents the rank of the separable poten-
tial. The EST constraint ensures that at the ESPs the separable t-matrix is identical to
the original one. Contrary to previous works which imposed the artificial constraint
pin = √

2μi |Eqin |, we choose the values of pin and Eqin independently as described
in [4]. In that work, it was shown that this choice of ESPs improves the conver-
gence of the separable expansion for negative energy support points. For positive
energy support points, it is sufficient to choose the fixed momenta to be on-shell, i.e.,
pin = √

2μi Eqin .
To proceed, we construct rank-8 separable potentials for each two-body subsys-

tem. The latter are specified by giving the fixed energies in MeV and momenta in
fm−1. For example, a support point with energy −60 MeV and momentum 1.0 fm−1

is represented as (−60, 1.0). First, we define the separable potential EST8-1= {(−15,
0.2), (−15, 1.0), (−15, 1.2), (−15, 3.0), (−2, 0.2), (−2, 1.0), (−2, 1.2), (−2, 3.0)},
for the np system and EST8-1= {(−60, 0.2), (−60, 1.0), (−60, 1.2), (−60, 3.0), (−3,
1.0), (−3, 1.2), (−3.0), (−3, 3.0)}, for the n/p − α system. Next, we solve (47.4)
for incident deuteron energies below (Ed = 3 MeV) and above (Ed = 10, 20 MeV)
the deuteron breakup threshold using the aforementioned separable interactions.
Figure47.1 shows the differential cross sections for d + α elastic scattering as a
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Fig. 47.1 The differential cross section for d + α elastic scattering as a function of the center-of-
mass angle θc.m.. The incident deuteron energies (Ed ) are displayed in the figure. The solid curve
shows cross sections computed using rank-8 separable potentials for both the np and n/p − α

subsystems. The ESPs are given in the text. The exact results taken from [8] are indicated by the
dashed curve

function of the center-of-mass angle θc.m.. The solid curve indicates the angular dis-
tributions evaluated using the rank-8 separable potentials. Varying the values of the
fixed energies by several MeV yields results that are indistinguishable in the plot.
This provides an estimate of the precision of the separable expansion. The dashed
curve shows results taken from [8] calculated by directly solving (47.2). This demon-
strates that the separable expansion method works very well in obtaining solutions
for the three-body scattering equations.

47.4 Summary and Outlook

Angular distributions for elastic d + α scattering at incident deuteron energies below
(Ed = 3 MeV) and above (Ed = 10, 20 MeV) the deuteron breakup threshold have
been computed using the separable expansion method. We find that the cross sec-
tions converge rapidly with the rank of the separable potential. Furthermore, the
converged results are in excellent agreement with those exact obtained directly from
the Faddeev-AGS equations without a separable expansion. In light of this successful
benchmark, the method has been employed to study universal behavior in the d + α

system without including the Coulomb interaction [9]. An effort to incorporate the
Coulomb potential is underway.
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Chapter 48
A Fresh Look at Treatment of Radiative
Capture in Nuclear Reactions:
Applications to the α − α
Bremsstrahlung

Adam Arslanaliev and Aleksandr Shebeko

Abstract This contribution demonstrates how the gauge invariance (Eicheninvar-
ianz) principle can be realized in the theory of electromagnetic interactions with
nuclei.

48.1 Theoretical Background

Our departure point in describing electromagnetic (EM) interactions with nuclei (in
general, bound systems of charged particles) is to use the Fock-Weyl criterion and a
generalization of the Siegert theorem (see [1, 2], where this approach is compared
with that by Friar and Fallieros [3]). It has been shown how one can meet the gauge
invariance principle (GIP) in all orders in the charge e and construct the corresponding
EM interaction operators in case of nuclear forces (in general, interparticle ones)
arbitrarily dependent on velocity (see paper [4] and refs. therein). Along the guideline
we have derived the conserved current density operator for a dicluster system (more
precisely, the system of two finite-size clusters with many-body interaction effects
included). To be more definite, for the photon emission with energy Eγ , momentum
kγ and polarization ε the reaction amplitude

Tif = [
2(2π)3Eγ

]−1/2
〈
Pi − k; f

∣∣
∣εμĴμ(0)

∣∣
∣Pi; i

〉

can be expressed [4] through electric (E(k)) and magnetic (H(k)) field strengths,
these manifestly GI quantities, and matrix elements Dif (kγ) and Mif (kγ) of the so-
called generalized electric and magnetic dipole moments of nucleus (system), viz.,
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Tif = E(kγ) · Dif (kγ) + H(kγ) · Mif (kγ).

Henceforth,wewill confineourselves to nonrelativistic approach inwhich the nuclear
HamiltonianH = P2/2M+Hint ≡ KCM + Hint , whereM is the total mass of nuclear
system, is divided into the kinetic energy operator KCM of the center-of-mass (CM)
motion and the intrinsic HamiltonianHint that depends on internal variables of inter-
acting nucleons. Special attention is paid to the cluster structure of the T -matrix for
radiative process A + B → γ + C, in which a target-nucleus A captures a projectile-
nucleus B that is followed by the single-photon emission and formation of a system
C = A + B in a bound or continuum state, e.g., as in case of α + α → α′ + α′ + γ
bremsstrahlung.

48.2 Application to Alpha-Alpha Bremsstrahlung

In the Coulomb gauge (CG), where ε0(kγ) = 0,kγ · ε(kγ) = 0, the T-matrix of inter-
est is given by

T (α + α → α′ + α′ + γ) = 〈Ψ int
α′+α′ |T |Ψ int

α+α〉,

T = i[ε · Dint(kγ),Hint] − ε · P
8m

ρint(kγ) + i[kγ × ε] · Mint(kγ),

where we encounter Fourier transforms of the operators of charge density ρint(kγ),
electric dipole momentDint(kγ) andmagnetic momentMint(kγ). For this short expo-
sitionwe do not consider the last contribution. Explicit expressions of these quantities
can be found in [4]. Here we show our calculations in a simple cluster picture with the
initial Ψα+α = Φα1Φα2χ

(+)
k and final Ψα′+α′ = Φα′

1
Φα′

2
χ(−)

k′ states. The ingoing and

outgoing distorted waves χ(±) meet the equation (p2/2μα + V )|χ(±)

k 〉 = E|χ(±)

k 〉 for
the scattering of particle with mass μα by the potential V = VC + VS , viz., the repul-
sive! Coulomb potential VC = Z2e2/ρ plus a short-range potential VS , e.g. it may
be a phenomenological nuclear potential modified by finite-size effects in Coulomb
interaction between extended objects as in [5]. For simplicity, we assume that the
Φα = Φα1 = Φα2 = Φα′

1
= Φα′

2
describes the 4He g.s.

After this the amplitude of interest T (α + α → α + α + γ) = ε · A with

A =
(
Eγ + Pi · kγ

2Mα
+ E2

γ

4Mα

)∫ 1

0
dλFCH (q)∇q

[
I(k′,k;q) + I(k′,k;−q)

]

+ Pi

2Mα
FCH (kγ)

(
I(k′,k;kγ) + I(k′,k;−kγ))

where FCH is the charge form factor of alpha-particle, q = λkγ and the overlap
integral
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I(k′,k;±q) =
∫

χ(−)∗
k′ (ρ)e±i 12 q·ρχ(+)

k (ρ)dρ = 〈χ(−)

k′ |e±i 12 qρ|χ(+)

k′ 〉,

Following a common practice one can split the overlap integral I into the purely
Coulomb integral IC and their difference ICS ≡ I − IC (cf. decomposition (1) in [6]).
It is the case, where the Nordsieck-type integral IC is determined via the analytical
expression (10) from [7].

48.3 Some Numerical Details

At this point, our calculations of the three dimensional integral ICS are reduced to
the summation of its partial -wave expansions with the radial integrals

ICS (l′, l,L) =
∫ ∞
0

drjL

(
1

2
qr

)
[
gl′lwk ′ l′(r)wk l(r) + wk ′ l′(r)wk l(r) − Fl′(k

′r)Fl(kr)
]
,

where the factor gl′ l = 1
4 (sl′ − 1)(sl − 1) + 1

2 (sl′ − 1) + 1
2 (sl − 1) is expressed

through the S-matrix elements in the angular momentum representation sl = e2iδl (k)

with the phase shift δl(k) for given values of the collision energy and angular momen-
tum l. Every radial wave function wk l(r) that enters the partial-wave expansions of
the solutions χ(±)

k (r) of the Schrödinger equation for the elastic α − α scattering
is normalized in such a way that starting from a value of r = Reff it can with a
high precision be approximated by the superposition Fl(kr) + tan δlGl(kr) where
Fl(kr) and Gl(kr) are the regular and irregular Coulomb functions, respectively. It
is important to know since we calculate these integrals with the help of the so-called
contour method [8]. As an illustration, in Fig. 48.1 we show the bremsstrahlung

Fig. 48.1 Curves calculated for different incident energies Ei: dashed curve for the Coulomb
bremsstrahlung, solid curve for potential model [5], dotted curve for potential model [9]
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cross-section dσ ≡ d3σ/dEγd�1′d�2′ calculated in the lab. system for the coplanar
kinematics with the following disposal of the momenta: the photon momentum is
directed along the Z- axis while the rest lie in the XZ - plane, viz., k1 = k1(θi, 0),
k1′ = k1′(θf ,π). The calculation has been carried out for energies of the incident
alpha-particle Ei = 20 MeV, 40 MeV and the emitted photon Eγ = 1 MeV. It is
proved that under such conditions the partial contributions to the cross-section with
L = 0 and l′max = lmax = 6 are dominant.Webelieve that other details of our approach
will be published somewhere else.
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Chapter 49
Direct Measurement of the 13C(α, n)16O
Reaction at LUNA

G. F. Ciani, L. Csedreki, J. Balibrea-Correa and A. Best

Abstract The 13C(α, n)16O reaction is the main neutron source for the s-process in
low mass AGB stars. Although several direct measurements have been performed,
no dataset reaches the Gamowwindow (140–230 keV) due to the exponential drop of
the cross section σ (E) with decreasing energy. The reaction rate becomes so low that
the strong cosmic background would become predominant. In order to measure the
13C(α, n)16O cross section at low energies, ancillary measurements to understand
the behaviour of 99% enriched 13C evaporated targets, under a high intensity alpha
beam (100–200 µA). These measurements were carried out in deep underground
laboratories of Laboratori Nazionali del Gran Sasso (LNGS) in the framework of the
LUNA experiment. The preliminary results are reported in this contribution.

49.1 State of the Art

The 13C(α, n)16O reaction (Q = 2.215 MeV) is the major neutron source for the
main component of the s-process in low mass (1 − 3M�) Asymptotic Giant Branch
(AGB) stars, whose temperature of interest is about 1 − 2 · 108 K. This corresponds
to a Gamowwindow between 140 and 230 keV, below the Coulomb potential energy
of the reaction.

For the LUNA collaboration.
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Fig. 49.1 (Colour online) State of the art of the direct measurements of the 13C(α, n)16O reaction
adapted from Heil’s paper [1]. The violet band represents the Gamow window, the red solid line is
the extrapolation of the astrophysical S-factor down to this region while its error bands are indicated
by red dashed lines. The green line is an extrapolation where the presence of the threshold resonance
is omitted

In the last 25 years, several direct measurements of this reaction cross section
have been performed [1–4]. The astrophysical S(E)- factor, is shown in Fig. 49.1.
The lowest energy point has been measured by Drotleff et al. [2] with an uncertainty
of 50%.

In addition, the reaction mechanism at low energies includes also the contribution
of the high energy the tail of a near-threshold resonance at ER = −3 ± 8 keV (the
resonance energy in the center-of-mass system), corresponding to Ex = 6.356 MeV
state in 17O . The red and the green lines in Fig. 49.1, indicate the R Matrix extrap-
olation performed by Heil, considering and omitting the subthrehsold resonance,
respectively. As one can see the two curves differ almost of one order of magnitude
in the astrophysical energy region (violet bar).

The extrapolation at lower energies can be improved only by the extension of
experimental cross section data towards the Gamow-window with moderated and
fully controlled uncertainties. Another way to solve the problem are indirect mea-
surements: the Trojan Horse Method (THM) [5] or the Asymptotic Normalization
Coefficient (ANC) [6] have been used to measure the 13C(α, n)16O reaction, but
these techniques need a normalization with respect to direct data, so approach the
Gamow Window with a direct measurement has a crucial importance.

A big effort in the nuclear astrophysics community was made to approach the
Gamow window with uncertainties as low as possible to improve the stellar reaction
rates calculation [7].
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49.2 The 13C(α, n)16O Measurement at LUNA

In this framework, the Laboratory for Underground Nuclear Astrophysics (LUNA)
collaboration proposed a measurement taking advantage from the low background
environment of Underground Laboratori Nazionali Del Gran Sasso (LNGS). Thanks
to 1400m of rocks (3500 m.w.e) the cosmic background is reduced by 6 orders of
magnitude for muons and by three orders of magnitude for neutrons [8].

Furthermore, the LUNA accelerator provides an intense (< I >= 200µA) stable
alpha beam in the energy range 50 < Eα < 400 keV [9] on a solid state target or on
a windowless gas target system [10].

The experimental setup used for this measurement is based on 18 3He counters
with low intrinsic background arranged in two rings (6 in the inner ring, 12 in the
outer ring) concentric with respect to the target chamber. The counters are embedded
in a polyethylene moderator.

In this campaign a vertical multi target chamber where three targets could be
mounted was used: this guaranteed the target changing without break the vacuum
and allowed the reproducibility devoted to deep target behaviour investigation. The
schematic view of the setup is shown in Fig. 49.2a. A series of simulations based on
the Monte Carlo code Geant4 has been performed in order to find the best counters

(a) Schematic design of the
setup used for the

measurement: the vertical
violet volumes represent the
active volumes of the 3He
counters concentric with
respect the target holder

(blue rectangle). Everything
is embedded in the

polyethylene moderator (red
box).
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(b) Simulated efficiency of the setup
as a function of the rings radii r1 and r2

Fig. 49.2 Some main features of the simulation GEANT4 code. In Fig. 49.2a the geometry imple-
mented for the setup simulation. In Fig. 49.2b the efficiency as a function of the rings radii r1
and r2
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Fig. 49.3 Yield of the 13C(p, γ )14N DC → GS transition as a function of the cumulative charge

placement to maximize the efficiency. Figure 49.2b shows the detector efficiency as
a function of the two rings’ radii, r1 and r2: the optimal condition was found at r1 = 6
cm and r2 = 11 cm [11]. A validation of simulation will be performed through the
51V (p, n)51Cr reaction (Q = −1535 keV). The analysis is in progress.

The targets used are produced evaporating 99% enriched 13C powder on tantalum
backing at MTA Atomki (Debrecen, Hungary). In order to keep the target modifi-
cation under control and reduce systematic uncertainties, several precautions were
taken. A cold trap filledwith LN2 is installed along the beamline just before the target
chamber to avoid carbon build up effect. The beam power dissipation is performed
through a cooling system based on a chiller connected to the target chamber. It cools
down deionised water at 5 ◦C.

Two complementary campaigns have been scheduled to investigate target modi-
fication under an intense beam. In the first step, immediately after the evaporation,
the Nuclear Resonant Reaction Analysis with the 13C(p, γ )14N (Q = 7550 keV)
reaction wide resonance at Ep,lab = 1748 keV was exploited at the 2 MV Tandetron
accelerator installed at MTA Atomki. In this phase the uniformity of the evaporation
was confirmed bymeans of the scan of the resonance in different points of the targets.

In the second step, the direct capture component at lower energies was used for the
LUNA campaign and for testing the stability of targets under high intensity proton (I
= 150 µA) beam with Ep = 310 keV [12]. The γ−ray spectra were acquired with a
HPGe 120% relative efficiency in close geometry. Estimating the yield in the region
of interest of the direct capture (DC) peak to the ground state (GS) as a function of
the proton charge on the target, we concluded that the degradation was 17% after 33
C (Fig. 49.3).
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The negligible target damage after a short irradiation with a proton beam, permit-
ted to use an alternation of proton irradiations and alpha ones on the 13C targets.

An innovative gamma shape analysis has been elaborated to evaluate the target
stoichiometry modification that causes the yield decrease (Ciani’s PhD [13]). This
allows to monitor the target conditions during intense irradiations and to correct
13C(α, n)16O yield measured in each partial run for the loss due to degradation.

49.3 Preliminary Results and Conclusion

During the first campaign of measurement, held in winter 2018, five energy points
have been measured between 360 < Eα < 400 keV in steps of 10 keV. A typical
neutron spectrum acquired at Eα = 390 keV is shown in Fig. 49.4. The neutron
peak, together with the wall effect region, are delimited between the red bars. The
contribution beyond the neutron peak comes from the alpha intrinsic background in
the counters and can be considered negligible.

Figure 49.5 presents the preliminary result of the measured reaction yield as a
function of alpha beam energy. The data are not yet corrected for the target degra-
dation and error bars represent statistical uncertainties. The lowest point measured,
corresponding to Eα = 360 keV, is the lowest point ever measured with a direct
measurement.

The final analysis is in progress: once the detector efficiency will be calculated,
the cross section will be evaluated. Moreover the promising and encouraging quality
of the data permits to schedule another measurement campaign to go lower in energy
and approach the Gamow Window.

Fig. 49.4 Neutron spectrum
acquired at Eα = 390 keV.
The red bars indicate the
region of interest of the
neutron peak in 3He
counters
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Fig. 49.5 Preliminary
reaction yield as a function
of alpha beam energy. Only
statistical uncertainties are
shown in the plot. Points are
not corrected for the target
degradation
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Chapter 50
Validity of Quasi-classical Approaches
to True Three-Body Decays

O. M. Sukhareva, L. V. Grigorenko, D. A. Kostyleva and M. V. Zhukov

Abstract Within the hyperspherical harmonics (HH) method the three-body prob-
lem is reduced to a motion of one effective particle in a “strongly deformed” field,
which is described in the coupled-channel formalism. This method is well suited
to studies of so-called true three-body decays. The reduction of the hyperspheri-
cal equations set to a single-channel approximation provides the basis of standard
quasi-classical (QC) expression for width evaluation. We demonstrate that by itself
the quasi-classical approach is quite precise in application to typical three-body
effective potentials. However, the reduction to a single channel leads to a significant
overestimation of the width.

Conventional methods of a width determination for resonant states, such as via an
elastic phase shift energy dependence, or via S-matrix pole position in the com-
plex energy plane could be technically complicated for very small widths Γ � E .
Therefore studies of radioactive decays require specific methods for the decay width
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determination. Among them are “natural” width definition via WF with pure out-
going asymptotics [1], Kadmensky-type integral formulas [2], and quasi-classical
approach of Gamow type [3].

The standard QC approximation is easy to formally generalize for true three-
body decays, where two protons are emitted simultaneously. The motion of such
a system can be considered in a certain approximation as a single-channel motion
in the hyperradius ρ value. In such an approximation evaluation of the decay width
requires reduction of few-body problem to a single-channel formalism of some form,
where the Gamow integral over the sub-barrier trajectory {ρ2, ρ3} can be defined as

Γ = ν exp

[
2i

∫ ρ3

ρ2

p dρ

]
, ν =

[
2M

∫ ρ2

ρ1

dρ

p

]−1

, p = √
2M[ET − Veff(ρ)] .

(50.1)

Here ρ1, ρ2 are inner and ρ3 is outer classical turning points of the potential Veff(ρ).
Both the validity of the few-body problem reduction to a single channel formalism
and the applicability of the QC approximation for barriers of specific shape can be
questioned.

The Gamow-type formalism has been repeatedly used in the recent years for
determination of three-body decay widths, e.g. [3, 4]. We examine the validity of
this approximation by the example of the width of the first excited 3/2− state of
17Ne, which is known to decay via true two-proton decay mechanism. The width
of this state is important for determination of the astrophysical capture rate for
15O+p+p →17Ne+γ reaction [5]. Theoretical calculations of this width have pro-
duced so far a considerable controversy [2–4, 6]. Recently this issue was revisited
experimentally [7] providing the improved upper limit for the two-protonwidth value
Γ < 8.8 × 10−13 MeV.

The paper [4] is dedicated to finding “necessary conditions for accurate computa-
tions of three-body partial decay widths”, so its results are expected to be especially
accurate. For the decay of the 17Ne 3/2− state we have found that we can not recon-
cile the width values quoted in [4] with the potential curves provided in this work,
see Fig. 50.1 and Table50.1. The potential provided as a final result of these stud-
ies (solid curve in Fig. 50.1) gives for the 17Ne 3/2− state decay (according to our
calculations) the width value Γ = 8.3 × 10−12 MeV. This value exceeds the recent
experimental limit from [7] by an order of the magnitude.

The potentials obtained by a trivial single-channel reduction of the hyperspheri-
cal potentials of [2] (just diagonalization) look reasonably consistent with potential
derived in [4], see Fig. 50.1. They also have analogous basis convergence trend.
However, the QC results obtained with these potentials are more than an order of
the magnitude larger than the results of the complete three-body calculations [2], see
Table50.2. So we find that the reduction to one-channel approximation leads to the
significant width overestimation, compared to fully dynamical three-body calcula-
tions.
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Fig. 50.1 Effective single channel potentials Veff for quasi-classical calculations of two-proton
width of the 17Ne 3/2− state adapted from [4]. The two-proton decay energy ET is indicated by
horizontal line. Our hyperspherical harmonics (HH) potentials (gray curves) are obtained by trivial
diagonalization of the HH potential matrix from [2]

Table 50.1 The 17Ne 3/2− state widths (in MeV) obtained by (50.1) for hyperspherical adiabatic
effective potentials Veff from [4]. Column 1 corresponds to the non-converged result of [3], column
2 to the “accurate” converged result and column 3 aims to imitate the calculations of [6]. Our QC
calculations with the same Veff are in a strong contradiction with the results quoted in [4]

Case: Kmax = 70, lx , ly ≤ 2 Kmax = 70, lx , ly ≤ 9 Kmax = 20, lx , ly ≤ 10

[4] 3.6 × 10−12 1.7 × 10−14 5.4 × 10−16

QC, (50.1) 7.3 × 10−6 8.3 × 10−12 7.9 × 10−14

Table 50.2 Widths of the 17Ne 3/2− state in 10−15 MeV units as a function of the hyperspherical
basis size Kmax. QC calculations with diagonalized HH potentials from [2], three-body calculations
of [2] (see Fig. 15 of [2]), and their ratio. Column “Asympt.” contains values obtained by exponential
extrapolation to the infinite basis

Kmax 12 16 20 24 28 32 36 40 Asympt.

QC, (50.1) 9.83 21.8 40.1 54.1 68.5 81.7 90.4 95.6 103

3-body, [2] 0.91 1.32 1.70 2.15 2.64 3.21 3.62 3.98 6.90

Ratio 10.8 16.5 23.5 26.1 25.9 25.5 25.0 24.0 14.9

To conclude, our results question a validity of the widths obtained in [4] for the
17Ne 3/2− state. The recent experimental data [7] also contradict the results of [4]
recalculated by us. The QC method by itself is reasonably precise. However, the
reduction of the few-body problem to a single channel problem leads to a significant
overestimation of the width.
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Chapter 51
Complex-Range Gaussians as a Basis for
Treatment of Charged Particle Scattering

D. A. Sailaubek, O. A. Rubtsova and V. I. Kukulin

Abstract Anemployment of theComplex-RangeGaussianbasis for solving charged
particle scattering is briefly described. The method is based on a discretization of the
continuum and the Coulomb wave-packet formalism. As a result, the off-mass-shell
Coulomb-nuclear t-matrix at any energy can be found from diagonalisation proce-
dures for the total and pure Coulomb Hamiltonians. The approach is illustrated with
the d-α partial phase shifts and pp scattering with the NN interaction containing
non-nucleon degree of freedom.

51.1 Introduction

Aproblemof a choice of the optimal basis for quantum scattering calculations doesn’t
lose its importance, especially, for systems with a few charged particles. Recently [1]
we suggested to use the so-called Complex-range Gaussian basis (CRGB) [2, 3] for
that purpose. The functions of this basis are real-valued ones but they are constructed
from two sets of Gaussians with complex scale parameters:

ψ(r) = rle−(1+ib)αr2 , ψ∗(r) = rle−(1−ib)αr2 (51.1)

where l is the relative orbital momentum and the parameter b is chosen arbitrarily.
As a result, the basis functions have additional oscillating factors, so that, they are
better suited for scattering calculations than ordinary real-valued Gaussians. At the
same time, the usage of such oscillating basis functions keeps all the advantages
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of the Gaussian expansion method such as analytical transformation between basis
functions defined in different Jacobi sets in few-body case etc.

To apply the above basis for scattering calculations, we use the stationary wave-
packet formalism [4] and our newly developed diagonalisation technique [5] which
allows finding the off-mass-shell t-matrix at many energies from a spectral expan-
sion for the total resolvent built from the pseudostates of the discretized continuum.
Here we briefly explain the formalism and give numerical examples. More detailed
explanation of the method can be found in [1].

51.2 The Formalism

Consider scattering of two charged particles with the Hamiltonian:

h = h0 + z1z2e2

r
+ vS(r) ≡ hC + vS(r), (51.2)

where h0 is a kinetic energy operator for the relativemotion of particles, r is a relative
distance, vS is a short-range interaction and hC is the Coulomb Hamiltonian which
includes the long-range Coulomb interaction between the charges z1 and z2 of the
same sign.

As basis functions for practical calculations, we employ the cosine-type func-
tions constructed from the complex Gaussians (51.1): φnl(r) = rle−αnr2 cos(bαnr2)
(n = 1, . . . , N ), where the scale parameters αn are defined on some grid.1 Employ-
ing diagonalisation procedures for the total h and Coulomb hC Hamiltonian matri-
ces in this basis, one gets the sets of eigenfunctions which represent the so-called
pseudostates of the discretized continua for the corresponding Hamiltonians and
approximations for the possible bound-states in a case of the total Hamiltonian h.

Further, one should treat the corresponding pseudostates as approximations for the
stationary wave-packets for h and hC [4]. In particular, the Coulomb wave-packets
|xCk 〉 are constructed as integrals of the regular Coulombwave functions |Fl(E)〉 over
discretized energy intervals, while the scattering wave-packets |zk〉 are constructed
as similar integrals of the scattering wave-functions |ψ(E)〉 of the total Hamiltonian
h. By using the wave-packet formalism [5], one obtains an explicit representation
for the total resolvent and, finally, the off-mass-shell t-matrix in the following closed
form:

tkk ′(E) = vkk ′ +
Nb∑

n=1

v̄kn v̄k ′n

E − En
+

N−Nb∑

i=1

gi (E)ṽki ṽk ′i , k, k ′ = 1, . . . , N , (51.3)

1The properties of the basis were studied in detail in [1] where estimations for optimal values of b
and a grid were given.
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where gi (E) are known values, En are the energies of possible bound states of
the total Hamiltonian h and we have introduced the matrix elements of the short-
range potential between different normalized states, viz. Coulomb wave-packets
|xCk 〉, scattering wave-packets |zk〉 and bound states |ψb

n 〉 for the total Hamiltonian:

vkk ′ = 〈xCk |vS|xCk ′ 〉, v̄kn = 〈xCk |vS|ψb
n 〉, ṽki = 〈xCk |vS|zi 〉. (51.4)

Single diagonalisation procedures for the Coulomb and total Hamiltonian matrices
in the CRGB allow to get all three above types of the normalized states expanded
over the CRGB basis functions (see details in [1]).

51.3 Numerical Illustrations

As the first illustration, the partial S- and D-wave phase shifts for deuteron scattering
over 4He target are represented in Fig. 51.1. The short-range nuclear potentials vS

have been taken in a simple Gaussian form [6] which allows, however, to reproduce
the experimental data at low energies. The potential has one forbidden (by the Pauli
principle) S-wave bound-state. However, we found that it should be included into
the spectral expansion (51.3) of the t-matrix [1].

As the second example, we have calculated the proton-proton scattering phase
shifts with the nucleon-nucleon interaction inwhich the intruder state |a〉with energy
E0 in some inner channel exists (see Fig. 51.2). The Hamiltonian for such a system
is written in a two-channel form:
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Fig. 51.1 S- and D-wave partial phase shifts for the elastic d-α scattering found in the CRGB
(solid curves) in comparison with experimental data (filled circles) from [7]
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Fig. 51.2 1S0-partial phase
shifts for pp scattering
calculated in the CRGB
(solid curve) in comparison
with the SAID data (filled
circles)

H =
(
hC + vS

√
λE0|χ〉〈a|√

λE0|a〉〈χ | E0|a〉〈a|
)

, (51.5)

where |χ〉 is a form factor which determines coupling of the scattering channel with
the inner channel and the dimension of the inner channel is equal to 1. Such type
an interaction is used the dibaryon model for NN interaction [8] where the intruder
state has a meaning of the quark-meson component of a dibaryon resonance in the
respective spin-angular NN channel.

As is seen fromFig. 51.2, the partial phase shifts for 1S0 channel in the abovemodel
reproduce the corresponding SAID data [9] rather well. It should be emphasized that
all the phase shift in a very wide energy region are found from single diagonalisation
procedures for the total and Coulomb Hamiltonians.

51.4 Conclusions

The technique developed makes it possible to find rather easily the off-shell t-matrix
both for short- and long-range interactions in a very broad energy range using only
discretized L2 representations for the total and Coulomb Hamiltonians in the CRGB.
This technique being extended to few-body scattering will lead to some additional
important features, such as a fully analytical form for all matrix elements of the total
Hamiltonian and a convenient way of transformations between basis sets defined in
different Jacobi coordinates.

Acknowledgements Authors appreciate a partial financial support from the RFBR grant 19-02-
00014.
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Chapter 52
Study of a 5-Alpha Cluster Candidate
with the 22Ne(p,t)20Ne
and 22Ne(p,3He)20F Reactions

J. A. Swartz, R. Neveling, P. Papka, L. M. Donaldson, F. D. Smit, G. F. Steyn,
P. Adsley, L. P. L. Baloyi, J. Carter, H. O. U. Fynbo, N. Hubbard,
M. K. Mohamed, G. G. O’Neill, J. C. Nzobadila-Ondze, L. Pellegri,
V. Pesudo, B. Rebeiro and S. Triambak

Abstract The isobaric nuclei 20Ne and 20F were investigated with the 22Ne(p,t)20Ne
and 22Ne(p,3He)20F reactions using a beam of protons at Ep = 80 MeV. The former
reaction was employed to confirm a tentative candidate for the 5-alpha cluster state
in 20Ne, while the latter was used to look for T= 2 isobaric analogue partner states in
20F to states whichwere already observed above Ex = 20MeV in 20Ne. The existence
of a state which could be considered as a candidate for the 5-alpha cluster state is
confirmed here as well as the T = 2 IAS states in 20Ne.

52.1 Introduction

A deformed nucleus in its ground state [1, 2], 20Ne is valuable for testing ab initio
cluster models [3]. It offers an ideal arena for the occurrence of alpha clustering, and
indeed many of its states are composed of 16O + alpha or 12C + 2-alpha structures
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[4–7]. Above its 5-alpha breakup threshold at Ex = 19.17 MeV, it is postulated that
a 5-alpha cluster state may exist in this nucleus [8]. This state would be analogous to
theHoyle state in 12Cwhich is well-known to have a strong alpha clustering character
[9]. We may speculate that such a state could also be of alpha-condensate nature,
although the feasibility of condensation of multi-alpha cluster states is still under
investigation [10–12]. As with 16O and 24Mg, a multi-alpha cluster state in 20Ne has
in any case not been observed as yet.

A measurement performed with a magnetic spectrometer and a 60-MeV proton
beam at iThemba LABS has, however, given an indication of what appears to be a
0+ state at Ex = 22.5 MeV in 20Ne which could not be reproduced by shell-model
calculations. Said measurement also reported on the existence of three T= 2 isobaric
analogue states (IAS) of 20Ne at Ex = 20.59, 21.16 and 21.80 MeV [13]. The present
measurement was proposed to reproduce the 22Ne(p,t)20Ne measurement at Ex =
20–25 MeV, while investigating 20F in the region where the T= 2 IAS partner states
should exist in order to both confirm the T= 2 character of these states while proving,
by its non-observation, that the 5-alpha candidate has the requisite T = 0 character.

52.2 Experimental Procedure

As with the measurements in [13], the K600 magnetic spectrometer at iThemba
LABS [14] was employed with proton beams from the K200 Separated Sector
Cyclotron facility. This time a beam energy of 80 MeV was used since the energy
of 60 MeV used in [13] would be too low to allow for the 3He ejectiles to reach the
trigger detectors of the spectrometer’s focal plane detection setup. The same energy
was used for the (p,t) measurements to allow for comparison of the angular distri-
bution spectra, which could be used to ascertain the spin-parities and isospins of
these states. Both the 22Ne(p,t)20Ne and 22Ne(p,3He)20F reactions were investigated
with the same 22Ne gas-cell target which was employed in [13]. This target, which
is described in further detail in [15], was supplemented for this measurement with
a gas control system which uses gas regulators and flow meters from Bronkhorst
High-Tech B.V. to keep the gas pressure constant and to protect the gas target foils
during gas filling [16, 17]. The regulation of the gas pressure is necessary to enable
for more accurate cross section values than was possible with the 60 MeV data from
[13] through accurate knowledge of the areal density of the gas target.

52.3 Preliminary Results and Discussion

The investigation of the 22Ne(p,t)20Ne reaction reproduced two out of the three T =
2 IAS states from [13], as well as the 0+ state which has been noted as a candidate for
the 5-alpha cluster state. These are shown in Fig. 52.1 and listed in Table 52.1. The
third T = 2 state, at Ex = 20.59 MeV, was probably not seen in this measurement
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Fig. 52.1 The 22Ne(p,t)20Ne excitation energy spectrum at Ep = 80 MeV and Θ lab = 0° (blue
spectrum), and the aramid(p,t) background spectrum (red spectrum)

Table 52.1 States observed from 22Ne(p,t)20Ne at Ep = 80 MeV, compared to Ep= 60 MeV data
from [11] with spins, parities and isospins inferred from [13]

Ex Present
data
[MeV]

Ex [11]
[MeV]

Spin and
parity Jπ

Isospin T Width
FWHM
[keV]

Cross
section
[μb.sr−1]

Cross
section
[13]
[μb.sr−1]

16.73 16.73 0+ 2 72 298 370

21.14 21.16 0+ 2 66 32 43

21.77 21.80 1− 2 97 35 38

22.40 22.50 (0+) 192 19 22

23.68 23.70 (9−) 153 9 Not
observed

due to it being buried beneath foil-related contaminant peaks from the 12C(p,t)10C
reaction. These peaks are also visible on the aramid foil spectrum in Fig. 52.1. The
excitation energies observed for these states show very good agreement with those
of [13]. These data were acquired over a period of over 6 h at Θ lab = 0°, hence
it may be that small shifts in the beam position or gas target thickness could have
affected the observed resolution values noted in Table 52.1. The width observed for
the 5-alpha cluster candidate at Ex = 22.4 MeV (G= 192 keV) is smaller than what
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Fig. 52.2 The 22Ne(p,3He)20F excitation energy spectrum at Ep = 80 MeV and Θ lab = 7°, before
(left, blue spectrum) and after (right, blue spectrum) the attempted subtraction of target foil-related
background (left, black and red spectra)

was observed in [13] (G = 260 keV). The state at Ex = 23.7 MeV may be the 9−
state which is reported by literature to be narrower than G = 200 keV [18], and was
found to have a FWHM of around G = 153 keV here. The cross sections from this
measurement at Ep = 80 MeV are very similar though all slightly lower than what
was observed with the experiment at Ep = 60 MeV from [13]. This is true for the
low-spin T= 2 states near Ex = 20 MeV, as well as for the state of unknown isospin
at Ex = 22.4 MeV.

In Fig. 52.2 left, the black spectrumwas measured with a single aramid foil, while
the red spectrum is the same spectrum replotted after applying an energy shift which
simulates the difference in energy between peaks from the reactions in the back
and the front aramid foils. Both were subtracted from the gas-filled 22Ne(p,3He)20F
spectrum to produce the background subtracted spectrum in Fig. 52.2 right. The
22Ne(p,3He)20F spectra shown in Fig. 52.2 are obscured by significant foil-related
background which could not be effectively subtracted due to the higher energy loss
of helions passing through the foils and the gas which makes the resultant double
peaking of foil-related contaminant peaks far more severe and difficult to describe.
We note here though that the second T = 2 state of 20F at Ex = 8.05 MeV, which
is thought to be an IAS to the Ex = 18.43 MeV 2+ state in 20Ne, is observed in the
22Ne(p,3He)20F spectrum in Fig. 52.2.

To summarize and conclude, two out of the three T = 2 IAS candidates from
[13] were reproduced as well as the 5-alpha cluster candidate, this time at Ex =
22.4 MeV and with a narrower width than previously reported. The cross sections of
the low-spin states near Ex = 20 MeV from the 22Ne(p,t)20Ne reaction are slightly
suppressed by increasing the beam energy from Ep = 60 to 80 MeV, including the
state at Ex = 22.4MeVwhich may be considered as a 5-alpha cluster state candidate.

Acknowledgements We are grateful to the iThemba LABS accelerator team, led by Lowry Con-
radie and Dirk Fourie, for providing a high-quality proton beam to this experiment, and to our
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Chapter 53
Unveiling New Features in Rare Isotopes
with Direct Reactions

R. Kanungo

Abstract An overview is presented of how rare isotopes are ushering in a new era in
nuclear science embodying exotic few-body correlations in these many-body nuclei
at the edges of nuclear binding.

53.1 Introduction

Our Universe has a wide variety of isotopes that govern the characteristics of the
various forms of visible matter. Most of the isotopes in the Universe are rare to
find on earth though they serve as the breeding grounds for creation of majority of
heavy elements that we find around us. The interest in these short lived rare isotopes
stem from their pivotal role is serving as the bridge between stable nuclei found on
earth and some of the exotic environments of our Universe such as neutron stars, X
ray busts and supernovae. These rare isotopes span the vast majority of the nuclear
landscape becoming rapidly weakly bound as they approach the edges of nuclear
binding, referred to as the neutron- and proton- driplines. This rapid decrease in
nucleon separation energy leads to formation of exotic structures in these drip-line
nuclei whereby few body correlations manifest in these many-body systems and
govern their characteristics.

Some of the key questions that rare isotopes address is how and what type of
new features emerge with large neutron-proton asymmetry, how do they relate to
the evolution of nuclear shells, what new characteristics of the nuclear force become
visible in such extremes and how do the unconventional characteristics of the rare
isotopes impact our understanding of extremeneutron-rich objects and heavy element
synthesis in our Universe.

To explore these questions, rare isotopes are produced at facilities around theworld
with mainly two different methods, namely in-flight projectile fragmention/fission
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and the Isotope Separator Online (ISOL) technique. In the following I will outline
with a few selected experimental investigations from both types of production tech-
niques, evidences of exotic structures in Sect. 53.2, new changes in nuclear shell
structure in Sect. 53.3 and sensitivity to the nuclear force in Sect. 53.4.

53.2 Nuclear Halo and Skin

A new era in nuclear physics was triggered by the discovery of the nuclear halo
[1, 2]. It is an unexpected form of a nucleus where one or two very weakly bound
neutrons reside in the classically forbidden region far from the rest of the nucleus
called the ‘core’. There are only a handful of such nuclei spotted at the low-mass end
of the nuclear chart till date. Of particular interest are the Borromean two-neutron
halo nuclei that lie along the dripline. These unique quantum systems depict three-
body correlation with two halo nucleons and the core forming a bound system while
any two of these subcomponents taken together are not a bound nucleus. Therefore,
the few- (three-) body core+n+n correlation is the driving mechanism behind the
existence of these bound systems. The matter and proton radii offer the scope to
derive the average three-body geometrical correlation of the Borromean nuclei [3].
The correlation derived considers smearing of the core radius due to center of mass
motion of the core within the Borromean nucleus under the assumption that the core
has the same radius as the bare core nucleus. Figure 53.1 summarizes the measured
matter and proton radii from He to C isotopes. The matter radii are determined from
measurements of interaction cross sections [4] at projectile fragmentation facilities
such as GSI in Germany and RIKEN in Japan using high and intermediate energy
rare isotope beams. The proton radii of 6,8He [5, 6], 6−11Li [7] and 9−12Be [8, 9]
are determined from isotope shift measurements at CERN-ISOLDE in Switzerland,
Argonne National Laboratory in USA, TRIUMF in Canada and GANIL in France.
Those for 14Be [10], 10−17B [11], 12−19C [12] are determined from charge changing
cross section measurements at GSI. The large increase in matter radii observed for
11Li, 14Be and 17B indicate two-neutron halos. The evolution of the proton radii
differs for these different chains of isotopes and that reflects the variation in the
core+n+n correlation. The proton radius of 11Li is considerably larger than that of
9Li though being much smaller to its matter radius. This leads to a configuration with
the center of mass of the two halo neutrons, Rcn, being ~ 6 fm from the center of the
core and the relative distance between the two halo neutrons, Rnn, being ~ 6 fm as

Fig. 53.1 Matter and proton radii of He to C isotopic chains
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well. For 14Be however, the proton radius is quite similar to that of 12Be [10] that
leads to Rcn being only ~3 fm while Rnn is ~8 fm showing presence of a cigar type
two-neutron halo in this nucleus. The halo radius of 14Be, Rh ~4 fm, is smaller than
that of 11Li, Rh ~6 fm. While 17B has a similar halo radius (~4 fm) to 14Be, its proton
radius however is larger than that of the core nucleus 15B [11]. This leads to quite
a different core+n+n correlation where Rcn ~5 fm and Rnn is very small depicting a
di-neutron type two neutron halo configuration.

A more deeper understanding of the two-neutron halo correlation can be obtained
through investigations of two-neutron transfer reactions such as (p,t) or (t,p) reactions.
The low beam intensities of the rare isotopes close to the driplines together with the
small differential cross sections andwide angular distribution of the reaction ejectiles
however have made such measurements challenging and hence rather limited. The
11Li(p,t)9Li reaction measurement was nonetheless accomplished using the high
intensity re-accelerated beam of 11Li at TRIUMF and the active target MAYA from
GANIL.The angular distribution of the core 9Li in its ground statewhen interpreted in
a DWBA framework (Fig. 53.2a) with simultaneous and sequential transfer requires
a strong mixing of the 1p1/2 and 2s1/2 orbitals. Such a mixed configuration drives the
correlation of the halo neutrons. A new finding in the 11Li(p,t) measurement [12] was
the observation of the core 9Li in its first excited state as well. In the framework of
nuclear field theory (Fig. 53.2b) this has been interpreted to be the first signature of
phonon mediated pairing in nuclei, where exchange of vibrational phonons between
the core 9Li and the halo neutrons are discussed to be essential for the binding of the
halo [13].

The presence of a correlated pair of weakly bound neutrons in the Borrmean
halo nuclei opens the possibility of a new mode of excitation. On one hand it was
postulated by Ikeda that the oscillation of the halo neutrons against the core could give
rise to low-energy dipole resonance states [14]. On the other handHansen and Jonson
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Fig. 53.2 11Li(p,t)9Li differential cross sections a Curves show DWBA calculations, adapted from
[12] b Curves show nuclear field theory calculations, adapted from [13]
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Fig. 53.3 Dipole peak in 11Li observed from a Coulomb dissociation, adapted from [15]
b 11Li(d,d’) adapted from [18] (c) 11Li(p,p’) adapted from [19]

proposed that the weak binding of the halo would give rise to soft electric dipole
mode that could be excited in Coulomb collisions [2]. The most recent measurement
of Coulomb dissociation of 11Li observed a peak in the cross section at ~0.6 MeV
excitation energy [15] (Fig. 53.3a). Early studies of proton inelastic scattering at
intermediate energies of ~ E/A ~ 80 MeV reported a peak at 1.3±0.1 MeV with
a width of � = 0.75 ± 0.6 MeV [16]. The excitation energy resolution in this
measurement was ~1.5 MeV (FWHM) which left open the question whether the
reported structure was only a threshold effect or does a resonance state exist in 11Li.
Pion capture reaction found a structure at ~1.02 MeV [17]. However the nature of
this state was not understood from this reaction. More recently, the availability of
low-energy reaccelerated beam of 11Li made it possible to perform high precision
inelastic scattering measurements at TRIUMF. The 11Li(d,d’) reaction at E/A =
5.5MeV provided the first signature of a narrow isoscalar dipole resonance at 1.03±
0.03MeV [18] (Fig. 53.3b). Subsequently the 11Li(p,p’)measurement at E/A~6MeV
also found a resonance peak at 0.8±0.02 MeV [19] (Fig. 53.3c). The dipole nature
of these resonances was ascertained from the shape of their angular distributions
when compared to DWBA predictions. A dipole excitation in 11Li can give rise to
states with spins of 3/2+, 5/2+ or 1/2+. The relative population of these states could be
different in the (d,d’) and (p,p’) reactions which potentially could explain the small
difference in the resonance peak seen in the two reactions.

53.3 Shell Evolution Towards the Drip-Lines

The formation of the exotic structures is intricately related to metamorphosis of
nuclear shells. In a conventional picture of nuclear shells 11Li is an N = 8 closed
shell nucleus where the two halo neutrons should reside in the 1p1/2 orbital with
100% occupancy. In such an arrangement, the 10Li unbound sub-component of 11Li
would be in a p-wave resonance state with spin of 2+- or 1+. Predictions in the
framework of the hyperspherical expansion of the Faddeev equations suggest 40%
p-wave component for 11Li with 10Li being in p-wave resonance at ~0.5 MeV and
requires a second p-wave resonance at a lower energy [20]. Neutron removal and
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Fig. 53.4 a 10Li p-wave resonance population in the 11Li(p,d)10Li reaction, adapted from [21]
bMomentum distribution of two-neutron removal from 11Li, adapted from [24]

neutron transfer reactions from11Li canprovide experimental signature of the neutron
occupancy and resonance state(s) of the 10Li sub-component. The 11Li(p,d)10Li one-
neutron transfer reaction measurement was found to populate a prominent resonance
peak at Er=0.62±0.04MeV [21] (Fig. 53.4a). Themeasured differential cross section
when analyzed in a DWBA framework confirmed this resonance to have p-wave
character. The p-wave occupancy was found to be 33 ± 12%. This low probability
of the halo neutrons filling the conventional p1/2 orbital shows breakdown of the N
= 8 shell closure. The large radius of 11Li [22] and the neutron removal momentum
distributions have shown significant occupation of the intruder 2s1/2 orbital [23–26]
(Fig. 53.4b).

The ground states of neutron-rich Li–C isotopes exhibit configurationmixingwith
the 2s1/2 orbital coming lower in energy and crossing the 1d5/2 and in some cases
even the 1p1/2 orbital [3]. There are many factors that drive the changes in conven-
tional ordering of orbitals in the rare isotopes. While weak binding is only one of the
aspects that tend to bring low angular momentum orbitals lower in energy, there are
features of the nuclear force that show prominence in these neutron-proton asymmet-
ric nuclei and affect the orbital arrangement. The monopole tensor interaction has
been discussed to have a major contribution to shell changes [27]. The attractive p-n
interaction between nucleons in the j> = l+1/2 and j<= l–1/2 orbitals and repulsive
interaction between nucleons in the j>–j> or j<–j< orbitals can arise both from the
tensor interaction as well as the spin-isospin central interaction [27, 28]. Changes
of such interactions in moving from stable to rare isotopes cause migration of the
conventional orbital scheme thereby causing shell gaps to change. In addition, the
role of the three-nucleon force has been found be important in explaining the binding
energy [29] and hence the drip-line location as well as excited states that reflect shell
closures [30–32].
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The isotope chain of oxygen isotopes is truncated at 24O where a new magic N=
16 shows appearance at the neutron drip-line. Empirical signature of this shell closure
was pointed out from neutron separation energy systematics [33]. The high excitation
energy of the unbound 2+ state in 24O (Fig. 53.5a) affirms this [34]. The one-neutron
removal momentum distribution finds the valence neutrons to exclusively occupy the
2s1/2 orbital (Fig. 53.5b) confirming 24O to be a spherical closed shell at the drip-line
[35]. This is further supported by the small deformation parameter that is found from
inelastic scattering (Fig. 53.5c) [36] (Fig. 53.6).

The unbound nature of 26,28O raise interest in understanding the nature of correla-
tion and orbitals in their resonance states. The lowest state of 26O was observed from
proton removal reaction from 27F reacting with a Be target at RIKEN. This narrow
resonance observed at only 18(3 stat.)(4 syst.) keV above the 24O+n+n threshold
[37]. This was consistent with theoretical predictions where the two neutrons were
strongly correlated [38, 39]. In a Gamow coupled channel framework predict the
ground state wavefunction of 26O to have three peaks associated with di-neutron,
cigar shape and triangular shape n-n correlation [40].
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Fig. 53.5 a 2+ state in 24O, adapted from [34] bMomentum distribution from one neutron removal
from 24O adapted from [35] c Deformation parameter from 24O(p,p’), adapted from [36]
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Fig. 53.6 a The two-neutron decay energy spectrum of 26O [37] compared to calculations of [38],
adapted from [38] bWavefunction of 26O in Gamow coupled channel framework adapted from [40]
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53.4 Nuclear Force Sensitivity in Rare Isotopes

The unexpected nuclear properties that are emerging in rare isotopes point to our
incomplete knowledge of the nuclear force. Describing the residual strong force that
binds protons and neutrons into complex many-body systems has been a challenge
for over a century. In recent times its descriptionwith a link to the fundamental theory
of quantum chromodynamics (QCD) is enabled by the chiral effective field theory.
This is applicable at low-energies where the energy of the probe has wavelength
much larger than the size of nucleons. Here the Hamiltonian can be expressed as an
expansion in powers of (Q/�) where Q is the pion mass, which is the soft scale, and
� is the momentum cutoff, which is the hard scale. In the expansion the low-energy
constants (LEC) containing the short-range contributions are found by various meth-
ods that fit to some know nuclear properties. This gives rise to different prescriptions
of the nuclear force. An experimental guidance is therefore necessary to understand
which of them are suitable to describe successfully the various characteristics of
drip-line rare isotopes.

Most of the interactions are found to explain the binding energies pretty well. The
three-nucleon force had been found to be important for explaining the nuclear bind-
ing. While mostly interactions are benchmarked against static properties of nuclei,
dynamics observables can bring a greater sensitivity to constrain the description of
the nuclear force. Recent development of ab initio reaction theory makes it possible
to describe the structure and reactions of light nuclei in the vicinity of the drip-lines
on the same footing. The proton elastic scattering angular distribution was mea-
sured using the re-accelerated beam of 10C at Ecm ~ 4.16 MeV at TRIUMF [41]. The
ab initio calculations were based on the no-core shell model with continuum [42, 43].
The forces from chiral effective field theory used were the two-nucleon NN force at
N3LO [44], the NN force at N3LO+ 3 N force at N2LO with cutoff of L= 400MeV
namely NN+ 3 N(400) [45] and the NN+ 3 N force N2LOsat [46] where the LECs
are determined simultaneously for the NN and 3 N sectors. Figure 53.7a shows that
the angular distribution using the NN force has a pronounced dip in cross section
θcm ~85o which is in contrast to the measured distribution. The inclusion of the 3 N
force improves the chisquare fit to the data with a much more reduced minimum of
cross section that is shifted to a higher angle of θcm ~120o. However, the shape of
this angular distribution is still not in proper phase agreement with the data thereby
showing that the NN + 3 N(400) force is an inadequate description of the nuclear
force. The N2LOsat force predicts an angular distribution which agrees well with the
shape of the measured one as seen by the dashed curve in Fig. 53.7a. However the red
solid curve in Fig. 53.7a shows that it overpredicts in magnitude. The dramatically
different shapes of the angular distributions using the three different force prescrip-
tions demonstrate the strong sensitivity of this dynamic observable to the nuclear
force description. Furthermore, although the N2LOsat force has been successful in
explaining the bulk properties of many nuclei especially in the neutron-rich region
its failure to explain the magnitude of the cross section suggests that it is still not an
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Fig. 53.7 a 10C(p,p) differential cross section compared to no-core shell model calculations with
different chiral forces [41] b Resonance energies of 11N compared to ab intio calculations

appropriate description of the nuclear force and its shortcomings become visible at
the proton drip-line.

Excitation spectra of drip-line nuclei can also serve as testing grounds for the
nuclear force prescriptions. The p+10C composite system is an unbound nucleus
11N whose experimentally observed resonance states are compared with the NN +
3 N(400) and N2LOsat interactions in Fig. 53.7b. It is found that the two interac-
tions predict very similar resonance energies except for the 5/2+ resonance state.
Furthermore, the predictions with the N2LOsat interactions agree fairly well with
the data. This shows that one would have reached an incomplete conclusion on the
nuclear forces with a study of the resonance energies alone, while the proton elastic
scattering revealed a much stronger variance of the different forces.

Moving to 20Mg, the next isotope in the proton drip-line with same mass/charge
ratio as 10C deuteron inelastic scattering reaction found presence of a new first
resonance state at 3.70+0.02−0.20 MeV above the proton emission threshold [47]. The
observed resonance state is compared to ab initio predictions using two different
many body frameworks namely the in-medium similarity renormalization group
method (IMSRG) and the coupled cluster effective interaction (CCEI). In both these
frameworks few different nuclear force prescriptions from the chiral effective field
theory was used. The predicted excited states are shown in Fig. 53.8. The overall
observation is that the predictions using the same force prescription is similar for
the different many-body frameworks. This shows that the differences in the predic-
tions arise largely due to the different force prescriptions. None of the forces seem to
explain the observed resonance energy with all predictions being lower than the data.
It is found that the prediction with the N2LOsat interaction has the largest deviation
from the data thereby suggesting the shortcoming of this description at the proton
drip-line despite its success in predicting bulk properties of some neutron-rich nuclei.
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Fig. 53.8 Measured excited states in 20Mg (black squares) compared to predictions in the frame-
work of IMSRG, CCEI and shell model. The ab initio calculations use the chiral forces, while the
shell model uses the USDB interaction as labeled in the figure

53.5 Summary

Wehave presented through selected examples how rare isotopes are rapidly changing
our conventional concepts. The discussion has been largely focused on some reaction
studies using both in-flight beams at high and intermediate energies as well as re-
accelerated beams at low energies.We have found few-body correlations appearing in
Borromean drip-line nuclei some of which form two-nucleon halos. The correlated
halo neutron pair was postulated to induce a new soft dipole mode of oscillation
whose existence has been now experimentally established. Reactions show strongly
correlated halo neutrons in ground state as well as unbound states at and beyond the
drip-lines. These correlations that were found to differ in different halo nuclei are
strongly guided by the shell structure of the nuclei. Rare isotopes are revolutionizing
the fundamentals pillars of nuclear physics through a metamorphosis of nuclear
shells. The disappearance of conventional N = 8 and 20 shells are found to vanish
through the halo features of 11Li and unbound nature of 26,28O, respectively. On the
other hand a new shell closure making 24O a doubly magic nucleus has emerged at
the drip-line. The new features at the drip-lines calls for a renewed understanding of
the nuclear force whose description in recent times through the chiral effective field
theory builds a link to QCD. Dynamic observables of few-body drip-line nuclei 10C
and 20Mg were shown to have strong sensitivity to constraining the nuclear force
prescriptions. In the coming years new generation facilities will extend our reach to
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heavy isotopes with large neutron-proton asymmetry and holds promise to unfold a
wealth of further new information from isotopes that might be produced in exotic
environments such as colliding neutron stars.
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Chapter 54
The Unitarity Expansion for Light Nuclei

Sebastian König

Abstract It is arguedhere that (at least light) nucleimay reside in a sweet spot: bound
weakly enough to be insensitive to the details of the interaction, but dense enough
to be insensitive to the exact values of the large two-body scattering lengths as well.
In this scenario a systematic expansion of nuclear observables around the unitarity
limit converges. In particular, the nuclear force in this scheme is constructed such
that the gross features of states in the nuclear chart are determined by a very simple
leading-order interaction, whereas—much like the fine structure of atomic spectra—
observables are moved to their physical values by small perturbative corrections.
Explicit evidence in favor of this conjecture is shown for the binding energies of
three and four nucleons.

54.1 Introduction

Ever since the effective range expansion was developed as a theory to parameterize
the low-energy two-nucleon system [1–4] it has been known that the nucleon-nucleon
(NN ) scattering lengths, at � 5.4 fm and as � −23.7 fm in the 3S1 and 1S0 channels,
respectively, are large compared to the typical range of the nuclear interaction, R ∼
M−1

π � 1.4 fm, set by the inverse pion mass. Considering quantum chromodynamics
(QCD) as the underlying theory of the strong interaction, this particular feature of
the low-energy two-nucleon (2N ) system can be understood as an accidental “fine
tuning” of the QCD parameters [5–9] (the quarkmasses) to be close to a critical point
where the scattering lengths are infinite, the so-called “unitarity (or unitary) limit.”

This curiosity of nature has profound consequences for the theoretical description
of few-nucleon systems at low energies, placing them in the same universality class
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as other systems governed by large scattering lengths, such as cold atomic gases,
where the scattering length can be tuned via Feshbach resonances [10], or certain
mesons which can be interpreted as hadronic molecules [11]. Most notably, the triton
is understood to be the single remaining bound state out of an infinite tower of Efimov
states [12] that exists in the exact unitarity limit [13–15]. Recently it was shown in a
model-independent way that a virtual state in the three-nucleon (3N ) system, known
to exist for a long time [16, 17], is an S-matrix pole that would be an excited Efimov
state if nature were just slightly closer to the unitarity limit [18], confirming a relation
previously observed in a separable potential model [19].

Following [20] it is argued here that nature is indeed close enough to unitarity such
that it is possible to quantitatively describe the spectra of—at least light, and possible
also heavier—nuclei by a perturbative expansion around the limit of infinite two-body
scattering lengths. At leading order (LO) this yields an interactionwhich is parameter
free in the 2N sector and determined by a single three-body parameter, adjusted to
keep the triton binding energy fixed at its experimental value. This remarkably simple
theory is shown to capture the gross features of nuclei up to 4He, while corrections
such as the actual finite values of the 2N scattering lengths and electromagnetic
effects are accounted for in perturbation theory.

Quantitatively, this “unitarity expansion” is constructed as a variant of pionless
effective field theory (pionless EFT). This theory, most recently reviewed in [21],
describes low-energy nuclear systems in a model-independent way, guided only by
the symmetries ofQCDand the universal physics of systems governed by a large scat-
tering length. As such, it is ideally suited to set up the unitarity expansion with a min-
imal set of assumptions. An important aspect of each EFT is the organizational prin-
ciple called “power counting,” which attributes the various terms to different orders
in a systematic expansion. In the standard pionless theory, the expansion parameter is
given by a typical low-momentum scale Q divided by the high scale R−1 ∼ Mπ . The
unitarity expansion is obtained by assuming that Q ∼ QA = √

2MN BA/A, placing
nuclei in a “sweet spot” 1/as,t < QA < 1/R, where a combined expansion in QAR
and 1/(QAas,t ) converges.

In the following, the formalism is discussed by describing its application to cal-
culate systems of up to four nucleons. Readers not interested in the more technical
details are invited to skip ahead to Sect. 54.3, which presents the main results and
provides a broader perspective that places the unitarity expansion in line with other
recent results suggesting a fascinating simplification of nuclear physics.

54.2 Formalism

Following the notation of [20, 22], pionless EFT is defined in terms of a Lagrange
density
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L = N †

(
iD0 + DDD2

2MN

)
N +

∑
i
C0,i

(
NT PiN

)† (
NT PiN

) + D0
(
N †N

)3 + · · · ,

(54.1)

involving nonrelativistic nucleon isospin doublets N = (p n)T as well as photon
fields Aμ which are coupled to the nucleons via the covariant derivative Dμ =
∂μ + ieAμ(1 + τ3)/2, where e is the proton charge and τa is used to label isospin
Pauli matrices. Besides these electromagnetic interactions, of which only the static
Coulomb potential is relevant to the order considered here, the theory involves only
contact (zero range) interactions proportional to “low-energy constants” (LECs),
such as the C0,i, D0 shown in (54.1), plus other contributions (involving an increas-
ing number of derivatives acting on the nucleon fields) contained in the ellipses.
The Pi denote projectors onto the NN S waves, i = 1S0, 3S1, corresponding to the
short-hand labels used above for the singlet and triplet scattering lengths.

Leading-order terms are summed to all orders in a nonperturbative treatment
to which higher-order corrections are added in perturbation theory. This procedure
implies that the LECs of all operators are split into different orders, e.g., C0,i =
C (0)
0,i + C (1)

0,i + · · · . Typically, only the leading term in this expansion introduces a
new parameter whereas the higher-order contributions are merely used to maintain
lower-order renormalization conditions as additional corrections are included. The
unitarity expansion departs from this scheme bymoving the introduction of two-body
parameters from C (0)

0,i to C
(1)
0,i .

The LO calculation can be carried out in closed form by solving the Lippmann-
Schwinger equation for a separable potentials V (0)

2,i = C (0)
0,i |g〉〈g|, where 〈p|g〉 =

g(p2) = exp(−p2/Λ2) with a cutoff scale Λ is a Gaussian regulator and p is the
NN center-of-mass momentum. This is shown diagrammatically in Fig. 54.1. Some
results discussed in Sect. 54.3 are obtained using a slightly different implementation,
employing so-called “dibaryon” fields to describe the two-body sector and using a
sharp momentum cutoff, which is essentially equivalent to choosing 〈p|g〉 to be a
step function. This approach, deriving two- and three-body equations directly from
Feynman diagrams, has been discussed in detail in [22, 23], so that here only the
potential formalism with Gaussian regulator is considered.

Starting from t (0)i = V (0)
2,i + V (0)

2,i G0t
(0)
i , where G0 is the free two-body Green’s

function, the separable form of the interaction makes it possible to directly write
down the solution as

0 = + + · · · = + 0

Fig. 54.1 Diagrammatic version of the Lippmann-Schwinger equation for the two-nucleon T-
matrix at LO, depicted by the circled zero. The solid lines represent nucleon fields, whereas the dot
represents a contact interaction C (0)

0,i
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t (0)i (z;k,k′) = 〈k|t (0)i |k′〉 = g(k2)τi(z)g(k
′2), τi(z) =

[
1/C (0)

0,i − 〈g|G0|g〉
]−1

,

(54.2)
where z denotes the energy. C (0)

0,i can now be determined by matching this T-matrix
to the effective range expansion at the on-shell point, k = k′ and E = k2/MN . The
unitarity limit (infinite scattering length, 1/ai = 0) is reproduced by setting C (0)

0,i =
−2π2

MNΛ
θ−1, where θ = 1/

√
2π for the Gaussian regulator used here. This means that

the C (0)
0,i do not introduce any physical parameters. At NLO, the correction to the

T-matrix is

t (1)i = V (1)
2,i + V (1)

2,i G0t
(0)
i + t (0)i G0V

(1)
2,i + t (0)i G0V

(1)
2,i G0t

(0)
i , (54.3)

i.e., the sumof all possible terms linear in V (1)
2,i . The overall NLOT-matrices t (0)i + t (1)i

should reproduce the physical values of the NN S-wave scattering lengths, which
leads to C (1)

0,i = MN
4πai

C (0)2
0,i . Note that instead of using (54.3) it is possible to conve-

niently obtain t (1)i as well as higher-order corrections by solving integral equations
similar to the one defining t (0)i . Details about this procedure can be found in [23, 24].

With the two-body LECs thus determined it is possible to proceed with calcula-
tions for three and four nucleons. In the following the unified Faddeev + Faddeev-
Yakubovsky (F+FY) framework that was used to obtain the four-nucleon results
presented in [20] is summarized. The approach follows [25–28] (which, in turn, are
based on thework ofKamada andGlöckle [29]), but uses an independently developed
numerical implementation. Since a fully comprehensive description of the method
is beyond the scope of this work, emphasis is put here primarily on details regarding
the perturbative treatment of NLO contributions.

Three nucleons It is a distinct feature of pionless EFT that a three-nucleon interac-
tion (3NI) enters at LO in the power counting, while naïvely it would be expected
to contribute only much later. This promotion of the 3NI is a direct consequence
of the unnaturally large NN S-wave scattering length, leading to the triton as an
effective Efimov state [13–15]. In the separable potential formalism the LO 3NI can
be implemented as

V (0)
3 = D(0)

0 |3H〉|ξ〉〈ξ|〈3H| , (54.4)

where |3H〉 projects onto a J = T = 1/2 three-nucleon state and the regulator is
now defined, for Jacobi momenta u1 = 1

2 (k1 − k2) and u2 = 2
3 [k3 − 1

2 (k1 + k2)],
as 〈u1u2|ξ〉 = g

(
u21 + 3

4u
2
2

)
. The ki label the individual nucleon momenta. The NLO

correction V (1)
3 has the same form as (54.4), but involves the LEC D(1)

0 .
The Faddeev equations in an abstract operator notation take the form

|ψ〉 = G0 t
(0) P|ψ〉 + G0 t

(0) |ψ3〉 , (54.5a)

|ψ3〉 = G0 t
(0)
3 (1 + P)|ψ〉 , (54.5b)
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where |ψ〉 = |ψ(12)3〉 is one of the (equivalent) two-body Faddeev components and
|ψ3〉 is an auxiliary three-body amplitude [27]. G0 now denotes the free three-body
Green’s function and P = P12P23 + P13P23 generates the non-explicit components
through permutations. t (0) collectively denotes the two-body T-matrices t (0)i , whereas
t (0)3 is the solution of Lippmann-Schwinger like equation with V (0)

3 as driving term.
The equations are solved by projecting onto momentum states |u1u2; s〉, where s =
| (�2((�1s1) j1 12 ) s2) J ; (

t1
1
2

)
T 〉 collects the relevant angular momentum, spin, and

isospin quantum numbers, coupled such that (�1s1) j1 describes the two-nucleon
subsystem and �2 denotes the orbital angular momentum associated with the Jacobi
momentum u2. Since only S-wave interactions enter to the order considered here,
all sums over s are naturally truncated to involve only states with (�1s1) j1 = i =
1S0, 3S1. For details regarding the implementation and solution of (54.5), see [27,
30, 31], noting that the coupling scheme used here for |s〉 is a somewhat unusual
choice for 3N calculations; it is chosen in order to be consistent with the four-nucleon
states introduced below.

In order to calculate the NLO triton energy, the full LO wavefunction |Ψ 〉 =
(1 + P)|ψ〉 + |ψ3〉 is required. Assuming it to be normalized such that 〈Ψ |Ψ 〉 = 1,
the NLO energy shift is given by

ΔE = 〈Ψ |VNLO|Ψ 〉, VNLO =
∑

i
V (1)
2,i + V (1)

3 . (54.6)

To check the calculation, one can verify that 〈Ψ |HLO|Ψ 〉 with HLO = H0 + ∑
i V

(0)
2i

+ V (0)
3 gives the same energy as obtained directly from (54.5).
While for the Faddeev equations only the potential between a single pair of nucle-

ons (chosen to be nucleons 1 and 2) is needed explicitly, evaluating matrix elements
requires the full two-body potential including all pairwise interactions. Temporarily
dropping sub- and superscripts for simplicity, this can be written as [31]

V2 = V12 + (P12P23)V12(P23P12) + (P13P23)V12(P23P13) . (54.7)

Using the antisymmetry of the full wavefunction, Pi j |Ψ 〉 = −|Ψ 〉 ∀ Pi j , one can
write V2|Ψ 〉 = (1 + P)V12|Ψ 〉, and noting furthermore that (1 + P)†(1 + P) =
3(1 + P) gives 〈Ψ |V2|Ψ 〉 = 3〈Ψ |V12|Ψ 〉. Similar simplifications together with
(1 + P)|ψ3〉 = 3|ψ3〉 can be applied to the norm and matrix elements of H0.

Equation (54.5) are solved to tune D(0)
0 at LO (with the two-body S-waves at

unitarity) such that the triton bound state comes out at its physical energy. At NLO,
where the finite physical scattering lengths are included via the V (1)

2,i , there is a

corresponding shift in the triton energy. The LEC D(1)
0 is adjusted such that this shift

is compensated by V (1)
3 , thus keeping the triton at its physical position. Once this is

done, all ingredients are in place to make predictions for four nucleons.

Four nucleons For the four-nucleon system, there are two distinct Faddeev-
Yakubovsky components, |ψA〉 and |ψB〉, corresponding two 3+1 and 2+2 cluster
configurations of the four-body system. For each of these components there is a nat-
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ural set of Jacobi coordinates, (u1,u2,u3) and (v1, v2, v3), respectively, of which the
former is a direct extension of the three-body Jacobi coordinates (defining u3 as the
relative momentum of the fourth particle with respect to the center of mass of the
other three). For the 2+2 setup, v1 = u1, v3 denotes the relative momentum in the
(34) system, and v2 is defined at the relative momentum between the (12) and (34)
subsystems. Using the formalism of [27, 29], the Faddeev-Yakubovsky equations
are written as

|ψA〉 = G0t
(0)P

[
(1 − P34)|ψA〉 + |ψB〉] + 1

3
(1 + G0t

(0))G0V
(0)
3 |Ψ 〉 (54.8a)

|ψB〉 = G0t
(0) P̃

[
(1 − P34)|ψA〉 + |ψB〉] , (54.8b)

where |Ψ 〉 = (1 − P34 − PP34)(1 + P)|ψA〉 + (1 + P)(1 + P̃)|ψB〉 is the full
four-body wavefunction and G0 now represents the free four-body Green’s func-
tion. In addition to the permutation operators already encountered in the three-body
system, (54.8) involve the operators P34 and P̃ = P13P24.

As discussed above for the three-body system, the FY equations are solved in a
partial-wave momentum basis, involving now two sets of Jacobi momenta defined
and sums over channel states,

|a〉 = | (�2((�1s1) j1 12 ) s2) j2,
(
�3

1
2

)
j3, ( j2 j3) J ; ((

t1
1
2

)
t2

1
2

)
T 〉 , (54.9a)

|b〉 = | (λ2(λ1σ1) ι1) ι2, (λ3σ3) ι3, (ι2ι3) J ; (τ2τ3) T 〉 , (54.9b)

which refer, respectively, to the 3+1 and 2+2 cluster setups. The |a〉 are a natural
extension of three-nucleon states |s〉, including the angular momentum �3 associated
with u3 as well as spin and isospin 1

2 for the fourth nucleon into the overall cou-
pling scheme. For the b states, (λ1,σ1, τ1) and (λ3,σ3, τ3) are quantum numbers
for the (12) and (34) two-body subsystems, respectively, where λ1,3 are the angu-
lar momenta associated with the Jacobi momenta v1,3. The separation between the
clusters is described by the momentum v2 and its associated angular momentum λ2.
The projection of (54.8) yields a set of coupled equations which, unlike the Faddeev
equations, does not naturally truncate even if all interactions are pure S-wave. As a
consequence it is necessary to truncate the sums in (54.9) (e.g., by choosing all total
angular momenta ji and ιi less than some jmax) and study the numerical convergence
of results as jmax is increased. More details can be found in [29].

54.3 Results and Discussion

The convergence pattern of the unitarity expansion for the binding energies of light
nuclei is summarized inTable54.1. Thedeuteron remains a zero-energybound state at
NLO and onlymoves to 1/(MNa2t ) at N

2LO, see [23] for an explicit calculation. This
is the case for both a pure expansion in 1/at (neglecting range correction) as well as
for the paired unitarity expansion that includes effective ranges together with finite-a
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Table 54.1 Unitarity expansion convergence pattern.Underlined values indicate energieswhich are
used as input values to determine three-body LECs. An asterisk superscript indicates an incomplete
NLO result which only includes the finite-scattering length but no contributions from effective
ranges or electromagnetic interactions

State ELO
B /MeV ENLO

B /MeV EN2LO
B /MeV Eexp.

B /MeV
2H 0 0 1.41 ± 1.12 2.22
3H 8.48 8.48 8.48 8.48
3He 8.5 ± 2.5 7.6 ± 0.2 7.72 7.72
4He 39 ± 12 30 ± 9∗ 28.3

corrections. The dominant source of uncertainty for the deuteron energy comes from
the 1/(Q2at ) expansion, which still amounts to a 50%effect at N2LO.Conservatively
taking the experimental binding energy as reference for the uncertainty estimate gives
BN2LO
d = 1.41 ± 1.12 MeV.
At eachorder the tritonbinding energy remainsfixed at its physical value because it

is used as input to tune the 3NI.At LO, 3H and 3He are degenerate by construction, but
the splitting between the two iso-doublet states is a prediction at NLO. As discussed
in [22], range corrections cancel at this order because LO is isospin-symmetric. The
dominant effects that determine the splitting are thus electromagnetic corrections
as well as the difference between the np and pp (Coulomb-modified) scattering
lengths. The unitarity expansion predicts the triton-helion energy splitting as (0.92 ±
0.18) MeV at NLO, in good agreement with the experimental value 0.764 MeV.
At N2LO the mixing between electromagnetic and range corrections introduces a
divergence that requires an isospin-breaking 3NI to be promoted to this order [23].
For the unitarity expansion this means that a new input is required, which is most
conveniently chosen to be the 3He binding energy. Neglecting range corrections,
however, [23] finds good convergence up toN2LO for an expansion that only includes
finite scattering lengths and electromagnetic corrections in perturbation theory.

In the unitarity limit, 4He is formally equivalent to a system of four bosons. It
is known that each three-boson Efimov state with binding energy B3 is associated
with two four-boson states (tetramers) [32] at energies B4/B3 � 4.611 and B4∗/B3 �
1.002 [33]. The experimental values for the 4He ground and first excited states are,
respectively, Bα/BH � 3.66 and Bα∗/BH � 1.05, where the 3He binding energy
BH � 7.72 MeV is used as reference to approximately account for electromagnetic
corrections. The closeness of these values to what is found in the unitarity limit
suggests that a perturbative expansion can be expected to work well. The numerical
results shown in Fig. 54.2 confirm this expectation. The 4He binding energy as a
function of the momentum cutoff Λ is found to converge as Λ increases, indicating
that the EFT calculation is properly renormalized.While anyΛ above the breakdown
scale (of order Mπ) is a valid choice in principle, quadratic polynomials in 1/Λ are
fitted at largeΛ to quantitatively assess the convergence and conveniently extrapolate
Λ → ∞. Figure54.2 also shows a standard pionless calculation that includes finite
as,t at LO and gives results consistent with [25–27]. In the unitarity limit Bα =
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Fig. 54.2 4He binding energy as function of the Gaussian cutoff. (Blue) dotted and (green) dashed
lines: standard Pionless EFT and full unitarity at LO, respectively. (Green) circles first-order cor-
rections in 1/as,t added in perturbation theory. Large symbols on right edge:Λ → ∞ extrapolation
(see text)

39(12) MeV is found for the 4He ground state. In addition, there is a bound excited
state just below the proton-triton breakup threshold. Both these states are in excellent
agreement with the universal unitarity expectation.

An incomplete NLO (neglecting effective ranges and electromagnetic contribu-
tions) is calculated here to study the effect of finite-scattering length corrections in
4He. The result, 30(9) MeV for Λ → ∞ comes out very close the standard pion-
less LO calculation, indicating that the 1/(Q4as,t ) expansion works remarkably well
up to this order. The uncertainty of this value, as well as that of the LO result quoted
above, is O(rs,t/as,t ) � 30% based on the expectation that range corrections are
dominant in this case. Importantly, (Bα/BT )NLO(r=0) ≈ 3.48 is also in good agree-
ment with (Bα/BT )exp = 3.34. As shown in Fig. 54.3, the rapid convergence persists
off the physical point: the correlation between 3N and 4N binding energies (Tjon
line) is perturbatively close to the unitarity result over a significant range of energies.
While a proper calculation of the excited state is computationally very demanding
due to a slow convergence of the FY calculation for a state so close to a threshold,
four-boson calculations with nuclear scales indicate that the 1/(Q4as,t ) corrections
push the bound excited state into the continuum by about the amount expected from
experiment [20].

Very recently it was found that a four-body force is required to renormalize the
universal four-boson system once range corrections are included at NLO [34]. This
result directly carries over to pionless EFT—and thus to the unitarity expansion
considered here—and implies that a new observable, most obviously taken to be the
4He binding energy, is required at this order to set the scale of the four-body force.
Even with this additional required input the theory however remains predictive for
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Fig. 54.3 Tjon line: correlation between the 4He and 3H binding energies. (Blue) dotted curve:
standard pionless LO result; (green) dashed upper curve: unitarity limit at LO. Additional points
nearly on top of the blue curve: inverse scattering lengths added in first-order perturbation theory.
Star: experimental point

other four-body observables like 4He charge radius and excited state energy, as well
as for heavier systems, assuming the unitarity expansion converges for these.

The unitarity expansion constitutes a paradigm shift in the EFT-based description
of light nuclei, deemphasizing the importance of two-body details in favor of using
the three-body sector as “anchor point.” As such, it is not unlike more phenomeno-
logical approaches using input from heavier nuclei to constrain few-nucleon forces.
It is, however, more systematic by focusing on light nuclei and strives to answer
the question what is essential to describe these systems. As discussed compellingly
in [35], the idea can be boiled down to interpreting discrete scale invariance, the
most striking manifestation of which is the Efimov effect, as a fundamental principle
governing nuclear physics. In the bigger picture of things, the unitarity expansion
furthermore stands in line with other recent results that suggest a fascinating sim-
plification of nuclear physics. For examples, it has been observed that the isotopic
chain of helium can be remarkably well described by adjusting a single parameter
after tuning a model to reproduce α-n phase shifts [36]. More recently a correlation
analogous to the Phillips line has been observed between the d-α scattering length
and the 6Li binding energy [37].

It is an exciting question how well the unitarity expansion works beyond what
has been calculated so far. The observation that bosonic systems at unitarity exhibit
saturation for large numbers of particles [38] and recent calculations of nuclearmatter
using interactions guided by unitarity [39] provide reasons to be optimistic. However,
it remains to be seen to what extent lessons from universal bosonic systems carry
over to nucleons, where beyond the four-body sector the influence of Fermi statistics
is expected to become important. Concrete work looking at systems heavier than 4He
as well as observables beyond binding energies is currently in progress.
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Chapter 55
A New Measurement of the 2H(p,γ)3He
Cross Section in the BBN Energy Range
at LUNA

Francesca Cavanna

Abstract Deuterium is the first nucleus produced in the Universe whose accumu-
lation marks the beginning of the so called Big Bang Nucleosynthesis (BBN). Its
primordial abundance is very sensitive to some cosmological parameters like the
baryon density and the number of the neutrino families. Presently the main obstacle
to an accurate theoretical deuterium abundance evaluation is due to the poor knowl-
edge of the 2H(p, γ)3He cross section at BBN energies. This paper reports on the
measurements of the 2H(p, γ)3He reaction cross section performed at the Laboratory
for Underground Nuclear Astrophysics (LUNA) facility in the Gran Sasso Labora-
tory (LNGS). After a general introduction on the astrophysical and cosmological
relevance of 2H(p, γ)3He reaction cross section, the experimental setup used for the
measurement campaign is described. The results obtained so far and the perspectives
of the still on-going measurements are also discussed.

55.1 The Primordial Nucleosynthesis and the D/H
Abundance Predictions

Nuclear physics plays a role in the very early life of the Universe: between 3 and
20min after the BigBang, a few light isotopes ofH,He, Li andBe are formed through
a net of reactions. This is known as Big Bang Nucleosynthesis and its importance
is not just limited to the formation of the primordial material giving origin, about
109 y later, to the first pro-stars. Actually, the rate of the BBN reactions and the final
abundances of the involved isotopes are strictly related to fundamental quantities
like the barion density of the Universe. The barion to photon density is the sole free
parameter to describe, according the Lambda Cold Dark Matter model (�CDM [1]),
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the Universe evolution. From the Cosmic Microwave background measured by the
PLANKsatellite [2] and the cross section of theBBN reactions, the abundances of the
primordial isotopes can be calculated and compared with astronomical observations.
This open the possibility to infer, from the accurate determination of the nuclear
cross section, information widely beyond the limit of nuclear astrophysics. Among
the relevant process for BBN nucleosynthesis there’s the 2H(p,γ)3He currently under
study at LUNA.

The primordial abundance of deuterium, (D:H)obs, is presently known with good
accuracy, (D:H)obs= (2.527 ± 0.030) 10−5 [3], while the corresponding (D:H)BBN
obtained from the BBN calculations, (D:H)BBN = (2.58 ± 0.04) 10−5 [4], is affected
by the insufficient knowledge of S12 in the relevant energy interval. Only a single
dataset of S12 is available in the relevant energy range [5] and, according to the
Authors, it is affected by a systematic error of 9%. The situation is even worst when
considering a 20% discrepancy of that data with the theoretical previsions [6]. For all
these reasons an experimental effort tomeasure the cross sectionwith 3–5% accuracy
is needed.

55.2 The 2H(p,γ)3He measurement

Themeasurement of the cross section of the 2H(p, γ)3He reaction at BBN energies is
still ongoing at the LUNA 400 kV accelerator [7] installed in the underground Gran
Sasso laboratory. Such machine is able to provide intense proton beams (up to 500
µA) with a precise absolute energy (∼0.3 keV), low energy spread (0.1 keV) and
long-term stability (5 eV/h). The experimental apparatus includes also a windowless
deuterium gas target, consisting of three-stage pumping system able to increase the
gas pressure from the accelerator high vacuum to thembar level in the target chamber.
The beam current is measured by a constant-gradient calorimeter characterized by
two sides, a hot one heated to 70 ◦C by thermoresistors and a cold one cooled to
−5 ◦C by a refrigerating system.

The experimental procedure consists of two main phases characterized by two
different set-ups. The former foresees a deuteriumgas target 10cm long at 0.3mbar of
pressure and a cylindrical BGO detector [8]. Thanks to the high detection effciency,
this set-up will provide a cross section measurement down to very low energies
(∼ 50 keV of proton energy). The efficiency calibration can be obtained at a few per
cent level usingMonteCarlo simulations of the set-up, tunedwith radioactive sources
(137Cs, 60Co and 88Y) at low energies and with the well-known resonant reaction
14N(p, γ)15O at Er = 259 keV, emitting γ-rays in the 2H(p, γ)3He energy range.
In order to reduce systematic errors, the spatial position of the resonance has been
identified inside the chamber using a well collimated NaI detector in close geometry
with the target: keeping the scintillator fixed in the measurement position, the proton
energy has been increased and decreased in 2–3 keV steps until the achievement of
the maximum counting rate corresponding to the resonance peak. To determine the
possible beam induced background, runs with proton beam impinging on evacuated
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Fig. 55.1 BGO spectrum acquired at 150 keV proton energy

target chamber were performed. Figure55.1 shows a spectrum acquired at 150 keV
beam energy: the signal is well visible in the expected Region of Interest (RoI)
4000–6500 keV. The set up of the second phase consists of a 137% HPGe detector
in close geometry with the interaction chamber [9, 10]. With such setup the angular
distribution can be inferred by exploiting the high energy resolution of the detector
and the Doppler effect responsible for the broad energy distribution of the detected
γ-rays coming from different directions inside the extended gas target (33cm long).
The 2H(p, γ)3He photons have an energy of about 5.5MeV, far away from the energy
of the commonly used radioactive sources. Thus, for determining the setup efficiency
a different technique based again on the well-known resonant reactions 14N(p, γ)15O
and on 60Co radioactive decay has been used. In order to reduce the systematic error
due to the summing correction, the set-up efficiency has beenmeasured exploiting the
coincidence between two γ-rays emitted in cascade (from the source as well as from
the reaction) and detected by two different germanium detectors, the main detector
(Ge1) and a second one used as acquisition trigger (Ge2). Whenever Ge2 detects
an event 1, it enables Ge1 that can thus detect the photon 2 emitted in cascade: the
ratio of the observed photons and the number of triggers provides the Ge1 efficiency.
In the case of the 60Co source, for each radioactive decay process, two photons
of energies E1 = 1.17 MeV and E2 = 1.33 MeV are produced. In the case of the
resonant capture, several decay branches are able to provide two photons in cascade
of energies up to 6.7 MeV, even higher than the 2H(p,γ)3He reaction. This method
allows fixing precisely the detector energy response. To measure the cross section a
scan has been performed in the energy range of interest (30 keV < Ecm < 300keV)
with 30–50 keV steps; two runs were performed for each energy: one with deuterium
gas inside the scattering chamber, the other with 4He in order to evaluate the beam
induced background contribution and the eventual deuterium implantation. The data
taking has been completed, the analysis is ongoing.

In conclusion a new measurement with a few percentage accuracy is very impor-
tant to push down the BBN uncertainty on deuterium abundance to the same level



324 F. Cavanna

as observations and to eventually constrain possible new physics effects. The D/H
ratio is, in fact, very sensitive to the number of relativistic degrees of freedom and
can contribute to setting tight bounds on the number of equivalent neutrino flavours.
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Chapter 56
Three-Nucleon Force Studies in
Proton-Deuteron Break-Up Reaction
with BINA at 190 MeV
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A. Kozela, A. A. Mehmandoost-Khajeh-dad, J. G. Messchendorp,
R. Ramazani-Sharifabadi, E. Stephan and H. Tavakoli-Zaniani

Abstract The present knowledge of nuclear forces is not sufficient to describe all
experimental data for systems which consist of more than two nucleons. Recent
three-nucleon scattering experiments have shown that the theoretical models based
solely on nucleon-nucleon potentials fail to describemost of the experimental results.
In this paper, we present data of the �p + d −→ p + p + n break-up reaction that
were obtained using a 190 MeV polarized-proton beam impinging on a liquid deu-
terium target. The experiment was performed by exploiting BINA (Big Instrument
forNuclear-polarizationAnalysis), a detector systemwith a large angular acceptance
and a high energy resolution.
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56.1 Introduction

The nature of the nuclear force is still not well understood. Two-nucleon force
(2NF) models, most of which proposed based on Yukawa theory [1], deliver a
superb description for nucleon-nucleon scattering data and the characteristics of the
deuteron whereas, calculations based on the 2NF models underestimate the experi-
mental results of the three-body system such as the binding energy of the triton [2]
and show deviation when comparing their results with measured 3-body scattering
cross sections. Therefore, 2NFs are not sufficient to describe three-nucleon systems
and we need to take into account three-nucleon force (3NF) effects in the models.
There are various 3NFs most of which are based on the model which is developed
by Fujita-Miyazawa [3]. In these models, the 2π-exchange mechanism is used with
an additional � excitation of one of the nucleons [4].

In the last two decades, a large number of scattering experiments have been
performed to study 3NF effects by measuring differential cross sections and spin
observables such as analyzing powers [5, 6]. The 3-body break-up reaction is one of
the best tools to study 3NFs thanks to the rich kinematical phase space which allows
us to check 3NF at different kinematical configurations.

A comprehensive study of 3NFs has been started at KVI using various beam
energies and targets with the aim of measuring differential cross sections and ana-
lyzing powers [5–7]. The experimental setup (BINA), as it is shown in the left panel
of Fig. 56.1, consists of two main parts: a forward-wall and a backward-ball. In
this paper, results of measurements of the vector analyzing powers for the proton-
deuteron break-up reaction using a 190 MeV proton beam are presented for a part

Fig. 56.1 The left panel shows the structure of BINA. On top of the right panel the angular position
of each detector is marked with the center of gravity of each triangle
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Fig. 56.2 The left panel shows the energy correlation of the two protons for kinematical config-
uration (θ1 = 25◦ ± 2◦, θ2 = 127◦ ± 10◦,φ12 = 160◦ ± 10◦) and detector number 129, together
with the expected kinematical S-curve. The right panel shows the missing-mass spectrum of the
neutron for one of the gates alongside the S-curve (shown in the left panel)

of phase space which has not been explored before [8]. This part of the phase space
represents kinematics in which one proton scatters to the forward-wall and the other
to the backward-ball. As it is demonstrated in the right panel of Fig. 56.1, the position
of each ball detector has been used to measure the scattering angles of protons in the
backward-ball and therefore, the angular resolution is around ±10◦.

56.2 Analysis Method

In the three-body breakup reaction, it is sufficient to measure 5 of the 9 kinematical
variables in order to have all the information of the reaction. BINA is able to measure
energy and scattering angles of two protons in coincidence, which provides an extra
redundancy for extra check. Conventionally, in 3-body break-up reactions, kinemat-
ics are specified by the scattering angles of two protons (θ1, θ2,φ12 = φ2 − φ1). The
left panel of Fig. 56.2 shows the energy correlation of the two protons and the solid
line represents the expected energy correlation based on the relativistic kinematics
for a particular configuration. This curve is referred to as the S-curve. The value of
the variable S is defined as the arc length of the S-curve which is starting from the
minimum of E2. Commonly, the breakup observables are presented as a function of
the variable S for a given angle combination.

It is well known that the interaction of a polarized beamwith an unpolarized target
provides an azimuthal asymmetry in the scattering cross section which is given by
[9]:

N↑ − N↓

N↓p↑
z − N↑p↓

z

= Ay cosφ − Ax sin φ, (56.1)

where N↑(N↓) and p↑
z (p

↓
z ) are the cross section and beam polarization for up (down)

mode, respectively, Ax and Ay are the vector analyzing powers, and φ is the azimuthal
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scattering angle of one the protons. The vector analyzing powers have been obtained
for each configuration and ball detector. To get the final results, a weighted averaging
has been applied over the ball detectors which are located at the same polar angle.

56.3 Results and Discussions

The analysis has been done for 48 kinematical configurations and in Fig. 56.3, as rep-
resentative examples, the preliminary results of vector analyzing powers are shown
for some kinematical configurations together with the results of Faddeev calculations
using the CD-Bonn andAV18 two-nucleon potentials, with andwithout the inclusion
of two different types of 3NFs. The calculations are performed for the kinematical
configuration based on the center of each angular bins. To have a more accurate
prediction and considering the fact that the angular resolution is around 10◦, we
should average the calculations over all covered kinematical configurations within
an angular bin. This work is in progress. As observed in Fig. 56.3, the effects of the
3NF seem to be rather small for the configurations shown.
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Fig. 56.3 A comparison between the results of the analyzing power measurements for a few
selected break-up configurations with various theoretical predictions which are described in the
legend. Errors are statistical only
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Abstract Dineutron decay is a forefront topic in nuclear structure that still lacks a
firm experimental claim. The spontaneous emission of a dineutron should be favored
in nuclei that are unbound with respect to two-neutron emission but bound with
respect to single-neutron emission. A very interesting candidate can be found by
adding two neutrons to the most neutron-rich Beryllium isotope, 14Be, a well-known
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2n-halo nucleus. The intriguing nature of the phenomenon has motivated recent
theoretical calculations and a new experimental campaign at RIKEN RIBF. In this
work, the decay properties of 16Be and the structure of 15Be have been probed via
the proton-knockout reaction from a 17B beam.

57.1 Introduction

Exotic types of radioactivity are characteristic phenomena as we go far from stability,
near the driplines. The already observed two-proton radioactivity appears beyond the
proton dripline as a consequence of the evolution of the proton separation energy. In
analogy to the proton dripline, due to the evolution of the n–n pairing correlations,
the two-neutron separation energy can reach negative values while the one-neutron
separation energy is still positive. When this is the case, spontaneous two-neutron
emission is likely to happen since the sequential decay, via one neutron emission,
would be energetically forbidden. In order to find such condition, we need to go
beyond the neutron dripline. However, the limits for the neutron-rich side are exper-
imentally difficult to explore and only probed for very light nuclei. As a result, few
candidates are known.

One of the possible candidates is 16Be. Experimental attempts to probe the struc-
ture of 15Be found no evidence of the ground state but established a lower limit of
1.54MeV above the 14Be+ n threshold [1]. Below this limit, a state in 16Bewasmea-
sured 1.35 MeV above the 14Be+ n + n threshold, which presented a very suitable
scenario for the study of a spontaneous 2n emission. The study of n–n correlations
showed a strong signal at very low relative energy and angle that was reported as
a dineutron decay [2]. However, data were exclusively compared either to purely
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3-body phase space with no interaction between particles, either to the most extreme
case, a dineutron case where the two neutrons are emitted as a single unit. The com-
parison with these two “opposed” cases led to the conclusion that only a dineutron
decay was consistent with the data, neglecting a more standard case in which the
attractive n–n interaction in the final state could be able to explain the observed
signal [3].

57.2 Experimental Setup

A new experiment was performed at RIKEN RIBF facility as part of a campaign
aiming to shed light over a wide range of phenomena related to neutron-rich nuclei.
In particular, one of the main purposes was the study of the dineutron correlations,
in unbound nuclei such as 16Be but also in bound borromean nuclei such as 11Li or
14Be.

The 16Be states were populated via one proton removal reaction from a high-
intensity 17B secondary beam produced via fragmentation of a primary beam of 48Ca
at an energy of 345 MeV/nucleon and separated using the BigRIPS fragment sep-
arator. The incoming beam was then identified using plastic scintillators located in
the beam line (T OF − ΔE method) and by measurement of its magnetic rigidity.
Two drift chambers (BDC1 and BDC2) were positioned along the beam direction
to track the incident beam position onto the target. The 17Be(p, 2p)16Be reaction
took place in MINOS [4], a 150mm thick liquid hydrogen target. By combining the
trajectories of the recoil proton and knocked-out protons, the vertex of the reaction
was reconstructed with a resolution of about 5 mm. The full kinematics of the decay
products was measured using the standard setup of SAMURAI spectrometer, as it
is described in [5]. The SAMURAI superconducting dipole magnet in combination
with the drift chambers at its entrance (FDC1) and at its exit (FDC2) was used to
determine the Bρ and momentum of the fragment. The selection and identification
of the fragments was derived from the energy loss and time of flight provided by two
plastic hodoscopes (HODOF, HODOP) placed right after the FDC2. Themomenta of
the neutronswere calculated from the time of flight between F13, a plastic start detec-
tor located a few meters before the target, and the detection position in NEBULA, a
neutron detector array located at about 11m from MINOS.

Due to the large amount of detectors that come into play, several reference reac-
tions are used to check the validity of the calibrations and analysis methods. The
already well known threshold state of 16B at 40 keV [6] was the benchmark for the 1n
detection case. The observation in our data of this narrow state confirmed the validity
of our calibrations. Coincident detection of neutrons is, however, a more challenging
but crucial task. The fakemulti-neutron events, or cross-talk, were rejected according
to a rejection algorithm based on causality conditions. The result was checked with
the first excited state of 14Be [7], located 250 keV above the 12Be+ n + n threshold.
As we can see in Fig. 57.1, the 2+ state appears only when the cross-talk rejection is
applied.
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Fig. 57.1 Relative energy spectrum of 12Be+n+n following a break-up reaction from 14Be on a
carbon target. Left Energy reconstruction if no cross-talk filter is used. Right Observation of the 2+
state after the cross-talk rejection is applied

57.3 Preliminary Results

The relative energy Erel of 16Be was reconstructed by invariant mass method from
the measured momenta of 14Be and the two neutrons. The spectrum exhibits two
different resonance-like structures below 5 MeV, identified as the ground state and
the first excited state. Spin-parity were tentatively assigned for both states as 0+ and
2+, respectively. The best description of the spectrum was preliminary found for
energies of E0+ = 0.83 MeV and E2+ = 2.13 MeV. The determination of the final
values of energy and width, with their error bars, is in progress.

The decay mode of 16Be depends on the structure of 15Be. However, even if 15Be
was not directly populated during the campaign, the nature (sequential or direct)
of the decay can be assessed by looking at the correlations of the decay particles.
In particular, fragment-neutron relative energy distribution is very sensitive to the
type of decay; and if sequential, to the energy of the intermediate state of 15Be.
Correlations between the fragment and one of the emitted neutrons were studied
for both observed states in 16Be by comparison with MC simulations, taking into
account the detector response. A direct decay with no interaction between the two
neutrons was assumed as the primary scenario for the ground state. Given the good
agreement of the simulation with the 14Be+ n data, it was not necessary to suppose
any other contribution coming from sequential decay. It was concluded then that the
spontaneous two neutron emission to ground state of 14Be was the most probable
decay for the 0+ state. With this result, the ground state of 15Be was not expected to
be below an energy of 830 keV.

In the case of the excited 2+ state, a direct three-body decay was not consistent
with the data. The fragment-neutron relative energy spectrum presented a peak-like
structure that could not be described with a pure three body phase space simulation.
A first attempt to find the energy of the ground state of 15Be was carried out. The
best description of data was achieved with a preliminary energy of 1.5 MeV as the
intermediate state in 15Be.
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57.4 Summary and Perspectives

We investigated the decay of the unbound 16Be using a proton knock-out reaction
and a preliminary study of the fragment-neutron correlations was performed. The
ground state, as well as the first excited state, were observed unambiguously for the
first time. The best description of the spectrum was found for the following energies,
E0+ = 0.83MeV and E2+ = 2.13MeV. The decaymode of the ground state seems to
be, according to the fragment-neutron energy spectrum, purely direct by spontaneous
emission of two neutrons. The decay of the excited state was found to be in better
agreement with a sequential decay with an energy of 1.5 MeV for the ground state of
15Be. Yet the description of the data for the 2+ state could be improved by assuming
both types of decay, direct and sequential, which is in progress.

Interesting theoretical calculations predict a very strong dineutron component in
the structure of 16Be [8, 9]. Whether the two neutron emission is in the form of a
dineutron or not will be determined from the ongoing analysis of the n-n correlations.
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Chapter 58
Approximate Sum Rule for the Electric
Dipole Moment of Light Nuclei

Nodoka Yamanaka

Abstract Themeasurement of the electric dipolemoment (EDM) is an excellent test
of the standard model of particle physics, and the detection of a finite value is signal
of a new source of CP violation beyond it. Among systems for which the EDMcan be
measured, light nuclei are particularly interesting due to their high sensitivity to new
physics. In this proceedings contribution, we examine the sensitivity of the EDM of
several light nuclei to the CP-odd one pion-exchange nucleon-nucleon interaction
within the cluster model. We suggest an approximate sum rule for the nuclear EDM.

58.1 Motivation

The electric dipole moment (EDM) [1–4] is a good probe of CP violation. One of
the most notable point is the almost negligible standard model contribution [5–9].
Recently, the experimental measurement of the EDM using storage rings is being
developed [10]. Here we discuss the EDM of light nuclei [11, 12] as potentially
interesting observables.

In the next section, we introduce the model and the interactions used in our work.
In Sect. 58.3, we show our results of the calculations of the EDMof light nuclei, from
which an interesting counting rule is suggested. The final section gives the summary.

58.2 The Model Setup

We consider the nucleons, the α (4He), and triton (3H) clusters as degrees of
freedom, which are interacting themselves through phenomenological potentials
[13–19]. The effect of the antisymmetrization is included using the orthogonality
condition model [20].
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The CP-odd nuclear force is modeled by the one-pion exchange [21]:

Hπ
P/ T/ =

{
Ḡ(0)

π τ 1 · τ 2 σ− + 1

2
Ḡ(1)

π (τ z
+ σ− + τ z

− σ+)

+Ḡ(2)
π (3τ z

1τ
z
2 − τ 1 · τ 2)σ−

}
· r
r
V (r), (58.1)

where r ≡ r1 − r2, σ± ≡ σ1 ± σ2, and τ± ≡ τ 1 ± τ 2 denote the relative coordi-
nate, spin, and isospin matrices, respectively, of the nucleons 1 and 2. The radial

function is given by V (r) = − mπ

8πmN

e−mπ r

r

(
1 + 1

mπr

)
. The CP-odd α − N and α−3H

potentials are obtained by folding [11] the CP-odd N − N interaction (58.1) with the
oscillator constant b = 1.358 fm (α − N ) and b = 1.482 fm (α−3H). In Fig. 58.1
we display the CP-odd potentials.

58.3 The Nuclear Electric Dipole Moment

The nuclear EDM generated by the CP-odd nuclear force is given by

d (pol)
A =

A∑
i=1

e

2
〈ΦJ (A) | (1 + τ z

i ) riz | ΦJ (A) 〉

= Ḡ(0)
π a(0)

π + Ḡ(1)
π a(1)

π + Ḡ(2)
π a(2)

π . (58.2)

where | ΦJ (A) 〉 is the polarized nuclear state. We show the results of our calculations
in Table58.1.

Fig. 58.1 The shape of the
CP-odd potentials

-2

-1.5

-1

-0.5

 0

 0  1  2  3  4  5  6  7  8

V
(r

) 
(M

eV
)

r (fm)

Bare N-N
α-N, b=1.358fm
α-t, b=1.482fm



58 Approximate Sum Rule for the Electric Dipole Moment of Light Nuclei 339

Table 58.1 The linear coefficients of Eq. (58.2) in unit of e fm for several nuclei. The symbol “−”
means zero within our framework

a(0)
π a(1)

π a(2)
π

2H [22, 23] − 0.0145 −
3He [23, 24] 0.0059 0.0108 0.0168
3H [23, 24] −0.0059 0.0108 −0.0170
6Li [23] − 0.022 −
7Li [25] −0.006 0.016 −0.017
9Be [23] − 0.014 −
11B [25] −0.004 0.02 −0.01
13C [26] − −0.0020 −
129Xe [27] 7 × 10−5 7 × 10−5 4 × 10−4

Fig. 58.2 Schematic picture of the counting rule for the EDMs of 6Li, 7Li, 9Li, and 11B

From this result, we can derive an approximate counting rule with the basic com-
ponents the 2H/3H EDM and the CP-odd α − N polarization ∼(0.005–0.007) Ḡ(1)

π e
fm. We indeed have

d6Li = 2 × (α − N polarization) + d2H,

d7Li = 1 × (α − N polarization) + d3H,

d9Be = 2 × (α − N polarization),

d11B = 2 × (α − N polarization) + d3H. (58.3)

We display in Fig. 58.2 the schematic picture of this rule. From it, we can predict

d10B ∼ 4 × (α − N polarization) + d2H ∼ 0.03 Ḡ(1)
π e fm,

d14N ∼ 6 × (α − N polarization) + d2H ∼ 0.04 Ḡ(1)
π e fm. (58.4)
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We note that the EDM of 13C does not respect the counting rule. This is due to the
bad overlap between the structures of opposite parity states [26]. This suppression
is certainly also relevant for 15N which has a similar level structure.

Going along with the counting rule, we can naively predict that the EDM will
increase if the the nucleon number grows thanks to the α − N polarization. The
nuclear EDM will however be suppressed by the destructive interference due to the
configuration mixing for heavy nuclei [27] (see the numerical value of the EDM of
129Xe in Table58.1).

58.4 Summary

In this proceedings contribution, we presented the results of the calculations of the
nuclear EDM. The EDM of light nuclei seems to obey an approximate counting
rule, if the nuclear structures of opposite parity states do not significantly differ. We
could predict that the EDMs of 10B or 14N are more sensitive than the known ones.
Increasing the number of nucleons will not give us a sensitive nucleus to the CP
violation, since the destructive effect due to the configuration mixing will become
important. Light nuclei seems to be the most suited for the EDMmeasurement using
storage ring experiments.
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Chapter 59
Electron Scattering Experiments
on Light Nuclei

Miha Mihovilovič

Abstract In this contribution we discuss double-polarised quasi-elastic electron
scattering from 3He and 12C. For these nuclei precise data from recent experiments
at Jefferson Lab and Mainz have become available, accompanied by a very strong
theoretical effort dedicated to understanding these nuclei. The double polarisation
experiments presented here offer insight into some of the details of the nuclear struc-
ture that could not be accessed by traditional cross-section measurements. The new
experimental results show only rough agreement with the calculations and indicate
that we do not yet fully understand the structure of these nuclei and nucleon dynam-
ics inside them. Although the new data do not identify sources of the remaining
discrepancies, they offer valuable clues that could lead to faster convergence of the
theoretical models towards experimental results.

59.1 Introduction

The investigations of light nuclei are at the heart of nuclear physics. On the one
hand light nuclei are interesting because they are small enough objects to be exactly
calculable. On the other hand they are complex enough to exhibit all the important
features that are usually present in the heavy nuclei. This combination makes them
an ideal playground where the theoretical calculations can be compared to the data
to an increasingly accurate degree.

In order to achieve a good agreement between the measurements and the theory, a
precise knowledge on the nuclear ground-state wave function and the nuclear current
that describes the transition from the initial to the final nuclear state are needed.
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They depend on the structure of the nuclei and the forces that bind nucleons together.
In addition, effects that are accompanying the primary process, such as FSI and
MEC also need to be well understood. Unfortunately, we can not measure different
contributions individually, but observe a convolution of all the involved components.
This means that if a discrepancy between the data and the theory is observed, it is not
clear which part is responsible for it. This makes the interpretation of the observed
results challenging.

In this paper recent studies of 3He and 12C will be discussed. The insight into
the properties and structure of these nuclei is interesting not only in the context of
fundamental nuclear physics, but is relevant also for other fields of research that use
them as nuclear targets: 3He is employed as an effective neutron target to investigate
the spin properties of the nucleon, while 12C is used in neutrino experiments to study
their oscillation parameters.

59.2 Double-Polarised Electron Scattering Experiments

The traditional way of investigating the structure and dynamics of nuclei is by mea-
suring electron-induced cross-sections. For quasi-elastic proton knockout the cross-
section depends on six structure functions (RL , RT , RT L , RTT , RT ′ and RT L ′) which
enclose all the information on the nucleus [1]:

d6σ

dEe′dΩe′dEpdΩp
= σ0 [vL RL + vT RT + vT L RT L + vT T RTT

+ h (vT ′ RT ′ + vT L ′ RT L ′)] .

Unfortunately the measurements of this cross-section are suffering from systematic
uncertainties which limit the precision of extracted structure functions and tarnish
our insight into the structure of nuclei. These problems can be avoided by performing
double-polarised experiments. With 3He being a spin-1/2 nucleus, one can measure
helicity (h±) dependent asymmetries for different orientations of the target spin:

A(�S) = σ(h+, �S) − σ(h−, �S)

σ (h+, �S) + σ(h−, �S)
∝ (vT ′ RT ′ + vT L ′ RT L ′) ,

where �S represents the spin of the nucleus. These asymmetries grant access to the
suppressed responses (RT ′ and RT L ′) and allow for a validation of available ab-initio
theories [2] explaining the structure of 3He.

In a similar manner we can also improve our knowledge on the structure of the
carbon nucleus. However, since 12C can not be employed as a polarised target, we
use different tactics and measure the polarisation of the ejected proton [3]:
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Fig. 59.1 The asymmetries A(67◦) (left) and A(156◦) (right) in the quasi-elastic 3 �He(�e, e′p) pro-
cess (2bbu and 3bbu combined) as functions of missing momentum, compared to theoretical pre-
dictions (green) showing the 2bbu (blue) and 3bbu (red) contributions. All full lines correspond to
Krakow-Bochum (K) calculations, while all dashed lines correspond to the Hannover-Lisbon (H/L)
calculations [5]

�P = (Px, Py, Pz) = σ(h+, �sp) − σ(h−, �sp)
σ0

,

where �sp represents the spin of the ejected proton in the systemdefined by themomen-
tum of the virtual photon. The theory has shown that the polarisation components Px
and Pz are very sensitive to the details of the single-nucleon wave-function inside the
nucleus [3]. Hence, the measurements of the polarisation components offer a unique
opportunity to select the best description of the nuclear structure among different
available models, which can not be accomplished with the cross-section data.

59.3 Investigating 3He with 3 �He(�e, e′ p) Reactions

The most recent study of 3He was performed at Jefferson Lab [4]. Using a high
intensity electron beam in combination with a polarised 3He target and spectrometers
of Hall A we performed a high-precision measurement of the double-polarisation
asymmetries for the 3 �He(�e, e′ p) reaction, as a function of the missing momentum
in the range between 0 and 300MeV/c. In particular, we investigated A(67◦) and
A(156◦), representing the asymmetries when the target spin is oriented along and
perpendicular to the direction of the incoming electron, respectively [5].

The measured asymmetries arise from an interplay of two reaction channels, that
result in a proton in thefinal state: the two-body (2bbu) reaction 3 �He(�e, e′ p)d, where a
proton and a deuteron are produced, and a three body (3bbu) reaction 3 �He(�e, e′ p)pn,
where nucleus breaks into three separate nucleons. The 2bbu is interesting because it
offers details on the wave function while the 3bbu channel is sensitive to the nuclear
effects such as FSI. Since only one proton is detected in the final state, the two
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Fig. 59.2 The A(67◦) (full symbols) and A(156◦) (empty symbols) asymmetries for 2bbu (left) and
3bbu (right) divided by the corresponding asymmetries for elastic �e �p scattering at the same value
of Q2 and for Em ≤ 2.5MeV. In both panels the data (circles) are compared to the calculations
(squares) [5]. Dashed green line denotes expected asymmetries within the PWIA

processes can be distinguished only though the examination of the missing energy
spectrum. Such analysis requires apparatus with a very high momentum resolution,
allowing a separation of two peaks just 2.2MeV apart [6]. Unfortunately, due to the
limited resolution of the spectrometers at hand, our resolving power was to small
to be able to distinguish the two reaction channels. Consequently, we could not
separate these two channels directly, but rather compared the measured asymmetries
with theoretical calculations which correctly combine both reaction channels. For
the experiment they were provided by theoretical groups from Krakow-Bochum [7,
8], Hannover-Lisbon [9–12] and Pisa [13].

The measured asymmetries as functions of missing momentum are shown in
Fig. 59.1. The data are displayed together with the theoretical curves, which were
obtained by averaging calculations for both contributing reactions over the accep-
tance and weighting them with the ratio of the cross-sections for the two channels.
The theoretical calculations match the general trend of the measurements, but signif-
icantly underestimate the data. Since the theoretical 2bbu asymmetries obtained by
all three theoretical groups are consistent with each other and agree with the elastic
electron-proton asymmetry in the spectator picture, the discrepancy must be related
to the 3bbu channel.We aremost probably searching for a small effect which causes a
tiny correction to the cross section but has significant influence on the 3bbu asymme-
try. The Krakow group suspects that this effect could be the 3NF or the p-p Coulomb
interaction which at present is not included in their calculations. However, calcula-
tions of the Hannover-Lisbon group already contain the 3NF but also suffer from the
same discrepancy. Therefore, they suspect that the difference between the data and
the theory is related to either unconsidered relativistic effects or uncertainties in the
EM current operator, which needs to be improved in the future.

In order to gain more knowledge on the structure of 3He despite inconsistencies
with the theory, the data in the vicinity of pmiss = 0 and with Emiss close to the
2bbu and 3bbu thresholds were examined. Within the PWIA, one expects that in
the spectator limit the 2bbu asymmetry will be close to −1/3 of the elastic �e �p
asymmetry. On the other hand, for the 3bbu channel we expect an asymmetry close
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to zero, since the electron can scatter from either of the two protons with opposite
spin directions. The analysis has shown that our data agree well with this hypothesis,
see Fig. 59.2, and so do the calculations for the 2bbu channel. However, for the 3bbu
channel the theories predict large asymmetries, which are close to the elastic ones.
Since it is known that the 3bbu asymmetry arises from FSI [6], this has led us to the
conclusion that the available theoretical calculations overestimate the contribution
of the FSI.

59.4 Investigating 12C with 12C(�e, e′ �p) Reaction

The latest investigation of the double-polarised reaction 12C(�e, e′ �p) has been per-
formed in 2015 in Mainz. The experiment was initially motivated by the assumption
that the nuclear environment changes the charge and magnetisation distributions of
the constituent nucleons. In an attempt to observe this effect the polarisation com-
ponents Px and Pz were measured [14]. We know that for the free proton the ratio
of the two polarisation components is proportional to the ratio of the electric and
magnetic form-factors [15]. Hence, comparing the quasi-elastic measurements on
the bound proton to the values for a free proton, one could get an idea about the
influence of nuclear medium on the proton’s elastic form-factors and its charge and
magnetisation distributions.

The measured ratio R12C = Px/Pz relative to the corresponding ratio for a free
proton is shown in Fig. 59.3. The obtained results are presented as a function of
virtuality which, within the scope of the PWIA, tells us how far off the shell is the
struck proton. The results show a clear deviation from those for a free proton and
prove that the nuclear medium affects the interacting proton. However, the observed
deviation can not be contributed solely to the modification of the proton’s struc-
ture. This phenomenon is competing against other effects, like FSI and MEC, that
also influence the result. In order to understand different contributions to the mea-
sured result, the data need to be studied in conjunction with the theoretical models.
Therefore, we established a collaboration with the group from Pavia [3], and their
calculations have demonstrated that the deviation of the measured ratio from that for
a free proton is predominantly governed by the properties of the initial proton wave
function, while is somewhat insensitive to the details of the optical potential and FSI.
Furthermore, when comparing the results with the previous measurements on other
nuclei [16–18], a surprising universal behaviour of the double polarisation ratios was
observed. Within the measured uncertainties the double ratios for 12C closely follow
those for 4He and 2H, which are known to be governed by FSI [19]. Additionally, the
virtuality dependence of the double polarisation ratio seems to be independent of Q2

and beam energy. This observation is contra-intuitive and not understood. Therefore,
further theoretical and experimental work is required in order to correctly interpret
the measured data and explain the physics mechanisms behind them.
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Fig. 59.3 The measured polarisation double-ratio of protons from 12C compared with those
obtained for 2H and 4He (A = 2H, 4He, 12C) as a function of the proton virtuality [14]. The
12C results (black full symbols) represent combination data where protons are removed from the s-
and p-shell. The open symbols are 2H data measured at Mainz with essentially the same kinemat-
ics [16]. The light symbols are 2H and 4He data measured at JLab at Q2 = 0.8 and 1GeV/c2 [17,
18]

59.5 Conclusions

Recent experiments at Jefferson Lab and Mainz provided new double polarisation
data for 3He and 12C, which can be used for precise investigations of nuclear structure
and dynamics. The comparison of these precise data to the available theoretical
calculations revealed significant discrepencies for both 3He and 12C. At the moment
it is not clear what causes the observed inconsistencies. However, in order to advance
our knowledge on these nuclei and also to be able to use them as targets in other
experiments, the discrepancies need to be addressed and understood. Therefore,
dedicated theoretical efforts are being invested to further improve the models, and
new experiments are planned at both Jefferson Lab and Mainz that could be used to
advance our knowledge on these and also heavier nuclei like 40Ar and 40Ca.
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Chapter 60
The Basic Model of Nuclear Theory:
From Atomic Nuclei to Infinite Matter

Maria Piarulli

Abstract A major goal of nuclear theory is to explain the wealth of data and pecu-
liarities exhibited by nuclear systems in a fullymicroscopicway. In such an approach,
which we refer to as the basic model of nuclear theory, the nucleons interact with
each other via many-body (primarily, two- and three-body) effective interactions,
and with external electroweak probes via effective current operators. These effective
interactions and currents are the main inputs to ab-initio methods that are aimed
at solving the many-body Schrödinger equation associated with the nuclear system
under consideration. In this talk, I will review recent progress in Quantum Monte
Carlo calculations of low-lying spectra and electroweak properties of light nuclei as
well as nucleonic matter equation of state. Emphasis will be on calculations based
on chiral effective field theory approach.

60.1 Introduction

The last few decades have witnessed the emergence of the basic model of nuclear
theory in which nuclear systems—particularly atomic nuclei and infinite nucleonic
matter—can be described as a collection of point-like nucleons interacting with
each other in terms of many-body (primarily, two and three-body) effective interac-
tions, and with external electroweak probes via effective current operators. Such an
approach, in conjunction with a computational method of choice to solve the many-
body Schrödinger equation, can thus be used to explain the structure and dynamics of
nuclear systems in a fully microscopic way where the nucleons emerge as effective
degrees of freedom, at sufficiently low-energy. This can be seen as the result of a
more fundamental process involving the constituents of the nucleons, i.e., the quarks
whose dynamics is described by Quantum Chromodynamics (QCD).

How the force between nucleons emerges from QCD has kept nuclear theorists
occupied for many decades. One may try to solve such a problem with brute com-
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puting power on a discretized, Euclidean space-time lattice (known as lattice QCD).
However, in spite of many advances [1–3], lattice QCD calculations are still in their
infancy, and thus, at the present time, they can only be used to check few repre-
sentative key-issues. Clearly, a different approach is necessary to address the full
complexity of nuclear structure problems.

60.2 The Basic Model of Nuclear Theory

The basic model of nuclear theory assumes that a Hamiltonian consisting of non-
relativistic kinetic energy, two- and three-body interactions provides a good approxi-
mation to the energy of interacting nucleons. Two-body interactions are characterized
by a long-range component, for inter-nucleon separation r � 2 fm, due to one-pion
exchange (OPE) [4], and intermediate- and short-range components, for, respec-
tively, 1 fm � r � 2 fm and r � 1 fm. Up to the mid-1990’s, such interactions were
based almost exclusively on meson-exchange phenomenology. Those of the mid-
1990’s [5–7] were constrained by fitting nucleon-nucleon (NN ) elastic scattering
data up to lab energies of 350MeV, with χ2/datum� 1 relative to the database avail-
able at the time [8]. Two well-known and still widely used examples in this class are
theArgonne v18 (AV18) [6] andCD-Bonn [7]. These are so-called phenomenological
interactions.

Already in the 1980’s, accurate three-body calculations showed that contemporary
NN interactions did not provide enough binding for the three-body nuclei, 3H and
3He [9]. In the late 1990’s and early 2000’s this realization was also extended to the
spectra (ground and low-lying excited states) of light p-shell nuclei, for instance,
in calculations based on quantum Monte Carlo (QMC) methods [10] and in no-
core shell-model (NCSM) studies [11]. Consequently, the basic model with only
NN interactions fit to scattering data, without the inclusion of a three-nucleon (3N )
interaction, is definitlely incomplete.

Because of the composite nature of the nucleon and, in particular, the domi-
nant role of the Δ resonance in pion-nucleon scattering, multi-nucleon interactions
arise quite naturally in meson-exchange phenomenology. In particular, the Illinois
3N interactions [12] consist of a dominant two-pion exchange (TPE)—the Fujita-
Miyazawa interaction [13]—and smaller multi-pion exchange components resulting
from the excitation of intermediateΔ’s. Themost recent version, Illinois-7 (IL7) [14],
also contains phenomenological isospin-dependent central terms. The parameters
characterizing this 3N potential have been determined by fitting the low-lying spec-
tra of nuclei in the mass range A = 3–10. The resulting AV18+IL7 Hamiltonian,
generally utilized with QMC methods, then leads to predictions of 100 ground- and
excited-state energies up to A = 12, including the 12C ground- and Hoyle-state ener-
gies, in good agreement with the corresponding empirical values [15]. However,
when used to compute the neutron star matter equation of state, these do not provide
sufficient repulsion to garantee the stability of the observed starts against gravitational
collapse [16]. Thus, in the context of the phenomenological nuclear interactions, we
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do not have a Hamiltonian that can predict the properties of all nuclear systems, from
NN scattering to dense nuclear and neutronmatter. Furthermore, high-precision phe-
nomenological potentials suffer from several limitations, most notably the missing
connection with the (approximate) chiral symmetry exhibited by QCD. For instance,
they do not provide rigorous schemes to consistently derive two- and three-body
forces and compatible electroweak currents.

To this end, a new phase in the evolution of the basic model, and renewed interest
in its further development, have been spurred by the emergence in the early 1990’s of
chiral effective field theory (χEFT) [17–19]. Such a theory provides themost general
scheme accommodating all possible interactions among nucleons, Δ isobars, and
pions compatible with the relevant symmetries—in particular chiral symmetry—
of low-energy QCD. By its own nature, χEFT is organized within a given power
counting scheme and the resulting chiral potentials (and currents) are systematically
expanded in powers of Q/Λχ with Q � Λχ , where Q denotes generically a low-
momentum scale entering the theory andΛχ ∼ 1 GeV specifies the chiral-symmetry
breaking scale (see [20, 21] for recent review articles). Therefore, χEFT provides
a rigourous scheme to systematically construct many-body forces and consistent
electroweak currents, providing tools to estimate their uncertainties [22–27]. The
Weinberg power counting of χEFT indicates that nuclear forces are dominated by
NN interactions while many-body forces are suppressed by powers of Q. However,
the inclusion of 3N interaction is mandatory at the level of accuracy now reached by
few- and many-body calculations (see [28, 29] for a comprehensive review on this
topic).

Nuclear forces in χEFT are separated into pions-exchange contributions and con-
tact terms. Pions-exchange contributions represent the long- and intermediate-range
of nuclear interactions while the contact terms encode the short-range physics and
their strength is specified by unknown low-energy constants (LECs), which then
need to be fixed by fitting experimental data. Within χEFT many studies have been
carried out dealing with the construction and optimization of NN and 3N interac-
tions [21, 23, 30–51]. These interactions were typically formulated in momentum
space, and included cutoff functions to regularize their behavior at large momenta
which, however,made them strongly non-localwhen Fourier-transformed in configu-
ration space, and therefore unsuitable for usewithQMCmethods.Among these,Vari-
ational (VMC) andGreen’s FunctionMonteCarlo (GFMC) are themethods of choice
to provide reliable solutions of the many-body Schrödinger equation—presently for
up to A = 12 nucleons—with full account of the complexity of the many-body, spin-
and isospin-dependent correlations induced by nuclear interactions. The sampling of
configuration space in VMC and GFMC simulations gives access to many important
properties of light nuclei as spectra, form factors, transitions, low-energy scattering
and response. Auxiliary Field Diffusion Monte Carlo (AFDMC) uses Monte Carlo
to also sample the spin-isospin degrees of freedom, enabling studies of, for example,
neutron matter [52–56] that is so critical to determining the structure of neutron stars
and properties of light- and medium-mass nuclei [57, 58]. QMC simulations have
surely proved to be very valuable in attacking many nuclear structure issues over
the last three decades. Therefore there was a need to develop local chiral interaction
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for QMC in order to test to what extent the chiral effective field theory framework
impacts our knowledge of few- and many-body systems.

It is worth mentioning here that, besides QMC methods, there are several other
sophisticated few- and many-methods [59–64], based on realistic Hamiltonians, that
are addressing different interesting aspects of nuclear systems. In particular there
is a big effort on developing microscopic models that include continuum couplings
which are mandatory to describe, for istance, weakly bound nuclear systems [65].

60.3 Local Chiral Hamiltonians

A major thrust of our work is based on the theoretical derivation, optimization
and implementation of chiral interactions suitable for QMC methods. In recent
years local, configuration-space chiral NN interactions have been derived by two
groups [66–68]. In this talk, we focus on the family of local chiral interactions con-
structed by our group in [68, 69]. They are written as the sum of an electromagnetic
interaction component and a strong-interaction component, characterized by long-
and short-range parts. The long-range part includes one-pion-exchange (OPE) and
two-pion-exchange (TPE) terms up to next-to-next-to-leading order (N2LO) in the
chiral expansion, derived in the static limit from leading and sub-leading πN and
πNΔ chiral Lagrangians. The short-range part, however, is described by contact terms
up to next-to-next-to-next-to-leading order (N3LO), characterized by 26 LECs.

We constructed two classes of interactions, which only differ in the range of
laboratory energy over which the fits were carried out, either 0–125 MeV in class
I or 0–200 MeV in class II (the fits used the 2013 NN database, including the
deuteron ground-state energy and two-neutron scattering length, as assembled by
the Granada group [70]). For each class, three different sets of cutoff radii (RS, RL)

were considered (RS, RL)= (0.8, 1.2) fm in set a, (0.7, 1.0) fm in set b, and (0.6, 0.8)
fm in set c, where RS and RL enter respectively the configuration-space cutoffs for
the short- and long-range parts of the two-nucleon interaction [68]. The χ2/datum
achieved by the fits in class I (II) was � 1.1(� 1.4) for a total of about 2700 (3700)
data points. We are refering to these high-quality NN interactions generically as the
Norfolk potentials (NV2s), and designate those in class I as NV2-Ia, NV2-Ib, and
NV2-Ic, and those in class II as NV2-IIa, NV2-IIb, and NV2-IIc.

The NV2s were found to provide insufficient attraction, in GFMC calculations,
for the ground-state energies of nuclei with A = 3–6 [68], thus corroborating the
insight realized in the early 2000’s within the older (and less fundamental) meson-
exchange phenomenology. To remedy this shortcoming, we constructed the leading
3N interaction in χEFT, including Δ intermediate states. It consists [34, 35] of a
long-range piece mediated by TPE and a short-range piece parametrized in terms of
two contact interactions. The two LECs—namely cD and cE—have been constrained
either by fitting exclusively strong-interaction observables [52, 53, 71, 72] or by
relying on a combination of strong- and weak-interaction ones [73–75]. This last
approach is made possible by the relation, established in χEFT [76], between cD in
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the three-nucleon contact interaction and the LEC in the NN contact axial current [73,
74], which allows one to use nuclear properties governed by either the strong or weak
interactions to constrain simultaneously the 3N interaction and NN axial current.

In particular, in our recent work [72, 75], we constructed two different sets for
the values of cD and cE , leading to two different parametrization of the 3N inter-
action. In the first, these LECs were determined by simultaneously reproducing the
experimental trinucleon ground-state energies and nd doublet scattering length for
each of the NN models considered [72]. In the second set, these cD and cE were
constrained by fitting, in addition to the trinucleon energies, the empirical value of
the Gamow-Teller matrix element in tritium β decay [75]. The resulting Hamiltonian
models were designated as NV2+3-Ia/b and NV2+3-IIa/b (or Ia/b and IIa/b for short)
in the first case, and as NV2+3-Ia∗/b∗ and NV2+3-IIa∗/b∗ (or Ia∗/b∗ and IIa∗/b∗) in
the second. These two different procedures for fixing cD and cE produced rather
different values for these LECs, particularly for cE which was found to be relatively
large and negative in models Ia/b and IIa/b, but quite small, and not consistently neg-
ative, in models Ia∗ /b∗ and IIa∗ /b∗. This in turn impacts predictions for the spectra
of light nuclei and the equation of state of neutron matter, since a negative cE leads
to repulsion in light nuclei, but attraction in pure neutron matter.

60.4 Applications

In this section, we discuss some illustrative applications of nuclear χEFT to the few-
and many-body systems.

In Fig. 60.1 are shown the GFMC energy results calculated with NV2+3-Ia model
(described in the previous section) for 37 different nuclear states in A = 4–12 nuclei.
They are compared to results from the older AV18+IL7 model [15] and experi-
ment [77]. The agreement with experiment is impressive for both Hamiltonians, with
absolute binding energies very close to experiment, and excited states reproducing
the observed ordering and spacing, indicating reasonable one-body spin-orbit split-
tings. For both Hamiltonians, the inclusion of the 3N interactions is in many cases
necessary to get ground states that are correctly bound against breakup, e.g., 6He is
not bound with just the NN interaction [68]. The lowest 3+ and 1+ states of 10B are
of particular interest. For both AV18 and Ia without 3N interactions, the 1+ state
is incorrectly predicted as the ground state (for NV2-Ia by 1.9 MeV) but including
the 3N interactions gives the correct 3+ ground state. However, it is important to
emphasize that in the AV18+IL7 model the four parameters in the 3N interaction are
fitted to the energies of many nuclear levels up to A = 10.

While model NV2+3-Ia provides an excellent description of the energy levels and
level ordering of nuclei in the mass range A = 4–12 [72], it collapses neutron matter
already at relatively low densities [56], and cannot sustain the existence of neutron
stars of twice solar masses, in conflict with recent observations [78, 79]. Indeed, we
find that the equation of state of neutron matter obtained with interactions that accu-
rately describe A ≤ 12 nuclei suffers from a strong regulator dependence, consistent
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Fig. 60.1 The energy spectra of A = 4–12 nuclei obtained with the NV2+3-Ia chiral interactions are
compared to experimental data [77]. Also shown are results obtained with the phenomenological
AV18+IL7 interactions [15]

with [52]. More specifically, the potentials with the softest regulators do not provide
sufficient repulsion to guarantee the stability of observed stars against gravitational
collapse (this is analogous to what happens when employing the phenomenological
AV18+IL7 interaction [16]), while those characterized by harder regulators are in
much better agreement with astrophysical constraints. There are indications [56] that
the smaller values of cE characteristic of models Ia∗/b∗ and IIa∗/b∗, mitigate, if not
resolve, the collapse problem, however the prediction of light-nuclei spectra is not
at the same accuracy level [56] of Fig. 60.1. Studies along this line are in progress.

Differential cross section, and vector and tensor polarization observables in
proton-deuteron elastic scattering obtained with the present NV2+3 models have
also been calculated using the Hypersperical Harmonics (HH) [59] method and com-
pared to experimental data [80]. The effect of the 3N interaction is small, marginally
improving (appreciably worsening) the agreement between theory and experiment
for the observables Ay , i T11, and T22 (T20 and T21). In particular, the well known
discrepancy in the vector analyzing power—the “Ay puzzle” [81]—persists. It also
appears to be unresolved when higher-order chiral loops are accounted for in the
long-range component of the 3N interaction [82]. More details regarding this topic
are provided in Girlanda’s talk.

To have a full description of the properties of nuclear systems such has electroweak
form factors, magnetic moments, radii, decays, etc, we also need to know how they
interact with external probes, such as electroweak probes. Therefore we need to
specify the charge and current operators which, in the contest of the basic model, are
written in a series of many-body operators in analogy to the Hamiltonian.
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Fig. 60.2 Ratios of GFMC to experimental values of the GT RMEs in the 3H, 6He, 7Be, and 10C
weak transitions. Theory predictions correspond to the χEFT axial current in LO (blue circles) and
up to N4LO (magenta stars). Green squares indicate unquenched shell model calculations from [89]
based on the LO axial current

More recently electroweak operators based on χEFT have been derived in both
the electromagnetic and weak sectors [83–88]. For instance, in the weak sector,
observables that are of great interest are β-decay and the Gamow-Teller (GT) matrix
element contributing to it. Being well-known experimentally they have provided
over the past several decades, a testing ground for models of the nuclear axial current
and, in particular, for the role that many-body weak transition operators beyond the
leading one-body GT operator play in this matrix element.

In Fig. 60.2 are displayed ratios of GFMC to experimental values performed by
Pastore and collaborators for the GT in the 3H, 6He, 7Be, and 10C weak transitions.
They find overall good agreement with data for the beta decay of 6He and electron
capture of 7Be even if the first one is overpredicted by 2%. The experimental GT
reduced matix element (RME) for the 10C β-decay is overpredicted by 10%, with
two-body currents giving a contribution that is comparable to the statistical GFMC
error. The presence of a second (1+; 0) excited state at ∼2.15 MeV can potentially
contaminate the wave function of the 10B excited state at ∼0.72 MeV, making this
the hardest transition to calculate reliably.

60.5 Conclusions

Where do we stand so far with the basic model of nuclear theory? From a theoretical
point of view we went from a phenomenological approach of nuclear forces and
currents to a framework rooted in low-energy QCD (χEFT) drawing a more deep
connection with the fundamental theory of quarks and gluons.
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Highly advanced few- and many-body techniques in conjunction with the rapid
increase in computational resources is making possible to test the inputs of the
basic model (nuclear interactions and corresponding electroweak currents) based on
different theoretical approaches. Ab-initio calculations of light and medium-mass
nuclei and infinite nucleonic matter surely provide important benchmarks for the
computational methods that aim to understand heavy-mass nuclei where new physics
might be hiding. More of these studies are needed in the context of χEFT to test to
what extent such a theory impacts our knowledge of nuclear systems.
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Chapter 61
Effective Description of 5−10He and the
Search for a Narrow 4n Resonance

K. Fossez, J. Rotureau, W. Nazarewicz, N. Michel and M. Płoszajczak

Abstract Open quantum systems that are at or beyond the limit of particle-emission
stability exhibit generic features stemming from their coupling to an environment
of positive energy states and decay channels. In nuclear physics, the exotic helium
isotopes 5−10He and the four-neutron system 4n represent two prototypical cases of
open quantum systems whose structures are highly impacted by the environment.
In the first part, a practical approach inspired by halo effective field theory for the
description of 5−10He within tens of keV uncertainties is presented and the parity
inversion in 9He, aswell as the possible two-neutron decay of 10He are discussed. The
second part discusses the last ab initio results on the four-neutron system obtained
using chiral forces and including continuum couplings.

The study of open quantum systems, i.e. quantum systems coupled to an environment
with which they can exchange energy or particles, is becoming an important part of
modern nuclear physics [1, 2]. Indeed, the exploration of the drip lines, i.e. the
limits of nuclear stability with respect to proton and neutron emissions, revealed that
weakly bound and unbound nuclei exhibit generic features of open quantum systems
which can only be understood when acknowledging the importance of couplings to
continuum states and decay channels.

Hereafter, two modern problems related to the study of nuclear open quantum
systems are presented. In the first part, recent results on the neutron-rich helium
isotopes and the controversies around the ground-states of 9,10He are discussed, and
in the second part, the last progress on the nature of the four-neutron system are
briefly reviewed.
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Fig. 61.1 Energy spectra of
5−10He with respect to the
4He core. Experimental data
[22] are compared to our
Gamow-DMRG (G-DMRG)
calculations. Decay widths
are shown as shaded bars.
The predicted 1/2− resonant
states in 5,7He are so broad
that their widths are not
marked. For these states, as
well as for states in 9,10He,
experimental information is
not firm. Figure adapted
from [23]

61.1 Effective Description of Neutron-Rich Helium Isotopes

The neutron-rich helium isotopes 5−10He present many of the open quantum system
features found in exotic nuclei and hence, they represent an ideal playground to study
the impact of continuum couplings in nuclear systems. For instance, the isotopes
6He [3] and 8He [4, 5] have two- and four-neutron Borromean halo structures in
their ground states, respectively, whereas the isotopes 5He [3, 6, 7] and 7He [8, 9]
are neutron-unbound and have broad excited states. However, the situation is still
controversial concerning the parity of the ground-state of 9He [10, 11] and little
is known about the ground-state of 10He [5, 6, 12–21]. The current established
experimental information on the energy spectra of 5−10He is displayed in Fig. 61.1.

Many theoretical approaches have been applied on the neutron-rich helium iso-
topes, including ab initiomethods [24–27]with some formulated in the open quantum
system framework [28–34]. However, the shortcomings of those methods, such as
the quality of the interaction or the approximations made in the many-body methods
themselves, did not allow to reach the precision required to solve the controversies
in 9,10He.

In the work presented below, a precise description of the energy spectra of 5−10He
was achieved using an effective approach that accounts for the emergence of effective
scales and associated degrees of freedom in these nuclei [23]. The idea behind this
approach is to use the fact that at low-energy, the tightly bound nature of 4Hemakes it
a natural core whose internal dynamics is largely decoupled from valence neutrons.
This idea is also at the basis of halo effective field theories (halo-EFTs) [35, 36]
which allow to systematically construct, order by order, effective interactions tailored
to weakly bound systems [37–40]. The halo-EFT approach has however only be
applied on a system-by-system basis and the Hamiltonians obtained at each order
increase quickly in complexity, even requiring three-body forces at the leading order
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in the case of 6He. Its application to heavier helium isotopes as it is formulated seems
difficult in that regard.

Other phenomenological shell model approaches introduced the 4He core and
couplings to continuum states to describe the helium chain [41–45]. However, the
in-medium two-body interactions used in those approaches were not built using
effective scale arguments, and, except for the recent work in [45], no systematic
study of the model parameter space has been carried out. Moreover, truncations
were applied in the continuum space for the 9,10He isotopes.

In this context, the development of an effective approach taking into account the
emergent scale in neutron-rich helium isotopes, and formulated in the open quantum
system framework, provides an alternative path to resolve the controversies in 9,10He.

The strategy employed in the present work is based on a parameter reduction of the
effective in-medium interaction defined in [46, 47] using effective scale arguments.
First, the core-neutron interaction is represented by a Woods-Saxon (WS) potential
containing central and spin-orbit terms optimized using the s and p phase shifts
in the α − n scattering [48–50] as was done in [45, 51, 52]. The parameters of
the WS potential are the depth V0 = 41.77 MeV, the diffuseness a = 0.618 fm, the
radius R0 = 2.162 fm, and the spin-orbit strength Vso = 6.991 MeV. We note that
the present model does not include effects beyond a static-core plus valence-neutron
picture, as for instance the “core-swelling” effect (core polarization due to the valence
neutrons) [44].

In a second step, the in-medium interaction between valence neutrons is reduced
to a residual two-body force using insights from halo-EFT. Instead of considering
the four terms in the isovector channel of the original interaction, i.e. two central
terms in the spin-singlet and spin-triplet channels, and one spin-orbit term and one
tensor term in the spin-triplet channel, we only consider the single central term in the
spin-singlet channel as in halo-EFT. The leading-order of halo-EFT [37, 38] involves
the 1S0 channel only but here we also consider the L > 0 spin-singlet channels to be
able to check a posteriori that the main contribution comes from the 1S0 channel.

The form factor for the central term is a sum of three Gaussians with the ranges:
(r0 = 0.160 fm), (r1 = 1.127 fm) and (r2 = 3.400 fm). In halo-EFT at leading-order
the interaction would be given by a regularized delta force in the 1S0 channel [37,
38], which can be taken in a single Gaussian form, but we kept the original form
factor with three Gaussians as it has proven to perform well in earlier studies [45,
53–55], and our objective is to show how a simple Hamiltonian based on effective
scale arguments can capture the complex energy relations within the neutron-rich
helium isotopes.

Couplings to continuum states are included in the many-body calculations using
the single-particle (s.p.) Berggren basis [56, 57], which contains resonant (Gamow)
states and nonresonant scattering states for each partial-wave channel c = (�, j). It
allows to naturally extend the configuration-interaction picture into the complex-
energy plane [58]. We considered the spd one-body model space built on the s.p.
poles 0p3/2 and 0p1/2 and associated continua, each made of three segments in the
complexmomentumplane defined by the points (0.2,−0.1), (0.4, 0.0) and (6.0, 0.0)
(all in fm−1) for the p3/2 partial wave, and the points (0.25,−0.2), (0.5, 0.0) and
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(6.0, 0.0) (in fm−1) for the p1/2 partial wave. The continuum associated with the s1/2
partial wave is real and defined by the points 0.1, 0.2, and 6.0 fm−1. Each segment
defining the s and p continua are discretized with 12 points. Additionally, the 1s1/2
state was added to the s.p. basis for the 8−10He calculations by increasing the depth
of the basis-generating WS potential, as its absence would make the identification of
many-body states difficult. Finally, the d3/2 and d5/2 continua are represented by six
harmonic oscillator shells each. Adding higher partial waves only leads to an overall
energy renormalization and hence does not change our results. Also, contrary to
previous related approaches [41, 42, 45], no truncations on the number of particles
in the continuum are imposed in the present work.

Themany-body problem is solved using the density matrix renormalization group
(DMRG)method for open quantum systems [43, 59] orGamow-DMRG (G-DMRG),
which has been shown to be a powerful technique to handle large many-body spaces.
The method is also augmented using natural orbitals [60] to significantly speed-up
the numerical convergence of the method [53, 61, 62].

Only one free parameter needs to be adjusted in the valence-space interaction,
namely the strength of the spin-singlet central interaction Vc. We used the energies
of the known states in 6−8He to fix the interaction strength at the optimal value
V (opt)
c =−5.709MeVwith a standard deviation of σ=0.008MeV. The small value of

σ illustrates the ability of ourmodel to describe the spectra of 6−8He.Wewish to point
out that the Jπ = 2+

1 state of 6He requires an abnormally large interaction strength
(Vc ≈ −6.8MeV) to reproduce the experimental value; hence, is not included in
the calculation of V (opt)

c . The reason for this discrepancy (around 180keV) is the
dominant 0p3/2 → 0p1/2 structure of this state [44]. In fact, the deviation between
the calculated and experimental values for the 2+

1 state can be significantly reduced
by slightly changing the strength of the spin-orbit term of the core-neutron potential,
which we decided to keep fixed in this work.

The uncertainties on the energies associated with Vc are calculated as: �E =
0.5

∣
∣
∣E(V (opt)

c + σ) − E(V (opt)
c − σ)

∣
∣
∣ and are all between 10 and 30 keV. The G-

DMRGresults are shown inFig. 61.1. In principle, there are also uncertainties coming
from the core potential, but they were shown to be negligible as compared to the
uncertainties coming from the valence-space interaction in [45]. Only a complete
uncertainty quantification study (e.g., through a Bayesian analysis) could provide
full theoretical uncertainties.

We predict very broad 1/2−
1 states in 5,7He in agreement with [32, 33, 41, 42],

which cannot be considered as genuine nuclear states because of their short lifetimes
[62, 63]. The ground-state of 8He is found to have a complex structure [64, 65], with
p3/2 and p1/2 occupations being about 2.58 and 0.18, respectively, and the remaining
occupations (0.24) shared between the s and d partial waves. For comparison, the
first excited 2+ state of 8He has p3/2 and p1/2 occupations of almost 3.0 and 1.0,
respectively,which is a situation reminiscent of 6He,whose g.s. has a strong dineutron
component and the excited state has predominantly a particle-hole structure [44].

Concerning the controversy around the ground-state of 9He, we predict a narrow
Jπ = 1/2+ g.s. and a close-lying Jπ = 1/2− resonance with a larger width, as well



61 Effective Description of 5−10He and the Search … 365

as a Jπ = 5/2+ resonance at higher energy. The first two states could not be distin-
guished in [45] within statistical uncertainties. The uncertainty on the Jπ = 5/2+
state could not be estimated due to the instability of calculations for extreme values
of Vc. These results are in relative agreement with experimental data from (d, p) re-
actions [11], and in disagreement with the study of isobaric analog states in 9Li [66],
as well as the no-core shell model with continuum calculations of [34] where the g.s.
is predicted to have Jπ = 1/2− and the first excited state to be a broader Jπ = 3/2−
resonance. A possible explanation for the latter is that in [34] only the two-body
part of the normal-ordered three-body forces was considered, the 2+

1 state of 8He
used to build the 8He + n channels was calculated as a bound state, and the only de-
cay channel considered (for a fairly small number of channels) was the one-neutron
emission. Earlier quantum Monte Carlo results [30] stated the possible existence of
a virtual Jπ = 1/2+ state in 9He, seen as a � = 0 single-particle state above 8He,
and a possible Jπ = 1/2− state at higher energy (3–4 MeV). In the present work,
the Jπ = 1/2+ state in 9He is predicted to be a many-body resonance built almost
entirely of excitations to the s1/2 continuum, but not a virtual state, see below.

The most surprising prediction concerns the g.s. of 10He, which is calculated at
about the same energy than the g.s. of 8He. Taking into account the uncertainty
on the g.s. energies of 8−10He, and the decay width of the g.s. of 9He, both one-
and two-neutron decay channels are theoretically possible. Also, the ground states
of 8He, 9He, and 10He have almost identical partial-wave decompositions except
for the s1/2 occupations, which are almost exactly zero, one, and two, respectively.
In comparison, the 1/2− state of 9He is mostly built of the p1/2 component. The
interplay between s1/2 and p1/2 continuum states is believed to be a determining
factor for the phenomenon of parity inversion in 9He [67].

The present results allow revisiting past conclusions drawn from three-bodymod-
els about 9,10He. Early on, it was proposed [17] that the ground state of 10Hemight be
a low-lying resonance at E = 0.05MeV with a width of Γ = 0.21MeV dominated
by s waves, and that the experimental observations of higher-energy resonances at
∼1.8MeV [68]) might, in fact, correspond to the first excited state of 10He. Later,
other studies [18, 69] investigated the consistency between a possible narrow ground
state in 9He and a broad ground state at 1–3 MeV in 10He, and concluded that either
the ground state of 10He has not been observed yet, or the s-wave scattering length
in 9He must be less attractive. There was also speculation about the fact that the
observed state in 10He might, in fact, corresponds to several states [16, 21]. This
question could not be addressed in the present work, but it certainly goes beyond the
limited three-body picture and supports the idea of a narrow ground state of 10He
dominated by s waves, built on the 1/2+ ground-state resonance of 9He.

The almost identical energies and partial-wave occupations of the ground states
of 8He and 10He support the 8He + 2n cluster picture of 10He, in which an extended
dineutron structure is present atop the four-neutron halo in 8He. In other words, 10He
is predicted to be on the brink of forming a nuclear double-halo structure (4He + 4n
+ 2n) if not for a few tens of keV, similarly to the known 3He4He2 trimer [70].

In conclusion, we demonstrated in the case of the neutron-rich helium isotopes
that a parameter reduction of a phenomenological interaction using effective scale
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arguments can yield a significant decrease in systematic uncertainties, allowing pre-
dictions within tens of keV for the energy spectra. The present results confirmed
the parity inversion in 9He and shed a new light on the ground state of 10He. In fu-
ture studies, we will explore more rigorous ways to build effective interactions with
composite degrees of freedom while keeping the relative simplicity of the present
approach.

61.2 The Search for a Narrow 4n resonance

In this section, we briefly review the recent findings concerning the existence of a
narrow 4n resonance. Following the experimental hints of a 4n resonance [71] at
an energy E = 0.83 ± 0.65 (stat) ± 1.25 (syst) MeV above the 4n threshold and a
maximal width Γ = 2.6MeV, several ab initio works investigated the possibility to
form a four-neutron system within the continuum using different formalisms [62,
72–74].

The first attempt at finding a narrow four-neutron resonance was done in [72], by
solving the Faddeev-Yakubowsky equations and by including continuum couplings
using the uniform complex-scaling method [75, 76]. This exact method offers the
advantage of properly including all possible decay channels, however, the authors
used a realistic phenomenological interaction and only focused on the effect of adding
a T = 3/2 three-body force.Nevertheless, itwas shown that unrealisticmodifications
to the nuclear interactionwould be necessary to obtain a 4n system at the experimental
value and that most likely the four-neutron system would at most be a very broad
resonance.

A subsequent work [73] based on the no-core shell model in the harmonic oscilla-
tor basis [77] and the J -matrix formalism [78] claimed, using a realistic phenomeno-
logical two-body interaction [79], that a resonance at an energy E = 0.8MeV and
with a width Γ = 1.4MeV was indeed present in relative agreement with the exper-
imental claim in [71]. However, it was assumed for the extraction of the energy and
width from computed phase shifts that all four neutrons decay simultaneously.

In a similar spirit than in [80], where it was shown using a quantum Monte Carlo
method that a bound four-neutron system would imply modifications of the nuclear
interaction incompatible with what we know on other light systems, in [81] the
authors demonstrated using a chiral interaction including two- and three-body terms
that (i) three-body forces are not important in the three- and four-neutron systems,
(ii) if a three-neutron resonance exists it must be lower than that of the four-neutron
system and (iii) a four-neutron resonance might exist at about E = 2.1MeV based
on a simple extrapolation from an artificially bound four-neutron system in aWoods-
Saxon potential.

In our work [62], we decided to answer whether or not a four-neutron resonance
could form a narrow resonance, and hence be considered a genuine nucleus, us-
ing two-body chiral interactions (N3LO [82], N2LOopt [83] and N2LOsat [84]) and
including continuum couplings.
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Fig. 61.2 Evolution of the energy and width (shaded area) of the four-neutron system with the
scaling of the N3LO interaction from 2.0 to 1.0. The circles represent the NCGSM results with two
neutrons in the continuum, which is used to generate the NCGSM results based on natural orbitals
with two (triangles) and three (squares) neutrons in the continuum. The DMRG results without
truncations are represented by stars. The experimental energy is indicated by a diamond and the
gray area shows the maximal experimental uncertainties. This area is extended up to an interaction
20% more attractive to guide the reader. Figure adapted from [62]

We solved the many-body problem in the continuum using the no-core Gamow
shell model (NCGSM) [31, 58] and the densitymatrix renormalization groupmethod
(DMRG) [85] for open quantum systems [43, 59], which both represent a generaliza-
tion of the configuration interaction picture in the complex energy plane [58] using
the Berggren basis [56]. One of the two major difficulties associated with the above-
mentioned methods lies in the identification of the physical many-body solutions
within the continuum space. This problem was solved by considering artificially
bound four-neutron systems by increasing the strength of the nuclear interaction,
where the identification issue is inexistent, and then follow the solution toward the
physical region where the four-neutron system is unbound as the solution having a
maximal overlap with the unambiguously identified solution in the unphysical re-
gion. The second issue was related to the size of the continuum space, which was
made manageable by using the DMRG approach for the full calculations, augmented
by the use of natural orbitals [53, 61].

The energy and width obtained within a sp continuum space augmented by a
d f g harmonic oscillator space, for different interaction strengths or scaling factor
(N3LO two-body chiral interaction with a renormalization cutoff of λ = 1.9 fm−1),
are presented in Fig. 61.2. The different lines correspond to different levels of ap-
proximation, namely calculations with configurations having at most two and three
neutrons in the continuumshells,without andwith natural orbitals, andfinallyDMRG
calculations without truncations.

The main finding is that removing truncations progressively, which is equivalent
in the present case to increasing continuum couplings, lowers the energy but does not
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decrease the width. The hardest truncation considered, i.e. allowing configurations
with at most two neutrons in the continuum shells, gives a large width Γ ≈ 3.7MeV
which can hardly correspond to a genuine nuclear state as the corresponding lifetime
would be too short to allow the four neutrons to all interact with each other. Calcu-
lations without truncations could not be extended into the physical region because
of numerical instabilities, which indicate that the width is exploding, supporting the
claim that thewidth of the four-neutron system is too large to correspond to a physical
state. Details can be found in [62].

Our conclusion is in qualitative agreement with the results in [72] showing a rapid
increase of thewidthwhen the strength of the phenomenological T = 3/2 three-body
force decreases. Interestingly, a naive extrapolation of our results in the physical
might be compatible with the experimental value, but there is still disagreement with
the nature of the state observed. Our result is also in contrast with the prediction
in [73] based on a simultaneous decay of the four-neutron system, as we explicitly
show that having only two neutrons in the continuum as a first approximation (one-
and two-neutron decay channel open only) already contributes significantly to the
total width. In conclusion, we believe that the observation in [71] corresponds to a
feature in scattering experiments and not a genuine nuclear state.

The last ab initio addressing the question of the existence of the four-neutron
system [74] is based on a momentum space formulation of the Faddeev-Yakubowsky
method. The main advantage of this exact method is that by design it does not suffer
from a truncation of the continuum issue.Moreover, the results presented in this work
were obtained using a two-body chiral interaction. It was found that no four-neutron
system state can be formed at all within this approach, supporting the idea that the
four-neutron system cannot exist as a genuine nuclear state (bound state or narrow
resonance).

In summary, except for one approach [73] predicting a four-neutron state com-
patible with the experimental claim, and one approach [81] supporting the existence
of a state above the experimental claim (without saying what the lifetime would
be), the three remaining approaches are in agreement about the nonexistence of the
four-neutron system as a genuine nuclear state. The situation is however not entirely
clear as different interactions and truncations were used across different methods,
and the nature of the four-neutron system seems to be rather delicate. Coming new
experimental results might clear the question once for all.
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Chapter 62
Exploring Beyond the Proton Drip Line

Francois de Oliveira Santos

Abstract Several unbound nuclei: 19Na, 18Na, 16F, 15F, were studied at the GANIL
SPIRAL 1 facility using the technique of resonant elastic scattering measured in
inverse kinematics with thick targets and radioactive beams.

62.1 Introduction

The boundaries for nuclear stability against particle emission are called drip lines.
Beyond the drip lines, the particle emission time τ is usually very short, shorter
than typically 10−20 s. Unbound nuclei are often observed as broad resonances with
an energy width � = � /τ ∼ 1 MeV. Different nuclear reactions and experimental
techniques can be used to study these broad resonances. Here, the experimental
technique called Resonant Elastic Scattering was used, since it is an efficient method
to study unbound nuclei. The technique is described shortly in Sect. 62.2. In this
article, several results obtained at GANIL SPIRAL 1 facility are presented. Unbound
nuclei are interesting for different reasons:

– Some unbound nuclei play an important role in nuclear astrophysics, that is the
case of 8Be in the triple alpha reaction, and 2He in the pp1 reaction chain. The
extreme case of 19Na [1], involved in a two-proton capture reaction from 18Ne, is
presented in Sect. 62.3.

– The time reversal reaction of the two-proton capture is the two-proton emission or
two-proton radioactivity. The same theoretical models can be used to calculate the
two reactions. The study of 18Na [2], the intermediate nucleus in the two-proton
radioactivity of 20Mg, is presented in Sect. 62.4.

– The symmetry of mirror nuclei is often used in nuclear astrophysics. The unknown
properties of a neutron deficient nucleus can be deduced from the known properties
of its mirror nucleus. Unbound nuclei are perfect cases to study the effect of the
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coupling with continuum. The case of 16F−16N [3], described as a core plus one
proton and one neutron, is presented in Sect. 62.5.

– The generalized conjecture of Ikeda says that the coupling to a nearby parti-
cle/cluster decay channel induces an increase of the particles/cluster correlations
in the structure of the state. It is claimed in [4] this conjecture holds for all kinds
of cluster states including unstable systems like dineutron, diproton, and 8Be. We
observed a narrow resonance in the unbound nucleus 15F [5], located well above
the one proton emission barrier, but just above the two-proton emission threshold.
This state could be an example of increased two-proton correlation. Search for
γ-transition in the unbound 15F is also discussed in Sect. 62.6.

62.2 Resonant Elastic Scattering Technique

The Rutherford elastic scattering supposes that the two interacting atomic nuclei do
not fuse together, they repel each other by the strong Coulomb force exerting itself
between positively charged particles. The fusion of the two incident particles into
one compound nucleus, followed by the separation into the two entrance channel
particles, is another possibility of reaction mechanism. It is a resonant process. It
has to be added to the Rutherford contribution in a coherent manner, giving rise to
interferences effects. The exact shape of the resonance depends on the spin, parity,
partial and total widths of the resonance in the compound nucleus. It is possible to
study the structure of a nucleus by using this technique. The analyse of the resonances
shape is relatively simple, a R-matrix code can be used. The cross section is generally
high, several tens or hundred of millibarns per steradian, making resonant elastic
scattering an ideal method to study unbound nuclei [6, 7]. Moreover, the thick target
technique can be used efficiently, see Fig. 62.1.

62.3 The Case of 19Na

In the astrophysical X-ray bursts, the flow of nuclear reactions goes from the light
nuclei to the heaviest ones through proton captures and β-decays. These high temper-
ature and high density environments could allow exotic reactions to happen, like the
simultaneous capture of two protons [9, 10]. In the case of the radioactive nucleus
18Ne, the capture of one proton gives 19Na, which is a proton-unbound nucleus,
decaying back to 18Ne+p. The flow of reactions is stopped until 18Ne β decays
to 18F. The double proton capture reaction 18Ne(2p, γ)20Mg could be a breakout
reaction. The rate of this reaction depends on the properties of the resonances in
19Na. It is possible to show this two-proton capture reaction could be faster than
the β-decay of 18Ne [10]. One has to measure the properties of the resonances in
19Na to determine the rate of this reaction. This was the objective of an experiment
performed at GANIL. A beam of 18Ne (the first radioactive beam produced at the
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Fig. 62.1 Top: In the thick target technique, the incident ions slow down inside the target, the
excitation function is measured at once from the incident to the exit energy of the beam. The
number of scattered protons increases when the center of mass energy of the ions is equal to the
energy of a resonance in the compound nucleus. Bottom: Differential cross section of the reaction
14N(p, p)14N [8], measured at θCM = 180◦ in inverse kinematics with a beam of 14N accelerated
to 1.2 MeV/nucleon, is shown as a function of the proton energy in lab. It was measured at once
from 1.16 to 0.5 MeV using a thick target of polypropylene

SPIRAL 1 facility) was accelerated to 7.2 MeV/n and purified using a stripper foil
located at the entrance of the LISE spectrometer. The 5×105 pps pure beam was
incident upon a thick cryogenic solid hydrogen target. Despite the large thickness of
the target, 1050 ± 20 μm, the resolution in the CM was only 30 keV FWHM, this
was due to the quality of the target specially made for, and to the technique of the
experiment (inverse kinematics). The obtained results, see Fig. 62.2, showed that the
reaction 18Ne(2p, γ)20Mg plays a role only at extreme densities, much larger than
those found in the X-ray bursters. More details can be obtained in [1, 10].

62.4 The Case of 18Na

Two-proton radioactivity is a kind of time-reverse two-proton capture reaction. One
way to study experimentally the astrophysical two-proton capture is, then, to study
two-proton radioactivity.Both processes are calculatedwith the samenuclearmodels.
A two-proton emitter is 19Mg [11]. It is a good candidate for “true 2p-decay” since the
intermediate nucleus 18Na (18Na= 19Mg−p) is probably a narrow resonance located
well above the 19Mg ground state. This two-proton radioactive nucleus 19Mg is one
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Fig. 62.2 Differential cross section of the reaction H(18Ne, p)18Ne is shown as a function of CM
energy (bottom axis) and 19Na excitation energy (top axis). Several resonances of 19Na can be
observed. The ground (Ex = 0) and the first excited states (E x � 120 keV) could not be observed.
Peaks B and C correspond to inelastic resonances, see [1] for details. The line is a R-Matrix fit of
the elastic excitation function taking into account the experimental conditions. Adapted from [1]

of the few cases, if not the only one, where the intermediate nucleus can be measured
precisely, since the other cases are located too far from stability. Moreover, in the
case of 6Be, 12O and 16Ne, the decaying states have large widths and the intermediate
state overlaps [12], these are sequential decays.We performed an experiment in order
to measure, for the first time, the properties of the 18Na low lying resonances.

These 18Na resonanceswere studied through themeasurement of the resonant elas-
tic scattering reaction H(17Ne, p)17Ne. This experiment was performed at 4 A.MeV
using a radioactive beam from the SPIRAL 1 facility. The measured excitation func-
tion is shown in Fig. 62.3. Several resonances are clearly visible, some are narrow,
see [2] for details. Relatively to the other observed resonances, the ground state is
expected to be at ECM ≈ 1.35 MeV. It is not visible in the data, we can deduce
the width is narrower than 1 keV. This experiment confirmed 18Na+p ground state
resonance is narrow and located well above 19Mg.

The measured half-life of 19Mg (t1/2 = 4.0(15) ps), the proton-proton angular
correlations measured in the 19Mg radioactivity, and the measured properties of the
low-lying states of 18Na are all in agreement with the theoretical three-body model
predictions when assuming a dominant d-wave configuration for 19Mg ground state
[13, 14]. But this excellent agreement hides a big difference.While theoretical model
of L. Grigorenko [14] predicts the two s-wave states of 18Na 0−

1 and 1−
2 to be at

ECM ≥ 3.5 MeV, these are measured at ECM = 1.842(40) and 2.030(20) MeV, i.e.
≈1.5MeV down shifted in energy. The problem is that, with these s-wave resonances
located at lower energy, the probability increases to get a sequential decay of two
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Fig. 62.3 Excitation function of the reaction H(17Ne,p)17Ne is shown as a function of CM energy.
Experimental data were measured between 5◦ and 20◦ (LAB) and are reconstructed at 180◦ in the
CM. Line shows the best R-matrix fit of the data, here it is not degraded by the energy resolution
of the experiment

Fig. 62.4 The experimental level scheme is compared with predictions from [14]. In this study,
two nuclear potential were used. With the first one the d2 configuration (17Ne+2p) is dominating
the 19Mg ground state structure, with the second the s2 dominates. The agreement is better with the
first one, but the experimental s-wave states (0−

1 and 1−
2 ) are very shifted compared to the predicted

ones

protons from 19Mg through the low energy tails of these broad resonances. We
calculated the partial width of this process using the quasi-classical R-matrix type
model from [15] which is known to give results close to those obtained with a three-
body model. It gives a 19Mg lifetime shorter than the measured one. To be consistent
with the experimental value, the s-wave component in the 19Mg ground state has to
be lower than ≈5% (Fig. 62.4).
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Fig. 62.5 Excitation
function of the reaction
15O(p, p)15O measured in
inverse kinematics. The line
corresponds to an R-matrix
fit. It shows the presence of
the 0− ground state, and two
excited states 1− and 2−. The
resolution of the experiment
was σCM � 3 keV.
Adapted from [3]

62.5 The Case of 16F

Understanding the role of specific parts of nuclear forces [16] in stabilising atomic
nuclei and in inducing shell evolutions is a central theme of nuclear physics [17]. This
understanding would bring a better predictive power for exotic nuclei such as those
involved in the explosive r-process nucleosynthesis or rp-process in X-ray bursters.
Most of the states involved in astrophysics are resonances, i.e. states coupled to
continuum. An ideal case to study the effect of continuum was found in the mirror
system: unbound 16

9 F7 and bound 16
7 N9 [18]. In the present work, we measured the

energies and widths of the unbound states in 16F using the resonant elastic scattering
technique.

Radioactive beam of 15O was used to populate the low lying resonant states 0−,
1−, 2− in the unbound 16F nucleus by means of proton elastic scattering reactions in
inverse kinematics. The measured excitation function is shown in Fig. 62.5.

We used the measured properties of the low lying states of 16F to derive the
effective proton-neutron interaction energies. Based on their measured large proton
spectroscopic factor values, the resonant states of 16F can be viewed as a core of 14O
plus a proton in the 2s1/2 or 1d5/2 shell and a neutron in 1p1/2, see Fig. 62.6. Experi-
mental energies were used to derive the strength of the 2s1/2−1p1/2 and 1d5/2−1p1/2
effective proton-neutron interactions. It is found that the former changes by 40%
compared with the mirror nucleus 16N, and the second by 10%. This apparent sym-
metry breaking of the nuclear force between mirror nuclei finds explanation in the
large coupling to the continuum for the states built on an � = 0 proton configuration.
Two effects were identified. Firstly, the 2s1/2 proton wave function in 16F is different
from the 2s1/2 proton in 15F, since these nuclei have not the same binding energy,
and so, not the same extension of wave functions, resulting in different Coulomb
energies. This has to be taken into account. Secondly, the overlap between the 2s1/2
and the 1p1/2, proton and neutron wave functions, are different between 16F and 16N.
In 16F the 2s1/2 wave function is unbound, and in 16N it is bound, the unbound wave
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Fig. 62.6 Left: The levels scheme of 16F and 16N mirror nuclei are compared. The states can be
interpreted as a core nucleus plus a proton in the 2s1/2 or 1d5/2 shell and a neutron in 1p1/2, and vice
versa. Right: Effective proton-neutron interaction energies are calculated from mass differences

function is more spread, resulting in different proton-neutron effective interactions.
If the two contributions are taken into account, we check that the two nuclei have the
same proton-neutron interaction energies. See [3] for more details.

62.6 The Case of 15F

We also used the resonant elastic scattering technique to study the unbound 15F
nucleus. The excitation function of the elastic scattering reaction 14O(p, p)14O was
measured at 180◦ (cm) in inverse kinematics with a thick target. It is shown in
Fig. 62.7. This spectrum has high statistics, good energy resolution (σ = 7(2) keV)
and large energy covering from 0.4 to 5.6MeV. An analysis of the excitation function
using the R-Matrix method was performed with the code AZURE2 [19]. A deep
minimum is observed at ≈ 1 MeV corresponding to the well known Jπ = 1/2+

1
ground state resonance of 15F. It was fitted at an energy ER = 1270(10)(10) keV with
� = 376(70)(+200

0 ) keV, where the quoted uncertainties correspond to statistical and
systematic uncertainties respectively. The measured width is lower than the values
obtained in previous studies by at least 30%, but is still within the error bars. The
best fit is shown with the continuous red line which leads to � = 376 keV. For
comparison, the dashed-blue line shows the calculation made for the average value
of the previous results, i.e. � = 737 keV. The peak observed at the resonance energy
ER = 2763(9)(10) keV with � = 305(9)(10) keV corresponds to the Jπ = 5/2+

1 first
excited state. It is in good agreement with the previous measurements. In addition,
for the first time in a resonant elastic scattering experiment, the second excited
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Fig. 62.7 Measured excitation function of the reaction 14O(p, p)14O, see text and [5] for details.
Adapted from [5]

state is clearly observed as a narrow dip at a resonance energy of ≈4.8 MeV. In the
correspondingmirror nucleus, the second excited state has spin Jπ = 1/2−. The shape
of the dip corresponds very well with the R-matrix calculation using this spin and
parity. It is the first time the spin of this state is assigned. The R-Matrix analysis of the
excitation function was performed taking into account the experimental resolution.
The resonance is measured to be ER = 4.757(6)(10) MeV with � = 36(5)(14) keV.
The observation of this narrow resonance in 15F is surprising since this resonance is
located well above the Coulomb plus centrifugal barrier (BC + B� ≈ 3.3 MeV) for
the proton emission, there is no barrier to retain the proton inside the nucleus.

The structure of this narrow above-barrier state in a nucleus located two neutrons
beyond the proton drip line was investigated using the Gamow Shell Model in the
coupled channel representation [20] with a 12C core and three valence protons. Our
calculations shows that the overlap with the 14Og.s.+p is very weak, this explains
why the resonance is narrow. It was found that it is an almost pure wave function
of two quasi-bound protons in the 2s1/2 shell. The state is located just above the
two-proton emission threshold, as shown in Fig. 62.8. Is it another example of the
so-called Ikeda [4] conjecture? The emission of two protons from this narrow state is
energetically possible. Since there is no intermediate state accessible to 14O, it should
be a direct two-proton emission to the g.s. of 13N. However, the available energy is
only Q2p = 129 keV, inducing a Wigner limit of �2He = 4 × 10−11 eV (t1/2 = 16.5
μs) for the emission of a 2He cluster with � = 0. Therefore, the branching ratio for
the emission of two protons is expected to be extremely small. This explains the
resonance is narrow also for the two-proton emission. More details can be found in
[5].

Electromagnetic transitions between resonances have been rarely observed, e.g.
in the unbound nucleus 8Be [21, 22], and in 56Cu [23]. The second excited state
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Fig. 62.8 Level scheme of 15F relatively to 14O+p and to 13N+2p. The 1/2− resonance in 15F is
narrow, the γ-decay might compete with the one proton and two-proton emissions

of 15F being a long-lived resonance, a γ−transition from this resonance to the g.s.
resonance of 15F is conceivable. E1 transitions occurring between 2s1/2 → 1p1/2
single-particle states are expected to be extremely fast. The γ-width is larger since
the electric transition is proportional to the radial integral

∫
u f (r) r ui (r)dr where

u f,i (r) are final and initial radial wave functions of the nucleon, the unbound states
having an extended radial wave function. Taking this property into account in 15F and
the neutron/proton effective charge difference, we predict �γ ≈ 50 eV. It would be
interesting to measure these γ-rays in order to elucidate the structure of this unique
1/2−

1 state and its 1s1/2 content. These γ-rays will be in coincidence with protons
emitted from the ground state of 15F.

Other narrow resonances were predicted in 15F at higher excitation energies [24,
25] remain to be observed. The existence of relatively narrow resonances at high
excitation energies may be actually more frequent than thought opening a possibility
for the particle and gamma resonance spectroscopy in nuclei far beyond the drip
lines.
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Chapter 63
Four-Body Effects in Nucleus-Nucleus
Scattering

Pierre Descouvemont

Abstract We develop a four-body CDCC (continuum discretized coupled channel)
model, aimed at describing reactions where both nuclei present a low breakup thresh-
old. The only inputs are the interactions describing the colliding nuclei, and the four
optical potentials between the fragments. The method is applied to the 11Be + d and
7Li + d systems.We show that, in general, breakup channels are crucial to reproduce
the elastic cross sections. We suggest that the present wave functions could be used
in future DWBA calculations.

63.1 Introduction

Since the 90’s, the availability of radioactive beams provided a rich information on
the structure and properties of exotic nuclei [1, 2]. A significant progress in scatter-
ing theory was provided by the CDCC (Coupled Channel Discretized Continuum)
method [3, 4], where the many-body (in general two-body) structure of the pro-
jectile is taken into account. The CDCC formalism has been initially developed to
investigate deuteron-induced reactions [3]. Although the deuteron is not considered
as an exotic nucleus, its low binging energy (B = 2.22 MeV) makes breakup chan-
nels quite important, even for elastic scattering. In the CDCC model, the projectile
breakup is simulated by a discrete number of approximate continuum states. This
technique permits a strong improvement in the description of deuteron-nucleus cross
sections (see, for example, [4–6] for reviews).

For many years, CDCC calculations involved three-body systems. Typical exam-
ples are deuteron + nucleus reactions, where the deuteron is described by a p + n
structure. Since more than 20years, the three-body CDCC method was successfully
applied to reactions involving weakly bound nuclei, such as 11Be, which can be seen
as a 10Be + n system. The CDCC theory represents a natural framework for reac-
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tions involving exotic nuclei. The main property of exotic nuclei is their low breakup
threshold, and couplings to the continuum are important. More recently, the CDCC
method was extended to 4-body systems, i.e. to reactions involving three-body pro-
jectiles, such as 6He [7], 9Be [8] or 11Li [9].

Until now,most scattering calculations assume that the target remains in its ground
state. This is certainly a fair approximation for heavy targets, but ismore questionable
for light targets. A typical example is the deuteron, which is used as a target for the
investigation of exotic nuclei by stripping reactions (see, for example, [10]). If the
projectile also presents a two-body structure, current versions of the CDCC method
are no longer sufficient. In this work, we present a new extension of CDCC, where
the breakup of both colliding nuclei is included. We assume a two-body structure
for the projectile and for the target, which leads to another variant of the four-body
model (2 + 2, instead of 3 + 1).

A typical application of the 4-bodymodel is the 11Be + d reaction, which has been
experimentally studied recently [11]. In this reaction, both 11Be and the deuteron
present a low breakup threshold, and four-body breakup effects are expected to play
a role in the scattering cross section. Another natural application of a four-body
model is the 7Li + d reaction, since 7Li is known to have a marked α + t cluster
structure.

63.2 Overview of the Four-Body CDCC Method

We consider the scattering of two nuclei, each of them presenting a two-body cluster
structure. The coordinates are shown in Fig. 63.1 for the 11Be + d system: rrr1 and rrr2
are the internal coordinates, and RRR is the relative coordinate between the colliding
nuclei. The Hamiltonian of this four-body system is given by

H = H1(rrr1) + H2(rrr2) + TR +
2∑

i=1

2∑

j=1

Ui j (RRR,rrr1,rrr2), (63.1)

Fig. 63.1 Cluster
configuration and
coordinates used in the
four-body model for the
11Be + d system
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where TR is the relative kinetic energy, and Ui j are cluster-cluster optical potentials.
The internal Hamiltonians H1 and H2 are chosen so as to reproduce the low-lying
states of the nuclei.

Our goal is to solve the Schrödinger equation associated with (63.1) for scatter-
ing states. This four-body scattering problem can be approximately solved with the
CDCC. We first define internal wave functions Φ

Ii
k (rrr i ) from

HiΦ
Ii
k (rrr i ) = E Ii

k Φ
Ii
k (rrr i ), (63.2)

where Ii is the angular momentum and k the level of excitation (the internal parity
is implied in Ii ). In the CDCC method, the radial part of the internal wave functions
Φ

Ii
k (rrr i ) is expanded over a set of N basis functions, such as Gaussian or Lagrange

functions. In this way, (63.2) is converted to a standard eigenvalue problem. Nega-
tive energies E Ii

k correspond to physical states, and positive energies correspond to
square-integrable approximations of the continuum [5]. These states, referred to as
pseudostates, do not correspond to physical states, but are crucial to simulate the
breakup of nuclei 1 and 2.

The total four-body wave function is then expanded over the internal states as

Ψ JMπ
ω (RRR,rrr1,rrr2) =

∑

c

gJπ
ω,c(R) ϕ JMπ

c (ΩR,rrr1,rrr2), (63.3)

where ω is the entrance channel, and where the channel function with orbital angular
momentum L is defined by

ϕ JMπ
c (ΩR,rrr1,rrr2) =

[[
Φ

I1
k1

(rrr1) ⊗ Φ
I2
k2

(rrr2)
]I ⊗ YL(ΩR)

]JM

. (63.4)

In these definitions, c stands for c = (I1, I2, k1, k2, I, L), and I is the channel spin.
This coupling mode is standard in scattering theory. In actual applications, the sum-
mation is truncated by a maximum energy and by a maximum angular momentum.

The radial functions gJπ
ω,c(R) are obtained from the coupled-channel system

(
− �

2

2μ

d2

dR2
+ �

2

2μ

L(L + 1)

R2
+ Ec − E

)
gJπ

ω,c(R) +
∑

c′
V Jπ
c,c′ (R)gJπ

ω,c′(R) = 0,

(63.5)

whereμ is the reduced mass, and Ec is the energy of channel c, obtained from (63.2).
The coupling potentials V Jπ

c,c′ (R) are obtained from matrix elements of the potential
between channel functions (63.4).

At large distance R, the radial functions tend to a combination of Coulomb func-
tions as

gJπ
ω,c(R) → v−1/2

c

(
Ic(kcR)δcω − Oc(kcR)U Jπ

ω,c

)
, (63.6)
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where Ic(x) and Oc(x) are the incoming and outgoingCoulomb functions, and kc (vc)

is the wave number (velocity) in channel c. Scattering states associated with (63.5)
are obtainedwithin the R-matrix theory [12, 13] which provides the scatteringmatrix
U Jπ

ωc . From scattering matrices in all partial waves Jπ , the various cross sections can
be obtained by standard formulae [14].

63.3 Application to 11Be + d Scattering

Data on 11Be + d elastic scattering and breakup have been available recently at a 11Be
beam energy E/A = 26.9MeV (Ec.m. = 45.5MeV) [11]. The 11Be + d system is an
ideal candidate for the four-body CDCCmethod. Both colliding nuclei present a low
separation energy (0.50 and 2.22MeV, respectively). In d+nucleus and 11Be+nucleus
scattering, breakup effects of the deuteron and of 11Be are known to be important.

For the 10Be + n system, we use two different potentials: (i) the potential of [15]
which neglects 10Be excitation; (ii) the set-I potential of [16] which includes the
10Be(2+) + n channel. Both potentials reproduce the experimental energies of the
1/2+ ground state and of the 1/2− excited state. More detail about the conditions of
the calculation can be found in [17].

The 4-bodyCDCCelastic cross section is presented in Fig. 63.2, wherewe see that
the breakup component of the wave function is crucial to reproduce the amplitude of
the cross section. With the full CDCC calculation (black lines), the minimum near
θ ≈ 20◦ is well reproduced. The single-channel calculation (red lines), involving
only the ground states of 11Be and of the deuteron, overestimates the data by a factor
two at the minimum. Including core excitation of 10Be slightly enhances the cross
section for θ > 30◦. This goes in the right direction but the calculation is still 10–20%
lower than experiment.

Fig. 63.2 11Be + d elastic cross section (divided by the Rutherford cross section) at E(11Be) =
26.9A MeV, with the single-channel approximation, and with all breakup channels. The solid lines
are obtained with core excitation, and the dashed line with the 10Be(0+) + n configuration only.
The data are taken from [11]
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Notice that the full calculation involves a very large coupled-channel system. The
number of channels reaches values around 600. The size of the coupled-channel
system (63.5) is still larger since we have several channel spins I and several angular
momenta L for a given physical channel. Such large systems can be solved by the
R-matrix method, but they are extremely demanding in terms of computer time and
memory.

63.4 Application to 7Li+ d Elastic Scattering

Although 7Li is not a weakly bound nucleus, it presents a dominant α + t structure,
and the 7Li + d system is therefore a good candidate for a 4-body model. Data have
been obtained, for example, in [18] at a deuteron energy Elab = 25 MeV, which
corresponds to Ec.m. = 19.44 MeV. This system is quite interesting in a theoretical
point of view, since the four optical potentials between the fragments (α, t and p, n)
are all real at low energies. Absorption is simulated by the breakup of 7Li and of
the deuteron. However, DWBA calculations [18] suggest that the 7Li(d, t)6Li, and
probably 7Li(d, p)8Li, transfer channels play a role at large angles. The four-body
model is therefore not expected to provide an excellent description of the cross section
over a wide angular range.

The conditions of the calculation are given in [17]. The 7Li + d elastic cross
section at Ed = 25 MeV is shown in Fig. 63.3 with the data of [18]. At small angles,
all calculations reproduce the data, which are dominated by the Coulomb interaction.
Strong differences, however, are observed for θ > 30◦.Without any breakup channel,
the model fails to reproduce the minimum near θ � 35◦, and overestimates the data
by 2 orders of magnitude at large angles. Introducing breakup channels improves the
agreement between theory and experiment.

The behaviour of the cross section up to 60◦ is nicely reproduced when 7Li and
deuteron breakup channels are introduced simultaneously. At large angles, however,

Fig. 63.3 7Li + d elastic
cross section at Ed = 25
MeV with different
conditions of calculation.
The red and black lines
correspond to the
single-channel and to the full
calculations, respectively.
The dashed line is obtained
by adding a
phenomenological imaginary
potential. The data are taken
from [18]
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the CDCC calculation still overestimates the data. Calculations have been performed
by increasing the model space, but this has a minor effect on the theoretical curve.
In [17], it is shown that the introduction of a phenomenological imaginary potential,
which is justified by the lack of rearrangement channels in CDCC, improves the
agreement with experiment.

63.5 Conclusion

The present work is a natural extension of the CDCC method to reactions involving
two nuclei with low breakup thresholds. This situation is often met in deuteron
induced reactions on exotic nuclei.

The main advantage of the present model is its predictive power. Optical poten-
tials between the fragments are known in most cases. Then, the cross sections are
computed without any parameter fitting. A possible extension of the model would
be to use the wave functions in DWBA analyses. Nucleon transfer (d, p) or (d, n)

reactions are often used to investigate the structure of exotic nuclei. Such calculations
represent a challenge for future scattering studies.
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Chapter 64
Few-Nucleon Reactions in Underground
Laboratory

Alba Formicola, Giovanni Francesco Ciani, László Csedreki, Lucio Di Paolo
and Matthias Junker

Abstract Accurate knowledge of thermonuclear reaction rates is important in under-
standing the generation of energy, the luminosity of neutrinos, and the synthesis of
elements in stars. The LUNA Collaboration (Costantini et al. in Rep Prog Phys
72:086301, 2009; Broggini et al. in Annu Rev Nucl Part Sci 60:53–73, 2010) has
shown how going underground and using the typical techniques of low background
physics allows to measure nuclear cross sections at or close to energies relevant for
the nucleosynthesis inside stars. This contribution will outline the general features
of resonant and non resonant few nucleon reactions studied with stable beam includ-
ing an overview of the experimental techniques adopted in underground nuclear
astrophysics. Moreover, it will present a summary of the main recent results and
achievements.

64.1 Introduction

How and where are stars born? Observational evidence points to the interstellar gas
and dust clouds along the Galaxy’s spiral arms as being the birthplace of stars. When
stars like those responsible for planetary nebulae, novae and supernovae reach the
end of their lives, they return some of their masses to the interstellar medium. New
generations of stars are thus always forming from the “ashes” of previous generations.
The abundances of the elements in the universe were studied since the beginning of the
previous century by analyzing first Earth fragments and later meteorites. Later on it
has been shown that the spectra of stars like the Sun, the interstellar matter and cosmic
rays contain important information for the understanding of astrophysical scenarios,
which have proven to be similar for most of these objects. Isotopic abundances are
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thus considered as “cosmic” or “universal”, even though there are some exceptions
for particular classes of stars [3].

The goals of nuclear astrophysics are to understand the energy generation of stars
at all stages of their evolution and to explain the abundances of elements and their
isotopes observed in nature. These aims are closely related since nuclear processes
have been identified as the source of the enormous energy generated inside stars
which stabilizes the stars and governs their evolution by transmuting nuclear species
into other nuclear species through networks of nuclear reactions. It is therefore not
surprising that the reaction rates of the nuclear processes are required for all studies
of stellar evolution [3].

64.2 Thermonuclear Fusion: The pp-Chain and the CNO
Cycle

A variety of different energy generating processes can take place in a star. As an
example, in main sequence stars four hydrogen nuclei are transformed to helium by
hydrogen burning.

4p −→ 4He + 2e+ + 2ν + 26.73 MeV (64.1)

As in a stellar environment the probability of simultaneous interaction of four protons
is essentially zero, a series of two body interactions is required to obtain the same
end result. Two different processes are known: the pp-chain and the CNO cycle, both
shown in Fig. 64.1.

The pp-chain starts with the reaction p(p, e+ν)d, which is the slowest reaction and
therefore represents the rate-limiting step for the whole chain. As the cross section
of the reaction at stellar energies is far too small to be measured in a laboratory, it
is calculated from standard weak-interaction theory and results to be in the order
10−33 b at energies of a few keV and 10−23 b at energies of in the order of some MeV.
The reaction d(p, γ)3He immediately transforms all deuterium into 3He and then into
4He by the fusion of two 3He nuclei (chain I):

3He + 3He → 4He + p + p (64.2)

As an alternative 3He can encounter an α particle generating 7Be.

3He + 4He → 7Be + γ (64.3)

The 7Be generated this way decays via electron capture to 7Li and a neutrino an
energy of either 0.38 or 0.86 MeV. The 7Li captures a proton producing 8Be, which
decays producing two helium nuclei (chain II). The 7Be electron capture competes
with proton capture producing 8B. Subsequently, 8Be decays generating a positron,
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Fig. 64.1 Top panel: the pp-chain, the branching ratios shown are calculated for solar conditions
in according to the Standard Solar Model (SSM) [4]. Bottom panel: the CNO-cycle. Dotted lines
correspond to hot CNO

a high energy neutrino (8 MeV ≤ Eν ≤15 MeV), and again two helium nuclei (chain
III).

The second possibility for the conversion of hydrogen into helium is given by the
CNO-cycle, a reaction network proposed by H. Bethe and C.F. von Weizäcker in
1938. Here, the elements carbon, nitrogen, and oxygen (C, N, O) act as “catalysts”
in each single cycle (see lower panel in Fig. 64.1). Obviously this scenario requires
the presence of heavier elements in addition to hydrogen and helium in the interior
of a star, a condition which is fulfilled in all stars which can be observed today.
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During hydrogen burning, pp-chain and CNO-cycle contribute to the energy pro-
duction in different proportions, which are dependent on temperature and abundance
of heavy nuclei inside the star. The pp-chain dominates the energy production at
temperatures below approximately 0.02 GK. In solar conditions hydrogen burning
occurs predominantly through the pp-chain and CNO-cycle contributes to the energy
production by a very small amount (1.5%) [3].

64.3 Qualitative Features of the Nuclear Reaction
Mechanism

The energy distribution of nuclei in hot stellar matter can be described by the
Maxwell–Boltzmann distribution

φ(E) ∝ Eexp(−E/kT ), (64.4)

where T is the local temperature and k is the Boltzmann constant. Due to the Coulomb
barrier of the entrance channel, the reaction cross section σ(E) drops nearly expo-
nentially with decreasing energy. Therefore σ(E) can be described by:

σ (E) = 1

E
exp (−2πη(E)) S (E) (64.5)

The function S(E) is called the Astrophysical S–Factor and contains all strictly
nuclear effects of the reaction, while

P � exp (−2πη(E)) (64.6)

is the penetration probability through the Coulomb barrier.
Assuming no centrifugal barrier in the entrance channel (i.e. only s-wave projec-

tiles) and a Coulomb potential, which is much larger than the projectile energy and
has a square-well-shape inside and a point source shape outside the nuclear radius,
the term η(E), also called Sommerfeld parameter, is:

η(E) = Z1Z2e2

�
(μ/2E)1/2, (64.7)

where E and μ are the center of mass energy the and reduced mass in the entrance
channel and Z1 and Z2 denote the proton numbers of projectile and target nucleus,
respectively.

All the previous approximations are valid in the case of a smooth energy depen-
dence of the S(E)–factor, i.e. when no resonance is present and the cross section is
dominated by direct reaction mechanisms. In case a virtually unbound state is present
at the excitation energy of the compound system Ex = Ecm + Q, the cross section
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of the resonant excitation of this state in the entrance channel (a) and the subsequent
decay into the exit channel (b) are described by the Breit-Wigner equation:

σ (E) = πλ2 · 2J + 1

(2J1 + 1) · (2J2 + 1)
(1 + δ12) · ΓaΓb

(
E − ER,lab

)2 + (Γ /2)2
, (64.8)

where J is the angular momentum of the compound nucleus, J1 and J2 those of the
projectile and target, ER,lab

1 is the resonance energy, and Γa , Γb and Γ are the partial
and the total widths of the resonance.

The cross sections of reactions 3He(4He, γ)7Be and the 14N(p, γ)15O are char-
acterized by the direct capture process. At very low energies the latter one is also
influenced by the contribution of the tail of a narrow resonance.

Experimental techniques have improved significantly, allowing to push the limit
of measurements close to, or even inside, the thermal energy region in stars called
Gamow window which frequently is much lower the height of the Coulomb barrier.
Even in those cases, in which direct measurements prove to be feasible, uncertainties
in low energy stopping power data or the insufficient understanding of the electron
screening effect introduce significant systematic uncertainties. Consequently extrap-
olations of data from higher energies using e.g. R-matrix fits [6] are often required.
In order to minimize the risks related to the extrapolation, the data sets used should
cover a wide range of beam energies. Furthermore, it is important to aim for direct
measurements with statistical and systematical uncertainties at energies which are
as close as possible to the Gamow Peak. Scattering experiments or transfer reactions
provide important additional information. Indirect methods like the Trojan Horse
technique can be exploited as an alternative tool to determine σ(E) [7].

In order to cover all evolution phases of stars from the Main Sequence stars
(T � 107) to supernovae (T � 109) reaction rates must be known over a wide range
of temperatures, which requires the availability of σ(E) data over a wide range of
energies from keV to MeV [3].

64.4 Experimental Approach in an Underground
Laboratory

Due to the small cross sections involved in nuclear astrophysics, experiments must
be designed carefully considering backgrounds from cosmic rays (CR) and environ-
mental radioactivity. At earth surface CR are mainly composed of muons. As an effect
of their high energy, CR can penetrate through also massive shielding even though
the response of a specific detector is related to its material and shape. Also secondary
particles generated by CR impacting on the surrounding materials can interact with
the detector. While the direct interactions of CR can be efficiently rejected by active

1As a general notation in this work, ER,lab is the resonance energy in the laboratory system, while
Er is the resonance energy in the center of mass system.
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shielding (e.g. with plastic scintillators), events related to secondary particles (e.g.
neutrons) are difficult to suppress and limit the efficiency of active shielding. Only
the very massive shielding of an underground laboratory can provide a significant
reduction of the CR flux of several orders of magnitude [8]. This approach is com-
monly exploited by low event rate experiments in the field of Dark Matter research
and Neutrino physics.

Environmental radioactivity is another source of background, which reaches
gamma energies of up to 3.5 MeV. It is caused by radionuclides belonging to
natural radioactive series (214Bi, 226Ra, 214Pb, 208Tl…), long-lived natural radionu-
clides (40K, 87Rb…), radionuclides of cosmogenic origin (3H, 14C, 22Na, 7Be…) and
radionuclides of artificial origin (95Nd, 137Cs, 90Sr, 144Ce…). These nuclides can be
found outside but also inside the detectors themselves. The related background can be
reduced by careful material selection, by cleaning and by massive passive shielding
with high purity lead and copper. As CR induce secondary particles when interacting
with passive shielding, the reduction of the CR flux inside an underground laboratory
makes massive Pb and Cu shielding more efficient underground than above ground.
Furthermore, the higher the rock coverage of a site the higher the reduction of the
underground CR flux and the higher the suppression of background achieved by lead
and copper shielding in the gamma energy range up to 3.5 MeV [14].

The interaction of the ion beam with traces of material on the target can give rise to
beam induced background, which is specific for each reaction. In particular materials
with atomic numbers lower than or similar to the target material are candidates for
beam induced backgrounds. Consequently each reaction must be treated individually
considering the involved beam energy and particle spectrum as well as the Q-value
and the resonance structure of the background reactions. The type of target (gaseous
or solid) and the target production process are of fundamental importance. In some
particular cases background can be induced also by target nuclei scattered by the
impinging projectiles [15].

The excellent signal to background ratio in the high resolution spectra of HPGe
detectors favors the identification of the background, but they provide a limited effi-
ciency with respect to high density materials like BGO or suffer consistent intrinsic
background (e.g. LaBr). On the other hand detectors with low resolution disfavor a
reliable background recognition. In any case, the spectra obtained when operating
underground significantly improve the identification and subsequent suppression of
beam induced background.

The first accelerator-based nuclear astrophysics experiments in a deep environ-
ment are being performed by the LUNA collaboration2 since 25 years at the Labora-
tori Nazionali del Gran Sasso (LNGS).3 Located long side the motorway Teramo—
Rome the underground site consists in three halls (100 m long, 20 m wide, 18 m high)
covered by 1.400 m of rock corresponding to 3.800 m of water equivalent (m.w.e.).
This rock overburden reduces the cosmic muon flux be six orders of magnitude.
Accelerator activities started in 1994 using a home made 50 kV accelerator, which

2Laboratory for Underground Nuclear Astrophysics; http://luna.lngs.infn.it.
3http://www.lngs.infn.it.

http://luna.lngs.infn.it
http://www.lngs.infn.it
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has been decommissioned in 2003. Since 2001 a 400 kV Singletron machine con-
structed by High Voltage Engineering Europe, The Netherlands, is available. In brief,
this machine can deliver hydrogen (alpha) ion beams with an intensity of up to 500
(200)μA over a continuous operating time of about 40 days. This facility is presently
equipped with a gas target and a solid state target beam line and allows for 7/24 h
operation with only minimal operators effort [10].

These activities of LUNA have proven that direct measurements in nuclear astro-
physics benefit largely from the environmental background achievable underground
[9, 10]. This success has stimulated the construction of new accelerators at LNGS
(LUNA-MV [11]) and also in other underground laboratories, CASPAR in the US
[12], and JUNA in China [13].

64.5 Overview of 3He(4He, γ)7Be and 14N(p, γ)15O
reactions

64.5.1 The 3He(4He, γ)7Be reaction

The nuclear physics input from the 3He(α, γ)7Be cross section is a major uncertainty
in the determination of solar 7Be and 8B neutrino fluxes predicted by solar models
and in the 7Li abundance obtained in big-bang nucleosynthesis calculations. The
3He(α, γ)7Be (Q-value: 1.586 MeV) reaction leads to the emission of prompt γ-
rays, and the final 7Be nucleus decays with a half-life of 53.22 days, emitting a 478
keV γ-ray in 10.44% of the cases. Using the 400kV accelerator [21] the LUNA
collaboration performed an experiment exploiting the detection of prompt γs and
of 7Be (activation method) using the same experimental setup [18–20]. In preparing
the experiment particular attention had been given to a good shielding of the used
detectors as both, prompt and β delayed γ-rays, have energies which are lower than
2.6 MeV.

The α-beam entered the 3He extended windowless gas target through a collimator
with a diameter of 7 mm and was stopped on a detachable copper disk that was
positioned at the hot side of the calorimeter used to measures the beam intensity (about
250 μA) and which served as the primary catcher for the produced 7Be. Prompt γ-
rays were counted with a 135% ultra-low-background HPGe detector shielded with
5 cm of OFHC copper and 25 cm of lead [17]. The detector and the shield were
enclosed in a sealed plastic box flushed with dry N2 to reduce 222Rn background.
Due to the significant cosmic muon reduction in the underground environment the
shielding allowed to suppression the background by five orders of magnitude for
γ-rays below 2 MeV.

In order to count the 7Be nuclei produced inside the gas target and implanted
into the removable calorimeter cap, the detachable disk was dismounted from the
calorimeter and moved to the low-activity counting facility operating in the under-
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Fig. 64.2 Overview of all available S-factor values for the 3He(α, γ)7Be reaction. Filled and open
circles: LUNA work. In the insert a zoom of prompt-γ (filled circles) and activation (open circles)
data obtained by LUNA. For literature references see [20]

ground facilities of LNGS [10]. Overall, three couples of cross section values have
been measured (prompt-γ and activation) at Eα = 220, 250, and 400 keV.

A total (statistical and systematical) accuracy of about 3% for the S(0) value was
obtained from LUNA data: S(0) = 0.567 ± 0.018 ± 0.004 keV b, where the last
uncertainty term refers to the indetermination due to the theoretical model adopted
for extrapolation to zero energy. The difference between data taken with the prompt-γ
method and the activation method is smaller than ±1.4% (Fig. 64.2), so no discrep-
ancy between LUNA prompt and activation data has been observed.

Concluding, the uncertainty contributed by the cross section determination of
the reaction 3He+4He to the overall error budget of the calculated 8B neutrino flux
has been reduced from 7.5 to 2.4% while the total uncertainty of the calculated 8B
neutrino flux has been decreased from 12 to 10%, including astrophysical parameters.
As a result, the uncertainty on the predicted 7Be neutrino flux has been decreased
from 9.4% down to 5.5% [17].

In 2014 deBoer et al. performed a global R-Matrix fit using 3He(α, γ)7Be
data, including the higher energy data from the European recoil separator for
nuclear astrophysics (ERNA)[23] and scattering data [22]. This effort resulted in
S(0) = 0.542 ± 0.011(MCfit) ± 0.006(model)+0.019

−0.011 (phase shift) keVb. Neverthe-
less, a refined measurement of the slope of the S-factor in a wide energy range
is desirable to verify theoretical calculations thus reducing the uncertainty on the
extrapolated S(0) [17].
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64.5.2 The 14N(p, γ)15O reaction

The 14N(p, γ)15O reaction is the slowest process in the CNO cycle and, therefore,
the key for understanding the timescale of the CNO cycles as well as the overall
energy and neutrino production associated with CNO burning (see right panel in
Fig. 64.1). The investigations at LUNA aimed to determine the 14N(p,γ)15O reaction
rate at low energies in two phases. The first phase was a low efficiency, but high
energy resolution experiment, which could be extended to energies down to E = 122
keV using a high purity Germanium detector and solid state set-up [24, 25]. The
second phase consisted in a high efficiency but low energy resolution experiment,
since a 4π BGO summing detector (80% efficiency) was used in combination with
a windowless gas target system [26]. In this experiment a lower energy limit of E
= 75 keV was reached with the disadvantage that no spectral information but only
the total cross section of the reaction could be obtained. The reaction mechanism at
low energies includes contributions from a resonance at Er = 259 keV,4 the direct
capture process and the of the tail of a sub-threshold resonance at Er = −507 keV,
corresponding to the known Ex = 6793 keV state in 15O. A series of new experiments
using direct [24–27, 29, 29, 34, 35, 39] and indirect approaches [28, 32, 36–38]
have been carried out over the last 18 years.

While an extensive discussion on different data sets and the relative R-Matrix
approach is beyond the scope of this contribution, it is worth mentioning that in
recent efforts [34, 35] the excitation function of 14N(p, γ)15O reaction has been
measured by in-beam γ-ray spectroscopy for the ground state and the 6.79 MeV
transition. In particular Li et al. [34] reported very accurate angular distribution data.
Furthermore, as the analysis covered a wide energy range the contributions from
broad resonances and direct capture have better been constrained.

The work of Wagner et al. [35], found some slight discrepancies with the R-matrix
fit of the 6.79 transition by Li et al. [34]. In addition a lower value for S(0) of the
ground state transition compared to [34] has been reported. In conclusion, these works
show that a new data set connecting the low energy LUNA data and the extrapolation
from higher-energy data is still required to further reduce the uncertainty of the total
cross section at stellar energies.

64.6 Outlook and Conclusion

The results obtained at LUNA prove underground nuclear astrophysics as a pow-
erful tool not only for pushing measurements to lower energies but also, and even
more, for providing high quality data, which can be used to reduce the uncertainties

4Resonance energies are given in the center-of-mass system.
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Fig. 64.3 Artists view of the LUNA-MV facility located in the underground laboratories of LNGS
[40]

of unavoidable extrapolations. Stimulated by the success of the LUNA experiment
several next generation facilities for underground nuclear astrophysics have been
proposed in the last years.

In 2012 and 2013 the Italian Ministry of Research has granted INFN with finan-
cial support dedicated to the LUNA-MV project (Fig. 64.3). In March 2016 INFN
assigned the contract for constructing and installing the LUNA-MV accelerator to
High Voltage Engineering Europe (HVE) which is presently finalizing the construc-
tion of the machine at their factory in the Netherlands [40]. At the same time LNGS
is setting up the necessary infrastructure including a shielded accelerator room which
will reduce the neutron flux induced by LUNA-MV accelerator operations to a level
which is lower than the natural background in the underground laboratories. Once
in operation the LUNA-MV facility will deliver intense proton, alpha and Carbon
beams of energies up to 3.5 MeV (7 MeV for double charged Carbon) providing
thus unique possibilities to study process involved in AGB stars, Novae and other
astrophysical scenarios.
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Chapter 65
A Comprehensive Measurement of
Analyzing Powers in the Proton-Deuteron
Break-Up Channel at 135 MeV

H. Tavakoli-Zaniani, M. T. Bayat, M. Eslami-Kalantari,
N. Kalantar-Nayestanaki, St. Kistryn, A. Kozela, J. G. Messchendorp,
M. Mohammadi-Dadkan, R. Ramazani-Sharifabadi and E. Stephan

Abstract In this contribution, vector analyzing powers are presented for the proton-
deuteronbreak-up reaction studied using a polarised-proton beamat 135MeV.For the
experiment, we used the Big Instrument for Nuclear-polarisation Analysis (BINA) at
KVI, theNetherlands.With this setup, we determined, for the first time, Ax for a large
range in the kinematical S, polar and azimuthal angles of the two outgoing protons.
Our data are reasonably well described by Faddeev calculations for kinematical con-
figurations at which the three-nucleon force effect is predicted to be small. However,
striking discrepancies are observed at specific configurations, for which the relative
azimuthal angle between the two protons becomes small. In this contribution, some
of these configurations along with the analysis techniques are presented.
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65.1 Introduction and Experimental Setup

A detailed description of nuclear forces is essential for understanding the proper-
ties of nuclei and the dynamics in few-nucleon scattering processes. The need for
an additional three-nucleon potential became evident when comparing three-body
scattering observables and light-nuclei binding energies with state-of-the-art calcula-
tions [1]. In this work, we measured polarisation observables in the proton-deuteron
break-up channel with the BINA setup. The detector system BINA is composed of
two main parts: the forward wall which can measure the energy, the position, and the
type of the particle at scattering angles between 10◦–35◦. It has three parts, namely
E-scintillators, ΔE-scintillators, and a Multi-Wire Proportional Chamber (MWPC).
Scattered particles with enough energy traverse from the target to the scintillators.
They pass through the MWPC and as a result, their coordinates are recorded. Sub-
sequently, particles pass through the ΔE-scintillators in which a small fraction of
their energy is deposited. Finally, the particle is stopped (for protons with an energy
less than 140 MeV) inside the E-scintillators and its deposited energy is measured.
A combination of E and ΔE allows us to identify the type of particle detected, e.g.
proton, deuteron, etc. The backward ball has 149 detectors. It is the scattering cham-
ber and a detector at the same time and particles scattering to angles larger than 35◦
up to 165◦ are detected by the ball [2, 3]. The two parts together, therefore, cover
almost the entire kinematical phase space of the elastic and break-up reactions.

65.2 Data Analysis

To obtain the analyzing power as a function of the proton energy or, equivalently,
as a function of the arc-length, S, along the kinematical-correlation curve, an energy
calibration is required between two forward scattered protons in the range where the
reaction is being investigated. For a given kinematical configuration the analyzing
powers can be obtained by:

N (ξ, φ) = N 0(ξ, φ)(1 + pz Ay cosφ − pz Ax sin φ), (65.1)

where Ns and N 0 are the number of events for a polarized beam and the number
of events for an unpolarized beam respectively. The vector polarization of the beam
is given by pz and the vector analyzing powers are indicated by Ay and Ax . Here
φ is the angle between quantization axis for the polarization and the normal to the
scattering plane in the laboratory frame of reference. ξ defines a kinematical point
(θ1, θ2, φ12, S).
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65.3 Results

The analysis of the p+d break-up reactionwasmeasuredwith BINAusing a polarized
proton beam with an energy of 135 MeV on a liquid deuterium target. Analyzing
powers have successfully been measured and are presented as a function of S for
different combinations of (θ1, θ2, φ12). In Fig. 65.1 the filled circles show the vector
analyzing powers, Ay and Ax , measured for small, intermediate and large azimuthal
opening angles between the two protons. The predictions of the Faddeev calculations
based on a nucleon-nucleon (NN) potential and including a three-nucleon potential
(3NF) are added to every panel with line colors and styles. The black (solid), the blue
(dotted) and red (dash) lines correspond to calculations based onCDB (NN), CDB+Δ

(3NF), and CDB+Δ+Coulomb calculations from the Hannover-Lisbon group [4],
respectively. The effects of the Coulomb force are generally predicted to be very
small for the analyzing power of these configurations as shown in Fig. 65.1.

At small azimuthal opening angles, the predictions based on a NN potential are
closest to the data specially for the analyzing powers of Ay , although, the disagree-
ment is still significant. Therefore, the origin of this discrepancy must lie in the
treatment of the 3NF. Strikingly, the calculation with an additional 3NF results in an
even larger discrepancy between data and theory. At intermediate azimuthal open-
ing angles for Ax there is a better agreement between data and a 3NF calculation.
For φ12 = 180◦, Ax is zero as expected due to parity arguments and the agreement
between calculations and data for Ay is reasonably good.

Fig. 65.1 Analyzing powers Ax and Ay as a function of S. For each panel, the left column corre-
sponds to (θ1, θ2) = (28◦, 24◦) and the right column corresponds to (θ1, θ2) = (28◦, 28◦)
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In general, the state-of-the-art calculations describe reasonably well the experi-
mental break-up data. Possibly, the modeling of short-range 3NF can be significantly
improved. The present datawould serve as a good test bench for fine tuning the details
of the 3NF.

References

1. Friar, J.L., Payne, G.L., Stoks, V.G.J., de Swart, J.J.: Phys. Lett. B 311 (1993)
2. Witala, H., Glockle, W., Huber, D., Golak, J., Kamada, H.: Phys. Rev. Lett. 81, 1183 (1993)
3. Shimizu, H., et al.: Nuci. Phys. A 382, 242 (1993)
4. Deltuva, A., et al.: Phys. Rev. C 71 (2005)



Part III
Few-Nucleon Systems and Qcd Inspired

Approaches



Chapter 66
Low-Energy QCD Research at TUNL

Calvin R. Howell, Mohammad W. Ahmed and Werner Tornow

Abstract Experiments are underway at the Triangle Universities Nuclear Labora-
tory (TUNL) that provide data for evaluating calculations based on low-energy QCD
theories, e.g., effective field theory formulations of two-nucleon and three-nucleon
interactions, chiral-perturbation theory, andLatticeQCD.Few-nucleon reactionmea-
surements are carried out using the monoenergetic polarized gamma-ray beam at the
High Intensity Gamma-ray Source (HIγS) and the neutron beams at the tandem
laboratory. Experiments in nucleon structure are performed at HIγS. In this paper
we present the status of recent few-nucleon experiments that measure the cross sec-
tions for neutron-neutron quasifree scattering in neutron-deuteron breakup and for
photodisintegration of 3He.

66.1 Introduction

Themechanisms bywhichmacroscopic properties of nucleon structure and the resid-
ual strong nuclear force emerge from color interactions in QCD are not well under-
stood. These phenomena are consequences of quark and gluon interaction dynamics
at distances where color forces are strong, i.e., in the non-perturbative regime of
QCD. Effective field theories (EFT) and Lattice QCD calculations provide theoret-
ical frames that connect low-energy nuclear phenomena to QCD. Experiments at
TUNL are providing data that through analysis using low-energy theories provide
insights about nucleon structure, few-nucleon reaction dynamics, and two-nucleon
and three-nucleon interactions within the context of few-nucleon reactions. Themea-
surements at TUNL are in two broad categories: (1) Compton scattering on the proton
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and few-nucleon systems that probe the long-range properties of nucleons, and (2)
few-nucleon reactions induced by photons and neutrons.

The aim of the Compton-scattering experiments at HIγS is to determine the dipole
electric and magnetic polarizabilities of the proton and neutron to high precision.
The few-nucleon measurements performed at HIγS and in the tandem lab at TUNL
provide complementary information in evaluating ab-initio theory calculations. The
current focus is on three-nucleon (3N) reactions that have sufficient complexity to
exhibit influences of 3N interactions. The first exclusive differential cross sections
for photodisintegration of 3He at low energy have been measured at HIγS at an
incident beam energy of 15 MeV. The focus of the analysis is on determining the
cross section for the 1S0 neutron-proton (np) final-state interaction for the purpose of
extracting avalue for the 1S0 np scattering length.Thehigh sensitivity of the scattering
length to the strength of the interaction between two nucleons enables using this
reaction to probe for 3N interactions that are not included in the calculations. Also,
neutron-induced 3N reactions in the tandem laboratory at TUNL are used to search
for 3N force effects using s-wave neutron-neutron (nn) quasi-free scattering (QFS)
in neutron-deuteron (nd) breakup. These measurements are carried out at incident
neutron beam energies of 10 and 16 MeV. This paper will present the status of the
experiments at TUNL on photodisintegration of 3He and nn QFS in nd breakup.

66.2 Exclusive Photodisintegration of 3He

Photonuclear reactions on few-nucleon systems are sensitive to meson exchange
currents (MEC) that contribute to pairwise nucleon-nucleon interactions and to 3N
current operators, which are associatedwith 3N interactions. HIγS experiment E-13-
16 will produce the first cross-section measurements of kinematically complete, i.e.,
exclusive, three-body photodisintegration of 3He at low energies. A 3D rendering of
the experiment setup is shown in Fig. 66.1. An example of the signal-to-background
quality of the charged-particle coincidence spectra is illustrated in Fig. 66.2. The data
have been collected and analysis is underway to compare experiment to ab-initio 3N
calculations by Witala [1] and Deltuva [2].

66.3 Cross-Section Measurements of nn QFS in nd Breakup

An analysis by Witała and Glöckle [3] showed that the discrepancy between cal-
culations and the cross-section data for nn QFS in nd breakup can be resolved by
increasing the strength of the CD-Bonn nn s-wave potential [4] by about 8%, thereby
introducing large charge-symmetry breaking in the 2N interaction. Other possible
explanations are that 3N interactions that are not in current models are important
or that the systematic uncertainties of the published data are underestimated. We
are performing new nd breakup measurements. The calculated cross section at 10
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Fig. 66.1 Three-dimensional rendering of the experimental setup for HIγS P-13-16. The setup
consists of an array of BC-501 liquid scintillators (12.5cm dia. × 5cm thick) for neutron detection,
14 collimated silcon-strip detectors for proton and deuteron detection, and seven 3He gas targets
with 10-μm thick Havar windows. Each target is 10cm long and pressurized with 5 atm of 3He
gas. The area of each silicon strip is 5.9mm × 91.6mm, and each panel has 16 strips. The neutron
detectors are shown only on one side of the beam axis. The average neutron flight path is 42cm

Fig. 66.2 Two-dimensional histogram of the energies for the two charged particles detected in coin-
cidence in photodisintegration of 3He in HIγS experiment P-13-16. The particle scattering angles
are given in the plot. The peaks for 2-body photodisintegration and the locus for 3-body photodis-
integration are indicated. Also, the cross-section enhancements for the np final-state interactions
(FSI) are identified
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Fig. 66.3 A plot of the preliminary TUNL cross-section data for nn QFS in nd breakup as a
function of the kinematic S curve for incident neutron beam energy of 10 MeV and symmetric
nn coincidence angles of 36.7◦. The error bars represent statistical uncertainties only. The solid
curve is a Monte-Carlo simulation based on ab-initio nd breakup calculations of Witała that use the
CD-Bonn nucleon-nucleon potential model [4]. The dashed curve is the solid curve multiplied by
a factor of 1.05 to obtain the minimum chi-square fit to the data with the simulated cross section

MeV is relatively insensitive to details of the nn interaction; the measurements at this
energy are used to validate our techniques. The data collection at 10MeV is complete
and data analysis is underway. A plot of our preliminary data is shown in Fig. 66.3
in comparison to Monte-Carlo simulations based on ab-initio nd calculations. The
systematic error in the data is ±6%, which is due mostly to the uncertainties in the
neutron detection efficiency and the target-beam luminosity. The good agreement
between the data and calculations indicates that our experimental techniques are
solid. The next step is to perform measurements at 16 MeV, where the sensitivity to
the nn interaction strength should be adequate to validate the data around 26 MeV
[5, 6].
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Chapter 67
How to Use Renormalization Group
Analysis in Lattice Nuclear Effective
Field Theory

Koji Harada, Satoru Sasabe and Masanobu Yahiro

Abstract We propose a new approach to Nuclear Effective Field Theory (NEFT)
on a lattice on the basis of Renormalization Group (RG) analysis. In order to perform
Markov-chain Monte Carlo lattice simulation of NEFT, we introduce auxiliary fields
to integrate nucleon field so that its effects are represented as a determinant. The
problem is that the determinant becomes complex and cannot be considered as a part
of probability distribution function. We introduce a reweighting method, in which
the reference determinant is chosen to be optimal in the RG analysis sense: the
reference determinant contains only the relevant interactions and the closest to the
original determinant. We calculate the standard deviation of the absolute value of
the reweighting factor in a simple model, isospin-symmetric S-wave NLO NEFT
without pions, and explain why our choice is optimal.

67.1 Introduction: Sign Problem and the Reweighting
Method

Nuclear Effective Field Theory (NEFT) is a low-energy effective field theory in
which nucleons (and optionally pions, hyperons, etc.) are fundamental degrees of
freedom instead of quarks and gluons. See [1] for a review. In recent years, several
lattice simulations have been done. See [2] for an early review, and [3] for a recent
review. Note that most of recent calculations are based on Quantum Monte Carlo
algorithms. In this contribution we concentrate on the Markov-chain Monte Carlo
(MCMC) algorithm, which is the most common in lattice QCD simulations.

In order to perform MCMC simulations, fermion fields must be integrated over.
In NEFT, nucleons interact themselves through contact interactions (as well as pion
exchanges when pions are included). By introducing auxiliary fields and making
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Hubbard-Stratonovich transformations, the nucleon part of the action is written as
a bilinear form, so that nucleon field can be integrated to produce a determinant.
In the MCMC simulations, the determinant is regarded as a part of the probability
distribution function, which must be positive definite.

The reality and the positivity of the determinant depend on the coupling constants
of the contact interactions of the original action. For the realistic case, the reality of
the determinant turns out to be lost. This is a kind of “sign” problem.

Tobe concrete, let us consider a simplemodel: the isospin-symmetricS-waveNLO
NEFTwithout pions. Here “NLO”means that the Lagrangian contains operatorswith
up to including two derivatives. The Euclidean Lagrangian is given by

LE = N †

(
−∂4 + ∇2

2M
+ μ

)
N − c0(N

†τ̃ N )2

+ c2

[{
N †τ̃

(←∇
2 + →∇

2
)
N

}
· (N †τ̃ N ) + (N †τ̃ N ) ·

{
N †τ̃

(←∇
2 + →∇

2
)
N

}

−
{
(N †τ̃

←∇ N ) − (N †τ̃
→∇ N )

}2 + (N †τ̃ N ) · ∇2(N †τ̃ N )

]
, (67.1)

where τ̃ = (I2×2, iτ 1, iτ 2, iτ 3). By introducing auxiliary fields φ0 and
−→
φ 2, the

contact interactions can be written in nucleon bilinear forms. After integrating the
nucleon field, we end up with the following determinant:

det
[
M(φ0,

−→
φ 2)

]
=det

[(
−∂4+ ∇2

2M
+μ

)
−2i

√
c0φ0 ·τ̃ +2i

c2√
c0

φ0 ·τ̃
(←∇

2+ →∇
2
)

+i
c2√
c0

φ0 ·τ̃∇2 − 2i
√
c2

−→
φ 2 ·

(
τ̃

←∇ −τ̃
→∇

) ]
. (67.2)

It is now clear that the determinant is not real in the physical case where c0 < 0 and
c2 > 0. See [7] and Fig. 67.1.

A well-known strategy to circumvent this problem is the reweighting method, in
which a positive definite reference determinant det MR is introduced and the expec-
tation value of an operator O(x) is rewritten (schematically) as

〈O(x)〉 =
∫
dΦ O(x)

(
det M(Φ,μ)

det MR(Φ,ν)

)
det MR(Φ, ν)e− ∫

Φ2

∫
dΦ

(
det M(Φ,μ)

det MR(Φ,ν)

)
det MR(Φ, ν)e− ∫

Φ2
, (67.3)

where Φ (collectively) denotes the auxiliary fields and (det MR)e− ∫
Φ2

is regarded
as the probability distribution function in the MCMC algorithm.

The question now is: what is the optimal choice of the reference determinant?
The answer is provided by RG analysis.
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67.2 RG Analysis and the Choice of the Reference
Determinant

It is important to notice that NEFT for the realistic case is close to the nontrivial
fixed point (FP) of the RG transformations [4–6]. The closeness is related to the
unnaturally large scattering lengths in the S-waves.

Operators around a FP are classified according to the behaviors under RG trans-
formations. Relevant operators (ROs) get more important in the IR, while irrelevant
operators (IOs) get less. In the S-wave NEFT, there is only one RO. In the effec-
tive range expansion (ERE) language, it corresponds to the scattering length. Other
operators are irrelevant, and correspond to other ERE parameters.

In a lattice formulation, the inverse of the lattice constant plays a role of (float-
ing) momentum cutoff. If one changes the lattice constant, one needs to change the
coupling constants on the lattice so that the physical quantities do not change. This
change of coupling constants is a RG transformation.

Even though the existence of FPs and the scaling dimensions are independent
of the regularization, the location of the FPs and the explicit forms of ROs and
IOs depend on the specific regularization one employs. We have performed RG
analysis for the S-wave NEFT without pions in [7]. We find that the physical system
corresponds to the case cphys0 < 0 and cphys2 > 0 with the lattice constant a = 5 fm,
which corresponds to the momentum cutoff � = π/a ≈ 124 MeV.

With lattice regularization, the RO is not the term without derivatives (c0-term),
but a certain linear combination of operators with and without derivatives. It is shown
graphically as the direction of the RG flow in the coupling constant space flown out
of the nontrivial FP.

Since the RO is important in the IR, we propose to use the reference determinant
that contains the RO only.

67.3 Results

We perform MCMC simulations with the number of sites N 4 = 44 and the lattice
constant a = 5 fm. Totally 250,000 configurations are generated and 500 config-
urations are used for thermalization. Measurements are performed for every 100
configurations.

We calculate the standard deviation (SD) of the absolute value of the reweighting

factor
∣∣∣ det M
det MR

∣∣∣ as a measure of the “similarity” of the two determinants. The measure-

ments are done for seven points (I1,. . .,I7) in the irrelevant direction, and four points
(R1,. . .,R4) in the relevant direction, as shown in Fig. 67.1. The point I7 corresponds
to the physical situation. In Fig. 67.1, the red thick line shows the critical line on
which the scattering length is infinite and the blue bullet on it is the nontrivial FP
where the effective range is zero. The green dashed line indicate the relevant direc-
tion. The magenta thin dotted line is the RG flow of the physical system. (It flows



418 K. Harada et al.

Fig. 67.1 RG flow in the
strong-coupling phase near
the nontrivial FP. X and Y
are dimensionless coupling
constants defined in [7]

Fig. 67.2 The SD of the
absolute value of the
reweighting factor when the
chemical potential ν ≈ −16
MeV. The horizontal axis
shows the (Euclidean)
distance from the nontrivial
FP in the X -Y plane

downward as the lattice constant gets larger.) The reference point is shown as a red
bullet.

Figure67.2 shows the SD of the absolute value of the reweighting factor when
the chemical potential ν ≈ −16 MeV. The horizontal axis shows the (Euclidean)
distance from the nontrivial FP in the X -Y plane. It is easily seen that the SD grows
rapidly as one goes in the relevant direction, while it grows much slower in the
irrelevant direction. It clearly illustrates the difference between the RO and the IO:
the RO changes the theory strongly while the IO does not change much. It is the IO
that can be regarded as perturbation.

It is observed that the growth of the SD is faster as the chemical potential increases.
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67.4 Summary

We have shown that the RO changes the theory very much while the IO does not. It
conforms with the general concept of the relevant and the irrelevant operators in the
RGanalysis. It is therefore legitimate and optimal to choose the reference determinant
that contains only the RO part of the original determinant in the reweighting method.
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Chapter 68
Polarisabilities from Compton Scattering
on 3He

Harald W. Grießhammer and Judith A. McGovern

Abstract This executive summary of recent theory progress in Compton scattering
off 3He focuses on determining neutron polarisabilities; see Margaryan et al (Eur
Phys J A 54:125, 2018) and references therein for details and a better bibliography.

Two plenaries discuss the large-scale international effort, gains and goals of a new
generation of high-precision facilities to extract nucleon polarisabilities from Comp-
ton scattering experiments, and show that determining them by experiments takes
years of planning, execution and analysis—and commensurate theory support. Oth-
ers highlight the importance of electromagnetic polarisabilities in many contexts.We
thus refer to all these contributions [2] for motivation and context, and concentrate
on theory progress for one target nucleus: 3He.

Setting the StageLow-energy Compton scattering γX → γX probes a target’s inter-
nal degrees of freedom in the electric and magnetic fields of a real photon. These
fields induce radiation multipoles by displacing the target constituents. The angu-
lar and energy dependence of the emitted radiation encodes information from the
symmetries and strengths which govern the interactions of the constituents with
each other and with photons. After subtracting the “Born contributions” (known
from one-photon data like form factors), its multipoles parametrise the stiffness of
a nucleon N (spin σ

2 ) against transitions Xl → Yl ′ at frequency ω (l ′ = l ± {0; 1};
X,Y = E, M ; Ti j = 1

2 (∂i Tj + ∂ j Ti ); T = E, B):

2πN †
[
αE1(ω)E2 + βM1(ω)B2 + γE1E1(ω)σ · (E × Ė) + γM1M1(ω)σ · (B × Ḃ)

− 2γM1E2(ω)σi B j Ei j + 2γE1M2(ω)σi E j Bi j + (higher multipoles)
]
N .
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Six two-photon response functions suffice up to about 400 MeV: two scalar polar-
isabilities αE1(ω) and βM1(ω) for electric and magnetic dipole transitions; and the
four dipole spin-polarisabilities γE1E1(ω), γM1M1(ω), γE1M2(ω), γM1E2(ω). These
test the nucleon-spin structure and complement information from Jefferson Lab’s
spin programme. Intuitively, the electromagnetic field of the spin degrees causes
bi-refringence in the nucleon, like in the classical Faraday-effect.

The static values, αE1 ≡ αE1(ω = 0) etc., are often just called “the” polarisabil-
ities and condense the rich information on the pion cloud, on theΔ(1232) excitation,
and on the interplay between chiral symmetry breaking and short-distance interac-
tions. These fundamental quantities provide stringent tests for theoretical descrip-
tions of hadron structure. Moreover, they are ingredients to the neutron-proton mass
difference, the proton charge-radius puzzle, and the Lamb shift of muonic hydrogen.
To extract them, one must reliably extrapolate from data to ω = 0. Since pure neu-
tron targets are unfeasible, nuclear binding and meson-exchange effects must also
be subtracted with reliable theory uncertainties. Fortunately, Chiral Effective Field
Theory (χEFT) provides model-independent estimates of higher-order corrections
and encodes the correct low-energy dynamics of QCD. For few-nucleon systems,
it consistently incorporates hadronic and nuclear currents, rescattering effects and
wave functions. The photon’s interaction with the charged pion-exchange between
nucleons also probes few-nucleon binding. Even if scattering on a free neutron were
feasible, cross sections and signals for coherent scattering from nuclei are markedly
larger.

Elastic Compton scattering from 3He is a promising means to access neutron polar-
isabilities. In [3] and subsequent publications, Shukla et al. showed that the differen-
tial cross section between 50 and 120 MeV is sensitive to the electric and magnetic
dipole polarisabilities of the neutron, α(n)

E1 and β(n)
M1, and that scattering on polarised

3He provides good sensitivity to the neutron spin polarisabilities. This triggered
several approved proposals at MAMI and HIγS.

We recently extended these χEFT predictions by one order to N3LO [O(e2δ3)]
by adding a dynamical Delta degree of freedom, and provided results for photon
lab energies between 50 and 120 MeV for the differential cross section, for the
beam asymmetry Σ3, and for the two double asymmetries with circularly polarised
photons and transversely or longitudinally polarised targets, Σ2x and Σ2z . These are
the only non-zero observables below pion-production threshold in our formulation.
We also found that the pioneering results were obtained from a computer code which
contained mistakes, triggering an erratum to [3].

At such energies, the complete photonuclear operator at N3LO [O(e2δ3)] is:
the Thomson and other minimal-substitution terms; magnetic-moment couplings;
dynamical single-nucleon effects such as virtual pion loops and the Delta excitation;
and couplings of photons to the charged-pion exchange. All terms are evaluated with
3He wave functions found from the same χEFT expansion.

Results The dynamical Delta effects are obvious in all observables for ωlab �
100 MeV; see Fig. 68.1. They markedly invert the fore-aft asymmetry of the cross
section and increase the magnitude of double asymmetries and their sensitivity to
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Fig. 68.1 Differential cross section, adapted from [1]. Left: at O(e2δ2) [no Delta] and O(e2δ3)
[with Delta], and sensitivity to the neutron’s scalar polarisabilities. Right: Energy dependence

Fig. 68.2 The sensitivity of Σ2x on the two spin polarisabilities with the biggest impact, adapted
from [1]

spin polarisabilities, echoing similar findings for the deuteron. The chiral expansion
converges in this energy range quite well; see e.g. Fig. 68.1. The dependence on the
choice of the 3He wave function is small and can usually be distinguished from the
effects of polarisabilities by a different angular dependence.

We found that α(n)
E1 − β(n)

M1 can be extracted from the cross section; Σ2x has a
non-degenerate sensitivity to γ(n)

M1M1 around 90◦; and Σ2z to γ(n)
E1E1 and γ(n)

E1M2; see
Fig. 68.2. The beam asymmetry Σ3 is dominated by the single-nucleon Thomson
term and not very useful to directly determine polarisabilities. Ultimately, the most
accurate polarisabilities will be inferred from data of all four observables. For the
spin polarisabilities, data at ωlab � 100 MeV will be crucial.

This exploration is part of an ongoing dialogue with our experimental colleagues
on the best kinematics and observables to extract neutron polarisabilities. An interac-
tive Mathematica notebook is available from hgrie@gwu.edu. Results are quite
robust. Varying the single-nucleon amplitudes of complementary approaches like
dispersion relations will lead to sensitivities which are hardly discernible from ours.
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Fig. 68.3 Double asymmetries with circularly polarised beam and transversely (left) or longitudi-
nally (right) polarised target, for proton, neutron and 3He, adapted from [1]

Once data exist, a polarisability extraction will of course need to address residual
uncertainties with more diligence; see e.g. [4].

Nuclear Binding χEFT also quantifies the angle- and energy-dependent corrective
to the naïve 3He picture as the sum of two protons with antiparallel spins and one
neutron. Sensitivity to the scalar polarisabilities enters indeed approximately via
2α(p)

E1 + α(n)
E1 and 2β(p)

M1 + β(n)
M1, and the double-asymmetries are 10–20 times more

sensitive to the spin polarisabilities of the neutron than of the proton. However,
Fig. 68.3 confirms that there is no energy where polarised 3He simply acts as a “free
neutron-spin target”. The sensitivities to neutron spin polarisabilities closely mimic
those of free-neutron observables. But their magnitudes do not.

An impulse approximation would thus omit a key mechanism: charged pion-ex-
change currents. Without their large interference with the polarisabilities, results are
severely distorted. TheχEFT expansion provides quantitative predictions of the two-
body currents, with reliable theory uncertainties. Detailed checks of the convergence
of the expansion for exchange currents and for the other pieces of the 3He-Compton
amplitude by performing a N4LO [O(e2δ4)] calculation and extending the applicable
energy range are under way. They will allow for even more accurate extractions of
polarisabilities from upcoming data.

Acknowledgements HWG is particularly indebted to JMcG for filling in at the oral presentation
on very short notice. We are also grateful to the other co-authors of [1]. This work was supported in
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Chapter 69
Relation Between Scattering Amplitude
and Bethe-Salpeter Wave Function Inside
Interaction Range

Takeshi Yamazaki

Abstract Wediscuss an exact relation between the two-particle scattering amplitude
and the Bethe-Salpeter (BS) wave function inside the interaction range in quantum
field theory. The reducedBSwave function, which is defined by theBSwave function
inside the interaction range, plays an essential role in the relation. The half off-
shell scattering amplitude can be obtained from the relation as well as the on-shell
scattering amplitude. The relation can be regarded as the LSZ reduction formula
using the BS wave function. The corresponding relation on the lattice can be derived
with the condition that the interaction range is less than the half of the spatial extent.
In order to apply the relation on the lattice to the S-wave isospin I = 2 two-pion
scattering channel, we calculate the BS wave function in the quenched lattice QCD.
It is found that the scattering length obtained from the on-shell scattering amplitude
agrees with that obtained from the finite volume method. We also calculate the half
off-shell amplitude for the first time, and observe a clear signal of the amplitude
in a wide range of the momentum. From the slope of the half off-shell amplitude,
the effective range is estimated using two assumptions. Although the half off-shell
amplitude is not an observable in experiment, it could beuseful to understandproperty
of hadron scatterings.

69.1 Introduction

The scattering phase shift δ(k) has been calculated from the finite volumemethod [1]
in various lattice QCD calculations. The finite volume formula in the method is a
relation between δ(k) and the two-particle energy onfinite volume of L3. The formula
was derived from a two-particle wave function outside the two-particle interaction
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range R in quantum mechanics. In quantum field theory the same formula was
obtained by a similar discussion with the Bethe-Salpeter (BS) wave function outside
R [2, 3]. It means that relation between the BS wave function outside R and the
scattering amplitude is well understood in the finite volume method.

On the other hand, in quantum field theory relation between the BS wave function
inside R and the scattering amplitude is poorly known. Only a method using an
effective potential to obtain δ(k) was proposed [4] based on a discussion in quantum
mechanics. In this report, we discuss an exact relation between the inside BS wave
function in the infinite volume and the scattering amplitude in quantum field theory.
This relation gives both the on-shell and half off-shell amplitudes. Furthermore, we
extend the relation to that on the lattice and perform an exploratory calculation of the
scattering amplitudewith the relation in the S-wave isospin I = 2 two-pion scattering
channel. Almost all the results in this report have been already presented in the two
papers [5, 6].

69.2 Relation in the Infinite Volume

The BS wave function in the infinite volume is defined through the LSZ reduction
formula [2, 3] as,

φ(x; k) = eik·x +
∫

d3 p

(2π)3

H(p; k)
p2 − k2 − iε

eip·x, (69.1)

where x is the relative coordinate of two particles, k is the relative momentum deter-
mined from the two-particle energy Ek = 2

√
m2 + k2 with m being the mass of the

particle. H(p; k) is the half off-shell amplitude. Here we assume the S-wave scat-
tering of spinless two particles and neglect inelastic scattering contributions. At the
on-shell p = k, the on-shell amplitude H(k; k) is written by δ(k),

H(k; k) = 4π

k
eiδ(k) sin δ(k). (69.2)

The interaction range R is determined from the reduce BS wave function given
by

h(x; k) = (Δ + k2)φ(x; k). (69.3)

It is assumed that h(x; k) is non-zero in the interacting region of x < R, while h(x; k)
is zero in x > R. This property is similar to a potential in quantum mechanics.
Substituting (69.1) to (69.3) and performing the Fourier transformation, an exact
relation of H(p; k) written by h(x; k) is obtained as

H(p; k) = −
∫

d3x h(x; k)e−ip·x. (69.4)
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The integrand gives non-zero value only in the interacting region. Therefore, it is
regarded as a relation between φ(x; k) inside R and H(p; k), since the integrand
is given by φ(x; k) through (69.3). It is noted that this relation is useful to discuss
uncertainties in the effective potential method as presented in [5, 7].

Using the partial integration and the definition of h(x; k) in (69.3), the exact
relation (69.4) can be expressed by the BS wave function in the momentum space
φ(p; k) = ∫

d3x φ(x; k)e−ix·p as,

H(p; k) = (p2 − k2)φ(p; k). (69.5)

This formula can be regarded as the LSZ reduction formula in the relative coordi-
nate [8], since it gives the on-shell amplitude in the on-shell limit, p → k. A similar
discussion with the four-dimensional BS wave function in the momentum space was
reported in [9].

69.3 Relation on the Lattice

We will discuss an extension of (69.4) to the one on the lattice of L3. The integra-
tion range in (69.4) can be changed from [−∞,∞]3 to [−X, X ]3, if X > R where
h(X; k) = 0. Thus, the following summation gives the S-wave half off-shell ampli-
tude on the lattice HL(p; k), which is the same as H(p; k) except for the overall
factor,

HL(p; k) = −
∑
x∈L3

hL(x; k) j0(px), (69.6)

where j0(px) is the spherical Bessel function of l = 0. The reducedBSwave function
on the lattice hL(x; k) is defined by the BS wave function on the lattice φL(x; k) in a
similar way to the one in the infinite volume (69.3). A sufficient condition of (69.6)
is L/2 > R as in the finite volume method [1]. The overall constant is removed
by taking appropriate ratios such as HL(k; k)/φL(x; k) and HL(p; k)/HL(k; k). We
cannot obtain the phase of the scattering amplitude from the ratios. This is a similar
situation to the finite volume method.

The corresponding relation to (69.5) on the lattice is obtained from (69.6) by the
partial integration on the lattice. In general φL(x; k) is non-zero on the boundary of
the lattice, so that a surface term appears as

HL(p; k) = (p2 − k2)
∑
x∈L3

φL(x; k) j0(px) + (surface term), (69.7)

where the surface term depends on p, k, and L . It is noted that the on-shell amplitude
is given by only the surface term, because the first term vanishes at the on-shell. The
explicit form of the surface term will be reported in other paper [8].

Using the on-shell amplitude HL(k; k), tan δ(k) is given by
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tan δ(k) = sin(kxref)

4πxref
φL(xref; k)
HL(k; k) − cos(kxref)

, (69.8)

where xref is a reference position which satisfies xref > R. In the equation we use
the relation

HL(p; k)
φL(xref; k) = 4πxref sin δ(k)

sin(kxref + δ(k))
, (69.9)

where we assume that φL(xref; k) has only the S-wave contribution.

69.4 Lattice QCD Calculation

As a pilot study to apply the formula (69.6) to a hadron scattering, we calculate the
two-pion BS wave function of the ground state in the S-wave I = 2 scattering with
the quenched approximation at mπ = 0.86 GeV [6]. The lattice size is L3 × T =
243 × 64. From x dependence of hL(x; k), we estimate R ∼ 10 which is less than
the half of the spatial extent. It suggests that the sufficient condition to use (69.6) is
satisfied in our data.

We evaluate tan δ(k) from the on-shell amplitude using (69.8) with xref =
(12, 7, 2). The scattering length a0 is estimated from tan δ(k) with an approximation
a0 ∼ tan δ(k)/k, since the ground state of the two-pion scattering has tiny momen-
tum k2 = 0.001549(45) GeV2 determined from the two-pion energy Ek . Figure69.1
compares our result of a0/mπ with the one from the finite volume method and also
the one in [3]. The consistency of our result with those results suggests that the
formula (69.6) could be an alternative method to calculate δ(k) to the finite volume
method.

Similarly to H(k; k), we also calculate the half off-shell amplitude H(p; k) with
(69.6). The result of H(p; k)/H(k; k) is plotted as a function of p2 in Fig. 69.2.

Fig. 69.1 Comparison of
a0/mπ adapted from [6].
Filled circle and square
symbols represent the results
evaluated from the on-shell
amplitude H(k; k) and the
finite volume method with
Ek , respectively. Open
symbol denotes the result
from the finite volume
method by CP-PACS
Collaboration [3]
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Fig. 69.2 Ratio of half
off-shell to on-shell
amplitudes H(p; k)/H(k; k)
as a function of p2 adapted
from [6]. The horizontal
dotted line represents the
momentum at the inelastic
threshold
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A clear signal of the ratio is obtained even in a higher momentum region than the
inelastic threshold, Ep = 4mπ .

Although the half off-shell amplitude is not an observable in experiment, we try
to estimate the effective range r of the expansion, k cot δ(k) = a−1

0 + rk2 + O(k4),
from the slope of H(p; k)/H(k; k) at p = k. In this estimation, we use two assump-
tions: 1) the phase of H(p; k) is eiδ(k) near p = k, and 2) (H(p; k)e−iδ(k))′ =
(H(p; p)e−iδ(p))′ at p = k with the prime (′) denoting the derivative with respect to
p2. These assumptions need to validate in future. Our result r = −2.64(41) GeV−1

is compatible with an estimation r = −0.3(8.4) GeV−1 using the data of tan δ(k)
in [3].

69.5 Summary

We have discussed an exact relation between the half off-shell scattering amplitude
and the BS wave function inside the interaction range. In order to derive the relation
in the infinite volume, we have followed the discussion in [3] using the LSZ reduction
formula. The reduced BS wave function defined by the BS wave function inside the
interaction range plays an essential role in this relation. The relation we derived is
useful to discuss uncertainties employing in the effective potentialmethod as reported
in [5, 7].

The corresponding relation on the lattice is derived with a condition that the
interaction range is less than the half of the spatial extent of the lattice. It gives the
same scattering amplitude in the infinite volume except for the overall factor. In
order to calculate the scattering amplitude in a hadron scattering channel through
the relation, we have performed a quenched lattice QCD simulation and calculated
the S-wave I = 2 two-pion BS wave function at mπ = 0.86 GeV. The scattering
length obtained from the on-shell amplitude agrees with the one from the finite
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volume method. For the half off-shell amplitude, we have observed a clear signal
even in a large momentum region beyond the inelastic threshold. The effective range
is estimated from the slope of the half off-shell amplitude under two assumptions.
The estimated effective range is compatible with the one obtained from the data in
the previous calculation. In future we will need a more realistic comparison of the
effective ranges obtained from the half off-shell amplitude and the finite volume
method, and also a study to validate the two assumptions.

The half off-shell amplitude cannot be directly measured in experiment, while
it could be useful to understand hadron scatterings. For example, it can be used to
constrain parameters in effective theories of hadron scatterings by comparing half off-
shell amplitudes calculated from lattice QCD and an effective theory. Furthermore,
the half off-shell amplitude in more than two-particle systems could be calculated in
a similar way, because the exact relation of the scattering amplitude was essentially
derived from the LSZ reduction formula. Its extension could be straightforward.

Acknowledgements The author thanks J. Carbonell and V. A. Karmnov for fruitful discussions in
this conference. This work is supported in part by JSPS KAKENHI Grant Numbers 16H06002 and
18K03638.
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Chapter 70
3N Continuum Reactions with Semilocal
Coordinate-Space Regularized Chiral
Forces

H. Witała, J. Golak, R. Skibiński and K. Topolnicki

Abstract Weapplied the semilocal coordinate-space (SCS) regularized chiralN4LO
nucleon-nucleon (NN) potential supplemented by the chiral N2LO three-nucleon
force (3NF), regularized in the same way, to study the nucleon-deuteron (Nd) elastic
scattering and deuteron breakup reaction. We checked that the elastic Nd scattering
cross section can be used to fix, together with the 3H binding energy, the strengths of
the contact terms of the N2LO 3NF. We found that the N2LO 3NF provides effects
comparable to those of (semi)phenomenological 2π -exchange 3NF’s.

70.1 Introduction

The question about the importance of a 3NF is one of the main topics of 3N
system studies. Comparison of theoretical predictions based on high precission
semi(phenomenological) nucleon-nucleon interactions, such as AV18 [1], CDBonn
[2], Nijm1 and Nijm2 [3], with precise Nd elastic scattering and breakup data in
a wide range of incoming nucleon energies enabled to find clear-cut discreppan-
cies between theory and data, thus helping to reveal regions of large 3NF’s effects.
However, the models of 3NF’s used in these studies [4], mainly of the 2π -exchange
character, such as Tucson-Melbourne (TM99) [5] and Urbana IX [6], which are
derived independently from the applied NN interactions, prevented the formulation
of unambiguous conclusions. For numerous observables these two models of 3NF’s
combined with the same NN potential led to different predictions, not supported by
existing data [4], indicating that these models contained only a part of contributions
to a 3N interaction.

With the advent of chiral perturbation theory (ChPT) approach it became possible
to construct consistent two- and many-body nuclear forces which incorporate all
possible contributions up to a given order of chiral expansion. High precision NN
interactions up to the fifths order of chiral expansion (N4LO) appeared which very
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precisely describe NN data below the pion production threshold [7, 8]. In these first
versions of chiral forces a nonlocal regularization inmomentum space was applied to
remove large momenta contributions by employing a multiplicative factor e−(p2/Λ2)n

with some value of a cut-off regulator parameter Λ [7, 8]. Such a regularization led,
for small values ofΛ, to a distortion of long-range behaviour of the NN potential and
to problems when applying these forces to Nd elastic scattering at higher energies.
To avoid such unwanted behaviour a new method of regularization was proposed in
[9, 10]. It made use of a local regularization of the pion exchange contributions. The
resulting semilocal coordinate-space regularized (SCS) chiral potentials contain the
long-range part of the NN force predicted in a parameter-free way. First applications
of these NN potentials to elastic Nd scattering and to the nucleon induced deuteron
breakup reaction were described in [11].

Starting fromN2LO order of the chiral expansion a 3NF appears in a 3NHamilto-
nian [12]. Before applying such a Hamiltonian to structure and reaction calculations
one must fix two free parameters of this N2LO 3NF, namely the strength parameters
cD and cE of the leading 1π -contact and the three-nucleon-contact terms, respec-
tively. In Sect. 70.2 we shortly describe how we fixed cD and cE parameters and in
Sect. 70.3 present some results for the Nd elastic scattering and complete deuteron
breakup reaction, obtained when applying that N2LO 3NF. We summarize and con-
clude in Sect. 70.4.

70.2 Theoretical Formalism and Determination of cD
and cE

Neutron-deuteron (nd) scattering with nucleons interacting through a two- and three-
body interaction is described in terms of a breakup operator T satisfying the Faddeev-
type integral equation [13, 14]. The amplitude for elastic scattering leading to the
two-body final state and for the breakup reaction with a final state of three free
nucleons can be obtained from that operator [13, 14]. We refer the reader to [13,
14] for a general overview of 3N scattering and for more details on the practical
implementation of the Faddeev equations. We solved 3N Faddeev equations taking
as a NN interaction the semi-locally regularized N4LO chiral potential of [9, 10] with
the regulator R = 0.9 fm alone or combined with the chiral N2LO 3NF, regularized
in the same SCS scheme [12, 15].

The nuclear Hamiltonian with a 3NF at N2LO is fixed by specifying the values of
LECs cD and cE , which parametrize the strengths of the leading 1π -contact and the
three-nucleon-contact terms [12]. Tofix themweused the experimental triton binding
energy E(3H ) to first determine the dependence of E(3H ) on cE for a given value of
cD. The requirement to reproduce the experimental value of the triton binding energy
yields a set of pairs (cD, cE). These values (cD, cE) were then used in the calculations
of the elastic Nd scattering cross section, what allowed us to find out the (cD, cE)
pair describing both observables simultaneously.
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The low-energy elastic nd and proton-deuteron (pd) scattering cross section is an
observable which is well described by standard theory without the inclusion of 3NF’s
[4]. It turns out that when increasing the incoming nucleon laboratory energy, start-
ing from ≈ 60 MeV, clear discrepancies between theory and data develop and pure
NN potential predicitions underestimate the data in the region of the cross section
minimum up to backward scattering angles [4]. Therefore it seems reasonable that
the cross section in that region of angles could be used to determine the constants cD
and cE . Since at larger energies higher orders of chiral expansion become important
and a 3NF gets additional contributions, the procedure should be applied at ener-
gies where the disrepancies start to appear. Therefore we used precise pd data sets
taken by different groups, one at E = 65MeV from [16] and second at E = 70 MeV
from [17], and performed χ2 fits of theory to data using (cD, cE) pairs which repro-
duce 3H binding energy. We have got for pairs of (cD, cE) the following values and
errors: (5.79 ± 0.33,−1.00 ± 0.14) at 65 MeV and (6.09 ± 0.23,−1.13 ± 0.10) at
70 MeV. The values of cD and cE found at 65 MeV and 70 MeV are compatible and
agree within their error bars.

70.3 Results

The good description of the Nd elastic scattering cross section data up to about
130 MeV when the N2LO 3NF is included in calculations resembles effects found
with standard 2N and 3N forces [4]. Namely adding the TM99 or Urbana IX 3NF
to standard NN potentials removed in that energy region discrepancies between
theory based on NN potentials only and the data, as exemplified in the left part
of Fig. 70.1 for elastic Nd scattering at 135 MeV. At larger energies it turned out,
however, that the inclusion of the 2π -exchange 3N force models is unable to explain
growing discrepancies between data and theory [4]. A similar pattern of agreement
and discrepancies is found when instead of standard interactions chiral SCS forces
are used, as shown in the right part of Fig. 70.1 in case of the agreement to data
when the N2LO 3NF is included in the calculations. The astonishing similarity of
standard and chiral predictions can be traced back to the fact that the basicmechanism
underlying these 3NF’s is the 2π -exchange mechanism.

With increasing incoming nucleon energy large discrepnacies between pure 2N
theory and data start to develop also for numerous spin observables. Again the pattern
of discrepancies found at these energies with chiral forces qualitatively resembles
that obtained with standard interactions [4]. It is the region of higher energies, where
higher chiral order terms start to play an important role and short-range components
of a 3N force contribute, which presents a challenge for future applications of a
N3LO 3NF [18, 19].

Among numerous kinematically complete configurations of the Nd breakup reac-
tion the so-called symmetric space star (SST) configuration has attracted special
attention. The cross section for that geometry is very stable with respect to the
underlying dynamics and is dominated by the S-waves [22].
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Fig. 70.1 (Color online) The nd elastic scattering cross section at the incoming neutron laboratory
energyE = 135MeV. In the left part predictions of (semi-)phenomenological NN potentials (AV18,
CDBonn,Nijm1andNijm2) are shownbydark (red) band.Results obtainedwhen they are combined
with the TM99 3NF are shown by a light (cyan) band. The dashed (black) line is the result of
combination of the AV18 potential with the Urbana IX 3NF. In the right part the solid (red) line
is prediction of the N4LO SCS NN potential with the regulator R = 0.9 fm. Combining it with
the N2LO 3NF with four different strengths (cD, cE) of the contact terms, which reproduce 3H
binding energy, leads to results shown by different lines: solid (blue) (4.0,−0.270), dotted (red)
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0 5 10
S [MeV]

0.0

0.5

1.0

1.5

d5 σ/
dS

dΩ
1dΩ

2 [
m

b/
M

eV
*s

r2 ]

E=13 MeV

θ1=θ2=50.5ο φ12=120ο
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In Fig. 70.2, we compare predictions of the N4LO SCS chiral potential to the SST
cross section data at the incoming nucleon lab. energy E = 13 MeV. The nd and
pd breakup data are far away from the theory. The pd data set shown in Fig. 70.2 is
supported by other SST pd breakup measurements [23]. The inclusion of the chiral
N2LO 3NF does not affect the results for the SST configuration cross section at this
energy at all, leaving a big discrepancy to both nd and pd data. The calculations of
the pd breakup with inclusion of the pp Coulomb force [24] revealed only very small
Coulomb force effects for this configuration,whatmakes the discrepancy between the
theory and pd data puzzling. Since at that energy the SST configuration is practically
dominated by the S-wave NN force components, the big difference between pd and
nd data seems to indicate significant charge-symmetry breaking in the 1S0 NN partial
wave. We anticipate difficulties with explaining the large difference between the nd
and pd data sets by the inclusion of a 3NFwithout introducing large charge symmetry
breaking interactions.

70.4 Summary and Conclusions

We applied the semilocal coordinate-space regularized N4LO chiral NN potential
combined with the N2LO 3NF, regularized in the same way, to reactions in 3N
continuum. We checked that using elastic Nd scattering cross section data, as an
additional (to the 3H binding energy) 3N observable, provides an efficient tool to fix
the strengths parameters cD and cE of the N2LO 3NF contact terms. The application
of this tool should be restricted to the region of the incoming nucleon energies where
3NF effects start to appear in the cross section.

The application of that particular combination of NN and 3N forces provides
at higher energies effects for the elastic scattering cross section which are very
similar to those obtained with standard interactions. The N2LO 3NF is incapable
of explaining discrepancies between data and theory for 13 MeV SST complete
breakup configuration. At higher energies and for numerous elastic scattering spin
observables a complex pattern of discrepancies to data was found, similar to that
revealed in previous investigations for standard NN and 3N forces. This points to
the growing importance of short-range components of a 3NF at higher energies
and calls for an application of the N3LO 3NF, in which numerous new components
contribute [18, 19].
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Chapter 71
Momentum Distributions in 3He with
Chiral Potentials

L. E. Marcucci, F. Sammarruca, M. Viviani and R. Machleidt

Abstract We present predictions for the np momentum distributions in 3He,
obtained by applying the most recent high-quality chiral nucleon-nucleon poten-
tials up to fifth order in the chiral expansion, together with the leading chiral three-
nucleon force. Three-nucleon interaction contributions as well as chiral convergence
are briefly discussed.

71.1 Introduction

The study of high-momentum distributions in nuclei can provide information about
the short-range few-nucleon dynamics, and, ultimately, about the nature of the strong
force which governs it. In fact, the picture of a nucleus as a dilute system, in which
hard objects (the nucleons) are collected in a mean field, has strong limitations: the
wave functions of nucleons in a medium strongly overlap, giving rise to the so-called
short-range correlations (SRCs). Momentum distributions and SRCs in 3He are the
subject of this contribution. In particular, we focus on np momentum distributions,
defined as

nnp(krel , Kc.m.) =
∫

dk̂rel

∫
dK̂c.m.Ψ

†(krel ,Kc.m.)PnpΨ (krel ,Kc.m.) (71.1)

nnp(krel) = 4π
∫ K+

c.m.

0
K 2

c.m. dKc.m.n
np(krel , Kc.m.) , (71.2)
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where krel and Kc.m. are the np relative and center-of-mass momenta, Pnp is the pro-
jection operator on the np pair, and Ψ (krel ,Kc.m.) is the 3He nuclear wave function.
This is calculated using the Hyperspherical Harmonics (HH) method, as explained
in [1] (see also [2] and references therein). Note that the HH wave functions can be
written in coordinate- as well as in momentum-space [2], and therefore there is no
restriction on the choice of the nuclear potential model, which can be either local or
non-local. In (71.2) the upper limit of the integral K+

c.m. is taken to be 1.5 fm
−1, since

a highly correlated np pair is expected to have small center-of-mass momentum [3,
4]. Another quantity of interest is the so-called back-to-back npmomentum distribu-
tion, i.e. nnp(krel , Kc.m. = 0). We will consider this quantity as well. Due to lack of
space, we will not discuss the results for the np momentum distributions integrated
over krel . They can be found in [1].

This contribution is organized as follows: in Sect. 71.2 we present the results for
the above mentioned quantities obtained with the most recent chiral two-nucleon
potentials of [5], without and with the inclusion of the corresponding three-nucleon
interactions, as constructed in [1]. Note that the np momentum distributions have
been first studied in [1] using the older Argonne v18 (AV18) [6] purely phenomeno-
logical potential model, without or with three-nucleon interaction, i.e. the Urbana IX
(UIX) [7] model. This has allowed us to compare with previous results obtained by
other groups [3, 4, 8], finding a good agreement. Furthermore, using also the meson-
theoretic charge dependent Bonn (CDBonn) potential model [9], augmented or not
by an appropriate three-nucleon force, namely the Tucson-Melbourne (TM) [10]
model, it has been found in [1] that (i) the three-nucleon interaction contributions
are very small; (ii) the model dependence is very large, as it was already found in
[11] for the case of the deuteron. This model dependence can be traced back to local-
ity vs. non-locality of the adopted models, especially in their tensor components,
and, together with the small contributions of the three-nucleon interactions, will be
a recurrent feature of this study. Finally, in Sect. 71.3 we summarize our results and
present our conclusions, with an outlook on future work.

71.2 Results

We present results for the np momentum distributions nnp(krel , Kc.m. = 0) and
nnp(krel), obtained using the most recent chiral two-nucleon potentials of [5], from
leading (LO) to fifth chiral order (N4LO), with three different values of the cutoffΛ,
i.e. 450, 500 and 550 MeV. In addition, we include the chiral three-nucleon forces,
as constructed in [1], although we expect and indeed find them to give extremely
small contributions.

The np back-to-back momentum distributions, nnp(krel , Kc.m. = 0), calculated
with the two-nucleon chiral potentials of [5] for a fixed cutoff value (Λ = 500MeV),
at different chiral orders is shown in Fig. 71.1. By inspection of the figure we can
conclude that the LO results at small krel values are much smaller than those obtained
at the other orders. This suggests that the asymptotic part of the wave function at LO
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Fig. 71.1 The np back-to-back momentum distributions nnp(krel , Kc.m. = 0), calculated using
the two-nucleon chiral potentials of [5], with Λ = 500 MeV. Adapted from [1]

is significantly different than at the higher orders. Furthermore, the N3LO and N4LO
curves are very similar up to krel � 2.2 fm−1, indicating satisfactory order-by-order
convergence at least in the region where the distributions still have non-negligible
size. Similar features can be found for the other values of the cutoff Λ.

The np momentum distributions nnp(krel) calculated with and without three-
nucleon interaction, at different chiral order and for different values of the cutoff
Λ, are shown in Fig. 71.2. By inspection of the figure we can conclude that we
have essentially no cutoff dependence below krel � 2.2 − 2.5 fm−1, and increasingly
strong cutoff dependence above it. Furthermore, the contributions of three-nucleon
interaction are visible only for krel ≥ 3.0 − 3.5 fm−1. Note, however, that above
krel � 2.5 fm−1 all momentum distributions are so small that the differences are of
no practical relevance.

71.3 Summary and Conclusions

We have presented predictions for the np momentum distributions in 3He, obtained
using state-of-the-art chiral two-nucleon potentials (with or without the leading chi-
ral three-nucleon force). A more comprehensive study of these quantities and related
ones can be found in [1]. Here we only remark that we have found the contribution
from three-nucleon interactions to be essentially negligible, whereas dependence on
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Fig. 71.2 (Color online) The np momentum distributions nnp(krel ) calculated using only two-
nucleon (solid lines) and two- and three-nucleon (dashed lines) chiral interactions, at different
chiral order and for three values of the cutoff Λ = 450, 500, 550 MeV. Adapted from [1]

the nucleon-nucleon potentialmodel is very strong, especially in the high-momentum
tail of the distributions. This must be taken into account when extracting SRCs
“empirical” information from high momentum transfer electron scattering experi-
ments (see for instance [12]).
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Chapter 72
Reaction Mechanisms in
Deuteron-Proton Elastic Scattering
at Intermediate Energies

Nadezhda Ladygina

Abstract Deuteron-proton elastic scattering is considered in the relativisticmultiple
scattering expansion framework. The four reaction mechanisms are included into
consideration: one-nucleon exchange, single scattering, double scattering, and the
term corresponding to the delta excitation in the intermediate state. The theoretical
results are compared with the experimental data.

72.1 Introduction

Elastic deuteron-proton scattering is the simplest example of the hadron nucleus
collision. Nowadays, a significant amount of the experimental data has been accu-
mulated in awide energy range bothwith unpolarised and polarised beams. However,
we do not have any theory to describe the data for the energies above a few hundred
MeV, especially, at backward scattering angles.

A good theoretical description of the deuteron-nucleon process was obtained at
low energies, where the multiple scattering formalism based on the solution of the
Faddeev equations, has been applied to this problem [1]. However, at the nucleon
energies above 130 MeV there is some discrepancy between the experimental data
and theoretical predictions in the minimum of the differential cross section [2].

The Glauber theory taking into account both single and double nucleon-nucleon
interaction successfully describes the differential cross sections of the dp-elastic
scattering at small angles [3, 4]. But it does not properly work at larger scattering
angles.

We have previously proposed to use a model based on the multiple expansion of
the reaction amplitude in powers of the nucleon-nucleon t-matrix [5–7]. We consider
a multiple-scattering series up to the second-order terms of the NN t-matrix. Also
Δ-isobar excitation in the intermediate state is included into consideration.
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72.2 General Formalism

According to the three-body collision theory, the amplitude of the deuteron-proton
elastic scattering J is defined by the matrix element of the transition operator U11:

Udp→dp = δ(Ed + Ep − E ′
d − E ′

p)J =
< 1(23)|[1 − P12 − P13]U11|1(23) > . (72.1)

Here, the state |1(23) > corresponds to the configuration, when nucleons 2 and 3
form the deuteron state and nucleon 1 is free. The permutation operators for two
nucleons Pi j reflects the fact that the initial and final states are antisymmetric due to
the two particles exchange.

The transition operators for rearrangement scattering are defined by the Alt–
Grassberger–Sandhas equations:

U11 = t2g0U21 + t3g0U31,

U21 = g−1
0 + t1g0U11 + t3g0U31, (72.2)

U31 = g−1
0 + t1g0U11 + t2g0U21,

where t1 = t (2, 3), etc., is the t-matrix of the two-nucleon interaction and g0 is the
free three-particle propagator. The indices i j for the transition operators Ui j denote
free particles i and j in the final and initial states, respectively.

Iterating these equations up to the ti -second-order terms, we can present the reac-
tion amplitude as a sum of the four contributions:

Jdp→dp = JONE + JSS + JDS + JΔ, (72.3)

one-nucleon exchange, single scattering, double scattering, and rescattering with Δ

-excitation in the intermediate state.

72.3 Discussion and Conclusion

The results of the calculations for the differential cross sections at deuteron ener-
gies of 880 and 1200 MeV are presented in Figs. 72.1 and 72.2. Three different
theoretical curves in the figures correspond to calculations taking into account only
one-nucleon-exchange (ONE) and single-scattering (SS) terms (green), ONE+SS
and double-scattering (DS) terms (blue), and ONE+SS+DS and Δ- isobar excita-
tion in an intermediate state (red). All these curves practically coincide up to the
scattering angles of about 60◦. It shows that the main contribution in this angular
range gives SS term.We can get a good description of the differential cross sections at
Θ∗ ≤ 60◦ taking into account onlyONE+SSmechanisms. But at larger angles differ-
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Fig. 72.1 The differential cross section at the deuteron kinetic energy of 880 MeV as a function of
the c.m. scattering angle. The data are taken from [8] (•), and [10] (�)

*Θ
0 20 40 60 80 100 120 140 160 180

, m
b/

sr
Ω

/d σd

3−10

2−10

1−10

1

10

210

=1200 MeVdT ΔONE+SS+DS+
ONE+SS+DS
ONE+SS

Fig. 72.2 The differential cross section at the deuteron kinetic energy of 1200 MeV as a function
of the c.m. scattering angle. The data are taken from [9] (•), and [10] (◦)

ence between the experimental data and ONE+SS-curve is significant and increases
with the energy. Adding DS-term lets improve the agreement between the data and
theory in the angular range about 60◦–140◦. Inclusion of Δ- isobar term helps to
describe a rise of the differential cross sections at backward angles.

The model gives rather good agreement between the experimental data and the-
oretical predictions at energies where Faddeev calculations do not work. However,
the data in some angular ranges cannot be properly described in the framework with-
out further improvement of the model. The expansion of knowledge about nucleon-
nucleon interactions is very important for it, especially for higher energies. The
approach deals with reaction amplitudes what gives the opportunity to get both dif-
ferential cross sections and polarisation observables.
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Chapter 73
Relativistic Faddeev Calculation
for Nucleon-Deuteron Scattering
with the Kharkov Potential

Hiroyuki Kamada, Oleksandr Shebeko, Adam Arslanaliev, Henryk Witała,
Jacek Golak, Roman Skibiński, Margarita Stepanova and Sergey Yakovlev

Abstract The Kharkov potential is a recent field theoretical model of the nucleon-
nucleon (NN) interaction that has been built up in the framework of the instant form
of relativistic dynamics starting with the total Hamiltonian of interacting meson and
nucleon fields and using the method of unitary clothing transformations (UCTs). It
is the first time that the relativistic UCT potential is used in the Faddeev equation to
study nucleon-deuteron (Nd) elastic scattering. Our results of the relativistic Faddeev
calculations with UCT describe elastic observables well up to 65 MeV, just like the
corresponding nonrelativistic predictions. The theoretical predictions based on the
Kharkov and CDBonn potentials are compared with recent precise experimental data
(iT11, T20, T21 and T22) taken at the deuteron beam of energy 186.6 MeV/nucleon.

73.1 Introduction

Relativity in the three-nucleon (3N) systemhas been studied [1] under theBakamjian-
Thomas frame,whichbelongs to the relativistic quantummechanics and is dictated by
the Poincaré algebra. Since a relativistic NN potential is not easily provided, we need
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some schemes which would allow us to transform a nonrelativistic potential into the
corresponding relativistic one. Such schemes are required to fulfill the condition that
the generated relativistic potential yields the sameobservables in theNNsystemas the
original nonrelativistic potential. There are two schemes that satisfy that condition.
One has been proposed by Coester et al. [2] and we call it the CPS scheme. It requires
a solution of a nonlinear integral equation, which can be achieved numerically by
an iteration method [3]. The other scheme is a momentum scaling method (MSM)
[4]. It is our aim to compare the original nonrelativistic and the modified relativistic
potential predictions for the 3N system. In the case of the 3H binding energy and
the elastic Nd scattering, we have already demonstrated such a comparison [5–7] by
using the CPS and MSM schemes. In view of higher energy measurements (see e.g.
[8]), relativistic treatment of the 3N dynamics has become even more topical.

The important feature of the Kharkov model [9] is that it provides directly the
relativistic NN potential, so neither CPS nor MSM procedure is required. The cal-
culations of the triton binding energy with the Kharkov potential were reported in
[10]. In this context we present the Nd elastic scattering observables. Previous rela-
tivistic calculations [6, 7] employing the CDBonn potential [11] showed only small
relativistic effects for elastic scattering cross sections and practically no effects for
spin observables at energies below 100 MeV, however, clear effects were found for
the nucleon-induced deuteron breakup [12] reaction.

73.2 Kharkov Potential

At the beginning the original Hamiltonian H can be expressed through the so-
called bare creation (annihilation) operators a†(a), b†(b) and d†(d), respectively,
for bosons, fermions and antifermions. Since in such a bare-particles representation
(BPR) the interaction part of H is given by primary Yukawa-type trilinear couplings
between π -, η-, ρ-, ω-, σ -mesons and nucleons (antinucleons), the Hamiltonian has
nonzero matrix elements between the states of different sectors in Fock space (e.g.,
between the bare vacuum state |0〉 and the bare one-meson states a†|0〉). Therefore,
the sectors πN, NN , NNN etc. are not separated from each other (see [9] and
references therein).

By introducing the so-called “clothed” particle operators ac ≡ W †aW, bc ≡
W †bW and etc. with a unitary operator W , one can express our Hamiltonian in
terms of these new creation and annihilation operators. Algebraically, such a tran-
sition is given via the similarity transformation H ≡ H(α) = WH(αc)W † where a
symbol α (αc) denotes the set of all bare particle creation and annihilation operators
(their clothed particle counterparts). Being fulfilled some requirements imposed upon
the clothing transformation W the UCT method allows one to rewrite H(α) in the
form, H(α) = KF (αc) + KI (αc) ≡ K (αc). The free part of the new decomposition
is determined by KF (αc) = ∫

dk ωka†c (k)ac(k) + ∫
dp Ep

∑

μ

[
b†c(p, μ)bc(p, μ)+

d†
c (p, μ)dc(p, μ)

]
, while KI contains only interactions responsible for physical
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processes, these quasipotentials between the clothed particles, e.g., K (2)
I (αc) =

K (NN → NN ) + K (N̄ N̄ → N̄ N̄ ) + K (N N̄ → N N̄ ) + K (bN → N ) + K (bN̄
→ bN̄ ) + K (bb′ → N N̄ ) + K (N N̄ → bb′). One of such interactions known as
Kharkov potential is generated by the nucleon - nucleon interaction operator K (NN
→ NN ) ∼ b†cb

†
cbcbc. The meson propagators and the cutoff functions in the poten-

tial depend on the Lorentz invariants constructed of four-momentum vectors for the
closed mesons and nucleons, i.e., on their mass shells.

The Kharkov potential enters the relativistic Lippmann-Schwinger equation.
Therefore, the boosted Kharkov potential is easily converted by our method [3].

73.3 Relativistic Calculations of the Nd Scattering at
E = 186.6 MeV/nucleon

When the energy of the incident particle exceeds approximately 65 MeV/nucleon, it
gradually becomes impossible to explain the differential cross section at backward
scattering angles only with the two-body forces. The Fujita-Miyazawa (FM) type
of the three-nucleon (3NF), for example the Tucson-Melbourne 3NF or Urbana IX
3NF, have been included to explain the discrepancy. However, for energies above
200 MeV it is again not realizable to describe experimental data, even including
3NF of the FM type. There are some possible ways to solve this problem. One of
them is to incorporate additional structures in 3NF and this path is being pursued
mainly in the framework of chiral effective field theory, now at higher orders of
the chiral expansion [13, 14]. The other possibility, discussed here, is solving the
relativistic Faddeev equation. Such solutions were obtained in [6, 7], starting from
the nonrelativistic CDBonn and Argonne V18 potentials and helped reduce slightly
the discrepancies between theory and data.

It is, however, plausible that the CDBonn, Argonne V18 and other realistic forces
might be not appropriate starting points for relativistic calculations, even if the SCP
or MSM transformations are applied to them. That is why we use Kharkov potential
which can be directly used in the relativistic LS equation. We compare our theo-
retical predictions with the results of a recent precise measurement of all deuteron
analyzing powers for elastic dp scattering with polarized deuteron beam of energy
186.6 MeV/nucleon, performed at the RIKEN RI Beam Factory [15]. In Fig. 73.1
the measured polarization observables (iT11, T20, T21 and T22) are compared with
our theoretical predictions based on the Kharkov and the CDBonn potentials. Both
theoretical predictions describe the deuteron vector polarization iT11 and one of the
deuteron tensor analyzing powers T21 rather well. In contrast, predictions for T20 and
T22 strongly differ from the data [15].
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Fig. 73.1 Polarization observables in the elastic Nd scattering: iT11 (a), T20 (b), T21 (c) and T22
(d), at E = 186.6MeV/nucleon. The solid (long-dashed) line represents the theoretical predictions
obtained with the Kharkov UCT1 [9] (CDBonn [11]) potential. The additional short-dashed line is
used for the nonrelativistic results obtained with the CDBonn potential. The experimental data are
from [15]

73.4 Remark and Outlook

The Kharkov potential can be employed directly in the relativistic LS equation and
its Lorentz-boosted version can be later generated, which makes the application of
this NN potential in the relativistic Faddeev equation more straightforward. The
calculation of the elastic Nd scattering polarization observables with the Kharkov
and CDBonn potentials lead to quite similar results. At the considered energy a clear
discrepancy between the calculations and the data [15] persists. As shown in [15] for
T22 the difference can be only partially reduced by using 3NF. In the future we plan
to use a 3NF of the FM type in the calculations with the Kharkov potential. Also a
new version [16] of the Kharkov potential will be prepared based on recent NN data.
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Chapter 74
Study of Three-Nucleon Dynamics in the
dp Breakup Collisions Using the WASA
Detector

B. Kłos, I. Ciepał, A. Kozela, St. Kistryn, A. Magiera, W. Parol,
I. Skwira-Chalot and E. Stephan

Abstract An experiment to investigate the 1H(d, pp)n breakup reaction using
a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector has been
performed at the Cooler Synchrotron COSY-Jülich. As a first step the data collected
at the beam energy of 340MeV are analysed, with a focus on the proton-proton
coincidences registered in the Forward Detector. The differential cross section is
determined for 189 configurations on a dense angular grid defined by the emission
angles of the two outgoing protons: two polar angles θ1 and θ2 (in the range between
5◦ and 15◦ with the step size of 2◦) and the relative azimuthal angle ϕ12 (in the range
from 20◦ to 180◦, with the step size of 20◦).The cross section data are compared to
theoretical predictions based on the state-of-the-art nucleon-nucleon potentials, com-
bined with three-nucleon force, Coulomb interaction or carried out in a relativistic
regime.

74.1 Introduction

Differential cross section for the 1H(d,pp)n breakup reaction at intermediate energies
is sensitive to details of nuclear interactions, in particular to the so-called three
nucleon force (3NF). The modern theoretical calculations include 3NF [1] but also
the long range Coulomb interactions [2] or, separately, the relativistic effects [3].
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All these ingredients of the dynamics influence significantly the results of calculations
for the breakup cross section, in particular at certain parts of the phase space. With
the lack of complete calculations performed in relativistic regime, including 3NF
and Coulomb interaction, there is a need of the systematic (in the beam energy) data
set collected in a large phase space. This may allow us to trace the effects in the
kinematic regions where they play locally very important role. It was a motivation to
perform newmeasurement of the 1H(d, pp)n breakup cross section using a deuteron
beam of 300, 340, 380 and 400 MeV in order to check the theoretical predictions
and to unambiguously fix a relevance of the 3NF.

74.2 Data Analysis

The experiment studying the 1H(d, pp)n breakup reaction at beam energies 300, 340,
380 and 400 MeV has been performed at the Cooler Synchrotron COSY-Jülich with
the WASA (Wide Angle Shower Apparatus) detector [4, 5]. The detection system
consists of four main components: Central Detector (CD), Forward Detector (FD), a
pellet target device and a scattering chamber. The 4π detector facilityWASA allowed
to study production and decays of light mesons in proton and deuteron reactions
[6–8].

The data analysis is focused on the proton-proton coincidences registered in the
Forward Detector with the aim to determine the differential cross section on dense
angular grid of kinematical configurations defined by the emission angles of the two
outgoing protons: two polar angles θ1 and θ2 (in the range between 4◦ and 18◦) and
the relative azimuthal angle φ12. The first step of data analysis is the identification
of interesting events, i.e. proton pairs from the breakup process and deuterons from
the elastic scattering channel registered in the Forward Detector. The particle iden-
tification is based on the ΔE-E technique. Energy calibration of FD is based on
measurements of dp elastic scattering at energies corresponding to minimum ioniza-
tion and on Monte Carlo simulations based on the Geant package, as described in
detail in [9].

The missing mass spectrum is a tool to control the proton energy calibration and
the procedure of selection of proton-proton coincidences. The missing mass of the
neutron is calculated according to the formula (in which c = 1):

MM =
√

(Ein − Ep1 − Ep2)
2 − (Pin − Pp1 − Pp2)

2, (74.1)

where Ein and Pin are the sum of energy and momenta of the incident deuteron and
target proton and Epi andPpi (i = 1, 2) are the total energies andmomenta of the two
outgoing protons registered in coincidence. Figure 74.1 presents the missing mass
spectrum, built for all pairs of coincident protons registered in FD. The tail of the
distribution at energies exceeding a neutron mass is mainly due to hadronic interac-
tions of the outgoing protons. Contribution of accidental coincidences is expected to



74 Study of Three-Nucleon Dynamics in the dp Breakup Collisions … 457

Fig. 74.1 Missing mass
reconstructed from momenta
of two outgoing protons
detected in coincidence.
Clearly, the peak
corresponding to the neutron
mass dominates. Red line
represents Gaussian fit with
mean value of 0.94GeV. The
right tail of the distribution
originates from proton
energy loss due to hadronic
interactions and from
accidental coincidences

be low. The data are compared to Monte Carlo simulations for the same phase space
region. Obtained agreement indicates correct simulation of the hadronic interactions
and validates the efficiency corrections calculated on the basis of simulations.

To obtain differential cross section, the luminosity is determined on the basis of
the number of the elastically-scattered deuterons at a given θ angle and the known
cross section for elastic scattering at the studied energy [10].

The normalized experimental breakup event rate obtained for the chosen kine-
matical configurations at the energy of 340MeV have been compared to calculations
performed by two theory groups (H. Witała et al., A. Deltuva) with the state-of-
the-art 2N potentials, combined with 3NF, Coulomb interaction or carried out in a
relativistic regime. The results indicate an interplay of 3NF effects, Coulomb force
and relativistic effects [11].

Quantitative analysis of the description of the cross section data (σexp) provided
by various calculations (σteor ) is performed in terms of χ2-like variables. Due to
dominating contribution of systematic uncertainties, the following definition has
been applied:

χ2 = 1

nd.o. f.

∑ (σteor (ξ) − σexp(ξ))2

(Δσst (ξ) + Δσsys(ξ))2
, (74.2)

where ξ represents a set of kinematic variables ξ=(θ1, θ2, ϕ12,S), Δσst (ξ) and
Δσsys(ξ) denote statistical and systematic uncertainties, respectively, summing goes
over certain set of kinematic variables and nd.o. f. is a number of data points included
in this sum. So defined quantity has no precise statistical meaning, however, it is
still a measure of description provided by different models. When its value reaches
roughly 2 or more, it can be treated as a signal of inconsistency between the model
predictions and the measured data.

The analysis of data sorted in function of combination of polar angles θ1, θ2
(Fig. 74.2) provides examples of the Coulomb force dominance in the FSI region,
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Fig. 74.2 Quality of description of the differential cross section for the breakup reaction at
170MeV/nucleon beam energy at forward angles given by various models (listed in the legend),
presented as χ2 per degree of freedom calculated for each set of data characterised with the given
combination of proton polar angles. The results are ordered according to difference of polar angles
θ12 = θ1 − θ2; in each panel results for one value of θ12 are shown

characterised by the lowest difference of polar angles. Dominant influence of
Coulomb interaction at forward proton emission angles (in laboratory system of
the 1H(d, pp)n reaction) is in agreement with studies at other beam energies, see for
example [12].

74.3 Summary and Outlook

The analysis is continued with the aim to determine the differential cross sections
for the the deuteron breakup process in the d+p system for a large set of kinematic
configurations covering a significant part of the reaction phase space. It will be also
extended to data sets collected at 300, 380 and 400 MeV.The data will be compared
to the theoretical predictions for three nucleon systems. The calculations including
relativistic effects with 3NFs and studies of Coulomb effects are very important to
draw definitive conclusions.
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Chapter 75
Few Nucleon Experiments
in the Hadronic Weak Interaction

Jason Fry

Abstract TheHadronicWeak Interaction (HWI) is of great interest as it involves the
mixing between weak and strong interaction between quarks. To describe the HWI,
meson exchange and effectivefield theories are utilized.Theoretical and experimental
study has remained steadfast since the 1980s, yet the HWI is not constrained. We
present an introduction to the theory and recent results from few-body experiments
needed to further constrain the HWI.

75.1 Introduction

In General, the weak interaction can be separated into three sectors: leptonic, semi-
leptonic, and hadronic weak interactions (HWI). The theoretical development in
the leptonic and semi-leptonic sectors has been of great study and the underlying
mechanisms are mostly understood. In contrast, the HWI between nucleons is not
as well understood. The weak interaction between quarks and leptons is understood,
however the HWI competes directly with the strong interaction at the quark level.
Since the range of theweak interaction is 100 times smaller than the strong interaction
and the strong interaction at short distances is repulsive, HWI dynamics must involve
both the quark-quark weak interaction and the low energy, non-perturbative limit of
QCD. Thus, we think of the HWI as an “inside out” probe of QCD [1].

At low energies, the HWI between quarks takes on the form of a Hamiltonian in
terms of the charged JW

μ and neutral J Z
μ weak currents involving only the lightest u,

d, and s quarks. The effective strangeness conserving Hamiltonian is [2]

HΔS=0
W = GF

2
√
2
[cos2θW JW,0†

μ JW,0μ + sin2θW JW,1†
μ JW,1μ + J Z†

μ J Zμ] (75.1)
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where θW is the weak mixing angle and GF is the fermi constant. The first term
consists of ΔI = 0 and 2 contributions from charged currents, the second term
consists of suppressed ΔI = 1 contributions from charged currents, and the last term
consists of is ΔI = 1 contributions sensitive to weak neutral currents. The latter fact
adds additional motivation to study the ΔI = 1 channel.

Themixing of the strong andweak amplitudes between nucleons produces a small
parity-violating (PV) signal. The natural scale of this PV interaction is about ∼10−7,
but some enhancements in heavy nuclei due to small nuclear energy spacings or
resonances can amplify this signal by five orders of magnitude. While heavy nuclei
experiments offer large PV admixtures from small level spacings, the theoretical
interpretations are not as clean as few nucleon experiments. Few nucleon experi-
ments have large level spacings and small PV asymmetries, which make these exper-
iments difficult, but can provide clean or exact theoretical interpretations. Section
75.3 discusses recent few-body experiments which hope to determine or constrain
the different isospin contributions to the HWI.

75.2 Theoretical Landscape

The two main theoretical approaches used study the HWI include a meson exchange
model devised byDesplanque, Donoghue, andHolstein (DDH) [3] and various effec-
tive field theories (EFT) (see for example, [4–6]). The DDHmodel describes the low
energy HWI with a weak PV potential in terms of meson exchange of π, ρ, and ω
mesons which couple a weak vertex to a strong vertex. This forms seven PV cou-
plings, h1π, h

0,1,1′,2
ρ , and h0,1ω to describe the theory in terms of the meson exchange

(subscript) and isospin (superscript). In the DDH benchmark calculation, a reason-
able range of the couplings was calculated with error ∼100%. Additionally, the
DDH model contains assumptions of short-distance interactions as well as many-
body physics, compounding the theoretical error. Nonetheless, the DDH model has
remained an important framework for analyzing experiments for close to 40 years,
yet the couplings remain unconstrained.

In order to study the HWI without the model dependence of DDH, vigorous
development ofEFTsbegan in the late 1990s and early 2000s.While different theories
were developed using slightly different phenomenology [4–7], EFTs describe the
HWI in terms of five low energy constants (LEC), as there are only five S–P wave
transitions between two nucleons at low energy [8]. These five LECs are to be
determined from experiment. While treatments of EFT with and without pions as
dynamical degrees of freedom have been analyzed in detail [4], pionless EFT has
been successfully used to describe the parity-conserving (PC) processes for few-body
systems [9].

Most recently, the 1/Nc expansion of QCD has been treated in the HWI frame-
work. This technique was applied to the DDH model [10] and pionless EFT [11] for
two-body systems, giving a hierarchy of the couplings or LECs with ∼30% error. It
was shown that at leading order (LO), the two isoscalar terms are not independent,
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but they are related by a factor of 3 [11]. This reduces the number of experiments
needed to describe the HWI for few-body systems. Finally, the phenomenology of
the HWI in the EFT and 1/Nc framework was analyzed to find a new LO basis in
order to predict the LO expectation of future experiments and provide an assessment
of the field [12]. The 1/Nc expansion has been a crucial step forward towards clear-
ing up the landscape in the HWI. Below we outline previous results, recent results,
and future possible experiments.

75.3 Low Energy Experiments

Prior to the few-body results and outlook in Sect. 75.4, only four experiments bear
a reasonable theoretical interpretation and enough precision to place meaningful
constraints in the HWI:

1. The longitudinal analyzing power AL of polarized p + p scattering performed at
13.6, 15, 45, and 221 MeV gives the most precise constraints to date

2. p + α elastic scattering at 46 MeV gives a necessary and different linear combi-
nation of isospin channels

3. The circular polarization Pγ from the 0−0 excited state of 18F to the 1+0 ground
state is sensitive to ΔI = 1 couplings, including the long range pion coupling h1π.
See the results of NPDGamma for a more detailed discussion

4. The angular asymmetry Aγ from the 1/2− excited state to the 1/2+ ground state
in 19F yields a similar and consistent linear combination with p + α

See the referenceswithin [2] formore details. To visualize how these experimental
results fit within the 5-6D coupling space, a 2D projection was created in a basis that
accommodates most observables [2]. In a recent 1/Nc analysis, a new LO hierarchy
and basis as been proposed [12]. Both conclude that more few-body experiments are
still needed to fully explain the phenomenology.

75.4 Recent Results in Few-Body Systems and Outlook

A set of few-body experiments where the theoretical error can be treated properly
and produce further constraints in the HWI include: the spin-angular asymmetry Aγ

of γs in n + p → d + γ, circular polarization Pγ of γs emitted in n + p → d + γ,
the spin-angular asymmetry Aγ of γs in n + d → t + γ, the longitudinal asymmetry
AL in the capture 3He(n,p)3H, neutron spin rotation (NSR) dφ/dz in the p, d, and
α systems, the analyzing power AL of p + d scattering, and circular polarization of
γ + d → n + p. See for example [2, 13] for more details.

A program of studying few-body systems in the HWIwith neutrons is in progress.
At the Spallation Neutron Source (SNS) in Oak Ridge National Lab (ORNL),
the NPDGamma collaboration and the n3He collaboration have measured Aγ in
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n + p → d + γ and AL in 3He(n,p)3H, respectively. The observable Aγ in the
NPDGamma experiment is directly related to the long range pion coupling h1π (and
analogous LEC), similar to 18F. After about 20 years, the systematics and statistics
of the NPDGamma experiment reached its goal uncertainty. The final result from
the experiment is Aγ = −3.0 ± 1.4 ×10−8 [14], yielding a slightly higher value
of h1π than that extracted from 18F. Since the observable Pγ in 18F also contains
contributions from the other ΔI = 1 channels with smaller coefficients, the results
agree if the other two isovector couplings give a slightly higher value than previously
thought. These results also follow the 1/Nc hierarchy. In contrast to NPDGamma,
the n3He observable is most sensitive to theΔI = 0 and 2 channels. The n3He collab-
oration recently announced the final asymmetry of the PV longitudinal asymmetry,
APV = 1.2 ± 1.0 × 10−8 [15]. Together, these results tighten the constraints in the
HWI, but at least one more few-body experiment is needed to completely constrain
the theory.

With the results from NPDGamma and n3He, we are close to a full set of experi-
ments (many- and few-body) needed to completely determine the couplings or LECs
in the HWI. The NSR experiment in 4He is planned at NIST in the near future and the
n + d → t + γ experiment is in development. An n − p spin rotation experiment
is appealing as it is sensitive to LO isoscalar and isotensor channels. Recent lattice
QCD calculations [16] encourage future calculations of the ΔI = 2 channel as it
contains no disconnected quark-loop diagrams.
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Chapter 76
Resonance Production of Two Pions
in the Reaction pd → pdππ at 1–2 GeV

Nurbek Tursunbayev and Yuriy Uzikov

Abstract The recent ANKE@COSY data on the reaction pd → pdππ demonstrate
a peak at invariant mass of the final dππ systemMdππ = 2.38 GeV that corresponds
to the isocalar JP = 3+ dibaryon D03. The data are analyzed within a theoretical
model assuming excitation of theD03 dibaryon via the σ-meson exchange. An upper
limit on the partial width D03 → dσ is estimated from comparison to the data.

Physics of dibaryon resonances in two-nucleon and two-hyperon systems had got
a great attention after observation by the WASA@COSY collaboration of the
DIJ = D03 resonance in the total cross section of the reaction of two-pion production
pn → dπ0π0 [1], here I is the isospin and J is the total angular momentum of the
resonance. The mass of this resonance 2.380 GeV is close to the ΔΔ-threshold, but
its width Γ = 70 MeV is twice lower as compared to the width of the free Δ-isobar.
This narrow width is considered as the most serious indication to quark content of
the observed resonance state [2], although the hadronic structure is also possible
[3, 4]. One possible mechanism of the reaction pn → dπ0π0 suggested in paper [5]
involves sequential excitation and decay of two dibaryon resonances,D03(2380) and
D12(2150). The spin-parity of this resonance JP = 3+ were established by polarized
measurements, however information about its partial widths is non-complete. Here
we are focusing on some production/decay channels of the D03 resonance.
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Fig. 76.1 Left: Mechanism of the D03 resonance excitation via the σ-meson exchange in the
reaction pd → pdππ. Right: Results of our calculations (line) normalized to the data (•) on the
distribution over the invariant mass of two final pionsMππ in the regionMdππ = 2.357–2.380 GeV
[6] (see text)

Recently ANKE@COSY collaboration have measured the differential cross
section of the two-pion production reaction pd → pdππ at proton beam energies
0.8-2.0 GeV and small scattering angles of the final proton and deuteron [6]. The
resonance peaks were observed in distribution over the invariant mass Mdππ of the
final dππ system atMdππ ≈ 2.380 GeV with the averaged width of 115 MeV. Kine-
matics in [6] considerably differs from that in the quasi-free reaction studied in [1].
Since transferred momentum to the deuteron is large in [6], the mechanisms involv-
ing the deuteron form factor strongly underestimate magnitude of the cross section
of this reaction. Thus, in order to describe the observed behaviour of the reaction
pd → pdππ we apply the σ-meson exchange between the proton and deuteron with
excitation of theD03 resonance (Fig. 76.1) which then decays via theD12(2150) res-
onance as D03 → D12π → dππ. This mechanism [5] was considered on qualitative
level in [6].

Within this model the absolute value of the cross section of the reaction pd →
pdππ is proportional to the product of the partial widths Γ

(l=2)
D03→dσ , Γ

(l=1)
D03→D12π

,

Γ
(l=1)
D12→dπ . The experimental data on some partial widths are given in [7]. However,

the partial widths Γ
(l=2)
D03→dσ and Γ

(l=1)
D03→D12π

are not known at present. Here we nor-

malize Γ
(l=1)
D03→D12π

in such a way to reproduce the width ΓD03→dπ0π0 = 10 MeV, and

after that we can find the width Γ
(l=2)
D03→dσ by normalization the calculated differen-

tial cross section to the data [6]. When doing so we obtain Γ
(l=2)
D03→dσ = 8.5 MeV

for theMππ distribution in the intervalsMdππ = 2.357 − 2.380 GeV (Fig. 76.1) and
Mdππ = 2.380 − 2.412 GeV. The same result we obtain using Mdππ distribution at
beam energy 1.1 GeV, however at 1.4 GeV the result is twice smaller.
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The partial widths ΓD12→dπ and ΓD12→NN were estimated in [8] from the analy-
sis of the cross section of the reaction pp → dπ+. The partial width ΓD03→dπ0π0 is
about 10MeV [7].Within the two-stepmodelD03 → D12π → dππ the partial width
ΓD03→dπ0π0 can be estimated as

Γ (D03 → dπ0π0) = (2π)−3(2MD03)
−2

∫ MD03−mπ

md+mπ

(p1k1)
3|f (Mdπ)|2dMdπ,

f (Mdπ) = FD03→D12π FD12→dπΠD12 , (76.1)

where k1 is the D12 momentum in the D03 cms and p1 is the momentum of the final
deuteron in theD12 cms,Mdπ is the mass of the final system in the decayD12 → dπ;
md (mπ) is the mass of the deuteron (pion),MD03 is the invariant mass of the D03. In
(76.1) ΠD12 is the propagator of the D12, and F are vertex factors defined in [5] as

FR→ab = Mab

√
8πΓ l

R→ab(qab)

(qab)2l+1
;Γ l

R→ab(q) = Γ l
R→ab

( q

q0

)2l+1(q20 + λ2
ab

q2 + λ2
ab

)l+1
.

(76.2)

HereMab is the mass of the system a + b, qab is the relative momentum in the a + b
cms, q0 is the same momentum at the resonance point Mab = MR, l is the orbital
momentum in the decay channel R → a + b.

In our calculations we assume P-waves in the decays D03 → D12π, D12 → dπ,
and D-wave in σd → D03, D12 → NN and use the following parameters λπD12 =
0.12 GeV, λdσ = 0.18 GeV and λdπ = 0.25 GeV obtained in [5]. The mass and
width of the σ-meson are 0.5 GeV and 0.55 GeV, respectively. If one put in (76.1)
Γ l=1
D12→dπ = 10 MeV [8], then in order to get agreement with the experimental value

ΓD03→dπ0π0 ≈ 10 MeV one need to put Γ
(l=1)
D03→D12π

= 140 MeV. Formally this result
seems to be in strong contradiction with the total width ΓD03 = 70 MeV. However,
we can show that the partial width ΓD03→πNN calculated with this value for Γ (l=1)

D03→D12π

via the decays D03 → D12π and D12 → NN similarly to (76.1), is ΓD03→πNN = 10
MeV. This result should be compared with the upper limit to the branching fraction
BF(D03 → πNN ) ≤ 9% [9] that means this width is less than 6.3 MeV.1

Conclusion. When normalizing the two-resonance decay width D03 → D12π
0 →

dπ0π0 to the experimental value ΓD03→dπ0π0 , we have got ΓD03→dσ = 8.5 MeV from
further normalization of the calculated cross section to the data on the reaction
pd → pdππ. The D03 partial width for the decay D03 → D12π → NNπ is found to
be ΓD03→πNN = 10 MeV.

1In theπNΔmodel [10] is foundΓD03→πNN = 5.8MeVwhereas in the quarkmodel [11]ΓD03→πNN
is about several hundred keV.
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Chapter 77
Four-Body Continuum with
Three-Nucleon Forces

Michele Viviani, Luca Girlanda, Alejandro Kievsky and Laura E. Marcucci

Abstract Wepresent a study of the effect of three-nucleon forces (3NFs) in p + 3He,
p + 3H andn + 3He scattering at lowenergies. Theused3NF is derived fromeffective
field theory at next-to-next-to-leading order. The four-nucleon scattering observables
are calculated using the Kohn variational principle and the hyperspherical harmonics
technique and the results are compared with available experimental data. We have
found that the effect of introducing this particular 3NF is in general tiny except for
p + 3H scattering below the opening of the n + 3He channel. In such a case, the
effect of 3NF is evident and a clear dependence on the cutoff used to regularize the
high-momentum tail of the interactions is observed. Such a dependence is related to
the presence of a poorly known sharp 0+ resonance, considered to be the first excited
state of 4He.

77.1 Introduction

Four nucleon systems have been object of intense studies in recent years. First of
all, these systems are particularly interesting as a “theoretical laboratory” to test the
validity of our present knowledge of the nucleon-nucleon (NN) and three nucleon
forces (3NFs), in particular after the advent of the theoretical framework of chiral
effective field theory (χEFT) (see, for example, [1–4]). The test of these new poten-
tials in few-nucleon scattering will give very stringent and critical information [5].

Moreover, there is a number of reactions involving four nucleons which are of
extreme importance for astrophysics, energy production, and studies of fundamental
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symmetries. As an example, the reactions d + d → p + 3H and d + d → n + 3He
play a key role in the theory of big-bang nucleosynthesis.

In this work, we present the results of some recent studies of the inclusion of 3NF
in low energy p + 3He, p + 3H and n + 3He scattering observables. TheNNpotential
used in this paper is the N3LO model by Entem and Machleidt [4], an interaction
based on the χEFT approach and derived up to next-to-next-to-next-to-leading order
(N3LO) of chiral perturbation theory (χPT). To this NN force, we have added 3NFs
derived within the same approach at next-to-next-to-leading order (N2LO) [6, 7],
with parameters cD and cE fixed in order to reproduce the three-nucleon binding
energy and the Gamow-Teller (GT) matrix element in the tritium β-decay [8, 9].
Note that the parameters cD and cE have been recently redetermined [9, 10] after
finding and correcting an inconsistency between the 3NF and the axial current used
so far [11].

In this contribution, we present also a study of the dependence of the results on the
cutoff parameter � used to regularize the high-momentum tail of these interactions.
Specifically, we present the results obtained for two values of the cutoff, � = 500
and 600 MeV. The interactions including only the NN force has been correspond-
ingly denoted as N3LO500 and N3LO600, while those including also the 3NF as
N3LO500/N2LO500 and N3LO600/N2LO600, respectively.

The paper is organized as follows. In Sect. 77.2 we report the results of the
theoretical calculations, and compare them with the available experimental data.
Finally, in Sect. 77.3 we present our conclusions.

77.2 Results

The results presented in this contribution have been obtained using the Kohn vari-
ational principle and expanding the wave functions in terms of the hyperspherical
harmonic functions (for more details see, for example, [17]). Benchmark papers [18,
19] have been completed where the results obtained with this method have been
compared with the analogous results obtained in the framework of the Alt-Sandhas-
Grassberger (AGS) equations [20–22], solved in momentum space, and of the
Faddeev-Yakubovsky (FY) equations, solved in configuration space [23, 24]. An
overall good agreement among the results of the three methods has been found.

Someof the results obtained forp + 3He elastic scattering are reported inFig. 77.1.
The results obtained using NN interaction only or including also the 3NF are shown
by bands, whose widths represent the dependence on the cutoff parameter� between
500 and 600 MeV. As can be seen inspecting the figure, the widths of the bands are
always small, showing that the dependence on � is not critical. The effect of the
inclusion of 3NF is particularly important for the Ay0 observable, as already reported
some years ago [5].

The results for some n + 3He elastic scattering and p + 3H → n + 3He charge
exchange reaction observables are reported in Figs. 77.2 and 77.3, together with the
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available experimental data.We see that the contribution of the 3NF is small for these
observables. Again, the dependence on the cutoff is not critical.

More interesting are the results for the p + 3H elastic scattering differential cross
section, reported in Fig. 77.4. Here we observe that at the two lowest energies the
effect of 3NF is sizable. We note also that including the 3NF the observable becomes
very dependent on the cutoff used to regularize the interaction. For those energies
the n + 3He channel is closed, and the cross section sizeably depends on the position
of the first excited state of 4He. In fact, the differences in the cross section originates
mainly from the 0+ phase-shift. This quantity is shown in Fig. 77.5. From the phase-
shift it is possible to extract the positionEr of the resonance as themaximumof δ′(E),
while the width of the resonance from Γ = 2/δ′(Er), δ′(E) being the first derivative
of the phase-shift with respect to the energy [39]. The calculated values for these
quantities are reported in Table 77.1. As can be seen, Er is not very dependent on
the interaction. However, the width calculated with N3LO500/N2LO500 is rather
close to the experimental one (extracted from an R-matrix analysis [40]), while
for N3LO600/N2LO600 it is more than twice larger. This study suggests a critical
dependence of the position and width of the resonance on the 3NF and the adopted
cutoff. The origin of this strong dependence is not clear and it is currently under
study.
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Table 77.1 Energy of the resonance and its width as extracted from the phase-shifts reported in
Fig. 77.5. The experimental values are extracted from the R-matrix analysis reported in [40]

N3LO500 N3LO500/N2LO500 N3LO600/N2LO600 Expt.

Er [MeV] 0.09 0.07 0.09 0.39

Γ [MeV] 0.57 0.40 0.91 0.50

77.3 Conclusions

In this work, we have studied some low energy p + 3He, n + 3He, and p + 3H elastic
and charge-exchange observables by using interactions including NN forces only,
and also 3NF constrained to reproduce the 3H binding energy and the GT matrix
element in tritium beta decay. For p + 3He the main effect of the inclusion of 3NF
is to reduce the disagreement between theory and experiment in the observable Ay0

found when only NN force are taken into account. For n + 3He elastic scattering and
the charge exchange reaction p + 3H → n + 3He, the inclusion of the 3NF is tiny,
although in general it helps to obtain a slightly better description of the data.

On the other hand, for p + 3H elastic scattering at energies below the opening of
the n + 3He channel some sizable effects are observed, in particular a rather strong
cutoff dependence when the 3NF is included in the calculations. We have found that
this is related to a critical dependence on the 3NF of the position and width of the
resonance representing the first excited state of 4He. Further studies of this resonance
are currently in progress. Moreover, it would be rather important to have new and
more accurate measurements of p + 3H elastic scattering at these low energies, as
the available experimental data are rather old and of limited angular range.
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Chapter 78
4-Nucleon System Dynamics in Proton
Helium-3 Scattering

A. Kozela, I. Ciepał, I. Skwira-Chalot, B. Głowacz, P. Kulessa, T. Pałasz,
W. Parol, E. Stephan, B. Włoch and J. Zejma

Abstract We propose kinematically complete measurement of the differential cross
section and analyzing power in proton polarized helium-3 elastic scattering and
breakup. The proposed method, involving tracking of charged reaction products
and subsequent reconstruction of the reaction vertex, should be regarded as a novel
experimental approach in this low energy nuclear physics experiment. The details of
the proposed experimental setup and prospects of the first measurement at the new
Cyclotron Center Bronowice in Kraków are also given.

78.1 Introduction

While the best available nucleon-nucleon potentials reached their mature state, being
able to describe systems composed of two nucleons close to perfectly [1, 2], addi-
tion of the third nucleon spoils the situation considerably. Accounting for a new
dynamical component, appearing in such systems, referred to as a three-nucleon
force (3NF), greatly decreases the differences between the experiment and theoret-
ical calculations, still leaving a lot of space for improvement. The same holds true
even after recent, technically very demanding, inclusion of Coulomb force and rel-
ativistic effects [3, 4]. One still observes discrepancies in differential cross section
and observables involving nucleon’s polarization [5], which change smoothly with
relevant dynamical variables. It is a general expectation that these deficiencies will
increase after transition to the systems involving four nucleons. Though even more
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difficult, such systems offer quite new possibilities for 3NF studies (as e.g. acces-
sibility of new isospin channels, new combinations of beam and target system) and
appearing here 4-nucleon force. Different theoretical approaches, like e.g. single-
scattering approximation [6], call for measurements precise enough to validate or
fine tune applied models.

78.2 Experimental Method

A schematic view of the proposed experimental setup is shown in Fig. 78.1. Isotopi-
cally pure polarized 3He gas is contained in a cylindrical glass target cell under near
atmospheric pressure. Its axis matches that of the proton beam line. Thin entrance
and exit windows on the beam axis minimize beam induced background, competitive
with events of interest originating from proton – 3He reactions. Additional windows
in the side walls of the cell allow to reduce energy loss and angular straggling of
charged particles produced in the reactions inside the cell. This is especially impor-
tant in the case of double-charged 3He nuclei.

Two identical detector modules, placed directly in front of the target cell side win-
dows will be used for particle identification and tracking. Each module will consist
of a multiwire drift chamber (MWDC) and a scintillator detector. The main role of
the MWDC detector will be precise reconstruction of charged particles trajectories.
Application of at least six measuring planes with wires at three different directions
will allow for unique and efficient reconstruction of events with even two trajecto-
ries in one module. Combined pulse height information from all wires belonging to
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Fig. 78.1 Left panel: schematic top view of the experimental setup. The arrangement of the left
and right detector modules with respect to the beam is described by polar angles αL , αR , adjustable
independently for each module within a range 45◦–135◦. The whole system is immersed in uni-
form spin-holding vertical magnetic field B ≈ 2 mT. Right panel: estimated uncertainty of vector
analyzing power as a function of proton emission polar angle θ in laboratory frame and the time of
the measurement for optimal, symmetric detector configuration (αL = αR ≈ 56◦)
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one track, proportional to specific energy losses of a particle, will contribute to the
particle identification. In order to accomplish this goal dedicated electronics has to
be used for all MWDC channels.

Directly behind each MWDC a scintillator hodoscope for the energy loss and the
total kinetic energy measurement will be positioned, see Fig. 78.1. Depending on
proton beam energy scintillating material of 30–150 mm thickness, characterized
by a long decay time constant, can be used. For the energy loss measurement 1–2
mm thick and much faster plastic scintillator (e.g. BC-408) will be used, allowing
for the application of so called phoswich mode of operation in which thin and thick
scintillators are read out by the same photomultiplier device. Based on the obtained
in this way information particle identification will be applied, which in the case of the
proposed measurement can be reduced to distinguishing between protons, deuterons
and 3He nuclei. In order to minimize effects resulting from high background count
rates, and to allow for two charged particles reconstruction in a given detectormodule,
the calorimeter will be divided into seven, optically isolated segments.

The polarization of 3He will be produced with the use of Spin-Exchange Optical
Pumping method applied in a separate polarizing cell. This method allows one to
obtain substantial polarization for relatively high pressure of the gas sample. The
polarization will be measured with a standard NMR technique. Two pairs of standard
Helmholtz coils, producing field perpendicular to each other and to the beam axiswill
be used to create uniform spin holding magnetic field. Smooth control of the current
flow in these coils will allow one to rotate the magnetic field (and consequently 3He
spins) around the target axis. A dedicated set of coils to compensate for the Earth
magnetic field can be used if required.

Figure 78.1, right shows simulated dependence of relative uncertainty of vec-
tor analyzing power as a function of measurement time and proton polar emission
angle in LAB. The calculations assumed conservatively rather small beam current
of 100 pA, fine angular binning (Δθ = 1◦) and the uncertainty of helium polariza-
tion equal to 1%, which seams reasonable in the proposed method of polarization
measurement. Obtained results allow one to conclude, that in the symmetric configu-
ration of proposed experiment the contribution of statistical precision to the analyzing
power error can reach the level of the contribution of polarization uncertainty already
after about an hour of measurement. Due to the quick drop of the differential cross
section with the polar angle θ , the situation changes rapidly with the change of
the proton emission angle and for utterly disadvantageous conditions of asymmet-
ric configuration, (θ ≈ 120◦) about two days of measurement will be necessary, to
attain similar precision. Concerning the statistical uncertainty of the differential cross
section measurement the situation is correspondingly better, however good control
of the beam current is mandatory in this case.

The experiment received positive recommendation from International Advisory
Committee working at the Institute of Nuclear Physics PAS in Kraków and is sched-
uled for implementation at Cyclotron Center Bronowice in this institute.
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Chapter 79
Measurement of 3He Analyzing Power
for p−3He Elastic Scattering at 70 MeV

A. Watanabe, K. Sekiguchi, T. Akieda, D. Etoh, Y. Inoue, K. Kawahara,
H. Kon, K. Miki, T. Mukai, S. Nakai, D. Sakai, S. Shibuya, Y. Shiokawa,
T. Taguchi, Y. Wada, M. Watanabe, M. Itoh, T. Ino and T. Wakui

Abstract The 3He analyzing powers for p−3He elastic scatteringwith the polarized
3He target have been measured at 70 MeV. 3He polarization which was calibrated
by the electron paramagnetic resonance method was achieved to 50%. In the confer-
ence the data were compared with the theoretical calculations based on the modern
nucleon–nucleon potentials. Large discrepancies between the theoretical calculations
and the experimental data were found at the angles where the 3He analyzing power
takes minimum and maximum.

79.1 Introduction

The three nucleon forces (3NFs) are essentially important to clarify various nuclear
properties such as few-nucleon scattering [1], binding energies of light mass nuclei
[2] and equationof state of nuclearmatter [3].With the aimof studying3NFs,wehave
performed the experimental studies of nucleon–deuteron scattering at intermediate
energies (65–300 MeV/nucleon) [4]. In the case of the cross section for the elastic
deuteron–proton scattering at 135 MeV/nucleon, large discrepancies between the
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experimental data and the rigorous numerical calculations based on the modern
nucleon–nucleon (NN ) potentials (such as AV18 [5], CD-Bonn [6] and Nijmegen
I, II, 93 [7]) are found. The theoretical calculations with the Tucson-Melbourne’99
[8] or Urbana IX [9] 3NF reproduce well the experimental data. This is taken as
the first signature of the 3NF effects in three-nucleon scattering. However, the total
isospin of Nd scattering system is limited to T = 1/2. Recently, the importance
of the isospin dependence of 3NFs has been pronounced for the understanding of
asymmetric nuclear matter (e.g., neutron-rich nuclei, neutron matter and neutron
stars) [2, 3]. In order to explore the properties of the 3NFs in A ≥ 3 nuclear systems
and to approach the isospin dependence of 3NFs, we are planning the measurement
of proton–3He elastic scattering at intermediate energies. It should also be noted that
rigorous numerical calculations of this system are becoming available up to 35 MeV
[10, 11]. As the first step, we have performed the measurement of 3He analyzing
powers at 70 MeV.

79.2 The Polarized 3He Target

We developed the polarized 3He target system for the measurement of 3He analyzing
power. A schematic view of the polarized 3He target system is shown in Fig. 79.1.
In order to polarize 3He nucleus, we adopted the alkali-hybrid spin-exchange optical
pumping (AH-SEOP) method. This method consisted of two step processes. First,
Rb vapor was polarized by optical pumping with circularly polarized light in the
presence of a static magnetic field. Then the polarization of Rb atoms was transferred
to K atoms via spin-exchange collision. Second, the alkali metal polarization was
transferred to 3He nuclei by hyper-fine interaction. We applied a spectrally narrowed
laser with the optics to produce circularly polarized light. The output power of the
laser was 60 W and FWHM was 0.2 nm. The main coils were the Helmholtz type
providing a static magnetic field with high homogeneity. The target cell consisted
of a cylindrical pumping chamber with a length of 4.5 cm and a cylindrical target
chamber with a length of 15.0 cm. It contained the 3He gas with pressure of 3 atm
at room temperature together with a small amount of Rb and K as well as N2 gas.
The target cell was placed at the center of the main coils, and the pumping chamber
was placed in the oven to obtain a sufficient Rb and K vapor. We measured the
target polarization by using the adiabatic fast passage-NMR (AFP-NMR) method
in combination with the electron paramagnetic resonance (EPR) method [12]. The
AFP-NMR system consisted of the main coils, the drive coils and the pick-up coil.
The spin axis of 3He was flipped by sweeping a static magnetic field and applying
a RF field by the drive coils under the AFP condition. The induced NMR signals
were detected by the pick-up coil. We have obtained the absolute values of the 3He
polarization by using the EPR method. The maximum 3He polarization was ∼50%
in our system.
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Fig. 79.1 Schematic view of
the polarized 3He target

79.3 The Measurement of 3He Analyzing Power

We performed the measurement of 3He analyzing powers for p−3He elastic scat-
tering at Cyclotron and Radioisotope Center (CYRIC), Tohoku University. The pro-
ton beams were accelerated up to 70 MeV by the AVF cyclotron. A typical beam
intensity was 5–10 nA. Charge collection of the beams was performed by using the
Faraday cup placed downstream of the target. We also monitored relative values of
the beam intensities by using the beam monitor installed in the vacuum chamber
placed upstream of the target. The scattered protons from the polyethylene film with
thickness of 20 µm were detected by the beam monitor detectors. The scattered
protons from the polarized 3He target were detected by ΔE − E detectors placed
on a left and right side of the target. The ΔE detectors were plastic scintillators
with thickness of 0.2, 0.5 or 1 mm coupled with photomultiplier tubes (PMTs).
The E detectors were a NaI(Tl) scintillator with thickness of 50 mm. The measured
angles were θc.m. = 46◦–141◦ in the center of mass system. During the experiment,
we measured the 3He polarization and flipped 3He nuclear spin direction by using
the AFP-NMR method every hour.

79.4 Results

The 3He analyzing powers for p−3He elastic scattering are formulated as

dσ

dΩ
=

(
dσ

dΩ

)
0

(1 + py Ay), (79.1)

where dσ/dΩ ((dσ/dΩ)0) is the polarized (un-polarized) differential cross section.
The py denotes the vector polarizations of the target. The polarization axis is per-
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Fig. 79.2 3He analyzing
power Ay for p−3He elastic
scattering at 70 MeV. The
theoretical calculations are
not shown here
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pendicular to the reaction plane in this experiment. The Ay denotes the analyzing
powers for p−3He elastic scattering.

Figure 79.2 shows the preliminary results of the experimental data. In the confer-
ence the data were compared with the rigorous numerical four-nucleon calculations
based on the modern NN potentials [13]. The angular distribution of the experi-
mental data had a moderate agreement with the theoretical calculation. However, the
large discrepancies are found at the angles θc.m. � 80◦ and 130◦.

79.5 Summary and Outlook

We have performed the measurement of 3He analyzing powers for p−3He elastic
scattering at 70 MeV in a wide angular range (θc.m. = 46◦–141◦). In the conference
the experimental data were compared with the calculations based on the modern NN
potentials. Large discrepancies between the data and the calculations were found at
the angles θc.m. � 80◦ and 130◦. In order to perform quantitative discussions of the
3NF effects, study is in progress both from experiment and theory. As the next step,
we are planning the measurement of spin observables for p−3He at higher energies
at Research Center for Nuclear Physics (RCNP), Osaka university.
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Chapter 80
Exploring High Quality Chiral Forces

E. F. Batista, S. Szpigel and V. S. Timóteo

Abstract We investigate the interplay between the pion exchanges and the contact
interactions in the 1S0 channel using aN4LO chiral potential.We compute the pairing
gap without the pions and show that, although the contact interactions dominate in
this channel, the gap is strongly enhanced without the attraction that comes from the
pions.

80.1 Introduction

The nuclear interaction has been subject of intense research in the last decades with
the advent of the Effective Field Theory (EFT) approach [1, 2]. Many nucleon-
nucleon interactions were constructed based on the chiral expansion and currently
chiral forces have reached the same level of precision than phenomenological poten-
tials [3–7]. The EFT approach is fundamental and systematic but the organization
of the processes into a hierarchy of interactions, known as Power Counting, and
different renormalization schemes for the theory have also been investigated [8–10].
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80.2 Pion Exchanges Versus Contact Interactions at N4LO

The nucleon-nucleon interaction in chiral perturbation theory can be separated in
two parts: the pion exchanges (1π, 2π, 3π ) and the contact terms, whose strengths
are determined by matching the full interaction to scattering observables for two
nucleons. For a given partial wave, we have V ful

N4LO = V pions
N4LO + V contacts

N4LO .
Figure 80.1 shows the contributions from the pion exchanges and the contact

terms to the N4LO potential for the case of the 1S0 partial wave. It is clear from the
pion contributions (in blue), the contact contributions (in red) and the full interaction
(in black) that the “unknown” part of the interaction dominates in this channel.
The contact terms and the full interaction are very similar while the pions have the
opposite behavior (see lower right panel).

80.3 Phase-Shift and Pairing Gap in the 1S0 Channel

Both the phase-shifts for two nucleons and the pairing gap in nuclear matter are
calculated directly from the matrix elements of the NN potential. The phase-shifts
can be obtained from the T -matrix, which is a solution of the Lippman-Schwinger
equation

T (p, p′) = V (p, p′) + 2

π

∫
dq q2 V (p, q)

1

p2 − q2 + iε
T (q, p′) , (80.1)

Fig. 80.1 Nuclear force in the 1S0 channel at N4LO in configuration space. Only the diagonal
part of the potential matrix is shown: Pion exchanges (blue), Contact interactions (red) and Full
interaction (black)
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Fig. 80.2 Contributions to the phase-shift (upper panel) and to the pairing gap (lower panel). Pion
exchanges are shown in blue, contact terms in red and full interaction in black

and the pairing gap is a solution of the BCS equation

Δ(kF ) = − 2

π

∫
dp p2 V (kF , p)

1

2ME(p)
Δ(p) , (80.2)

where 2ME(p) =
√

(p2 − k2F)
2 + 4M2Δ2(p) (M is the nucleon mass and kF is the

Fermi momentum).
The phase shifts and the pairing gap corresponding to V pions

N4LO and V contacts
N4LO can then

be calculated using (80.1) and (80.2). In the upper panel of Fig. 80.2 we show the
calculations for the phase-shift indicating that the dominance of contact terms over
pions observed in Fig. 80.1 makes the shape of the phase-shifts to be mostly given
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by the contact interactions and removing pions essentially enhances the phases at
low energies but makes them repulsive at about 150 MeV. Such enhancement also
applies to the pairing gap, although in this case the size of the gap increases much
more than the values of the phases when the pions are removed. This is shown in the
lower panel of Fig. 80.2, where the pairing gap is computed with pions (black line)
and without pions (red line).

80.4 Final Remarks

We study the interplay between pions and contact interactions in a chiral NN interac-
tion at N4LO and discuss the corresponding effects in two-nucleon phase-shifts and
the pairing gap in nuclear matter. The S-waves are the channels where the nuclear
force is stronger at low energies and, at N4LO, the contact terms dominate the inter-
action in the 1S0 wave. Nevertheless, the attraction provided by the pion exchanges
is important at low energies as can be seen from the phase-shifts at low energies.
The similarity between the full N4LO interaction and the contact terms suggests
that it may be possible to absorb the pion exchanges into the contact interactions by
re-tunning their strengths and adding higher order terms.
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Chapter 81
Experimental Study of Few Nucleon
Correlations Using Deuteron Beam at
Nuclotron

Marian Janek, Vladimir Petrovich Ladygin, Olena Mezhenska,
Alexandr Vladimirovich Averyanov, Evgenyi Vasilievich Chernykh,
Dan Enache, Yuriy Vitalievich Gurchin, Alexandr Yurievich Isupov,
Julia-Tatiana Karachuk, Anatolyi Nikolaevich Khrenov,
Dmitryi Olegovich Krivenkov, Pavel Konstantievich Kurilkin,
Nadezhda Borisovna Ladygina, Alexei Nikolaevich Livanov,
Semen Mikhailovich Piyadin, Sergei Grigorievich Reznikov,
Yaroslav Tarasovich Skhomenko, Arkadiy Arkadievich Terekhin,
Aleksei Viktorovich Tishevsky, Tomohiro Uesaka and Jozef Urban

Abstract Polarized and unpolarized data for the dp breakup reaction at deuteron
energies of 270, 400MeV and 300–500MeV usingΔE − E technique are obtained.
Dp elastic scattering has been investigated using polarized deuteron beam under
various kinematic configurations in the angular range (65◦–135◦) in c.m. at deuteron
energies of 400, 700, 800, 1000, 1100, 1300, 1500 and 1800MeV. Preliminary results
of analyzing powers obtained in dp elastic scattering at 800MeV of deuteron energy
are compared with the calculations based on relativistic multiple scattering model.
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81.1 Short Introduction

Processes in which the lightest nuclei are participating, such as dp elastic scatter-
ing and dp breakup reaction, have great advantage that can be studied in almost
independent way with relatively small number of parameters.

Short range deuteron structure can be obtained from dp elastic scattering. Dp
breakup reaction has richer phase space to be investigated which allows us to study
reaction mechanisms in different kinematic conditions. Three nucleon scattering can
be solved with modern two and three nucleon forces up to 200 MeV/nucleon [1].
Experiments performed at RIKEN [2] were aimed to study three nucleon forces
(3NFs) contribution and to test modern models of 3NFs.

81.2 Results

Fewnucleon correlations are studied using polarized and unpolarized deuteron beams
and polyethylene and carbon targets at Nuclotron, JINR. More detailed informa-
tion about performed experiments can be found in [3]. The dp breakup reaction
is investigated at the deuteron energies from 300 to 500 MeV in the region where
non-nucleonic degrees of freedom and relativistic effects can play a significant role.
Analyzing powers of the dp breakup reaction using polarized beamwere investigated
at Internal Target Station (ITS) of Nuclotron at deuteron energies of 270 and 400
MeV using ΔE − E technique [4]. Recent studies of dp breakup reaction are aimed
to study 3NFs and relativistic effects behaviour under special kinematic conditions.
In order to obtain polarization observables calibration procedure has been performed
using unpolarized deuteron beam data [5]. Recently, dp elastic scattering is investi-
gated using polarized deuteron beam at ITS under various kinematic configurations
in the angular range (65◦–135◦) in c.m. at deuteron energies of 400, 700, 800, 1000,
1100, 1300, 1500 and 1800 MeV. The Ay , Ayy and Axx analyzing powers for the dp
elastic scattering have been obtained for the first time at the ITS of the Nuclotron
at deuteron energy of 800 MeV in angular range between 60◦ and 135◦ in the cen-
ter of mass system. Theoretical calculations based on relativistic multiple scattering
model are compared with the data containing statistical errors only, see Fig. 81.1.
Dot-dashed, dashed and solid curves represent relativistic multiple scattering model
calculations including only single scattering term, single + double scattering term [6]
and calculations including single + double scattering term and also Δ—isobar exci-
tation [7], respectively. Reasonably good agreement is found in description of vector
analyzing power Ay in the middle of the angular range (85◦–115◦ ). The contribution
which comes from double scattering and Δ isobar excitation ones is relatively small
in this range. Behaviour of tensor analyzing power Ayy is reproduced qualitatively
using double scattering and Δ isobar terms. It shows on importance of double scat-
tering term in the range the data were obtained. Quantitative description is obtained
around the angle of∼115◦ only. Tensor analyzing power Axx shows linear growth in
the angular range from 65◦ to 90◦ and then the data have constant behaviour which
is in agreement with calculation based on single scattering term.
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Fig. 81.1 The angular
dependencies of the vector
Ay and tensor Ayy and Axx
analyzing powers in dp
elastic scattering measured at
800 MeV at ITS of
Nuclotron. Theoretical
calculations based on
relativistic multiple
scattering model are
presented, see text for the
curve explanation

81.3 Conclusion

Dp elastic and dp breakup reactions are investigated at intermediate energies using
polarized and unpolarized deuteron beams of Nuclotron. Dp elastic data along with
theoretical calculations based on multiple scattering model obtained at 800 MeV of
deuteron energy are discussed.

The work has been supported in part by the Ministry of Education, Science,
Research, and Sport of the Slovak Republic (VEGA Grant No. 1/0113/18), by the
RFBR under grant No. 16-02-00203a and by JINR- Slovak Republic cooperation
programs in 2018.
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Chapter 82
High-Precision Nucleon-Nucleon
Potentials from Chiral EFT

Patrick Reinert, Hermann Krebs and Evgeny Epelbaum

Abstract We present new momentum-space regularized nucleon-nucleon (NN)
potentials up to fifth order in chiral effective field theory,whose adjustable parameters
have been determined from experimental NN scattering data. The resulting N4LO+
potential achieves the same precision as high-quality phenomenological forces while
the new momentum-space regulator paves the way for the implementation of con-
sistently regularized three-nucleon forces and current operators.

82.1 Introduction

Over the last few years, nuclear forces derived from chiral effective field theory
(EFT) have seen widespread use in few-body calculations. In the framework of chiral
EFT, the two-nucleon force, many-body forces and current operators are consistently
derived from an effective Lagrangian which encodes the symmetries of QCD with
pions and nucleons as explicit degrees of freedom. Nuclear forces and currents are
then derived as an expansion in a low-momentum variable Q up to some given order.
This makes quantities in chiral EFT systematically improvable (by going to higher
orders in the expansion) and allows one to access the uncertainty of chiral predictions
(which, in a convergent expansion, are dominated by the next-higher, omitted order).

In addition to these conceptual advantages, chiral forces are also expected to yield
good quantitative results. With the rapid progress in the field of ab initio few- and
many-body methods, a reliable input in form of precise and consistent many-body
forces becomes crucial.

Recently, a new generation of chiral two-nucleon forces [1–3] has been published
where the chiral expansion has been pushed to the fifth order (N4LO) and which
fix their adjustable parameters from the two-nucleon continuum and bound state but
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differ in regularization. Parallel developments are e.g. chiral potentials which include
the Δ(1232) resonance as an explicit degree of freedom [4, 5] as well as potentials
like [6], which have explicitly been tuned to the properties of light nuclei.

82.2 The Semi-local Momentum-Space (SMS) Regularized
Potential

In this talk, the semi-local momentum-space (SMS) regularized potentials [3] up
to fifth order (N4LO) in the chiral expansion are presented. The long-range part of
the interaction consists of the one- and two-pion exchange potentials whose low-
energy constants (LECs) are taken from the recent Roy-Steiner equation analysis
[7] of pion-nucleon scattering. The long-range interaction is thus parameter-free in
the NN system. On the other hand, the short-range contact interaction part of the
potential has been fixed by a fit to the 2013 Granada database [8] of nucleon-nucleon
scattering data. The deuteron binding energy and the np coherent scattering length
enter as additional constraints in this fit.

We have also added the four leading N5LO contact interactions in F-waves to the
N4LO potential (N4LO+) to probe the uncertainty stemming from the still unparame-
terized F-waves at N4LO. In the following, wewill discuss the newmomentum-space
regularization and the removal of redundant contact interactions in more detail.

82.2.1 Regularization

The application of nuclear forces in few- and many-body problems requires a non-
perturbative resummation of the potential. For iterations of the potential to be UV-
convergent, a regulator has to be applied. Following previous works [1, 9], we multi-
ply the momentum-space matrix elements of the short-range contact interaction part
of the potential with a non-local gaussian regulator exp

(−(p′2 + p2)/Λ2
)
while

using a local regulator for the long-range pion-exchange part, hence the name semi-
local regularization. In [1, 9], the regularization of the long-range potential was
performed in coordinate space according to:

Vπ,reg.(r) = Vπ(r)
[
1 − e− r2

R2

]6

, (82.1)

where R = 0.8–1.2 fm. While the local coordinate-space regulator helped to sig-
nificantly reduce long-range cutoff artifacts, its application is inconvenient for con-
sistently regularized higher-order three-nucleon forces (3NF) and currents. For a
systematic extension to those quantities, a momentum-space regulator is preferable.
Inspired by [10], we introduce a new local regularization of the long-range potential
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in momentum space. Its main idea is to regularize static pion propagators with a
gaussian form factor in the following way:

1

l2 + M2
π

→ 1

l2 + M2
π

e− l2+M2
π

Λ2 , (82.2)

with l being the three-momentum of the exchanged pion. The regularization man-
ifestly induces only short-range terms and does not affect the long-range behavior
of the pion-exchange potentials. Additionally, the freedom in the polynomial short-
range contributions of the regularized potentials has been fixed in such a way, that its
coordinate space version and as many derivatives thereof as allowed by power count-
ing vanish at the origin, leading to a qualitatively similar behavior at short distances
than the coordinate-space regulator of [1, 9].

82.2.2 Redundant Contact Interactions at Order Q4

Another important feature of the SMS potential is the removal of redundant contact
interactions in S-waves starting at N3LO (Q4). The full partial-wave decomposed
Q4 contact potential in 1S0, 3S1 and 3S1 – 3D1 can be written as:

〈1S0, p′|Vcont|1S0, p〉 = C̃1S0 + C1S0
(
p2 + p′2) + D1S0 p

2 p′2 + Doff
1S0

(
p′2 − p2

)2

〈3S1, p′|Vcont|3S1, p〉 = C̃3S1 + C3S1
(
p2 + p′2) + D3S1 p

2 p′2 + Doff
3S1

(
p′2 − p2

)2

〈3S1, p′|Vcont|3D1, p〉 = Cε1 p
2 + Dε1 p

2 p′2 + Doff
ε1 p2

(
p′2 − p2

)
(82.3)

Here, the Doff
i terms contribute only off-shell and can be changed by suitably chosen

unitary transformations, establishing them as redundant at the order Q4 (see [3] for
details). This redundancy manifests itself as strong correlations among the LECs in
the corresponding partial-wave channels, which was first noted in the framework
of bayesian statistical analysis [11, 12]. In order to arrive at a well-conditioned
optimization problem when fitting the contact LECs, we make use of the unitary
freedom and fix those off-shell contacts at Doff

1S0 = Doff
3S1 = Doff

ε1 = 0. This choice
leads to softer, more perturbative interactions which is a welcome feature regarding
application in many-body methods.

82.3 Results

We performed the fits of the NN contact LECs to the two-nucleon experimental
scattering data for all chiral orders and all cutoffs Λ = 350–500 MeV. Table 82.1
shows χ2/datum values for the cutoff Λ = 450 MeV at different chiral orders.
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Table 82.1 χ2/datum for the regulator Λ = 450MeV at various orders of the chiral expansion.
The subscript of each order indicates the number of fitted short-range LECs

Elab bin LO(3) NLO(10) N2LO(10) N3LO(22) N4LO(23) N4LO+
(27)

Neutron-proton scattering data

0–100 73 2.2 1.2 1.08 1.07 1.08

0–200 62 5.4 1.7 1.10 1.08 1.07

0–300 75 14 4.2 2.01 1.16 1.06

Proton-proton scattering data

0–100 2290 10 2.2 0.90 0.88 0.86

0–200 1770 90 37 1.99 1.42 0.95

0–300 1380 90 41 3.43 1.67 1.00

Going from LO to N4LO+, a clear order-by-order improvement in the description
of NN scattering data is seen. It should be noted, that the improvement from NLO
to N2LO is entirely due to the parameter-free chiral two-pion exchange. A similar
effect is also seen in the transition fromN3LO to N4LO, where apart from parameter-
free contributions, only one isospin-breaking LEC is added to the contact potential
in the 1S0 phase. Finally, the addition of the leading F-wave contact interactions in
the N4LO+ potential allows the accurate description of very precise proton-proton
observables at intermediate energies, themost notable example being the data of [13].
One is then able to describe the entire scattering database with χ2/datum ∼1, which
is on par with high-quality phenomenological forces in the considered energy range
of Elab = 0–300 MeV. In comparison to e.g. the CD-Bonn potential [14], which has
43 adjustable parameters, this precision is achieved with only 27 adjustable contact
interactions, showing the importance of the chiral two-pion exchange.

To summarize, the presented chiral two-nucleon potentials offer precision compa-
rable to high-quality phenomenological forces and simultaneously pave the way for
the inclusion of consistent higher-order three-nucleon forces and current operators.
Work along these lines is in progress by LENPIC [15].
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Chapter 83
Configurational Efficiency with
Reconstructed Neutron for Deuteron
Breakup Reaction

Bogusław Włoch, Izabela Ciepał, Adam Kozela, Joanna Kuboś
and Wiktor Parol

Abstract Number of experiments devoted to the study of few nucleon system
dynamics were carried out at KVI with the use of the BINA detector and 160 MeV
deuteron beam on deuteron or proton targets. One of the crucial steps of the analysis
is to uniquely identify real breakup reactions. While in a standard approach only
charged particles were used for this, it also seams to be interesting to exploit rela-
tively high sensitivity of the thick scintillators to neutron detection. In this paper we
investigate the influence of the scintillator granularity to the detection efficiency of
proton-neutron coincidences.

83.1 Motivation

Deuteron breakup leading to the final state of three nucleon is one of the simplest
systems, providing however an excellent testing ground for various models of few
nucleon system dynamics. One of the most sensitive observables to investigate a
complicated interplay of different components of this dynamics is the differential
cross section measured in a broad range of the phase space. Experiments at Kernfy-
sisch Versneller Instituut in Groningen with the use of the 160 MeV deuteron beam
provided by the AGOR cyclotron and with BINA detector were performed, and a
large set of high precision data on 2H(d, dp)n and 1H(d, pp)n deuteron breakup was
obtained [1]. This andmost of previously preformed analysis of the data obtainedwith
the BINA detector were focused on reactions with two charged particles detected,
proton-deuteron and proton-proton respectively.Development of techniques aimed at
direct neutron identification inBINAexperimental setup gives us possibility to exam-
ine reaction channels with neutron instead of one of the charged particles. Having
determined the differential cross sections for three-body 2H(d, dn)p breakup reaction
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with the neutron momentum reconstructed one can compare it with already analysed
2H(d, dp)n channel [2] at the analogous kinematic conditions and directly study the
Coulomb effects and possible charge symmetry breaking, like it was suggested in
[3].

83.2 Experimental Setup

The BINA detection system is characterized by large angular acceptance and low
energy threshold for charged particles detection. It has been specially designed for
investigation of a few-nucleon systems in the intermediate energy range. It is com-
posed of twomain parts, ForwardWall for angles from 10◦ to 40◦ and Backward Ball
for 40◦ to 165◦, covering together almost 4π solid angle. The Backward Ball consists
of 149 phoswich detectors arranged in fulleren-like structure. It plays also a role of
vacuum scattering chamber with liquid deuterium or hydrogen target inside. Forward
Wall is composed of a multi-wire proportional chamber (MWPC), 12 vertical, 2 mm
thick plastic scintillator stripes (ΔE) and 10 horizontal, 12 cm thick plastic scintilla-
tor slabs (E). Together, both detectors form an array of virtual ΔE-E telescopes used
for charged particles identification. Detailed information about the detector can be
found in [4]. The highest sensitivity for neutron detection has the thick E scintillator,
with an average efficiency 10% as obtained from experimental data [5]. Both ΔE
detector andMWPC can be used as an active veto, rejecting events caused by charged
particles. Position of detected neutron can be determined independently by the time
and pulse height asymmetries of signals obtained at both ends of 2 m long E slabs,
while its energy can be calculated from the time of flight information. This method
allows to reconstruct neutron emission angle in BINA with a reasonable angular
resolution of around 5◦, as it was shown in [6].

83.3 Configurational Efficiency

Whenever two (or more) particles hit the same scintillator element neither positions
nor energies can be properly reconstructed and in consequence the event is lost. In
order to reconstruct the actual number of coincidences and in consequence to obtain
the absolute values of cross section it is crucial to account for this effect, which is
referred to as the configurational efficiency. Total efficiency for registration a pair of
particles from the breakup reaction is given by:

εTotal(θ1, θ2,Δφ12, S) = εdet1 (θ1, φ1) · εdet2 (θ2, φ2) · εcon f (θ1, θ2,Δφ12, S), (83.1)

where: εdeti (θ, φ) is the detector efficiency for a given particle, and εcon f (θ1, θ2,

Δφ12, S) is the configurational efficiency and S is defined as the arc-length along
three-body breakup kinematics. The detector efficiency calculations were described
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Fig. 83.1 An example of configurational efficiency for chosen angular configurational of θ1 = 29◦,
θ2 = 25◦ as a function of relative azimuthal angle Δφ and S variable

in details in previous papers [1]. Configurational efficiency depends on the detector
granularity and geometry, as well as on the geometrical configuration of the velocity
vectors of both particles, which in the case of breakup events is defined by two polar
angles (θ1, θ2) and relative azimuthal angle of emission (Δφ12). In the case of neutron
detection, the additional component of active veto has to be taken into account.
Unlike in the case of configurational efficiency for two charged particles (see [7]
for details), where unobserved neutron is of almost no influence, clean identification
of neutron impose stringent conditions on the emission angle of the third particle-
proton. This introduces the dependence of the efficiency to the energies of detected
particles, which for a given angular configuration can be parameterized by the S
variable. A gap of at least one not activated scintillator between detected particleswas
required to avoid neutron misidentification due to cross-talks between neighbouring
elements. Figure 83.1 presents a sample of configurational efficiency as a function of
Δφ12 angle and S variable, calculated from the 1H(d, pn)p breakup events simulated
with the use of BINA detector geometry and GEANT4 framework. Described above
configurational efficiency for eventswith neutron and accompanying charged particle
detected in exit channel is one of the crucial steps in the analysis of deuteron breakup.
Similar maps as in Fig. 83.1 for all interesting configurations will be used in further
analysis of differential cross-sections in 1H(d, pn)p and 2H(d, dn)p reactions.
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Chapter 84
Compelete Set of Deuteron Analyzing
Powers for dp Elastic Scattering at
70–300 MeV/nucleon and Three-Nucleon
Forces

K. Sekiguchi, Y. Wada, A. Watanabe, D. Eto, T. Akieda, H. Kon, K. Miki,
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Y. Shindo, M. Tabata, E. Milman, S. Chebotaryov, H. Okamura
and T. L. Tang

Abstract In order to study three-nucleon force (3NF) effects in three-nucleon scat-
tering we performed the measurements of the cross sections and the spin observables
for the deuteron–proton (dp) scattering with the polarized deuteron beams at the inci-
dent energies up to 135MeV/nucleon. Recently we have extended the measurements
at the RIKEN RI Beam Factory (RIBF) with the polarized deuteron beams at 190,
250, and 300 MeV/nucleon.
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84.1 Introduction

One of themain interests of nuclear physics is to understand the forces acting between
nuclear constituents. Importance of the three-nucleon force (3NF) in the nuclear
Hamiltonian has been studied in few-nucleon systems as well as in many-nucleon
systems [1–3]. Three-nucleon (3N ) systems, where numerically exact solutions
of the corresponding Faddeev equations for any two- and three-nucleon forces are
feasible, play an especially important role in these investigations. Nucleon–deuteron
(Nd ) scattering offers a good opportunity to study dynamical aspects of 3NFs, that are
momentum, spin and isospin dependences, since it provides not only cross sections
but also a variety of spin observables at different incident nucleon energies. The last
two decades havewitnessed the extensive experimental and theoretical investigations
of the Nd scattering performed in a wide range of incoming nucleon energies up to
E ∼ 300 MeV/nucleon.

84.2 Experimental Results of dp Scattering

The experiments of the dp scattering were performed at the RIKEN Accelerator
Facility using the polarized deuteron beams at the incident energies up to 135
MeV/nucleon. Measured observables are the cross section, the all deuteron ana-
lyzing powers (iT11, T20, T21, T22), and the deuteron to proton polarization transfer
coefficients [4]. Direct comparison between the data and the Faddeev calculations
based on the realistic nuclear forces have shown the first clear signatures of 3NFs
in the cross section [4]. Later the measurements have been extended to the RIKEN
RI Beam Factory (RIBF). All deuteron analyzing powers were obtained at 190, 250,
294 MeV/nucleon [5–7].

In Fig. 84.1 some representative data of the deuteron analyzing powers are shown
with open circles. Statistical errors are only shown. The data are compared with the
Faddeev calculations based on the modern nucleon–nucleon forces combined with
the three nucleon forces. The red (blue) bands in the figure are the Faddeev calcula-
tions with (w/o) Tucson–Melbourne’99 (TM99) 3NF [8] based on the modern NN
potentials, namely CDBonn [9], AV18 [10], Nijmegen I and II [11]. The dashed lines
are the calculations with including Urbana IX 3NF [12] based on the AV18 potential.

For the vector analyzing power iT11 the discrepancies between the data and the
predictions based on 2NFs (blue bands) are seen at the angles θc.m. ∼ 120◦. At 135
and 190 MeV/nucleon the data have good agreements to the predictions with the
3NFs while at 250 MeV/nucleon discrepancy exists at backward angle θc.m. � 120◦.
Tensor analyzing power T22 reveals different energy dependence from that of iT11.
At 135 MeV/nucleon adding 3NFs worsens the description of data in a large angular
region. It is contrary to what happens at 190 and 250MeV/nucleon, where large 3NF
effects are supported by the measured data. The results of comparison shows that
the 3NF is definitely needed in Nd elastic scattering. However the spin dependent
parts of the 3NF may be deficient. It is interesting to see how the potential of the
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Fig. 84.1 Deuteron analyzing powers iT11, T22 for elastic Nd scattering at 135, 190 and 250
MeV/nucleon. For descriptions of the calculations see the text
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Fig. 84.2 Deuteron analyzing powers iT11, T22 for elastic Nd scattering at 135 and 190
MeV/nucleon. For descriptions of the calculations see the text

chiral effective field theory (χEFT) describe deuteron analyzing powers for dp elastic
scattering. In Fig. 84.2 the data are comparedwith the calculations based on theχEFT
N4LO NN potentials [13]. The vector analyzing power iT11 data are well described
by the χEFTN4LONN potentials, while large discrepancies are found for the tensor
analyzing power T22. In order to see howχEFT 3NFs describe the data the theoretical
treatments are now in progress [14].
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84.3 Summary

The Nd scattering data provide rich sources to explore the properties of 3NFs such
as momentum and spin dependence. In this contribution the experiments performed
with polarized deuteron beams at RIKEN are presented and the recent achievements
of study of 3NFs via dp scattering are discussed. The energy and angular depen-
dent results of the cross sections as well as the polarization observables show that
clear signatures of the 3NF effects are found in the cross section. Meanwhile the
spin dependent parts of the 3NFs may be deficient. In order to obtain consistent
understanding the effects of three nucleon forces in the 3N scattering further inves-
tigation should be necessary. It would be interesting to see how well the theoretical
approaches, e.g. addition of 3NFs other than 2π exchange types, and the potentials
based on the chiral effective field theory describe these obtained data.
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Abstract We performed the measurement of the cross section and the proton
analyzing power Ay for p–3He elastic scattering with a 65 MeV polarized proton
beam at Research Center for Nuclear Physics (RCNP), Osaka University. The proton
analyzing power Ay data are compared with the theoretical calculations based on the
nucleon–nucleon potential (INOY04).
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85.1 Introduction

One of the most important topics of nuclear physics is to describe various nuclear
phenomena based on the nucleon–nucleon (NN ) interactions combined with the
three-nucleon forces (3NFs). 3NFs are key elements to understand various nuclear
phenomena, e.g. binding energies of light mass nuclei [1] and equation of state of
nuclear matter [2]. In order to study the dynamical aspects of 3NFs, such as momen-
tum, spin, and iso-spin dependencies, few-nucleon scattering is a good probe. The
first indication of the 3NF effects in the few-nucleon scattering was found in the
cross section minimum for deuteron–proton (dp) elastic scattering at intermediate
energies (E/A � 65 MeV) [3]. As an extension of the study of 3NF effects in
nucleon–deuteron scattering, we performed the measurement for the p–3He scatter-
ing at 65 MeV. The motivation of this experiment is to explore the 3NF effects in
four-nucleon scattering as well as to approach to the 3NFs with the channels of the
total iso-spin T = 3/2.

85.2 Experiment

Themeasurement of p–3He elastic scatteringwas performed in thewest experimental
hall of the RCNP cyclotron facility. Figure 85.1 shows the schematic view of the
experimental setup. The polarized proton beams were provided by the High Intensity
Polarized Ion Source and they were accelerated by the AVF cyclotron up to 65 MeV.
After bombarding the 3He gaseous target in the scattering chamber, the beams were
stopped in the Faraday cup. The beam intensity was 20–100 nA. The polarization
of the beam was measured by using the beam line polarimeter. The polarimetry

Fig. 85.1 Schematic view of the experimental setup
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Fig. 85.2 Two-dimensional
plot of the light outputs of
the dE and E detectors

was made by p–12C elastic scattering. The typical beam polarizations were 45–55
% of the theoretical maximum values. In the experiment, the 3He gaseous target
was operated at the room temperature under the atmospheric pressure. The scattered
particles were detected by the dE–E detectors which consisted of plastic andNaI(Tl)
scintillators. The measured angles were 26.9◦–170.1◦ in the center of mass system.

85.3 Results

Particle identification was made by using the correlation between the dE and E
detectors. Figure 85.2 shows a two-dimensional plot of the light outputs of the dE
and E detectors.

The events from the p–3He elastic scattering are clearly seen around the highest
ADC channels of the E detector. Time of flight information was also used for event
selection.

As expressed in (85.1), the proton analyzing power Ay was extracted by using
the beam polarization (py) and the difference of the yields (N ) between the spin
up and down modes (the subscripts “u” and “d” denote the spin-up and spin-down,
respectively).

Ap
y = Nu − Nd

Nd puy + Nu pdy
(85.1)

Figure 85.3 shows the experimental results of the proton analyzing power Ay as a
function of the scattering angle in the center of mass system. Solid circles are the
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Fig. 85.3 Proton analyzing power Ay for the p–3He elastic scattering at 65 MeV

experimental data. Only the statistical errors are shown. Statistical errors are less than
0.02 for all the measured data. Comparing the data to the calculations based on the
realistic NN potential (INOY04 [4]) [5], the angular distribution of the experimental
data has a moderate agreement with the theoretical calculation. However, the clear
discrepancies are seen at the angles θC.M. ∼ 80◦ and θC.M. ∼ 140◦.

85.4 Summary

We performed the measurement of the cross section and proton analyzing power Ay

for p–3He elastic scattering using 65 MeV polarized proton beams. We obtained the
experimental data in a wide angular range (θC.M. = 26.9◦–170.1◦). The experimen-
tal data are compared with the theoretical calculations based on the INOY04 NN
potential. Clear discrepancies between the data and the calculations are found at the
angles where the proton analyzing power Ay takes minimum and maximum. The
analysis of the cross section is in progress now.
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Chapter 86
Effective Field Theory Descriptions
of Few-Nucleon Systems

L. Girlanda, M. Gattobigio, A. Kievsky, L. E. Marcucci and M. Viviani

Abstract The understanding of nuclear systems as composed of interacting
nucleons has been considerably sharpened by the effective field theory (EFT) frame-
work. The latter provides a link between the nuclear interaction and the underlying
quantum chromodynamics, as the relevant degrees of freedom result, at least ideally,
from a decimation process starting from fundamental quarks and gluons. Owing to
chiral symmetry and the Goldstone bosons’ characters of the interchanged pions
among nucleons, the properties of heavier nuclei can in principle be traced back to
a restricted set of low-energy constants (LECs) to be determined in lighter systems
in the framework of a systematic low-energy expansion. At smaller energy scales,
in pionless EFT, the interactions simplify becoming of contact type. The low-energy
expansion is organized differently, relying on the emergence of universal properties,
characteristic of systems with large two-body scattering lengths. We will examine
the two above schemes and discuss their relation, with the aim of devising viable
power counting schemes for applications in nuclear physics.

86.1 Generalities on Effective Field Theories

Since the birth of physical science, the key to the successfulmathematical description
of phenomena has been the capability of identifying their truly relevant features, and
of isolating them from all disturbances and complications, that could eventually
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be treated as small perturbations. It would indeed be impractical to face the full
complexity of physical phenomena in their finest details, even in the fortunate case
in which those finest details are actually understood. The quest towards such ultimate
understanding has led to the formulation of quantum field theories (QFTs), forming
the basis of the currently accepted Standard Model of elementary particles. One
of the guiding principles in such an accomplishment has been the requirement of
renormalizability for the relevant QFTs, i.e. the requirement that they be valid down
to the tiniest distances.

After the completion of this program a new understanding of the significance of
this requirement began to emerge: renormalizability was henceforth considered not
as a requirement of principle, but rather as the consequence of a separation of scales
[1–3]. The QFTs describing the interactions of elementary particles are no longer to
be considered as valid at all scales, theywill break down at an unknown scale at which
new unknown physics sets in. The satisfactory description in terms of renormalizable
QFTs, and their associated high predictive power, is just a manifestation of the large
separation between us and the scale of new physics, since the contributions from non-
renormalizable terms (with the corresponding proliferation of unknown coupling
constants) is suppressed by inverse powers of the scale ratio. It would only be the
sign of a pretentious ingenuity to ask that Nature follows the rules of renormalizable,
infinitely predictive, QFTs. Instead, the Standard Model is only valid below a cutoff,
a high-energy scale Λ, thus it qualifies as an effective field theory (EFT).

The cutoff Λ in a given EFT is not just a regulator, a mathematical artifact that
one can dispose of by sending it to infinity, after the renormalization procedure. It
is instead a physical parameter that refers to the very definition of the EFT [4]. It
encodes the scale characterizing those fine details that are unimportant at the energies
where the EFT is applicable, suppressed by inverse powers of Λ.

The EFTs reflect the procedure of choosing the appropriate degrees of freedom
(the interacting fields) for a given physical problem, and identifying the relevant
symmetries. The interactions among the fields follow from these two steps and they
are typically of arbitrary complexity. Each interaction term comes with a coupling
constant, a low-energy constant (LEC), and there is an infinite number of them:
indeed, according to Weinberg [5], the EFT Lagrangian is just the most general
one respecting the assumed symmetries. Therefore, changing the cutoff Λ, the the-
ory will remain the same, only with changed values for the LECs, that define their
renormalization group flow. As the cutoff is moved towards the infrared the LECs
multiplying higher dimension operators (e.g. with higher derivatives) become less
and less important. Under the hypothesis of naturalness, i.e. that the magnitudes of
the LECs conform with their renormalization group running, higher dimension oper-
ators become effectively irrelevant. Thus, an expansion scheme emerges in powers
of p/Λ, p denoting the typical momentum involved in a given process. The interac-
tions are ordered according to this expansion, so that, at a given order, only a finite
number of operators contributes. The values of the corresponding LECs represent
physical effects beyond the cutoff scale. The larger the scale separation, the faster the
convergence of this expansion. If the scales are not widely separated then, in order
to achieve a satisfactory description, high orders in the expansion have to be taken
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into account, with a consequently large number of LECs involved. This amounts to
less predictive power, since the LECs have to be fitted from data.

It is important to stress the sharp contrast of the EFT framework with models: the
latter give definite predictions to be confronted with data, while the EFT is driven
from data, through the fitting of the LECs. The falsification of an EFT involves either
the discovery of new interactions violating the symmetry principles, or the failure of
the low-energy expansion scheme. The true underlying theory is just one realization
of the EFT, among many other alternative theories sharing the same symmetries on
which the EFT is built. Ideally, the LECs could even be computed. Being unable to do
so, one fixes them from data, with no guarantee that the extracted values of the LECs
are the same as their true values. In the best case the series is well convergent and
the determined LECs are close to their true values: as one proceeds in the expansion,
the LECs get small corrections.

A particularly important feature of the EFT framework, compared to models,
is the capability of estimating the theoretical uncertainty of a given calculation, as
determined e.g. from the truncation of the low-energy expansion and by propagating
the error propagation from the LECs [6]. In this ideal situation suppose we compute
a given set of observables at the leading order (LO) of the perturbative scheme.
Probably the χ2 will not be satisfactory but we can equip the theoretical predictions
with a theoretical uncertainty δ, and determine δ as theminimum for which theχ2 per
degree of freedom is 1.We can have thus a measure of the theoretical uncertainty δLO
of the LO description. By going to the next order, usually the number of intervening
LECs increases, allowing for a better χ2. Consequently also δNLO, the theoretical
uncertainty of the next-to-leading order description will be less than δLO. The δX so
determined can be confronted with the convergence pattern which is expected on
the basis of the separation of scales [3]. A slow convergence is a sign of insufficient
separation of scales, which might be due to the emergence of relevant physics at a
lower energy scale than expected.

86.2 Chiral Versus Pionless EFT

Various types of EFT are relevant for the description of few-nucleon systems, that
have different domains of applicability. For the discussion to follow, let us focus on
two of them, the chiral effective field theory (ChEFT) and the pionless effective field
theory (/πEFT) [7–14].

The ChEFT is the more microscopic one, its domain of applicability extends to
shorter distances, and it encompasses more processes. It is based on the chiral sym-
metry of QCD, an approximate symmetry valid in the limit of vanishing light quark
masses. Dynamical chiral symmetry breaking leads to the appearance of massless
Goldstone bosons, identifiedwith the pions, the lightest among the hadrons. The other
hadrons, whose mass is unprotected by chiral symmetry, define a hadronic scale ΛH

of the same order as the chiral symmetry breaking scale 4πFπ . As a consequence
of explicit chiral symmetry breaking by the light quark masses the pions acquire a
mass, which nevertheless can be considered as much smaller than ΛH. This provides
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the sought after separation of scales, the mass gap between the pions and the heavier
hadrons that mediate the nuclear interaction. The applicability domain is determined
by typical momenta of order of Mπ or less, which are much smaller than the hadronic
scale ΛH ∼ 1 GeV. The proximity of the Δ resonance in πN scattering suggests to
include it as an explicit degree of freedom, thus extending the domain of applica-
bility. Among the distinctive features of this EFT in its different variants, following
distinct power counting rules, there is the predicted hierarchy of few-nucleon forces,
according to which the three-nucleon force (3NF) is a small perturbation on the top
of the dominant 2N interaction. Furthermore, this theory encodes all constraints from
chiral symmetry, that relate different processes, like for instance nuclear beta decays
and the long-range component of the 2N interaction, as encoded in the Goldberger-
Treiman relation. Chiral 2N potentials that provide excellent fit to the 2N database
have been developed up to the fifth order of the chiral expansion [15–20], while the
3NF has so far been developed only up to the third order [21–23].

/πEFT applies to a more restricted energy domain: for the resolution of this less
microscopicEFT, the pionmass is a heavy scale and the pion exchanges are contracted
to multinucleon contact interactions. So the pions are integrated out and their effects
are encoded in the values of the LECs parametrizing contact interactions. On the
basis of this reasoning, the 2N scattering lengths, denoted generically by a, should
be of the order 1/Mπ , but instead they are much larger. Without a pion, this cannot be
due to accidental cancellations and calls for a non-perturbative resummation. A new
soft scale emerges ∼ 1/a (as was Mπ in the ChEFT) and the theory is applicable in
a much narrower domain of p ∼ 1/a � Mπ . As shown by Bedaque, Hammer and
van Kolck [24, 25] this resummation calls for the introduction of a 3-body force,
otherwise the 3-body system remains completely arbitrary. This arbitrariness can
in turn be traced back to the Efimov effect [26], characterized by a discrete scale
invariance, reminiscent of the absence of scales in the unitary limit a → ∞ [27–29].
As a result, the 3NF needs to be part of the LO EFT, contrary to ChEFT. This is a
direct consequence of the large scattering length scale in the absence of the pion. It
is therefore interesting to examine more closely the role of the pion.

To this end let us recall that, in ChEFT, the expected order of magnitude of the
kinetic energy in a two-nucleon (2N) system like the deuteron is O(Q2/ΛH) ∼
20 MeV and the same for the potential energy O[Q3/(4πF2

π )] ∼ 20 MeV [30].
There is no expectation nor explanation for an almost exact compensation of these
contributions. It seems that the LO suffers from an accidental cancellation. Even
without spoiling the overall convergence of the low-energy expansion of the two-
body binding energy B, thismight induce instabilities in the expansion of observables
which are non-linearly related to B. Indeed, considering the low-energy expansion
B = BLO + BNLO + δB, if BLO happens to be smaller than expected then the fol-
lowing terms take more relative importance: the perturbative series of a quantity like
1/B will consequently be flawed, despite the overall convergence of B, i.e. δB � B.
And the two-body dynamics enters in the 3-body systems quite non-linearly. This
is indeed manifested in the binding energy of the three-nucleon (3N) system: it is
known that the 3NF produces ∼ 1 MeV more attraction compared to the two-body
force. Thus the 2N force produces about 2 MeV binding per pair, while the 3NF
contributes about 1 MeV. It is not a small perturbation at any rate.
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86.3 Impact of the Pion-Exchange in the LO /πEFT

In the two-nucleon sector, the only difference between chiral and pionless EFT at LO
is the one-pion exchange potential V π , whose strength is fixed by the Goldberger-
Treiman relation. In both schemes two LECs parametrize the S-wave short-range
interaction Vsr in the singlet and triplet channels. Thus they lead to equivalent descrip-
tions in the low-energy domain, since the two scattering lengths can be reproduced.
On the contrary, in the 3N sector a marked difference appears, due to the presence of
a leading 3N interaction in /πEFT, which is absent in ChEFT. It can be thought that
in the latter case the mass scale in the 3N system is determined by the pion-range. If
this happens then the necessity of a leading 3NF would be lifted by the inclusion of
V π . In this respect it is instructive to consider a LO 2N potential inspired to ChEFT
[31]

V = CSδr0(r) + CT δr0(r)σ1 · σ2 + V π
β , (86.1)

where CS/T are the contact interaction LECs, the delta functions are regularized
and become Gaussian functions of range r0 and the one-pion exchange potential
V π is also regularized with a range β, suppressing the short distance behaviour
by appropriate powers of the factor 1 − exp(−r2/β2). The regulator β is changed
from 1 fm, corresponding approximately to the short-distance scale of the theory, to
infinity, in which case the theory reduces to the pionless one. For each value of the
regulators we fix the short-distance LECs to the singlet and triplet S-wave scattering
lengths. With these values we compute the triton binding energy, which is shown
in Fig. 86.1, and observe a pronounced dependence on the short-distance cutoff r0
between 1 and 2 fm. On general grounds, this is a symptom of a missing contribution
represented by the 3NF, whose LEC has to absorb this dependence [32]. It is true
that, by including the pion (smaller β), the spread is somewhat reduced, but for the
reasonable cutoffs β � 1 fm that we explored it remains quite unstable, hinting at the
necessity of including a 3NF also in the LO of the ChEFT. In the α particle binding
energy this cutoff dependence is still more dramatic, without the inclusion of 3NF,
as shown in the light band of Fig. 86.2. Whereas the results are much more stable,
within 10% of the experimental value, by including a 3N contact interaction

V (0)
3N (i, j, k) = W0e

−r2i j /r
2
0 e−r2ik/r

2
0 , (86.2)

regularized by Gaussian functions of the same range r0, whose strength W0 is fixed
to the triton binding energy. According to our previous reasoning, the accidental
emergence of a soft scale destabilizes the chiral expansion: important contributions
will eventually compensate the cutoff dependence, but at the cost of going to very
high orders.
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Fig. 86.1 Cutoff dependence of the triton binding energy. The band represents variation with the
short-distance cutoff r0 between 1 and 2 fm (adapted from [31])
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Fig. 86.2 Cutoff dependence of the α particle binding energy with (solid line and green band) and
without (dashed line and light red band) a leading three-nucleon interaction adjusted to the triton
binding energy (adapted from [31])

86.4 Cutoff Optimization at LO

As already stated, in EFT the cutoff is not only a mathematical artifact to manipulate
the equations, it represents a physical scale, unresolved by the EFT. As the cutoff
is changed within this region, the EFT description should not change, within the
accuracy associated to the truncation of the low-energy expansion. This implies that
the cutoff dependence should be reduced as one proceeds in the perturbative scheme.
Thus, at a given order, the residual cutoff dependence reflects the effect of neglected
higher orders. There are choices of the cutoff that minimize the effect of individual
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higher order terms. One can therefore optimize the choice of the cutoff to improve
the description at a given order. This of course is only legitimate provided the low-
energy expansion is well behaved, which can only be checked by actually going to
higher orders. Taking such optimistic perspective, in [33], in order to improve the LO
description of the previous section, the short distance cutoffs in the singlet and triplet
channels, respectively r S/T

0 , have been chosen so as to reproduce the corresponding
effective ranges. Analogously, with all cutoffs and couplings fixed in the two-body
sector, and the 3NF strength adjusted to the triton, one can use the 3N short-distance
cutoff r3 as a further optimization parameter, replacing r0 in (86.2). It is remarkable
that such cutoff optimization not only can lead to the correct value of the α-particle
binding energy, but also, in the frameworkofBrueckner-Hartree-Fock calculations, to
satisfactory many-body properties like the energy per particle of symmetric nuclear
matter and the corresponding saturation point and incompressibility, the nuclear
symmetry energy and its slope parameter, an equation of state of β-stable nuclear
matter compatible with presently observed neutron star masses [33].

As a general feature, such a satisfactory description would be impossible at LO
if r3 was not allowed to vary, leading to the idea of A-dependent cutoffs. More
precisely, values of r3 smaller than the two-body cutoffs r X0 are preferred, This
may also be understood from the way the contact interactions are regularized in
momentum space: if the momentum transfers k1 and k2 of two particles are limited
to a range Λ, the third one, k3 = −k1 − k2, may take larger values; with Gaussian
cutoffs, the k3 distribution would have a width larger by a factor

√
2 compared to

k1 and k2, implying the necessity of shorter ranges for the regularized three-body
contact interaction.

86.5 Accurate N2LO Description of the A = 3 Continuum

If the contact 3NF is promoted to leading order in the ChEFT, due to the instabilities
induced in the low-energy expansion by the proximity of the unitary limit, then
the subleading 3N contact interaction, which merely specifies finer details of the
underlying theory, will get the same relative promotion. It would therefore be part
of the N2LO chiral potential1.

This component of the 3N interaction has been studied in [38], where it was
found to depend on 10 LECs, denoted Ei (i = 1, ..., 10), leading to a local potential
in coordinate space,

1By this we mean an interaction suppressed by two orders relative to the leading one in the low-
energy expansion, i.e. O(p2/Λ2). Due to the vanishing of the O(p/Λ) chiral potential, it is cus-
tomarily denoted as NLO.
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V (2)
3N (i, j, k) =

∑

perm

(E1 + E2τ i · τ j + E3σi · σ j + E4τ i · τ jσi · σ j )

×
[
Z ′′
0 (ri j ) + 2

Z ′
0(ri j )

ri j

]
Z0(rik)

+(E5 + E6τ i · τ j )Si j

[
Z ′′
0 (ri j ) − Z ′

0(ri j )

ri j

]
Z0(rik)

+(E7 + E8τ i · τ k)(L · S)i j
Z ′
0(ri j )

ri j
Z0(rik)

+(E9 + E10τ j · τ k)σ j · r̂i jσk · r̂ik Z ′
0(ri j )Z

′
0(rik) (86.3)

where σi (τ i ) are the Pauli spin (isospin) matrices, ri j is the i j relative distance, Si j
and (L · S)i j are respectively the tensor and spin-orbit operators for particles i and
j , and the function Z0(r) is the Fourier transform of the cutoff function F(p2;Λ),

Z0(r;Λ) =
∫

dp
(2π)3

eip·rF(p2;Λ). (86.4)

The appearance of 10 new LECs is a very welcome feature from a phenomeno-
logical point of view since, contrary to the two-nucleon sector, none of the currently
used 3N interaction models lead to a satisfactory description of the 3N scattering
observables. In particular a long-standing discrepancy exists in polarization observ-
ables of low-energy p − d scattering, most notably the Ay [39, 40]. As shown in [37,
41, 42], the subleading 3N contact potential (86.3) has enough flexibility to correctly
address this problem leading to reasonable fits of these 3N observables below the
deuteron breakup threshold. For the sake of illustration, we show in Fig. 86.3 fit
results to very precise p − d scattering data at 3 MeV proton energy [34]. Also fitted
are the triton binding energy and the doublet and quartet N − d scattering length.
The resulting χ2/d.o.f. is ∼ 1.6 for cutoff values in the range Λ = 200 − 500 MeV.
It will be interesting to see whether the same is true in a more extended kinematical
region, i.e. beyond the breakup threshold.

86.6 Conclusions

Either due to basic phenomena deeply rooted in the underlying QCD, like sponta-
neous chiral symmetry breaking, or to accidental unexplained facts, like the large
values of the 2N scattering lengths, small ratios of scales can be identifiedwhich allow
to describe nuclear systems in an EFT framework. In addition to a more extended
domain of applicability as compared to /πEFT, a particularly attractive feature of
ChEFT is the incorporation of all constraints from chiral symmetry, which is spe-
cially important when one considers nuclear interactions with external probes of
quark bilinears within and beyond the Standard Model. However, the proximity of
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Fig. 86.3 Fit to cross section and polarization observables for p − d scattering at 3 MeV proton
energy. Data are from [34]. The adopted potential is the phenomenological AV18 2N interaction
[35], supplemented by the leading and subleading contact 3N interaction, regularized with a cutoff
Λ in the range 200–500 MeV (red bands). Also shown for reference are the predictions of the
purely 2-body interaction (dashed lines) and with the addition of the Urbana IX 3N interaction [36]
(adapted from [37])

nuclear physics to the unitary limit might destabilize the chiral expansion, requiring
to reach very high orders for a satisfactory description. In order to cope with this
possibility, we advocate a hybrid power counting for ChEFT in which the contact
3N interaction is promoted to the leading order. Remarkably, this simple interac-
tion, with duly optimized A-dependent cutoffs, seems to bridge successfully few-
nucleon to many-nucleon systems [33, 43]. In addition, thanks to the appearance
of new unknown LECs, there is the possibility of obtaining an accurate descrip-
tion of the 3N continuum already at the next-to-next-to leading order. It would
be interesting to explore the possibility of tailoring this interaction on the spec-
tral properties of medium-light nuclei using Green Function Montecarlo techniques
[44, 45].
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Abstract The tetraneutron has been drawing the attention of the nuclear physics
community for decades, but a firm conclusion on its existence and properties is
still far from being reached despite many experimental and theoretical efforts. New
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measurements have recently been performed at RIBFwith the SAMURAI spectrom-
eter by applying complementary reaction probes, which will help to pin down the
properties of this four-neutron system.
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Ru -der Bošković Institut (RBI), Zagreb, Croatia

J. M. Gheller · A. Gillibert
CEA, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette, France

T. Harada · M. Miwa
Toho University, Tokyo 143-8540, Japan

A. Hirayama · Y. Kondo ·M. Matsumoto · H. Miki · T. Nakamura · A. Saito · T. Shimada ·
S. Takeuchi · T. Tomai · H. Yamada · Y. Yasuda
Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

D. Kim · S. Kim · S. Park
Department of Physics, Ehwa Womans University, Seoul, Korea

T. Kobayashi
Department of Physics, Tohoku University, Miyagi 980-8578, Japan

Y. Maeda
Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan



87 Study of Multi-neutron Systems with SAMURAI Spectrometer 531

87.1 Introduction

There has been a long-standing question among the nuclear physics community
whether a nucleusmade purely of neutronswithout any protons can exist or not. These
so-called “Neutral nuclei” have attracted in particular a lot of attention over the past
decades. These multi-neutron systems, whether existing as bound or quasi-bound
(resonant) states, have fundamental importance in nuclear physics. They provide the
possibility to investigate “purely” the nuclear forces free from Coulomb interaction,
which is essential for developing the nuclear theory, and critical for our understanding
of neutron-rich nuclear matter and neutron stars. The two-neutron system, dineutron
(2n), has been well known to be unbound. For the tetraneutron (4n), however, no firm
conclusion has been drawn yet despite many experimental and theoretical efforts.

Earlier experimental attempts to search for a bound 4n with a wide variety of
methods all failed to find positive evidence. The existence of a bound state of four
neutrons has been ruled out by calculations based on standard nuclear forces. But
the possibility for 4n existing as a resonant state is supported by some theoretical
calculations. In 2002 Marqués et al. reported the possible existence of a bound or
low-lying resonant 4n state [1]. The resurgence of interest on this topic in recent
years was triggered by the report on the observation of a low-lying 4n resonance
(although the resolution made the result also compatible with a bound state within
error bars) released by Kisamori et al. in 2016. This concerned a background-clean
measurement with the SHARAQ spectrometer, but only four events were identified
indicative of a “candidate” 4n resonant state [2]. This observation was qualitatively
reproduced by recent Quantum Monte Carlo (QMC) [3] and No-Core Shell Model
calculations [4], but was not supported by some other ab initio-type calculations
[5, 6].

New experimental measurements on 4n have been recently performed at RIKEN
Radioactive Isotope Beam Factory (RIBF) facility: updated double-charge exchange
reaction 4He(8He, αα)4n by Shimoura et al. (for details see report by Shimoura
in the present proceedings), 8He(p, pα)4n with inverse kinematics by Rossi and
Paschalis et al. and 8He(p, 2p)7H{t + 4n} with inverse kinematics by Yang and
Marqués et al. These experiments will provide independent and complementary
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information about 4n, considering the different population processes, resolutions,
production yields and analysis methods, whichwill help to pin down the properties of
this four-neutron system. The latter two experiments, both requiring high luminosity
from the thick liquid hydrogen target MINOS [7] and the high neutron detection
efficiency of the combined neutron detection array NeuLAND + NEBULA, were
arranged in a campaign with the SAMURAI spectrometer in 2017. In the present
report we will focus on the 8He(p, 2p) experiment, and a brief introduction of the
8He(p, pα) experiment will also be presented.

87.2 Description of the 8He(P, 2p)7H{T + 4n} Experiment

The 8He(p, 2p)7H{t + 4n} experiment was carried out at the RIBF, which is operated
by the RIKEN Nishina Center and the Center for Nuclear Study (CNS), University
of Tokyo. The secondary 8He beam with an energy of ~150 MeV/nucleon and an
intensity of ~105 pps was produced in the fragmentation of 18O on the 9Be primary
target, and then purified and transported by the BigRIPS beam line. The incident
8He particles were identified event-by-event with TOF-�E method by using plastic
scintillators on the beam line and tracked with two multi-wire drift chambers (BDC1
and BDC2) onto the 150-mm-thick vertex-tracking liquid hydrogen target MINOS.
7H was then produced from the (p, 2p) reaction off 8He. A schematic view of the
experimental setup is presented in Fig. 87.1.

The recoil protons from the (p, 2p) reaction were tracked by the TPC of MINOS
and then recorded by a compact NaI array surrounding the target, constructed with 36
crystals from the DALI2 in-beam gamma-ray spectrometer [8] and arranged into two
symmetric rings. The energy resolution of the NaI scintillators was determined to be

Fig. 87.1 Schematic view of the setup for the 8He(p, 2p)7H{t + 4n} experiment with inverse
kinematics
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around 1% (FWHM) in measurements with 80-MeV protons at CYRIC of Tohoku
University, and an energy calibration was performed bymeasuring the proton-proton
elastic scattering at 175 MeV with the same setup. The charged fragments were ana-
lyzed by the SAMURAI spectrometer [9]. Coincident detection of themultiple decay
neutrons is critical but extremely challenging for studies of these multi-neutron sys-
tems. TheNeuLANDdemonstratorwith four double-planes fromGSI [10]was added
to the existing NEBULA array, which provides the highest 4-neutron detection effi-
ciency (ε4n ~ 1%) achievable at present. It is worthwhile to note that all the reaction
products were recorded in the present experiment, providing the complete kinemat-
ics of the reaction and therefore eliminating possible ambiguity from identification
of multi-neutron events. Another advantage of the present kinematically complete
measurement is the applicability of the so-called “Missing-Invariant-Mass method”,
which requires the detection of only three of the four neutrons by reconstructing the
kinematics of the missing neutron from the remaining particles and therefore largely
enhances the sensitivity in the vicinity of the threshold (by a factor of ~20).

The charged fragments are identified from the TOF and �E signals from the
HODO plastic scintillator array at the exit of SAMURAI. As shown in Fig. 87.2a,
tritons arewell recorded and clearly separated from 6He fragments. Angular informa-
tion of the recoil protons is provided by the TPC surrounding the target. In Fig. 87.2b
and c, the correlations of polar angles and azimuthal angles of the reoil proton pair
in coincidence with outgoing triton fragments are presented, respectively. An open-
ing angle of ~70° and the coplanarity are evidently observed, in agreement with
the expected correlation pattern for the quasi-free (p, 2p) reaction off 8He. We have
also checked the registered neutron multiplicity in the NeuLAND+NEBULA array
by applying causality cuts on the space-time separation of neutron hits in order to
remove fake multi-neutron events (due to the so called cross-talk). In this way, we
estimate that the recorded full-kinematics events will be of the order of 50 k, which
will permit a detailed investigation of the tetraneutron system.

Fig. 87.2 a PID of fragments by measuring ToF and�Ewith HODO. Polar angle, b and azimuthal
angle, c correlations of the two recoil protons populated in the 8He(p, 2p) reaction
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87.3 Perspectives

Within the same campaign, 8He(p, pα)4nwasmeasured by Rossi and Paschalis et al.,
taking advantage of the well developed α + 4n cluster structure of 8He. The final-state
interactionwith the charged fragments isminimized by carrying out themeasurement
at very backward scattering angles in the center of mass. The experimental setup is
similar to the 8He(p, 2p)7H{t + 4n} experiment (Fig. 87.1). Instead of the TPC +
NaI detectors, a silicon-tracker system was introduced at the target region for the
tracking of protons and alpha particles [11]. The data analysis is still in progress, but
protons and alpha particles are clearly identified in coincidence, and the four-neutron
system can then be reconstructed from the missing-mass method.

In 2018, the first direct experimental investigation of the 6-neutron system (“hex-
aneutron”) was made by Beaumel et al. by measuring the 14Be(p, pαα) reaction
with SAMURAI spectrometer. Furthermore, some new proposals on multi-neutron
systems based on (p, 2p) and (p, p) reactions are also in preparation.

There are in general two key yet challenging factors for experimental studies of
these exoticmulti-neutron systems. One is the population process, and the other is the
detection and identification of themulti-neutron events. It is not clear at presentwhich
reaction will selectively populate the multi-neutron systems we are interested in, and
complementarymeasurementswith different reaction probeswould in this sense help
to reach a definite conclusion. The high-quality secondary beams provided by RIBF
together with the large-acceptance SAMURAI spectrometer and the associated large
neutron detector arrays (including the EXPAND upgrade project for NEBULA) are
providing new opportunities for sophisticated studies of thesemulti-neutron systems.

We acknowledge the support of the RIBF accelerator staff and the BigRIPS team
for providing the high-quality beam. Z. H. Yang acknowledges the financial support
from the Foreign Postdoctoral Researcher program of RIKEN. I. G. was supported
by HIC for FAIR and Croatian Science Foundation Project No. 7194.
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Chapter 88
Nucleon Structure from Lattice QCD

Kyriakos Hadjiyiannakou

Abstract We present selected recent results on the nucleon structure using lattice
QCD simulations with physical or close to physical pion masses. Results include,
the nucleon axial charge, tensor charge, σ -terms, average momentum fraction and
the decomposition of the nucleon spin. Results about the proton electric form factors
are also discussed.

88.1 Introduction

Lattice QCD has entered a new and exciting era. Progress in algorithms and the
increased availability of powerful computers have enabled simulations at physical
values of the parameters of theory. The so-called physical ensembles eliminate chi-
ral extrapolations, which especially for baryons, introduce uncontrolled systematic
errors. Other sources of systematic errors include discretization effects from finite
lattice spacings and finite volume effects. Therefore simulations for at least three
different lattice spacings and at least three different volumes are needed to reliably
extrapolate to the continuum and infinite volume limit. An additional source of sys-
tematic error that needs special attention is the pollution of the ground-state from
contributions from excited states.

Understanding the complex structure of the nucleon is among the frontiers of
Nuclear and Particle Physics. Lattice QCD provides the framework to compute
nucleon observables fromfirst principles providing significant input for experimental
and phenomenological studies. In this proceedings we summarize important nucleon
quantities such as the nucleon axial charge the average momentum fraction allow-
ing us to decompose the nucleon spin, the tensor charge an important quantity for
searches beyond the standard model, σ -terms involving in dark matter searches and
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the electric structure of the proton. We note that the inclusion of disconnected con-
tributions is crucial to avoid uncontrolled systematic errors in the nucleon matrix
elements.

88.2 Nucleon Structure

On the lattice in order to extract the nucleon matrix elements one has to compute the
nucleon two-point and three-point Euclidean correlation functions given respectively
as

C2pt (Γ0,p; ts, t0)=
∑

xs

Tr
[
Γ0〈J (ts, xs) J̄ (t0, x0)〉

]
e−i(xs−x0) ·p, (88.1)

and

C3pt
μ (Γν,q,p ′; ts, tins, t0)=

∑

xins, xs

ei(xins−x0) ·qe−i(xs−x0) ·p ′×

Tr
[
Γν〈J (ts, xs)Oμ(tins, xins) J̄ (t0, x0)〉

]
. (88.2)

The standard nucleon interpolating field is J (x) = εabc
(
uaT (x)Cγ5db(x)

)
uc(x)

with the creation interpolator at x0 and the annihilation operator at xs and the cur-
rent operator is O(xins) inserted at xins. The matrix element can be extracted by
taking appropriate combinations of three- to two-point functions. Since the nucleon
interpolating field creates any state with the quantum numbers of the nucleon, the
ground-state should be isolated. In the limit of large time separation stateswith higher
than the lowest energy die out and one can isolate the ground state. Since arbitrarily
large separations are practically not allowed due to the exponential increase in the
statistical error with the time separation, alternative approaches should be followed.
One way to increase the overlap with the nucleon is to utilize smearing techniques to
increase the overlap with the ground state. Common methods to extract the nucleon
ground state are the so-called plateau method, summation method, multi-state fits
and variational approaches.

88.2.1 Nucleon Axial and Tensor Charges and σ -Terms

The isovector nucleon axial charge is considered a benchmark quantity for lattice
QCD since it has been measured in high precision in neutron β-decay. It can be
extracted from the axial-vector operatorOA = ψ̄(x)γμγ5

τ 3

2 ψ(x) at zero momentum
transfer. Due to its isovector structure disconnected contributions vanish allowing
for a relatively easy extraction. In Fig. 88.1 we show recent lattice QCD results for
gA. As one can see lattice results are in general in agreement with the experimental
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Fig. 88.1 Comparison of lattice QCD results for gA from [2, 5–8, 10, 11, 13]. The black band
indicates the PDG value from [16]

Fig. 88.2 Left panel: Comparison of results for the isovector tensor charge. Reading from down to
up the first six points correspond to results from phenomenological studies while the rest are results
from lattice QCD studies. Right panel: Comparison of results for the σπN , σs and σc. Green circles
[1, 12, 17] are results from phenomenological studies while the rest are lattice QCD results [4, 9,
14, 18]

value. The tensor charge can be extracted from the operator OT = ψ̄(x)σμν τ 3

2 ψ(x)
while the σ -term is OS = mqq̄(x)q(x). For the σ -terms disconnected contributions
should be included.

Results for the gu−d
T is shown in Fig. 88.2. Phenomenological studies have signif-

icantly smaller values compared to lattice QCD results with the latter having a trend
to higher values. Results for the σ -terms are presented also in Fig. 88.2. For σπN

lattice results are in good agreement with values lower than phenomenology. For σs

and σc there are no phenomenological studies and lattice results are well compatible.
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88.2.2 Spin Decomposition

One gauge invariant way to decompose the nucleon spin was introduced by X.
Ji [15], namely JN = ∑

q Jq + Jg = ∑
q

(
1
2ΔΣq + Lq

) + Jg . The intrinsic quark
spin is 1

2ΔΣq and Lq is the quark orbital angular momentum. The total contri-
bution of the gluons to the nucleon is Jg where Jg cannot decompose further,
in contrast to the Jaffe-Manohar decomposition. The intrinsic quark spin can be
computed from the first Mellin moment of the polarized PDF and is the nucleon
matrix element of the axial-vector operator at zero momentum transfer. The total
quark contribution Jq , can be extracted from the second Mellin moments of the
unpolarized PDF or the Generalized Form Factors (GFFs) at zero momentum
transfer, namely Jq = 1

2

[
Aq
20(0) + Bq

20(0)
]
. The GFFs can be extracted from the

nucleon matrix element of the vector one-derivative operator Oμν

V = q̄γ {μ←→
D ν}q,

namely 〈N (p′, s ′)|Oμν

V |N (p, s)〉 = ūN (p′, s ′)μν(Q2)uN (p, s) where μν(Q2) =
Aq
20(Q

2)γ {μPν} + Bq
20(Q

2)
σ {μαqα Pν}

2m + Cq
20(Q

2) 1
m Q{μQν} with Q2 = (p′ − p)2 is

the momentum transfer square and P = (p′ + p)/2. The A20(0) is directly accessi-
ble from the lattice data while B20(0) needs to be extrapolated at zero momentum
transfer from finite Q2 values.

In order to compute the Jg term we construct the gluon operator [3], Oμν
g =

2Tr
[
GμσGνσ

]
where Gμν is the field strength tensor. We use the scalar operator

OB = O44 − 1
3Oj j and from the matrix element 〈N |OB |N 〉 = −2mN 〈x〉g one can

extract Ag
20(0) = 〈x〉g . To compute Jg = 1

2

[
Ag
20(0) + Bg

20(0)
]
, evaluation of Bg

20(0)
is also needed. Assuming that spin and momentum sums are satisfied one can relate
B20 of gluons to quarks, such as

∑
q B

q
20(0) = −Bg

20(0). In Fig. 88.3 we present our
results for the complete nucleon spin and momentum decomposition [3]. We find

Fig. 88.3 Left: Nucleon spin decomposition. Right: Nucleon momentum decomposition. The
striped segments show valence quark contributions (connected) and the solid segments the sea
quark and gluon contributions (disconnected). Results are given in MS-scheme at 2 GeV
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that disconnected diagrams contribute significantly and that the spin and momentum
sums are satisfied within the current statistical accuracy.

88.2.3 Electromagnetic Form Factors

The proton electric form factor is an important quantity probing the charge density
distribution inside the proton. The vector nucleon matrix element is

〈N (p′, s ′)| jμ|N (p, s)〉 =
√

m2
N

EN (p ′)EN (p)
×

ūN (p′, s ′)
[
γμF1(q

2) + iσμνqν

2mN
F2(q

2)

]
uN (p, s) . (88.3)

and the electric form factor can be expressed in terms of the Dirac F1(Q2) and Pauli
F2(Q2) form factors as

GE (Q2) = F1(Q
2) − Q2

2m2
N

F2(Q
2). (88.4)

In Fig. 88.4 we show our results extracted from a physical ensemble for the proton
electric form factor. The disconencted contributions have also been evaluated and
are found to have a negligible contribution for this quantity. Our results have been
found to lie one to two standard deviations higher that experiment.

Fig. 88.4 Left panel: Proton electric form factor including disconnected contributions in compar-
ison with experimental results. Right panel: Disconnected contributions to the proton electric form
factor
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88.3 Conclusions

Lattice QCD can deliver high quality results for several nucleon observables directly
at the physical point. Recent results for the nucleon axial charge are compatible with
the experimental, for the tensor charge lattice results are significantly more accurate
as well as for the nucleon σ -terms.With state-of-the-art simulations we can now shed
light to the proton spin decomposition and also compute in high precision crucial
form factors such as the electric form factor allowing us to access the proton charge
radius.
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Chapter 89
Experimental Analysis of Few-Body
Physics

Yukie Maeda

Abstract The differential cross sections of the elastic Nd scattering at the energy
below 150 MeV can be well reproduced by introducing 3NF in the Faddeev calcula-
tions based on modern nucleon-nucleon (NN) interactions. On the other hand, some
spin-observables, and the differential cross sections of Nd elastic and inelastic scat-
terings at over 250 MeV show large discrepancies between the data and the Faddeev
calculations with 3NF. It indicates the presence of the missing features of the three
nucleon systems. For the systematic study about these large discrepancies at higher
energy regions, we measured the differential cross sections and the vector analyzing
power for the inclusive and exclusive breakup reaction at 170 and 250 MeV. The
experiments were carried out at RCNP. The data were compared with the results of
the Faddeev calculations with and without the 3NF.

89.1 Introduction

The study of three-nucleon force (3NF) effects is attracting attentions not only in the
few-body studies but also in the studies of heavier system like neutron-rich nuclei
and neutron star. Historically, the need for many-body interaction was suggested just
after Yukawa’s meson theory in 1939 [1]. Based on the meson exchange picture,
the main component of the 3NF is considered to be Fujita-Miyazawa type, a 2π -
exchange between three nucleons with a Δ isobar excitation as an intermediate state
[2]. Firstly, the study of the 3NF effects was started through the bound states of few
nucleon systems. The correct binding energies of 3N bound systemswere reproduced
by introducing the Tucson-Melbourne (TM) or Urbana-IX 3NFs, which showed the
clear effects of 3NF in the nucleus.

The study of the 3N continuum states through the Nd scattering allows us to
measure not only the cross sections but also the spin observables, which offer more
details of 3NF properties. The recent progress in computational resources has made
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it possible to obtain rigorous numerical results of Faddeev calculations for the 3N
scattering at intermediate energy region with using the realistic NN forces and 3N
forces. In the experimental sides, highly precise measurements of the dp elastic
scattering for the deuteron energies of Elab

d = 140, 200 and 270 MeV have been
performed [3, 4]. The calculations with NN forces only fail to reproduce the data
of cross sections and vector analyzing powers at the angular range where the cross
section takes minimum. These discrepancies are filled by adding 3NFs. These results
mean that the Nd elastic scattering at intermediate energy is a good probe to study
the 3NF effects.

Theoretically, 3NF effects are expected to be significant at higher energy. How-
ever, the Faddeev calculations with 3NF still underestimate the data for nd [5] and
pd [6] elastic scattering at 250 MeV. The discrepancies between the data and the
theory can not be explained by the relativistic corrections [7]. This is quite different
to the results of the comparisons between the data and the theoretical predictions at
135 MeV/nucleon.

For the next step of the study of 3NF effects, the breakup reactions are expected to
give usmore information because the total cross sections of the breakup are predicted
to become larger than elastic at higher energy region. Sowe performedmeasurements
of both inclusive and exclusive breakup reactions at 170 and 250 MeV at Research
Center for Nuclear Physics (RCNP), Osaka university.

89.2 Inclusive Breakup Reaction

We performed two different types of measurements of inclusive breakup reactions
at RCNP. One was D(p, p)pn inclusive breakup reaction at Ep = 250 MeV [8]. In
this experiment, polarized proton beam of 250 MeV was bombarded on the liquid
deuterium target and scattered proton was analyzed by LAS spectrometer at θLAB =
10, 15, 20, 25, and 30◦. In [8], the differential cross sections and vector analyzing
powers are compared with the Faddeev calculations with and without 3NF. Concern-
ing about the differential cross sections, only the half value of the data in the high
energy transfer region were explained by the theory. This result is similar to that of
elastic scattering at 250 MeV.

Another was D(p, n)pp inclusive breakup reaction at 170 MeV. Because this
energy is lower than the π -threshold of 210MeV, it would allows us explicit compar-
ison between the data and the theory. In this experiment, we accelerated the polarized
proton beam up to Ep = 170 MeV and transported it to the N0 experimental hall.
We used the deuterated polyethylene (CD2) sheets [9] as the deuteron targets. The
thickness of them were 44 and 110 mg/cm2. To subtract the contributions from the
carbons in CD2 targets, we also used a graphite target of 140 mg/cm2.

The proton beam was injected to the targets in the vacuum scattering chamber
and bent to the beam dump by the swinger magnet. The scattered neutrons passed
through the vacuum window and ran through the 100 m time-of-flight (TOF) tunnel
in the air then be detected by NPOL3 [10]. The efficiency of NPOL3 was determined
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Fig. 89.1 The double differential cross sections for theD(p, n) breakup reactions at θlab = 0, 7, 15◦
as functions of the scattered neutron energy. The solid circles show the data with statistical errors
only. The calculations including various NN forces only (light shaded band), various NN forces
with TM99-3NF (dark shaded band) and AV18+UrbanaIX-3NF (solid line) are also shown

by measuring the 7Li(p, n)7Be(g.s. + 0.4 MeV) reaction, of which cross sections
were measured over the wide energy range. In this work, the efficiency was deduced
to be about 1.5%. The energy of a detected neutron was deduce by TOF method.

Preliminary results for the double differential cross sections at θlab = 0, 7, 15◦
are shown in Fig. 89.1 as functions of the scattered neutron energy. The data are
compared with the Faddeev calculations [11]. The dark (light) shaded bands show
the calculations based on the NN forces (CD-Bonn, AV18, Nijmegen-I&II) with
(without) TM99-3NF. The solid lines represent the calculations based on AV18 and
UrbanaIX-3NF.

We can see large discrepancies between the data and the calculations in the low
neutron energy regions. In this regions, the calculations including 3NF can explain
only about 50% of the data, which is similar to the results of the D(p, p) inclusive
breakup reaction at 250MeV. It may indicates the presence of the missing features of
the three nucleon system at intermediate energy region, for instance π − ρ or ρ − ρ

exchange type 3NF effects, which are not included in the present calculations. On
the other hand, the energy dependence of discrepancies between the data and the
theoretical calculations are rather small, which is different from the case of elastic
scatterings. It suggests that more study of the inclusive breakup reactions in the
different beam energies are important to explore the energy dependence of the 3NF
effects.

Concerning about the analyzing powers of D(p, n)pp reacrions, the statistical
errors of the data are large to discuss about the effects of 3NF. The data are almost
consistent with the calculations within the error bars.



546 Y. Maeda

89.3 Exclusive Breakup Reactions

In the studies by using the exclusive breakup reactions, it is important to select
kinematical configurations to measure because the three-nucleon final states are
kinematically much more complicated than elastic and inclusive breakup reactions.
To investigate the origin of large discrepancies in the differential cross sections of
the elastic and inelastic scattering which were mentioned above, we performed the
two different sets of measurements of D(p, pp)n exclusive breakup reactions at 250
MeV at RCNP west experimental hall. The polarized proton beam of 250 MeV
was bombarded to liquid deuterium target and scattered two protons (p1 and p2)
were analyzed by double arm magnetic spectrometer LAS and Grand Raiden (GR),
respectively.

In one set of measurements, we focused on the kinematical configurations that
one proton p1 was scattered into θLAS = 15◦, because the data of D(p, p)pn inclusive
measurement showed large disagreement with the theories at forward angular region
[12]. Another proton p2 was measured at θGR = 35, 50, 65, and 80◦. In [12], the
comparison between the data of differential cross sections and the theoretical calcu-
lations show angular distribution: the data are well reproduced only in configurations
with large θ2.

In another set of measurements, we focused on the kinematical configurations, so-
called final state interaction (FSI) geometry, because FSI configurations are predicted
to be a good probe for not only the 3NF effects but also the difference between the
3NF models [13]. According to this theoretical prediction, we measured Ay and the
differential cross sections of the following reaction −→p + d → (p1n)FSI + p2 at Ep

= 250 MeV. We chose the configuration that the np pair is around FSI, because it is
difficult to include the Coulomb force in the Faddeev calculations for the pp pair in
FSI. The recoiled proton p1 in FSI is detected by using LAS spectrometer at θLAB =
40◦. Another proton p2 which scattered in the direction around θLAB = 67◦, which
depends of the relative energy between proton p1 and neutron, is detected by using
GR spectrometer in coincidence with p1. By using the momentum vectors of p1 and
p2, we obtained the missing mass spectrum of neutrons with the energy resolutions
of 1.2 MeV.

We obtained the preliminary results of the differential cross sections and the vector
analyzing powers with the S-curve energy bin of the 7 MeV. The results are plotted
in Fig. 89.2 by solid circles as a function of the energy of p1. The statistical errors of
the data are less than 1% and 0.02 for the differential cross sections and the vector
analyzing powers, respectively. The peak corresponds to the FSI can be seen around
Ep = 65 MeV.

The solid (dashed) lines represent the results of the Faddeev calculations [14]
with (without) Tucson-Melbourne99 (TM99) 3NF based on the CDBonn potential.
The dot-dashed (dotted) lines are the same predictions with solid (dashed) lines but
integrated with the experimental solid angles. From Fig. 89.2, we can see that the
experimental results are well reproduced by the calculations which integrated with
the angular acceptance of themeasurements. The data aroundFSI arewell reproduced
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Fig. 89.2 The upper and the
lower panel show the results
of the differential cross
sections and the vector
analyzing powers for the pd
break reactions at 250 MeV
for θp = θn = 40◦ in the
laboratory system (solid
circles). Only the statistical
errors are represented. The
predictions with CDBonn
and TM99-3NF (solid line)
and that with CDBonn only
(dashed line) are shown
simultaneously. The
dot-dashed (dotted) lines are
the theoretical results with
(without) TM99-3NF which
integrated with the angular
acceptance of the
measurements

by the calculations with CDBonn only but the data around the cross sectionminimum
are well reproduced by that including TM99-3NF. This result is different from the
case of elastic and inclusive breakup reactions. It would be interesting to compare
the data with the theoretical predictions which include the relativistic corrections [7]
or the Coulomb interaction effects [15].
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Chapter 90
Strong Interactions for Precision Nuclear
Physics

Andreas Ekström

Abstract One of the key challenges in ab initio nuclear theory is to understand
the emergence of nuclear structure from quantum chromodynamics. I will address
this challenge and focus on the statistical aspects of uncertainty quantification and
parameter estimation in chiral effective field theory.

It is well-known that quantum chromodynamics (QCD) is non-perturbative in the
low-energy region where atomic nuclei exist. This feature prevents us from direct
application of perturbation theory. Tomake progress, two complementary approaches
are presently employed; lattice QCD (LQCD) [1] and chiral effective field theory
(χEFT) [2]. The former amounts to numerical evaluation of the QCDpath integral on
a space-time lattice,while the latter is aimed at exploiting the decoupling principles of
the renormalization group (RG) to systematically formulate a potential description
of the nuclear interaction rooted in QCD. LQCD is a computationally expensive
approach that requires at least exascale resources for a realistic analysis of multi-
nucleon systems, andwillmost likely not be themost economical choice for analyzing
nuclear systems. Nevertheless, in cases where numerically converged results can be
obtained, LQCD offers a unique computational laboratory for theoretical studies of
QCD in a low-energy setting [3].

The derivation of a nuclear potential in χEFT proceeds via the construction of
an effective Lagrangian consisting of pions, nucleons, sometimes also the Δ isobar,
endowedwith all possible interactions compatiblewith the symmetries of low-energy
QCD. The details can be found in extensive reviews [4–6]. All short-distance physics,
normally associated with quarks and gluons, reside beyond a hard momentum scale
Λb ∼ 1 GeV, that remains unresolved in χEFT. Such high-momentum dynamics is
instead encoded in a set of low-energy constants (LECs) that must be determined
from experimental data, or in a future scenario hopefully computed directly from
LQCD. χEFT is the theoretical framework to calculate observables in an expan-
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sion expressed in powers of the small ratio Q/Λb, where Q is a soft momentum
scale ∼ mπ . If done right, this approach allows for a systematically improvable
description of low-energy nuclear properties in harmony with the symmetries of
low-energy QCD.

The promise of being systematically improvable is a unique selling point ofχEFT,
or anyEFT for thatmatter. Indeed, although the order-by-order expansion contains an
infinite number of terms andmust be truncated, the omitted terms represent neglected
physics and contribute to the systematic uncertainty. The upshot is that higher-order
corrections should be less important and follow a pattern determined by the EFT
expansion ratio. The organization of this expansion, such that increasingly unimpor-
tant physics appear at consecutively higher orders, is called power counting (PC).

The leading-order (LO) in this expansion consists of the well-known one-pion
exchange potential (Yukawa term) accompanied by a contact potential to describe
any unresolved short-ranged physics at this order. The potentials at higher orders, i.e.
next-to-leading order (NLO) etc., systematically introduce multiple-pion exchanges,
accompanied additional zero-ranged contact potentials, possibly Δ perturbations,
and irreducible many-nucleon interactions, see Fig. 90.1.

To achieve an accurate theoretical description of the nuclear interaction, with
quantified statistical and systematic uncertainties of the theoretical predictions, can

Fig. 90.1 Diagrammatic order-by-order representation of the Δ-full two-nucleon (NN ) and three-
nucleon (NNN ) nuclear interaction up to NNLO in χEFT based on so-called Weinberg power
counting (WPC)



90 Strong Interactions for Precision Nuclear Physics 551

be referred to as achieving a state of precision nuclear physics. There are several
interesting facets of this ongoing endeavor:

– On a fundamental physics level, it is well-known that the nuclear potentials from
χEFT that are based onWeinberg power counting (WPC) do not generate observ-
ables that respect RG invariance, see e.g. [7] and references therein. At the same
time, there is an ongoing debate regarding the need or validity for probing large
momenta in a potential description from EFT that is only valid at low-energies to
begin with, see e.g. [8–10] for a selection of viewpoints. Presently, most ab initio
calculations of atomic nuclei, including the calculations presented here, employ
potentials based on WPC. There exist potentials with alternative PCs that fulfill
the fundamental tests of RG invariance for observables in two- and three-nucleon
systems, see e.g. [11]. Unfortunately, such potentials have not yet been employed
in nuclear many-body calculations.

– The numerical values of the LECs in χEFT must be determined from data before
any quantitative analysis can proceed. From a frequentist perspective, parameter
estimation often amounts to maximizing a likelihood. For χEFT, this turns into a
non-linear optimization problem over a high-dimensional parameter domain [12–
14]. Bayesian parameter estimation is explored more and more in ab initio nuclear
theory [15, 16]. This approach captures the entire probability distribution of the
relevant parameters, and not just the values at the maximum of the probability
mode. However, the computational demands are substantially higher compared to
most of the frequentist methods, mainly due to repeated sampling of the model
across the parameter domain.

– There are several sources of uncertainty in model calibration. For instance, the
calibration data itself come with uncertainties. Thus, any parameter estimation
process will contain covariances that must be quantified and propagated. There
exist well-known methods, frequentist as well as Bayesian, for quantifying the
statistical uncertainties at any level of the calculation, see e.g. [17, 18]. However,
it remains a challenge to achieve full uncertainty quantification in complex models
that require substantial high-performance resources for a single evaluation at one
point in the parameter domain. Well-designed surrogate models can hopefully
provide some leverage, see e.g. [19–21].

– A theoretical model will never represent nature fully. Consequently, there are
theory errors (sometimes referred to as systematic uncertainties or model discrep-
ancies). The statistical uncertainties stemming from the calibration data discussed
above are typically not the main source of error in χEFT predictions [22, 23]. It
is therefore of key importance to identify and quantify the sources of systematic
errors in χEFT. At the moment, such analyses are rarely performed in ab initio
nuclear theory. χEFT models combined with ab initio methods are often com-
putationally complex and require substantial computational resources. As such,
MarkovChainMonteCarlowith longmixing times can be prohibitively expensive.
Furthermore, it is not clear how to identify and exploit the relevant momentum
scales in descriptions of atomic nuclei.
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90.1 Ab initio Nuclear Theory with χEFT

Ab initio methods, such as the no-core shell-model (NCSM) [24], the coupled cluster
method (CC) [25], in-medium similarity renormalization (IM-SRG) [26], or lattice
EFT [27], for solving the many-nucleon Schrödinger equation

⎛
⎝

A∑
i=1

p2i
2mN

+
A∑

i<j=1

VNN
ij (α) +

A∑
i<j<k=1

VNNN
ijk (α)

⎞
⎠ |Ψ 〉 = E|Ψ 〉 (90.1)

with two-nucleon (NN ) and three-nucleon (NNN ) potentials derived from χEFT
with a set of LECs α, make use of controlled mathematical approximations. Such
many-body approaches can provide numerically exact nuclear wave functions for
several bound, resonant, and scattering states in isotopes well into the region of
medium-mass nuclei [28–31]. This development has drastically changed the agenda
in development of nuclear interactions for atomic nuclei.

In the beginning of the previous decade, a lot of effort was spent on constructing
so-called high-precision nuclear interactions, most prominently Idaho-N3LO [32],
AV18 [33], and CD-Bonn [34], that could reproduce the collected data on NN scat-
tering below the pion-production threshold with nearly surgical precision. We now
know that such interactions often fail to reproduce important bulk properties of
atomic nuclei [31, 35–37]. However, fifteen years ago, it was unclear how to gauge
the quality of the many-nucleon wave functions since they relied on a series of
involved approximations. Although it is still a challenge to quantify the theoretical
uncertainty in many-body calculations, modern ab initio methods are tremendously
refined. Indeed, their fidelity, and domain of applicability have been dramatically
extended during the recent decade. This development has led to an increased focus
on designing improved microscopic nuclear potentials that are based on novel fitting
protocols. To ensure steady progress, we need to critically examine and systemati-
cally compare the quality of different sets of interaction models and their predictive
power.

90.1.1 Optimization of LECs and Uncertainty Quantification
of Predictions from χEFT

The canonical approach to estimate the numerical values of the LECs α in χEFT is
to minimize some weighted sum of squared residuals

χ2(α) =
∑
i∈D

(Otheo
i (α) − Oexp

i

σi

)2

, (90.2)
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whereD represents the calibration dataset, andOi denotes experimental and theoret-
ical values for observable i inDwith an obvious notation. The theoretical description
of each observable depends explicitly on the LECs α. In the limit of independent
data, the uncertainty associated with each observable is represented by σi. Known,
or estimated, correlations across the data can also be incorporated [38, 39]. Using
well-known methods from statistical regression analysis, often assuming normally
distributed residuals, it is possible to extract the covariance matrix of the parameters
that minimize the objective.

An order-by-order uncertainty analysis of chiral interactions up to NNLO was
undertaken in [13]. The objective function in that work incorporated an estimate of
the theory uncertainty from χEFT, and the datasetD comprised πN and NN scatter-
ing data as well as bound-state observables in A = 2, 3 nuclei. The total covariance
matrix for the LECs was determined for each analyzed interaction model. Additional
components of the systematic uncertainty were probed by varying the regulator cut-
off Λ ∈ [450, 600] MeV as well as the maximally allowed scattering energy in the
employed database of measured scattering cross sections. This effort resulted in a
family of 42 chiral interactions at NNLO. Together, they furnish a valuable tool for
probing uncertainties in ab initio few-nucleon predictions, see [40, 41] for represen-
tative examples of their use.

90.1.2 With an EFT, We Can Do Better

One way to estimate the effect of the first excluded term in an EFT expansion was
suggested in [42]. Building on the work in [43], this was given a Bayesian interpre-
tation in [18]. In brief, if we write the order-by-order expansion of some observable
O as

O = O0(a0q
0 + a1q

1 + a2q
2 + a3q

3 + . . .), (90.3)

where O0 is the overall scale, e.g. the leading order contribution, and we know
the expansion parameter, e.g. q = (Q/Λb), then we can compute the probability
distribution of the expansion coefficient ai provided that we know the values of
the lower-order coefficients a0, . . . , ai−1. The application of Bayes theorem with
identically distributed, independent, boundless, and uniform prior distributions of
the expansion coefficients ai, leads to a simple expression for the estimate of ai, with
(100 × i/(i + 1))% confidence, given by

ai = max{|an|}n<i. (90.4)

Although the above expression only provides an estimate, theoretical predictions
equipped with truncation errors provide important guidance and demonstrate one
of the main advantages of using an EFT. Refined methods for quantifying EFT
truncation errors in nuclear physics is of key importance.
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90.2 Muon-Capture on the Deuteron

An excellent example of where theoretical uncertainty quantification plays an impor-
tant role is in the theoretical analysis of the muon-deuteron μ − d (doublet) capture
rate ΓD, i.e. the rate of

μ− + d → νμ + n + n. (90.5)

Experimentally, this will be determined with 1.5% precision in the MuSun experi-
ment. Such precision, if attained, corresponds to a tenfold improvement over previous
experiments. The centerpiece of the MuSun experiment is to extract the two-body
weak LEC dR from a two-nucleon process. This LEC is of central importance in
several other low-energy processes that are currently studied. It is proportional to
the proton-proton (pp) fusion cross-section, an important low-energy process that
generates energy in the Sun. Given its extremely low cross-section, this cannot be
measured on earth. The LEC dR also appears in neutrino-deuteron scattering, and
once the πN couplings c3 and c4 are fixed, it determines the LEC cD which governs
the strength of the one-pion exchange plus contact piece of the leading NNN inter-
action. A thorough analysis of the uncertainties in theoretical descriptions of μ − d
capture was carried out in [44], using the covariance matrices from [13], yielding for
the S−wave contribution Γ

1S0
D = 252.4+1.5

−2.1 s
−1.

Exploiting the Roy-Steiner analysis from [45], it was also possible to quantify
the correlation between the μ − d capture rate and the pp-fusion low-energy cross
section in terms of the LEC cD. Furthermore, assuming an EFT expansion ratio q =
mπ

Λb
∼ 0.28, i.e. estimatingΛb ∼ 500MeV, allowed for an order-by-order estimate of

the EFT truncation error of the capture rate along the lines presented in Sect. 90.1.2.
The LO-NLO-NNLO predictions of the capture rate are Γ

1S0
D = 186.3 + 61.0 + 5.5

s−1, where the second and third term indicate the NLO and NNLO contributions,
respectively, to the LO result (first term). This information leads to an estimated EFT
truncation error of 4.6 s−1, with 75%-confidence. Clearly, the dominating source of
uncertainty.

90.3 From Few to Many

Increasing the number of nucleons in the system under study introduces several new
challenges. The presence of multiple scales, emergence of many-body effects such
as collectivity, clusterization, and saturation are not trivial to understand from first
principles, nor particularly easy to handle when solving the Schrödinger equation
and therefore not straightforward to incorporate when calibrating the interaction. In
[36], the LECs of a chiral NNLO interactionwas optimized to reproduce few-nucleon
data as well as binding energies and radii in 14C and selected oxygen isotopes. This
approach to parameter estimation, resulting in theNNLOsat interactionwas facilitated
by anovel application thePOUNDERsoptimization algorithm [46] coupled to jacobi-
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NCSM and CC methods. NNLOsat has enabled accurate predictions of radii and
ground-state energies in selected medium-mass nuclei [47].

It should be pointed out that the NNLOsat interaction does not provide an accurate
description of NN scattering cross-sections, in particular for pp scattering, at relative
momenta beyond ∼ mπ . At the same time, it is not obvious how to determine the
domains of applicability of an interaction model and exploit this information such
that the risk of overfitting is minimized. This, and other challenges are intimately
related to quantifying truncation errors inχEFTandpredictions fromab initio nuclear
theory.

90.3.1 Delta Isobars and Nuclear Saturation

It turns out that the inclusion of the Δ isobar as an explicit low-energy degree of
freedom in the effective Lagrangian, in addition to pions and nucleons, play an
important role for accurately reproducing the saturation properties of the nuclear
interaction. See [48] for additional details. Figure 90.2 demonstrates the effect of
incorporating the Δ up to NNLO in CC calculations of symmetric nuclear matter.
Additional advantages of including the Δ were observed in [49–51]. Such results
are not surprising from an EFT perspective, given that the Δ − N mass splitting
is only twice the pion mass and therefore below the expected breakdown scale of
χEFT potentials [52]. Thus, theΔ-full chiral interaction provides a valuable starting
point for constructing more refined χEFT interactions with improved uncertainty
estimates.
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Fig. 90.2 CC calculations of the energy per nucleon (in MeV) in symmetric nuclear matter at
NNLO in χEFT with (solid line) and without (dashed line) the Δ isobar. Both interactions employ
amomentum regulator-cutoffΛ= 450MeV. The shaded areas indicate the estimated EFT-truncation
errors following the prescription presented in Sect. 90.1.2. The diamonds mark the saturation point
and the black rectangle indicates the region E/A = 16 ± 0.5 MeV and ρ = 0.16 ± 0.01 fm3
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90.4 Discussion and Outlook

It is clear that the computational capabilities in ab initio nuclear physics exceed the
accuracy of available chiral interactions. Tomake further progress requires improved
statistical analysis and evaluation of interaction models. Hopefully, such efforts will
bring us closer to a well-founded and microscopically rooted formulation of the
nuclear interaction. There are several interesting challenges ahead of us. We must
push the frontier of accurate ab initio methods further towards exotic systems and
decays; systematically exploit information from NNN scattering data, decay prob-
abilities, and saturation properties of infinite matter when optimizing the LECs of
chiral interactions; demonstrate a connection between EFT(s) applied to nuclei and
low-energy QCD, e.g. test PCs for RG invariance; and quantify systematic and sta-
tistical uncertainties in theoretical predictions. Continuous development of efficient
computer codes to harness high-performance computing resources will hopefully
enable detailed Bayesian analyses of ab initio calculations in the near future.
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Chapter 91
Recent Developments in Solving the
Few-Particle Scattering Problem by the
Solution of The Faddeev-Yakubovsky
Equations

Rimantas Lazauskas

Abstract In this article a short overview of the Faddeev-Yakubovsky (FY) equation
formalism is provided. The progress in solving the few-particle problem based on
solution of the FY equations is briefly discussed. The first numerical solution of
the 5-body FY equations is undertaken, presenting the formalism how to include
the three-nucleon interactions. Finally the results related with low energy neutron
scattering on 4He are presented and discussed.

91.1 Introduction

The few-body problem plays a special role in nuclear physics. Since the first days of
nuclear physics one hoped to construct reliable models to describe nucleon-nucleon
(NN) interaction and required accurate theoretical tools to test them in solving non-
relativistic Schrödinger equation. The pioneering estimateswere based on variational
method and allowed, in particular, to demonstrate that the NN forces should be of
the finite range to avoid collapse of the A > 2 nuclei. Even more important but also
much more troublesome turned to be the route of solving the few-body scattering
problem. Soon after the Lippmann-Schwinger equations have been formulated [19]
it has been realized that these equations do not provide a unique solution for the mul-
tiparticle scattering problems. Furthermore these equations are inappropriate to treat
the problems, where interactions are defined by boundary conditions (solid spheres
or zero-range interactions) and not by the potentials. The partial solution for the
second problem has been proposed in [27], however this approach has not allowed
to handle the interactions of the finite range. The well founded integral equations to
describe the three-particle scattering problem governed by the short range interac-
tions have been derived by Faddeev in [6] and proved to provide a unique solution.
Few years later Faddeev equations have been generalized to arbitrary number of
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particles by Yakubovsky [32]. An additional step has been required to formulate
Faddeev-Yakubovsky (FY) equations in their diffferential form and work out appro-
priate wave-function boundary conditions. This feat has been realized in [20] for a
three-body and in [21] for a four-body cases.

From the day of their formulation the actual applications of the Faddeev-
Yakubovsky equations pose severe numerical challenges being due to the limited
numerical resources. The first solutions of the three-body equations have been per-
formed for the separable potentials [1], which allow to spare wave functions depen-
dence on one vector variable. The first solution for the nonseparable potentials have
appeared in early seventies using momentum space techniques by Utrecht group [9]
and in configuration space by Grenoble group [11]. The first solution of the three-
nucleon problem based on realistic interactions appeared more than one decade
later [10]. Around that time the first solutions of the four-nucleon problem based
on Faddeev-Yakubovsky equations for the simplistic nucleon-nucleon interaction
models have appeared [21]. The fully realistic four-nucleon bound state problem
for alpha-particle has been solved one decade later [13], whereas one more decade
has been required to reach breakthrough for elastic [30] and non-elastic [4, 13]
four-nucleon scattering problems. Finally the first attempt to solve the five-nucleon
scattering problem has been undertaken just a few years ago [15] and extended to
handle realistic nuclear interaction models in the very recent study [16].

91.2 Five-Body FY Equations

The five-body FY equations have been carefully detailed in the work [26]. Their
derivation starts by decomposing systems total wave function Ψ into binary compo-
nents φi j , similar to the three-body Faddeev components:

φi j = G0Vi jΨ, (91.1)

here and in the following by letters (i jklm) I denote indexes of the five-particles,
without supposing any preferential ordering. For a five body system there exist 10
two-particle interactions Vi j and thus one may construct 10 different binary compo-
nentsφi j . Next step is to introduce four-body like FY components. These components
are defined as {

ψ
i jk
i j = Gi j Vi j (φ jk + φik),

ψ
i j,kl
i j = Gi j Vi jφkl .

(91.2)

In the last set of equations five-body Green’s function Gi j includes single interaction
term Vi j , i.e.Gi j = (E − H0 − Vi j )

−1. For a five-body system there exist 30 different
four-body components of each type ψ

i jk
i j and ψ

i j,kl
i j . Using Yakubovsky’s scheme

the last components are further decomposed into the five-body FY components,
schematically depicted in Fig. 91.1, and assorted into the FY equations as:
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Fig. 91.1 Jacobi coordinate sets proper to 5-body Faddeev-Yakubovsky components. From left to
right components K4

12,3, H34
12, T12,3, S34

12 and F34
12 are represented
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,

Hkl
i j = Gi j Vi j
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Hi j
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jkl
kl + ψ ikl

kl

)
,

Ti j,k = Gi j Vi j

(
Tik, j + Tjk,i + ψ lm

ik + ψ lm
jk

)
,

S lm
i j = Gi j Vi j

(
F i j

lm + ψ
jk
lm + ψ ik

lm

)
,

F lm
i j = Gi j Vi j

(
S i j
lm + ψklm

lm

)
.

(91.3)

The five-body components are related to the four-body ones, via:

ψ
i jk
i j = Kl

i j,k + Km
i j,k + Ti j,k, (91.4)

ψ
i j,kl
i j = Hi j,kl + Si j,kl + Fi j,kl . (91.5)

The FY equations do not provide direct framework to implement the many-body
forces. The framework to implement three-body forces in three- and four-body FY
equations has been proposed in [7] and has been slightlymodified in [12]. After some
relatively simple combinatorial analysis three-body forces can also be implemented
into the five-body FY equations. It is required only to modify equations for K and
T components appearing in the left-hand side of the equation set (91.3):

(E − Ĥ0 − V12)K4
12,3 = V12(K4

13,2 + K4
23,1 + ψ134

13 + ψ234
23 + ψ

13,24
13 + ψ

23,14
23 )

+ W3
12(K4

12,3 + K4
13,2 + K4

23,1 + ψ134
13 + ψ234

23 + ψ
13,24
13 + ψ

23,14
23

+ ψ
12,34
12 + ψ124

12 + φ14 + φ24 + φ34), (91.6)

(E − Ĥ0 − V12)T12,3 = V12(T13,2 + T23,1 + ψ
13,45
13 + ψ

23,45
23 )

+ W3
12(T12,3 + T13,2 + T23,1

+ ψ
13,45
13 + ψ

23,45
23 + ψ

12,45
12 + φ45) (91.7)

In the last set of equations the terms W3
12 denote symmetrized components of a

three-body forceW123 acting between the particles (123) and being decomposed as:

Wi jk = Wk
i j + W i

jk + W j
ki (91.8)
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I proceed solution of the 5-body FY equations using the techniques developed in
our previous studies. Spatial, spin and isospin dependence of the FY components is
expressed by means of the partial wave expansion:

F JM(
−→x ,

−→y ,
−→z ,−→w ) =

∑ fα(x, y, z, w)

xyzw

∣∣∣{{
lx ly

}
lxy

{lzlw}lzw
}
L
{S}

〉
JM

{T }T Tz ,

(91.9)
here α ≡ (lx , ly, lz, lw, lxy, lzw, L , {S} , {T }) is an index representing set of interme-
diate quantum numbers, coupled to total angular momentum J and total isospin T
with its projection Tz (for a n-4He scattering, considered in this work, total isospin
and its projection are fixed to T=1/2 and Tz=1/2−). The partial wave amplitudes
fα(x, y, z, w) depend only on the radial parts of the coordinates. These ampli-
tudes are further expanded using Lagrange-Laguerre basis functions by means of
Lagrange-meshmethod [2]. Number of basis functions is adjusted to the partial angu-
lar momentum state they represent, by systematically reducing basis size describ-
ing partial amplitudes with large partial angular momentum values. For a realistic
interaction models employed in this work—partial basis has been limited by setting
max(lx , ly, lz) < 5 and lw < 3. Nucleons have been considered to be of the equal
mass mN by imposing �

2/mN =41.471 MeV·fm2.
For the scattering calculations asymptotic behavior of the FY components is sup-

plemented with a long range w-dependent functional, composed of a regular and
irregular spherical Bessel functions, adapting similar procedure as one used in [8].
This functional carries additional unknowns related to the K-matrix elements to be
calculated. In order to balance resulting linear algebra problem additional equations
are added, requiring the FY components combined with the incoming wave to satisfy
Wronskian relation, see [14].

91.3 Results

In Fig. 91.2 my results of the calculated n-4He phaseshifts are presented for the
Hamiltonian based on the χEFT approach, derived up to next-to-next-to-next-to-
leading order in chiral perturbation theory [5], denoted by I-N3LO. These results
are compared with the ones computed by No Core Shell Model with Continuum
(NCSMC) technique [24] as well as with the phaseshifts extracted from the experi-
mental data performing R-matrix analysis [3]. Keeping in mind that my calculations
as well as the ones performed using NCSMC techniques are estimated to be accurate
at a few percent level—onemay conclude nice agreement between the two theoretical
approaches. Comparison with the phaseshifts extracted from the experimental data
employing R-matrix analysis [3] reveals nice agreement for the repulsive S-wave,
whereas theoretical NN interaction models fail to provide sufficient splitting of the
resonant P-waves.

The accurate description of the n-4He P-waves is quite a challenging problem, as
pointed out in [24, 25] it requires presence of a three-nucleon force containing strong
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Fig. 91.2 Elastic phaseshifts for neutron scattering on 4He nucleus at low energies calculated using
I-N3LO NN potential without three-nucleon force (hollow symbols) and with the N2LO three-
nucleon force parameterized by Marccuci et al. (full symbols). These results are compared with
the calculations performed within NCSMC framework (continuous line) using I-N3LO model [24]
and with the phaseshifts extracted from the experimental data, employing R-matrix analysis (small
hollow symbols) [3]

spin-orbit components. The three-nucleon force (3NF) proposed by Navratil [23],
being constructed using local regulators and derived up to next-to-next-to-leading
order, once employed with I-N3LO NN interaction is able to a large extent repro-
duce the required P-wave splitting [24]. A similar feat has been achieved in Greens
Function Monte Carlo calculations [25] employing AV18 NN interaction combined
with IL7 three-nucleon force. I have performed calculations combining the I-N3LO
NN interaction in conjunction with the newly parameterized next-to-next-to-leading
order 3NF of [23] by Marcucci et al. It is expected, from the calculations in neigh-
boring nuclei, that the two different parameterizations of 3NF should not differ
in predictions of the binding energies or the low energy cross sections. Inclusion
of the last 3NF delivers almost excellent description of the phaseshifts of doublet
P-wave (Jπ = 1/2−). Description of the quartet P-wave (Jπ = 3/2−) is also sig-
nificantly improved. Nevertheless in the resonance region my phaseshifts are still
slightly smaller than the ’experimental’ ones, as a result of less pronounced (situated
deeper in the continuum) 5He Jπ = 3/2− resonant state. This issue requires more
detailed analysis, as it could be also related with a slower than usual convergence
of the PW decomposition in the region dominated by a narrow resonance, where a
small variation of the resonance position can have dramatic effects on the calculated
scattering observables.

It makes certain interest to concentrate on the n-4He S-wave. As pointed out in
my previous study this channel is dominated by strong Pauli repulsion between the
projectile neutron and the ones, present within 4He target. This repulsion produce
phaseshifts, which are not very sensitive to the details of the nuclear interaction. Sim-
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Table 91.1 Calculated n-4He scattering lengths a0 for two different NN interaction models pre-
sented together with 4He binding energies B(4He) obtained within the same model space as used in
the scattering calculations (third column) and fully converged model space results (fourth column).
My results are also compared with the theoretical and the recommended experimental values found
in the literature

B(4He) [MeV]
Model a0 [fm] scatt. full a0 [fm] Reference

I-N3LO 2.72(3) 25.24 25.39 3.19 [24]
AV18 2.96(6) 24.08 24.23(1) 2.4 [25]

Experiment 2.456(16) 28.29567 TUNL [28]
2.608 (24) NIST [29]
2.507 (32) Atlas n-res.[22]

ilar feature is observed in the repulsive S-waves of neutron-deuteron and neutron-
triton scattering [17, 31]. Nevertheless study of the thermal neutron scattering on
4He may reveal interesting correlations with the binding energy of a 4He ground
state. Furthermore accurate description of the thermal neutron scattering is required
in relation with the ongoing Parity violation studies, aiming to measure slow neu-
tron spin rotation for n-4He elastic scattering [18]. Curiously experimental situation
with a measured n-4He scattering length is quite unsettled, see Table 91.1. I have
calculated n-4He scattering lengths for several nuclear Hamiltonians and compared
them in Table 91.1 with existing values in the literature. On may see that discrepancy
between the theoretical predictions is even larger than for the experimental values.
Deviation of the NCSMC result is well understood and is apparently due to the
effect of induced three-nucleons forces, which have not been estimated in the former
calculations with sufficient accuracy leading to overestimated S-wave phaseshifts at
energies below2MeV.More accurate evaluation of the induced three-nucleons forces
matrix element should allow to reduce the predicted scattering length, providing bet-
ter low energy behavior of the S-wave phaseshifts. Situation with GFMC result is
more troublesome—disagreement with my calculated values using AV18 potential
is dramatic. To shed some light on this situation I have presented in Fig. 91.3 my
calculated scattering lengths as a function of themodel predicted 4He binding energy.
One may see clear signs for these two observables to be correlated, which reflects
a well known property of strongly repulsive systems—the scattering lengths being
correlated with the target’s size. Worths noting that a similar tendency is observed
for the n-3H scattering lengths [17]. In the GFMC calculation such correlation pat-
tern is absent, as their predicted scattering lengths for AV18 and AV18+IL7 models
coincide, regardless the presence of ∼4 MeV difference in calculated 4He binding
energies and mean square radii. This indicates that GFMC might be not sufficiently
accurate at very low energies. Finally correlation pattern presented in Fig. 91.3 sug-
gests that between three recommended scattering length values the NIST result [29]
might be the most reliable.
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Fig. 91.3 Dependence of
the model calculated n-4He
scattering length a0 on the
binding energy of 4He.
Recommended experimental
values from NIST [29], Atlas
n-res. [22] and TUNL [28]
are also provided. A green
dashed line is added just to
guide an eye
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predictions for the neutron-deuteron scattering lengths. Phys. Rev. C 68(3), 034,002 (2003)

32. Yakubovsky, O.A.: On the integral equations in the theory of n particle scattering. Sov. J. Nucl.
Phys. 5, 937 (1967)

http://arxiv.org/abs/1711.04716
https://doi.org/10.1007/s00601-007-0193-3
http://stacks.iop.org/1402-4896/91/i=5/a=053002
http://stacks.iop.org/1402-4896/91/i=5/a=053002
https://doi.org/10.1103/PhysRevLett.99.022502
https://doi.org/10.1103/PhysRevLett.99.022502
https://link.aps.org/doi/10.1103/PhysRevLett.99.022502


Chapter 92
Few-Body Systems in Minkowski Space:
The Bethe-Salpeter Equation Challenge

Giovanni Salmè

Abstract Solving the homogeneous Bethe-Salpeter equation directly inMinkowski
space is becoming a very alive field, since, in recent years, a new approach has been
introduced, and the reachable results can be potentially useful in various areas of
research, as soon as the relativistic description of few-body bound systems is relevant.
A brief review of the status of the novel approach, which benefits from the consistent
efforts of different groups, will be presented, together with some recent results.

92.1 Introduction

A fully covariant and non perturbative description of a bound system, with and
without spin degrees of freedom (dofs), represents a Holy Grail in different areas of
research, as soon as relativistic effects become urgent for obtaining a reliable control
of the dynamical evolution of the state. Indeed, a bound system has a unavoidably
non perturbative nature, and if it is necessary a relativistic description, one keenly
quests a suitable approachwith the abovementioned features for tackling the issue. In
view of this, the Bethe-Salpeter equation (BSE) in Minkowski space can play a role,
since it was proposed by Salpeter and Bethe [1] within a fully field-theoretical and
non perturbative framework (see [2] for a first review). In particular, the capability
to offer a non perturbative description has to be ascribed to its-own structure, since
the BSE for bound states is a homogeneous integral equation, and hence it is able
to take into account all the infinite exchanges, needed to reproduce the bound-state
pole (in the relevant Green’s function). Given such an attractive feature, the BSE has
been actively studied, but the presence of many challenges related to, e.g., the need
of kernels beyond the ladder one (see the next Section), the presence of self-energy
and vertex corrections and, last but not least, the non trivial analytic structures of
the BS amplitude (i.e. the solution of the BSE), has urged the introduction of wise
mathematical trick, like the Wick rotation [3] and/or sharp approximations. As is

G. Salmè (B)
INFN, Sezione di Roma, P.le A. Moro 2, I-00185 Rome, Italy
e-mail: salmeg@roma1.infn.it

© Springer Nature Switzerland AG 2020
N. A. Orr et al. (eds.), Recent Progress in Few-Body Physics,
Springer Proceedings in Physics 238,
https://doi.org/10.1007/978-3-030-32357-8_92

567

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32357-8_92&domain=pdf
mailto:salmeg@roma1.infn.it
https://doi.org/10.1007/978-3-030-32357-8_92


568 G. Salmè

well-known, very popular approaches to the BS formalism are based on the rotation
to imaginary relative energy (see, e.g. [4] for an application to the deuteron) or on
productive 3D-reductions of the BSE (see e.g. [5], for some introductory details), and
they are devised for circumventing the issue of the cumbersome analytic structure
in Minkowski momentum-space, related to the role of the relative energy (as well
as the meaning of the relative time). There exist also covariant approximation of the
BSE (see, e.g. [6], illustrating the covariant spectator model approach and [7] for
the approach based on separable kernels), where some simplifying assumptions are
introduced but still keeping safe the covariant nature of BSE. Till nineties, only one
case was known to be exactly solved in Minkowski momentum-space, though with
the interaction kernel in ladder approximation, namely theWick-Cutkosky model [3,
8],which is composed by twomassive scalars interacting through amassless scalar. In
1997, a new approach, based on (i) the so-called Nakanishi Integral Representation
(NIR) of the BS amplitude[9] and (ii) its uniqueness, was introduced in order to
successfully solve the ladder BSE governing a two-scalar system interacting through
amassive scalar [10]. In particular, the emphasis of theworkwason the calculations of
both coupling constants needed for binding the systemwith assigned masses, and the
so-called Nakanishi weight functions (see Sect. 92.3), rather than on the evaluation
of the momentum distributions, so important in the phenomenological investigation
of the inner dynamics of the bound systems. Nonetheless, [10] opened a new and
attractive path, though the approach involved a lengthy algebraic manipulations. A
substantial improvementwas reached through the clever introduction [11] of the light-
front (LF) framework (see e.g. [12, 13], for detailed reviews). Indeed, by adopting LF
variables, x± = x0 ± x3 and x⊥ ≡ {x1, x2}, it is possible to simplify the treatment of
the needed analytical integrations, extending the realm of application even including
bound systemwith spin dofs [14–16], and,more important, a probabilistic framework
can be established.

In Sects. 92.2 and 92.3 some snapshots on the Bethe-Salpeter equation and the
Nakanishi integral representation of the BS amplitude will be presented, while Sect.
92.4 is devoted to the LF framework. Finally Sects. 92.5 and 92.6 contain some
numerical results and perspectives, respectively.

92.2 The Bethe-Salpeter Equation in a Nutshell

To briefly illustrate the main steps leading to the BSE, let us consider a simple two-
scalar case (without antiparticles). The 4-point Green’s Function (φi are the scalar
fields) is given by

G(x1, x2; y1, y2) =< 0 |T {φ1(x1)φ2(x2)φ
+
1 (y1)φ

+
2 (y2)} | 0 >, (92.1)

and it fulfills the following inhomogeneous integral equation, sketched in Fig. 92.1,

G = G0 + G0 I G (92.2)
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Fig. 92.1 Pictorial representation of the inhomogeneous integral equation fulfilled by the four-leg
Green’s function. The first irreducible diagrams contributing to the interaction kernel I are shown
in Fig. 92.2

Fig. 92.2 The lowest-order irreducible (see text) Feynman diagrams contributing to the interaction
kernel of the integral equation for the four-leg Green’s function, (92.2). In a full theory, both
interaction vertexes and propagators have to be properly dressed

where G0 is the product of four free propagators and I is the interaction kernel. It is
given by the infinite sum of irreducible Feynman graphs, i.e. the ones that cannot be
split into two lower order diagrams after cutting two internal particle lines andwithout
touching the quantum lines [1]. The set of the irreducible diagrams up to the 6th power
of the coupling constant are shown in Fig. 92.2. The first diagram, though it contains
two interaction vertexes (hence, two coupling constants), generates the infinite ladder
series, after iterating the integral equation in (92.2). The second diagram, that has
four coupling constants, is the simplest crossed diagram. Finally, the last set of
diagrams contain crossed diagram with 6 interaction vertexes. It is important to
stress that each class of irreducible diagrams, contributing to the interaction kernel,
in turn gives rise to an infinite series of diagrams by iteration. Such an observation
allows us to anticipate that the solutions of the BSE corresponding to a truncated
interaction kernel I contains however effects generated by an infinite set of powers
of the coupling constant. After properly inserting a complete 2-body Fock basis in
G(x1, x2; y1, y2), one can isolate the bound state contribution (assuming only one
non-degenerate bound state, for the sake of simplicity) that manifests itself as a pole,
in momentum space, i.e.

G(k, q; p) ⇒ GB(k, q; p) � i

(2π)−4

χ(k; pB) χ̄(q; pB)
2ωB(p0 − ωB + iε)

(92.3)

where ωB =
√
M 2

B + |p|2, pμ
B ≡ {ωB,p} with MB the mass of the bound state (the

adopted metric is {1,−1,−1,−1}), k is the relative four-momentum of the pair and
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I=

Fig. 92.3 Pictorial representation of the Bethe-Salpeter integral equation for a bound system

β ≡ further quantum numbers. The function χ(k; pB) is called the BS amplitude,
and describes the residue together with its conjugate (notice that the conjugate χ̄ is
actually defined through (92.3) and involves the chronological product, to be care-
fully considered [2]). Unfortunately, the BS amplitude does not have a probabilistic
interpretation, but one can profitably retrieve a probabilistic environment once the LF
framework and the Fock expansion of the interacting two-body state is introduced
(see Sect. 92.4). In conclusion, close to the bound-state pole, i.e. p0 → ωB = the
Green’s function is approximated by

G � i

(2π)−4

χ(k; pB) χ̄(q; pB)
2ωB(p0 − ωB + iε)

+ regular terms (92.4)

By going through the following steps: (i) insert the approximation (92.4) in both
sides of G = G0 + G0 I G, (ii) multiply by (p0 − ωB) and (iii) look close to the
pole, one eventually gets the BSE, viz (see Fig. 92.3)

χ(k; pB,β) = G0(k; pB,β)

∫
d4k ′ I(k, k ′; pB) χ(k ′; pB,β) (92.5)

The normalization of the BS amplitude is given by (see [2, 17–19] for further inter-
esting issues on the BS norm)

∫
d4q

(2π)4

∫
d4k

(2π)4
χ̄(q, pB)

∂

∂pμ

[
G−1
0 (k, p)(2π)4δ4(q − k) − iI(q, k, p)

]∣∣∣∣
p2=M 2

B

× χ(k, pB) = i2pμ
B (92.6)

92.3 The Nakanishi Integral Representation and the BS
Amplitude

In the sixties, Noburo Nakanishi [9, 20] proposed an integral representation of tran-
sition amplitudes (see Fig. 92.4), based on the parametric formula for the Feynman
diagrams. Within the perturbation theory for scalars, the transition amplitude with N
external legs, fN , gets an infinite number of contributions, whose generic expression
is given by
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Fig. 92.4 Left panel: transition amplitude with N external legs. The bubble represents the infinite
possible contributions, and the legs are represented just for enumerating the external momenta, but
they do not indicate any external propagation. Right panel: the 3-leg transition amplitude, relevant
for the application to the two-body Bethe-Salpeter amplitude (see text), the same previous caveat
has to be applied to the external legs

fG(p1, p2, . . . , pN ) ∝
k∏

i=1

∫
d4qi

1

(�21 − m2
1)(�

2
2 − m2

2) . . . (�2n − m2
n)

(92.7)

where n indicates the total number of propagators, k is the total number of loops
(≡ number of integration variables), �j are the internal momenta, combinations of
external momenta pr and loop ones qi. The label G is a shorthand notation replacing
{n, k}. By standard manipulations one can write

fG({pi}) ∝
n∏

j=1

∫ 1

0
dαj

δ(1 − ∑
r αr)

U ({αr})
[∑

r αrm2
r − ∑

h ηh({αi}) sh + iε
]n−2k

(92.8)

where {αi} are n Feynman parameters, {sh} all the independent scalar products
one can construct from the N external legs with 1 ≤ h ≤ N ′ < N , ηh({αr}) and
U ({αr}) are well-defined combinations of the Feynman parameters [20]. It is worth
noticing that the dependence upon {n, k} affects the denominator, and therefore
each contribution to the total transition amplitude has its-own analytic structure.
Nakanishi introduced a compact and elegant expression of the full N -leg amplitude
fN (s) = ∑

G fG(s), by inserting in the generic contribution fG the following identity

1
.=

N ′∏
j=1

∫ 1

0
dzj δ

(
zj − ηj({αi})

β

) ∫ ∞

0
dγ δ

(
γ −

∑
i

αim2
i

β

)
(92.9)

where β = ∑
h ηh({αi}) (see [20] for details). After integrating by parts n − 2k − 1

times the expression of fG , one gets from (92.8)

fG(s̃) ∝
N ′∏
j=1

∫ 1

0
dzj

∫ ∞

0
dγ

δ(1 − ∑
j zj) φ̃G(z, γ)

(γ − ∑
j zj sj)

(92.10)
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where φ̃G(z, γ) is a proper weight function (that in this perturbative framework
lives in the realm of the distribution functions), with z ≡ {z1, z2, . . . , zN ′ } and
s̃ ≡ {s1, s2, . . . , sN ′ }. Summarizing, the dependence upon the details of the diagram,
i.e. {n, k}, moves from the denominator to the numerator. Hence, one has exactly the
same formal expression for the denominator of any diagram G.

The full N -leg transition amplitude is the sum of infinite diagrams G and it can
be formally written as

fN (s̃) =
∑
G

fG(s̃) ∝
N ′∏
j=1

∫ 1

0
dzj

∫ ∞

0
dγ

δ(1 − ∑
j zj) φN (z, γ)

(γ − ∑
i zi si)

(92.11)

where φN (z, γ) = ∑
G φ̃G(z, γ) is called a Nakanishi weight function (NWF). It is

a real function, depending upon N ′ compact variables, z, and one non compact, γ.
For the 3-leg transition amplitude, (cf. the right panel in Fig. 92.4) after eliminating

one compact variable and redefining the NWF, one reduces to

f3(p
2, k2, k · p) =

∫ 1

−1
dz

∫ ∞

0
dγ

π3(z, γ)

γ + m2 − p2

4 − k2 − zk · p − iε
(92.12)

with p = p1 + p2 and k = (p1 − p2)/2. Notice that φ3 is also known as the vertex
function, �, for a scalar theory (N.B. for fermions one has to add spinor indexes).
The expression holds at any order in perturbation-theory.

Once we put one leg on the mass shell, and we assume φ3(z, γ) as an unknown
functions, (92.12) becomes a natural choice as a trial function for obtaining actual
solution of BSE for a two-scalar interacting system [9–11, 21]. The validation of this
assumption, namely translating an expression formally elaborated within a perturba-
tive framework to a non perturbative one, has been successfully obtained numerically,
as discussed in what follows. This result should be not too much surprising if one
takes into account the freedom associated to the NWF, that is the unknown to be
determined.

A vertex function f3(k, p)with one leg onmass-shell is related to the BS amplitude
χ by attaching propagators to the two external virtual legs, i.e. schematically: χ =
G1 ⊗ G2 ⊗ f3(s̃)whereGi are the propagators of the two particles. Finally onewrites

χ(k, p) = −i
∫ 1

−1
dz′

∫ ∞

−∞
dγ′ g(z′, γ′;κ2)[

γ′ + κ2 − k2 − z′k · p − iε
]3 (92.13)

where κ2 = m2 − M 2/4, with m the mass of the constituent scalars and g(z′, γ′;κ2)

indicates a NWF corresponding to a given massM of the interacting system. Indeed
the lower extremumof γ′ has to be put equal to zero, in order to avoid the spontaneous
decay of the bound state.
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92.4 Projecting BSE onto the Hyper-Plane x+ = 0

As mentioned above, NIR yields the needed freedom for exploring non perturbative
problems, once the NWFs are taken as unknown real quantities. Unfortunately, even
adoptingNIR, BSE still remains a highly singular integral equation in theMinkowski
momentum space. The strategy adopted in [10] for obtaining actual solutions of the
two-scalar homogeneous BSE, in ladder approximation, relied on the uniqueness
of the NWF. Profitably, a more general approach was introduced by Carbonell and
Karmanov [11, 14], that exploited the known analytic structure of the BS amplitude,
once NIR is applied. Since the target is to determine the NWF, one can perform
analytic integrations, to formally obtain a new integral equation, more suitable for
the numerical treatment. The approach can be seen as a variant of the 3D reduction,
but in this case the assumed expression of the BS amplitude in terms of NIR allows
one the formally exact reconstruction of the full BS amplitude. In particular, in [11]
an explicitly-covariant LF framework [13] was adopted, while the non-explicitly
covariant version can be found in [21, 22]. It should be pointed out that the latter
approach appears more suitable for isolating and mathematically treating further
singularities one meets, particularly when the spin dofs are involved (see [15, 16]).
In general, the LF approach allows one a simpler treatment of the analytic integration,
since, e.g., double poles in the k0 complex plane splits in pairs of single poles in the
k− and k+ complex planes.

In order to obtain an integral equation for the NWF more tractable from the
numerical point of view (spin dofs lead to a system of integral equations), there
is an illuminating step toward the final goal. One can recognize that within the
LF framework a probabilistic interpretation is recovered by (i) expanding the BS
amplitude on a LF Fock basis, and (ii) singling out the valence component. This
is the amplitude of the Fock state with the lowest number of constituents, and it
has (together with all the other amplitudes in the Fock expansion) the property to
be invariant under LF-boost transformations (see [12]). In particular, the integral
of the square modulus of the valence component gives the probability to find only
two constituents in the interacting state. In the case of the non-explicitly covariant
LF framework, the valence component is formally obtained by integrating the BS
amplitude on k− = k0 − k3. Namely

Valence w.f. = ψn=2(ξ, k⊥) = p+
√
2

ξ (1 − ξ)

∫
dk−

2π
χ(k, p) =

= 1√
2
ξ (1 − ξ)

∫ ∞

0
dγ′ g(γ′, 1 − 2ξ;κ2)

[γ′ + k2⊥ + κ2 + (2ξ − 1)2 M 2

4 − iε]2 (92.14)

where ξ = (1 − z)/2,M = 2m − B. withB the binding energy. Notice that the above
mathematical step is equivalent to make vanishing the relative LF-time x+ in the BS
amplitude in coordinate space (see, e.g.,[21, 22]), i.e. projecting the BS amplitude
onto the hyperplane x+ = 0. The above observations make attractive to study what
happens when the k− integration is applied to both sides of BSE. As a matter of fact,
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on the lhs one has (a part trivial factors) the valence component that lives in a 3D
space, and contains the NWF, while on the rhs one remains with a folding of the
NWF with the so-called Nakanishi kernel, V LF(α; γ, z; γ′, z′), viz

valence w.f. ∝
∫ ∞

0
dγ′ g(γ′, z;κ2)

[γ′ + γ + z2m2 + (1 − z2)κ2 − iε]2 =

=
∫ ∞

0
dγ′

∫ 1

−1
dz′ V LF(α; γ, z; γ′, z′) g(γ′, z′;κ2). (92.15)

where α is the coupling constant. N.B. V LF(α; γ, z; γ′, z′), is determined by the
irreducible kernel I(k, k ′, p) (see, e.g. [21, 22], for details). In presence of spin dofs,
the evaluation of the Nakanishi kernel, has been carried out in ladder approximation,
but it was shown that it is plagued by further singularities, as recognized for the first
time in [23]. Fortunately, within the non-explicitly covariant LF framework, those
singularities can be isolated and mathematically integrated [15, 16] by using the
standard approach introduced in [24].

In the numerical calculations of [15, 16, 21, 25], an orthonormal basis given
by the Cartesian product of Laguerre and Gegenbauer polynomials (the first ones
depends upon the non compact variable γ and the second ones upon the compact
variable z) is adopted for expanding g(γ, z;κ2). In ladder approximation, once we
assign the mass of the system, i.e. κ2, the integral equation in (92.15) becomes a
generalized eigen-equation, with eigenvalue α, and the eigenvector composed by the
coefficients of the expansion of g(γ, z;κ2). If the eigen-equation admits a solution,
for a given massM (it is a non linear parameter) of the system, then we know how to
reconstruct the BS amplitude, and eventually we validate the whole procedure from
the 4D BSE to its projection onto the x+ = 0 hyperplane, or better its integration on
the k− component of the relative four-momentum.

92.5 Excerpt of the Numerical Results

Many calculations have been performed for the two-scalar system by using the
ladder approximation, i.e. a kernel with the following massive scalar exchange
KS = g2/[(k − k ′)2 − μ2 + iε], where the coupling g is related to the coupling α
in (92.15) by α = g2/(16πm2). In particular a successful comparison between the
results in [11] (explicitly-covariant LF approach) and [21] (non-explicitly covariant
LF framework) has been obtained for eigenvalues and eigenvectors. Encouraged by
this achievement, both excited states [26] and even scattering lengths [27] have been
studied. There have been also investigations of the cross-diagram contribution to the
kernel (second diagram in Fig. 92.2) [14], and its effect on the calculation of the
electromagnetic form factor [28].

In the two-fermion case, the ladder kernel has been generalized to take into account
(i) the pseudo-scalar exchange and (ii) the vector one (massless and massive). As
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Fig. 92.5 The coupling
constant α = λFλS/(8πm),
with λF(S) the fermion
(scalar) coupling in the
interaction Lagrangian,
versus the binding energy
per unit mass. Blue solid
line: exchanged mass,
μ/m = 0.15. Black solid
line: exchanged mass,
μ/m = 0.5

mentioned above, in this case one has to solve a system of four integral equations for
determining the four NWFs needed to describe an s-wave interacting system [15, 16,
23]. A part the fixing of the issue of the LF singularities generated by the presence
of spin dofs, in [15, 16] an important feature has been pointed out: the theoretically
expected behavior of the high-momentum tail of the valence component of a fermion-
antifermion s-wave state, interacting through the exchange of a massless vector, has
been recovered. This means that dynamical quantities can be addressed, teven with
a simple interaction kernel.

The extensive collection of results and the agreement achieved between different
groups leads to extend the application of NIR to other cases. In particular, some
preliminary results for the fermion-scalar system can be presented [25]. In this case,
the BS amplitude contains two unknown scalar functions φi, viz

�BS(k, p) =
[
φ1(k, p) + /k

M
φ2(k, p)

]
U (p, s) (92.16)

with (/p − M ) U (p, s) = 0 . By applying NIR to each φi, analogously to the two
fermion case, one obtains a system of two coupled integral equations, and one can
apply the same tools for exactly transforming the initial ladder BSE in a general-
ized eigenvalue problem. In Fig. 92.5, preliminary results for the coupling constants
needed to bind a fermion-scalar system,with a givenmassM = 2m − B and interact-
ing through a scalar exchange, are shown. The interesting fast growing that appears
for B/m ≥ 1 is a signature of the increasing relevance of the repulsion produced by
the small component in the Dirac spinor of the constituent fermion. The attraction of
the scalar interaction is softened for increasing binding energy, due to the competition
between large and small components in (ū u), at the fermionic vertex. Large B/m
values mean large kinetic energy, and in turn big effects from the small components.
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92.6 Conclusions and Perspectives

The technique based on the Nakanishi integral representation of the BS amplitude
has to be considered a viable and effective tool for solving BSE Indeed, the cross-
check of results obtained by different groups, for different interacting systems, with
kernels in ladder and cross-ladder contributions as well as with and without spin
dofs, has produced a clear numerical evidence of the validity of NIR for obtain-
ing actual solutions. Noteworthy, the possibility to obtain the valence component
straightforwardly leads to evaluate relevant quantities, like the the LF momentum
distributions, so important for phenomenological investigations.of bound systems in
relativistic regime. In particular, one should remind the second ingredient of the tech-
nique, i.e. the LF framework. It has well-known advantages in performing analytical
integrations, and in the fermionic case it shows its effectiveness in full glory.

The numerical validation of NIR strongly encourages to face with the next chal-
lenges represented by including self-energies and vertex corrections evaluated within
the same framework (works in progress on the Dyson-Schwinger Equations) as well
as by the possible construction of interaction kernels beyond the sum of the first two
contributions in Fig. 92.2, e.g., moving from the fully off-shell ladder series, that
fulfills an integral equation, to a closed form for the cross-ladder T-matrix.
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Chapter 93
Time Reversal Violation in Two and
Three Nucleon Systems

Alex Gnech and Michele Viviani

Abstract Time reversal violation sources in fundamental theories induce
interactions between nucleons which can be revealed by looking at the presence
of permanent electric dipole moments of light nuclei. In this work we derive the time
reversal violation potential up to the N2LO in the chiral effective field theory. Using
this potential we compute the electric dipole moments of 2H and 3H. Our results,
combined with experimental data, can be used to test various possible sources of
time reversal violation.

93.1 Introduction

Time Reversal Violation (TRV) and Parity Violation (PV) are key ingredients in the
explanation of the observed baryon-antibaryon asymmetry in theUniverse (BAU) [1].
The Standard Model (SM) has a natural source of CP-violation in the Cabibbo-
Kobayashi- Maskawa (CKM) quark mixing matrix, however this mechanism is not
sufficient to explain the observed value of BAU [2]. This discrepancy opens awindow
in possible TRV effect in extension of SM, such as the θ-term in the Quantum
Chromodynamics (QCD) sector [3], or in beyond-SM (BSM) theories [4].

The measurement of Electric Dipole Moments (EDMs) of particles is the most
promising observable for studying TRV effects beyond CKM mixing matrix. The
present experimental upper bounds on the EDMs are |dn| < 2.9 × 10−13 e fm for
neutron [5], |dp| < 7.9 × 10−12 e fm for proton [6, 7], and |de| < 8.7 × 10−16 e
fm for electron [8]. In this context, there are proposals of direct measurements of
EDMs of charged particles in dedicated storage rings [9–13]. However, a single
measurement would not be sufficient to identify the source of TRV. For this reason,
the measurement of EDMs of various light nuclei such as 2H, 3H and 3He can help
to impose constrains on the TRV sources.
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The use of light nuclei as probes for TRV results to be advantageous because the
nuclear physics of the systems is theoretically under control. In particular, the chiral
effectivefield theory (χEFT)provides a practical scheme to studyTRVnuclear effects
treating all the possible sources [14–16]. Each Lagrangian term is associated to a
low-energy constants (LECs)whichmust be determinedfitting the experimental data.
The χEFT approach permits not only to determine the TRV interactions but also to
determine the chiral order of the LECs and their values as function of the fundamental
parameters providing a direct connection between the fundamental theories and the
nuclear observables [14–16].

Starting from the Lagrangian of [14–16] adding only the isotensor interactions
we derived the chiral potential up to next-to-next-leading order (N2LO). We use
this potential to study the EDM of 2H, 3H and 3He focusing in particular in the error
related to the truncation of the chiral expansion. Such an approach provides a suitable
framework for the future determination of the LECs.

93.2 The Nuclear TRV Potential

The relevant terms of the Lagrangian which can give contribution to the nuclear
potential up to N2LO are [14–16],

LTRV = g0ψß · øψ + g1ψπ3ψ + g2ψπ3τ3ψ + M�π3π
2

−2iψ(d0 + d1τz)γ5σ
μνψFμν + LNN

TRV , (93.1)

where LNN
TRV includes five contact interactions which permits us to take care of the

exchange of heavier mesons and reabsorb the divergences in the potential. Further
terms of the Lagrangian involving derivatives would give rise to potential terms
which can be reabsorbed in those generated by the Lagrangian given in (93.1) [17].
Moreover, dp = (d0 + d1)/2 and dn = (d0 − d1)/2 are the proton and neutron EDM.

We evaluate the T matrix in terms of time-ordered perturbation theory amplitudes
whose associated diagrams are shown in Fig. 93.1. The nuclear potential was then
derived from the T matrix by inverting order by order in the power counting the
Lippman-Schwinger equation. he leading order (LO) of the potential is given by
the one pion exchange (OPE) associated to the LECs g0, g1 and g2. The two pion
exchange contribution coming from these LECs appears only for g0 and g2 as already
observed in [18]. The three pion vertex (TPV) gives rise to contribution at order Q0

but also of order Q1 when the LECs c1, c2 and c3 of the parity conserving (PC)
Lagrangian, are taken into account. The TPV vertex generates also three body forces
at order Q0 while at order Q1 all the time ordered diagrams cancel. The contribution
of the contact terms appear at N2LO while the single nucleon contribution at LO.
The final expression of the potential contains 11 LECs which must be determine
from the experiment. The potential is then regularized introducing a regularization
function C�(k) = e−(k/�)4 . Three cutoff values are considered � = 450, 500, 550
MeV.
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Fig. 93.1 Time-ordered diagrams contributing to the TRV potential. Nucleons and pions are
denoted by solid and dashed lines, respectively. The open (solid) circle represents a PC (TRV)
vertex. The squares represent NLO vertices, while the double dashed lines recoil corrections com-
ing from the energy denominators

93.3 The EDM of 2H and 3H

In this section we present the results for the EDM of 2H and 3H. The calculation for
3He is in progress. The EDM of each nucleus can be expressed as the product of
the LECs with numerical coefficients which contains all the dynamics given by the
potential, namely,

d A = g0a0 + g1a1 + g2a2 + � a� + dpap + dnan +
∑

i=1,5

Ci Ai . (93.2)

where the Ci are the LECs which comes from the contact terms. In the calculation
of the coefficients we use the various chiral order of the NN PC potential of [19]
and for 3H the NNN PC potential at N2LO [20]. In particular we focus on the errors
associated to the truncation of the chiral expansion as,

(δai )
2 = (δaPCi )2 + (δaTRV1 )2 + (δaψ

i )2 (93.3)

where δaPCi (δaTRVi ) are the error associated PC (TRV) potential evaluated using the
prescriptions of [21]. Moreover for 3H we introduce an error related to the uncer-
tainties on the wave function δaψ

i .
The results for someof the coefficients of 3Hare shown inFig. 93.2while for the 2H

in Fig. 93.3. The EDM of 2H receives contribution only from the isovector term and
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the single nucleonEDMwhile the EDMof 3H fromall the LECs.Note the huge errors
reported for the coefficients a� which are due to the fact that the N2LO diagrams
give a correction of ∼ 70%. This effect is mainly due to the large contribution of
the c1, c2, and c3 LECs [17]. For 3H, the calculation of the coefficients a� does not
include yet the TRV three-body forces. As regarding the cutoff dependence, in both
the Figs. 93.2 and 93.3 we observe a nice agreement for the results obtained with
� = 500 and 550 MeV while the results obtained with� = 450 MeV seems always
at variance compared to the other two cutoff. However the results are consistent
within the theoretical uncertainties. More detailed calculations of these observables
are in progress.
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Chapter 94
Lattice Simulations with Chiral Effective
Field Theory for Light
and Medium-Mass Nuclei

Serdar Elhatisari

Abstract In this proceedings we present recent results from lattice simulations with
chiral effective field theory up to next-to-next-to-next-to-leading order. We discuss
our investigation on the degree of locality of the short-range nucleon-nucleon inter-
actions. We also discuss ground state energies of light and medium-mass nuclei as
well as new algorithms for the proton and neutron density distributions and other
properties.

94.1 Introduction

Lattice effective field theory is a powerful numericalmethod formulated in the frame-
work of chiral effective field theory which organizes the nuclear interactions as an
expansion in powers of low energy scales, Q, such as the momenta, the pion mass
etc. Chiral effective field theory gives a modern description for the nuclear forces in
the chiral limit where the light quarks are massless. A relevant recent review can be
found in [1]. In the chiral expansion the first term dominates and is called the leading
order (LO or Q0) interaction. The first correction to the LO is the next-to-leading
order (NLO or Q2) interaction, the second correction is called the next-to-next-to-
leading order (NNLO or Q3) and so on. These interactions contain sets of coupling
constants (or low-energy constants (LECs)) to be determined by fitting to the exper-
imental data.

In lattice effective field theory these interactions are formulated in a periodic cubic
lattice, and the LECs on the lattice are determined by fitting to experimental data.
Reference [2] discusses the details of lattice interactions and a new lattice formulation
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of short-range chiral effective field theory interactions with a simpler decomposition
into spin channels.

94.2 Euclidean Time Projection Monte Carlo

In lattice simulationswe study the low-lying states of nuclei using the normal ordered
transfer-matrix formalism. The transfer matrix is defined in Euclidean time as in the
following,

MLO = : exp(−αt HLO) : (94.1)

where H is the lattice Hamiltonian, and αt is the ratio of the temporal lattice spacing
at to the spatial lattice spacing a. The symbol : : signifies normal ordering, which
moves all annihilation operators to the right and creation operators to the left with the
appropriate number of anticommutation minus signs. In our simulation we employ
projection Monte Carlo with auxiliary fields for nucleon-nucleon interactions. In
auxiliary-field Monte Carlo simulations, the interactions are recast as single particle
interacting with fluctuating auxiliary fields. See [3] for a detailed discussion on
auxiliary-field Monte Carlo calculations.

Nuclear structure on the lattice: To compute the ground state energies or the prop-
erties of nuclei, we consider some initial and final states, respectively |Ψi 〉 and

∣
∣Ψ f

〉

,
as Slater determinants of free-particle standing waves on the lattice. These states
are projected in Euclidean time using the transfer matrix to form the Euclidean time
projection amplitude at LO,

ZLO(Lt ) = 〈

Ψ f

∣
∣ MLt

LO |Ψi 〉 . (94.2)

We perform the auxiliary-field Monte Carlo simulations to compute the quantum
amplitude ZLO(Lt ), and the ground state energy at LO is determined from the ratio
ZLO(Lt + 1)/ZLO(Lt ) in the limit Lt → ∞. In our simulation the higher order cal-
culations are computed using perturbation theory, and we compute the Euclidean
time projection amplitude at higher order,

Zho(Lt + 1) = 〈

Ψ f

∣
∣ M (Lt−1)/2

LO Mho M
(Lt−1)/2
LO |Ψi 〉 , (94.3)

where

Mho = : exp [−αt ( HLO + Hho)] . (94.4)

Therefore, the energy correction to the LO energy is computed from the ratio
Zho(Lt + 1)/ZLO(Lt + 1).
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Nuclear scattering on the lattice: Scattering and reactions involving clusters can
be studied on the lattice using the adiabatic projection method, which is a general
framework that constructs a low energy effective field theory for the clusters. See
[4–6] for the details of the method. The method uses initial states,

|R〉 =
∑

r

|r + R〉1 ⊗ |r〉2 , (94.5)

which is parameterized by the relative separation between clusters, R. Furthermore,
we project these initial states onto spherical harmonics Y�,�z with angular momentum
numbers �, �z ,

|R〉�,�z =
∑

R′
Y�,�z (R̂

′) δR,|R′| |R〉 . (94.6)

Then we evolve these states using the LO transfer matrix in Euclidean time to form
dressed cluster states,

|R〉�,�znt = Mnt
LO |R〉�,�z . (94.7)

These dressed cluster states are used to construct the transfer matrix of the cluster-
cluster system,

[Mnt ]�,�zR′,R = �,�z
nt

〈

R′ |MLO| R〉�,�z

nt
, (94.8)

and the norm matrix,

[Nnt ]�,�zR′,R = �,�z
nt

〈

R′ | R〉�,�z

nt
. (94.9)

The adiabatic projection inEuclidean time gives a systematically improvable descrip-
tion of the low-lying scattering states of clusters, and in the limit of large Euclidean
time the description becomes exact. We use the auxiliary-field Monte Carlo sim-
ulations to compute the amplitude matrices in (94.8) and (94.9). In addition, we
perform metropolis sampling of the cluster positions. Then we use (94.8) and (94.9)
to construct the adiabatic transfer matrix,

[Ma
nt ]�,�zR′,R =

[

N
− 1

2
nt Mnt N

− 1
2

nt

]

, (94.10)

and by employing the spherical wall method [4, 7] the adiabatic transfer matrix is
used to compute the scattering phase shifts for two-cluster systems. The compu-
tational scaling of lattice calculations consisting of A1-body and A2-body clusters
is roughly (A1 + A2)

2, and this makes ab initio calculations involving a heavier
projectile accessible and practical.
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94.3 Results

Alpha-alpha scattering: In this section, we present the recent results from the lat-
tice simulations. We start with the first ab initio calculation of the elastic 4He+4He
scattering using the adiabatic projection method. As described above, thanks to mild
computational scaling, ab initio calculations involving 4He cluster as a projectile are
possible with the adiabatic projection method. We used the lattice action developed
and used in [8], and performed the first ab initio calculation of 4He+4He scattering
up to next-to-next-to-leading order in chiral effective field theory [5]. In these cal-
culations the spatial lattice spacing is a = 1.97 fm and the temporal lattice spacing
is at = 1.32 fm.

Figure 94.1 shows the S-wave (left) and the D-wave (right) scattering phase shifts
versus laboratory energy up to NNLO in chiral effective field theory comparison
with experimental data [9]. We found that for the S-wave the NNLO result is in
good agreement with experiment, and we found a fairly good agreement between
the D-wave the NNLO result and experiment.

The adiabatic projection method is of significant importance not only because
the 4He nuclei has been the heaviest projectile used in the ab initio calculations of
scattering and reactions, but also has opened the door towards using experimental
data from collisions of heavier nuclei as input to improve ab initio nuclear structure
theory.

Degree of locality of nuclear forces: In [10] we used the 4He+4He scattering as
a tool for probing the degree of locality of the short-range nuclear interactions and
the nuclear structure of alpha-conjugate nuclei which are nuclei with equal and
even numbers of protons and neutrons. We started with two leading order lattice
interactions VA(r′, r) and VB(r′, r) where r is the spatial separation between the
two incoming nucleons and r′ is the spatial separation between the two outgoing

Fig. 94.1 Left: S-wave phase shifts up to NNLO and comparisonwith experimental data [9]. Right:
D-wave phase shifts up to NNLO and comparison with experimental data [9]
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Fig. 94.2 4He+4He S-wave
scattering. We plot S-wave
phase shifts δ0 for
alpha-alpha scattering for
interactions VA(r′, r) and
VB(r′, r) versus laboratory
energy. We show LO for A
(green tiangle), LO +
Coulomb for A (orange
diamonds), LO for B (blue
circles), and LO + Coulomb
results for B (red squares)
comparison with
experimental data [9]

nucleons. The interaction VA(r′, r) includes non-local short-range interactions,while
the interaction VB(r′, r) consists of both non-local and local short-range interactions.
We tuned the interactions VA(r′, r) and VB(r′, r) to produce the experimental low-
energy nucleon-nucleon scattering phase shifts, while the extra parameters of the
interaction VB(r′, r) due to the local terms were tuned to give the alpha-alpha S-
wave scattering phase shifts. Figure 94.2 shows the 4He+4He S-wave scattering
phase shifts as a function of laboratory energy for interactions VA(r′, r) and VB(r′, r).
The results from Fig. 94.2 clearly shows that the 4He+4He scattering phase shifts
are highly sensitive to the degree of locality of the short-range nuclear interactions.
Reference [10] explains these results in detail closely looking at the structure of the
4He wave function.

For interactions VA(r′, r) and VB(r′, r) we computed the ground state energies
of 3H, 3He, 4He as well as alpha-conjugate nuclei 8Be, 12C, 16O, 20Ne given in
Table 94.1. We found that nuclei up to 8Be are equally well described by both
interactions. For the interaction VB(r′, r) the results of nuclei heavier than 8Be are in
agreement with the experimental data, while they are underbound for the interaction
VA(r′, r). Also the 4He+4He scattering phase shifts for interaction VA(r′, r) is very
weak as given in Fig. 94.2. To illuminate what is going on with the interaction
VA(r′, r) we found it useful to look at the ratio of the LO energy for each of the
alpha-conjugate nuclei to that of the 4He particle. The results for the ratios are
1.997(6), 3.00(1), 4.00(2), and 5.03(3) for 8Be, 12C, 16O, and 20Ne, respectively. The
important result revealed here is that in each case the interaction VA(r′, r) forms a
weakly-interacting Bose gas of alpha particles.

In this study we found that the correct description of the 4He+4He scattering
phase shifts play a crucial role to describe alpha-conjugate nuclei well. In order to
understand the many-body limit in details, we switched off the Coulomb interactions
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Table 94.1 The lattice results for the ground state energies of 3H, 3He, 4He, 8Be, 12C, 16O, 20Ne
from the interactions VA(r′, r) and VB(r′, r). All energies are in units of MeV

Nucleus A (LO) B (LO) A (LO +
Coulomb)

B (LO +
Coulomb)

Experiment

3H −7.82(5) −7.78(12) −7.82(5) −7.78(12) −8.482
3He −7.82(5) −7.78(12) −7.08(5) −7.09(12) −7.718
4He −29.36(4) −29.19(6) −28.62(4) −28.45(6) −28.296
8Be −58.61(14) −59.73(6) −56.51(14) −57.29(7) −56.591
12C −88.2(3) −95.0(5) −84.0(3) −89.9(5) −92.162
16O −117.5(6) −135.4(7) −110.5(6) −126.0(7) −127.619
20Ne −148(1) −178(1) −137(1) −164(1) −160.645

Fig. 94.3 Zero-temperature phase diagramas a function of the parameterλ in the nuclear interaction
Vλ = (1 − λ)VA + λVB . A first-order quantum phase transition from a Bose gas to nuclear liquid
at the point appears where the alpha-alpha scattering length crosses zero. This is very close to the
value λ = 0. Also shown are the alpha-conjugate nuclear ground state energies EA for A nucleons
up to A = 20 relative to the corresponding multi-alpha threshold EαA/4. The last alpha-conjugate
nucleus to be bound is 8Be at the unitarity point

and connect the interaction VA(r′, r) to the interaction VB(r′, r) by a simple inter-
polation, Vλ = (1 − λ)VA + λVB . We did not observe any significant change in the
properties of the two-, three-, and four-nucleon systems with λ, while the many-body
ground state of the interpolated interaction Vλ undergoes a quantum phase transi-
tion from a Bose-condensed gas to a nuclear liquid. A schematic view of the zero
temperature phase diagram is shown in Fig. 94.3.

Density profiles for nuclei: The simulations with auxiliary-field Monte Carlo meth-
ods involve quantum states that are superposition of many different center-of-mass
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Fig. 94.4 A sketch of the
pinhole locations and
spin-isospin indices at time
τ/2 = Ltat/2

positions. Therefore, the density distrubitions of the nucleons cannot be computed
direclty. To solve this problem we developed and introduced a new computational
approach called the pinhole algorithm [11], which solves a long-standing deficiency
of auxiliary-fieldMonte Carlo simulations in computing density correlations relative
to the center of mass.

In this algorithm we consider a screen placed at the middle time step having
pinholes with spin and isospin labels that allow nucleons with the corresponding
spin and isospin to pass. This screen corresponds to the insertion of the normal-
ordered A-body density operator at the middle time step,

ρi1, j1,...,i A, jA(n1, . . . ,nA) = : ρi1, j1(n1) . . . ρi A, jA(nA) : (94.11)

where ρi, j (n) = a†i, j (n)ai, j (n) is the density operator for nucleon with spin i and
isospin j . Figure 94.4 shows a sketch of the pinhole locations and spin-isospin
indices for the operator ρi1, j1,...,i A, jA(n1, . . . ,nA) inserted at time τ/2. The screen
has A pinholes for a simulation consist of A nucleons, and we perform Metropolis
sampling for the locations as well as the spin and isospin labels of the pinholes. Using
the pinhole algorithm, we have computed the proton and neutron densities for the
ground states of 12C, 14C, and 16C given in Fig. 94.5.

Ground state energies for light and medium-mass nuclei: Recently we have con-
structed a set of short-range chiral effective field theory interactions on the lat-
tice with a simpler decomposition into spin channels. Li et al. [2] presents the full
details of these lattice interactions and the results for the neutron-proton scattering
on the lattice with various lattice spacings comparision with the empirical phase
shifts.
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Fig. 94.5 Plots of the proton and neutron densities as function of radial distance for the ground
states of 12C, 14C, and 16C comparison with the experimentally observed proton densities for 12C
and 14C [12]. We show data for various Lt time steps

Using the lattice action developed in [2], we have studied the neutron-proton
scattering to determine the LECs and computed the ground states energies of light
and medium-mass nuclei at lattice spacing a = 1.97 fm. Figures. 94.6 and 94.7
show the neutron-proton scattering phase shifts comparisionwith the empirical phase
shifts. Lattice results for ground state energies of light and medium-mass nuclei up
to N3LO in chiral effective field theory are given in Fig. 94.8 [13]. We stress that
these results are preliminary. Also these results do not include any three-body force,
and the relevant work is in progress.
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Fig. 94.6 Neutron-proton scattering uncoupled channel phase shifts as function of relativemomenta
at lattice spacing a = 1.97 fm

Fig. 94.7 Neutron-proton scattering coupled channel phase shifts and mixing angles as function
of relative momenta at lattice spacing a = 1.97 fm

SummaryWe have reported recent results from lattice simulations with chiral effec-
tive field theory up to next-to-next-to-next-to-leading order. We have also discussed
our investigation on the degree of locality of the short-range nucleon-nucleon inter-
actions, and algorithm that we developed recently to study the proton and neutron
density distributions.



594 S. Elhatisari

Fig. 94.8 PRELIMINARY RESULTS: Lattice results for ground state energies of light and
medium-mass nuclei up to N3LO in chiral effective field theory without the three-body forces
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Chapter 95
Light Nuclei from Lattice QCD:
Spectrum, Structure and Reactions

Zohreh Davoudi

Abstract Lattice Quantum Chromodynamics (LQCD) studies of light nuclei have
entered an era when first results on structure and reaction properties of light nuclei
have emerged in recent years, complementing existing results on their lowest-lying
spectra. Although in these preliminary studies the quark masses are still set to larger
than the physical values, a few results at the physical point can still be deduced
from simple extrapolations in the quark masses. The progress paves the road towards
obtaining several important quantities in nuclear physics, such as nuclear forces
and nuclear matrix elements relevant for pp fusion, single and double-β decay pro-
cesses, neutrino-nucleus scattering, searches for CP violation, nuclear response in
direct dark-matter detection experiments, as well as gluonic structure of nuclei for an
Electron-Ion Collider (EIC) program. Some of the recent developments, the results
obtained, and the outlook of the field will be briefly reviewed in this talk, with a focus
on results obtained by the Nuclear Physics From LQCD (NPLQCD) collaboration.

95.1 One the Goals and Impact of a LQCD Program for
Nuclear Physics

The standard approach in nuclear structure and reaction theory has shifted from
relying on phenomenological nuclear potentials to studies based on nuclear effec-
tive field theories (EFTs), hence providing a systematic way to assess uncertain-
ties of a calculation. In order for this program to succeed, not only the nuclear
EFTs must offer a valid power counting with convergent and renormalization-scale
independent results, but also their multitude of low-energy coefficients (LECs) must
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be fit to experiment, so the EFTs can acquire a predictive power. In situations where
experimental data are scarce or nonexistent, such as multi-neutron and hyperon-
nucleon interactions, nuclear effects in the response of a nucleus to external probes,
or nuclear matrix elements for the neutrinoless double-β decay of a nucleus, studies
based on the underlying theory of quantum chromodynamics (QCD) are essential.
Reliable predictions for a number of grand-challenge problems in nuclear physics
(a few examples of which are enumerated in the chart in Fig. 95.1) will benefit from
a coherent program in nuclear theory, in which the input from the underlying theory
of QCD in the few-body sector provides the stepping stone for a nuclear many-body
study based upon the constrained EFTs. A roadmap of this program is depicted in
Fig. 95.1.

The only reliable method that enables QCD determination of observables in
nuclear physics is LQCD, a method that relies on Monte Carlo sampling of the
quantum fields in QCD, and provides n-point correlation functions obtained in a
finite discretized Euclidean spacetime. Physical observables can be obtained in a

Fig. 95.1 A roadmap illustrating a systematic path from QCD to addressing grand-challenge prob-
lems in nuclear physics
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systematic way using various extrapolations, or in the case of scattering amplitudes
and transition rates, through mappings between the finite and infinite-volume theory.
Heroic effort has been devoted in recent years to studies of multi-nucleon systems,
considering the great computational complexity of these studies, and impressive
progress has been made. While this short review can not do justice to the wealth
of the results obtained in this area, I will focus on selected results by the NPLQCD
collaboration on hadronic interactions, nuclear structure and nuclear reactions from
LQCD. For a recent review of multi-nucleon physics from LQCD, see [1].

95.2 Hadronic Interactions

Constraining nuclear and hypernuclear forces remains a central component of
research in nuclear physics. This effort complements experiments on neutron-
rich isotopes, and provides the input to research on the nature of dense matter
in astrophysical environments. A milestone for nuclear physics from LQCD was
reached in 2012 when the emergence of light nuclei and hypernuclei from QCD
was demonstrated in [2], albeit at larger-than-physical values of the quark masses,
Fig. 95.2. This was enabled by algorithmic advances in forming nuclear correlation
functions based on [3, 4] and the availability of computational resources. Such
spectral studies at closer-to-physical values of the quark masses have since been con-

Fig. 95.2 The lowest-lying spectra of light nuclei and hypernuclei from LQCD obtained at larger-
than-physical values of the quark masses [2]. The figure and all subsequent figures courtesy of the
NPLQCD collaboration
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ducted and appear promising. Further, a leap in the application of LQCD to nuclear
physics was the realization [5] that large unnatural scattering lengths in two-nucleon
systems is not an impediment in applying the powerful Lus̈cher’s method [6]—a
method that turns the finite-volume spectra obtained fromLQCD to scattering ampli-
tudes in the two- (and in recent extensions of the method to three-) body scattering
amplitudes.

A recent example of such application is shown in Fig. 95.3, in which the SU(3)
flavor-symmetric s-wave scattering phase shifts and the ground-state binding energies
in four different scattering channels, corresponding to representative flavor channels
NN (1S0), NN (3S1), NΣ(3S1) and NΞ(3S1), were constrained, albeit at larger-
than-physical values of the quark masses [7]. An interesting finding, arrived at by
the observation of nearly identical scattering lengths and effective ranges in the four
SU(3) flavor-symmetric channels, is that the low-energy interactions among twooctet
baryons exhibit not only a SU(6) spin-flavor symmetry that is argued to exist in QCD
in the limit of a large number of colors [8], but also an extended SU(16) symmetry,
which is now conjectured to be in place to minimize the entangling power of the
S-matrix at low energies [9]. Further, this study demonstrates the matching between
LQCD output and the EFT LECs, a program that can enable studies of larger systems
of nucleons currently not accessible directly with LQCD.

Fig. 95.3 Low-energy scattering phase shifts of various two octet-baryon channels along with the
binding energy of the lowest-lying states, obtained with LQCD at larger-than-physical values of the
quark masses [7]
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95.3 Nuclear Structure

Investigations into the structure of hadrons and nuclei aim to provide further insight
into the nature of strong dynamics. They are further essential in interpreting the out-
come of high-energy collider experiments by providing a more accurate picture of
the internal structure of the colliding protons or heavy ions. Like in experiment, cer-
tain electromagnetic (EM) properties of hadrons, such as magnetic moment, electric
and magnetic polarizabilities and charge radii, can be deduced in a LQCD calcula-
tion from the response of the hadron to external EM fields. Such studies have been
extended to light nuclei in recent years. As is shown in Fig. 95.4, the shift in the
lowest finite-volume energy of proton, neutron, deuteron, 3He and 3H in an external
magnetic field are used to deduce their magnetic moment, albeit at a larger-than-
physical value of the quark masses [10]. When expressed in units of natural nuclear
Magneton defined with the mass of the nucleon/nuclei at the corresponding value
of the quark masses, they are surprisingly close to their values in nature, suggesting
that much of the quark-mass dependence of the magnetic moment is captured by the
quark-mass dependence of the mass. Additionally, it is observed that as in nature,
nuclei at such large values of the quark masses still appear to behave as a collection
of the nucleons, i.e., they can be described by a shell-model picture.

A further motivation for a nuclear structure program from LQCD is in supporting
experiments in Fundamental Symmetries and Searches for New Physics. For exam-
ple, LQCD studies of the matrix elements of scalar, axial and tensor currents in light

Fig. 95.4 The shift in the energy of select light nuclei, δE (B), in a background magnetic field B
(left) and the extracted magnetic moments, μ, from LQCD at larger-than-physical values of the
quark masses (right) [10]
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nuclei can determine how significant nuclear effects (those arising from the fact that
a nucleus is more than a collection of nearly noninteracting nucleons) are for current
and future searches for CP violation in nuclei, in the single and double-β decay of a
large nucleus and in the direct searches for dark matter candidates using heavy iso-
tope as targets. This is enabled through matching the LQCD results in the few-body
sector to the corresponding EFT description of these processes, a process that can
constrain unknown two and multi-nucleon short-distance effective couplings of the
EFT, see Fig. 95.1. A first LQCD study of scalar, axial and tensor quark-bilinear
currents in light nuclei was performed in [11] at a large value of the quark masses
(see the left panel of Fig. 95.5), and found nonnegligible nuclear effects in the scalar
matrix element. If this conclusion persists at the physical values of the quark masses,
significant nuclear effects may need to be accounted for in obtaining the cross section
of nuclear targets with dark-matter candidates in scalar portals (Fig. 95.6).

Fig. 95.5 Depicted in left is the deviation of the matrix element 〈h|q̄�q|h〉 from that in a non-
interacting model of nucleons. q̄�q denotes scalar, axial and tensor quark bilinear currents and
h = {d, pp, 3He}. Depicted in right is the ratio of the gluon momentum fraction in select light
nuclei to that of the single nucleon, obtained from LQCD at larger-than-physical values of the
quark masses [11]. In the right panel, blue and orange colors correspond to two different sink
operators in forming the correlation functions. For a detailed description of quantities, see [11, 12]
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Fig. 95.6 The background magnetic field breaks the (near) degeneracy of two-nucleon systems in
a LQCD calculation (left). This gives access to the nuclear matrix element for the M1 magnetic
transition in the radiative capture process np → dγ , and constrains the two-nucleon short-distance
coupling of the pionless EFT, L1, (right) [13]

Finally, LQCD enables gluonic probes of nuclear structure, promising a growing
program that can provide the theoretical support for an EIC in upcoming years. Inves-
tigations into the role of the gluons in the structure of single hadrons have reached
significant milestones in recent years, while in the case of the nuclei, this effort
has just been started. The first LQCD determination of select gluonic observables
in light nuclei was reported in [12], albeit at two unphysically large values of the
quark masses, in search for a gluonic analog of the EMC effect, see the right panel of
Fig. 95.5. These studies demand significant computational resources but are planned
to be improved, in scope and precision, in upcoming years.

95.4 Nuclear Reactions

While constraining nuclear reaction cross sections appeared to be a distant goal in the
early stages of the field, some phenomenologically important reactions in the two-
nucleon sector have now been computed from LQCD, albeit at unphysically large
values of the quark masses. The first reaction studied is the M1 transition rate in the
radiative capture process np → dγ , a primary reaction in big-bang nucleosynthesis,
and responsible for forming most of the light nuclei in the cosmos. An important
quantity is the two-nucleon short-distance coupling of the pionless EFT, namely L1,
which quantifies the size of contributions to the rate beyond that induced by the
magnetic moment of each of the nucleons. This coupling was constrained by apply-
ing an external constant magnetic field in a LQCD calculation to induce a transition
between the two-nucleon isosinglet and isotriplet channels, at two unphysically large
values of the quark masses, and was extrapolated to the physical values of the quark
masses, giving rise to a cross section consistent with the experimental value [13].
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Fig. 95.7 The plot in the left obtains the nuclear matrix element corresponding to the pp fusion
cross section obtained from LQCD with two (blue and orange) different sink operators in forming
the correlation functions. The plot in the right obtains the short-distance solely two-body coupling
of the pionless EFT, Lsd−2b

1,A . For a detailed description of quantities, see [14]

Perhaps a more phenomenologically interesting and less-known cross section is that
of the weak counterpart of the process above. This is the pp fusion process at low
incident velocities, which is relevant for the energy production in sun. Here, there
remains a large uncertainty on the value of the two-nucleon short-distance coupling
of the pionless EFT, namely L1,A, which is planned to be reduced to the few-percent
level using the MuSun experiment. This coupling was calculated in a recent LQCD
calculation from a direct evaluation of the corresponding matrix element at a large
value of the quark masses, see Fig. 95.7, and under the assumption of a mild depen-
dence on the quark masses, was extrapolated to the physical point [14]. The obtained
value was found consistent with the current phenomenological value. This study will
be improved in the upcoming years towards the physical values of the quark masses.

Another milestone in the area of nuclear reactions from LQCD is the study of a
doubly-weak process, namely the neutrinoifull double-β decay. In a recent study, the
matrix element for the nn → pp transitionwas calculated, and both the long-distance
contribution (arising from a deuteron pole in the intermediate state) and the short-
distance contribution to the process were isolated, albeit at a large value of the quark
masses, see Fig. 95.8. A new short-distance two-nucleon doubly-weak coupling of
the pionless EFT was identified for the first time and its value was constrained in
this study [15, 16]. It was concluded that the contribution from this coupling to
the matrix element was comparable to that from the L1,A coupling, introducing a
potential source of modification of the value of an “effective” axial charge in a heavy
isotope. It is important to realize that such new short-distance couplings, both in
the context of neutrinofull and neutrinoless double-β decays are unknown, and in
particular in the latter case, they can only be deduced from a direct LQCDcalculation.
This strongly motivates a continuation of this program in the upcoming years.
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Fig. 95.8 The short-distance contribution to the nuclear matrix element for nn → pp (left) and the
full contribution including that from the intermediate deuteron pole (right) obtained from LQCD at
larger-than-physical values of the quarkmasses, with two (blue and orange) different sink operators.
For a detailed description of quantities, see [15, 16]

95.5 Summary and Outlook

This review was aimed at showcasing a few accomplishments of the field of LQCD
for nuclear physics. While most of the studies are still limited to unphysical values
of the quark masses (given the significant computational cost of computations at the
physical values), formal, numerical and algorithmic advancements have placed the
field in a position that spectra, structure and scattering and reaction properties of
few-nucleon systems, in a bound or unbound form, can be studies directly from the
underlying theory. Given the emergence of exceedingly fine energy scales in the spec-
trum of larger nuclei and limited precision of LQCD calculations into the future, the
complexity of the correlation functions when formed out of quark-level interpolat-
ing operators, and the signal-to-noise degradation in the nuclear correlation function
due to the presence of lighter states in the theory, the computational complexity of
LQCD-based calculations of nuclei increases dramatically with increasing the sys-
tem’s size. As a result, a coordinated effort by the larger community needs to be in
place to systematically match experiment and LQCD results in the few-body sector
to nuclear EFTs, hence enable studies of systems in the realm of nuclear many-body
physics. In the meantime, with the fast and exciting progress in harnessing quantum
entanglement to perform highly parallelized computations, the prospect of this alter-
native approach to classical computation will be investigated by nuclear physicists
in the upcoming years [17], with the ultimate goal of overcoming the impeding sign
and signal-to-noise problems inherent in Monte Carlo-based studies of finite-density
systems and their real-time dynamics.
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Chapter 96
Study of Non-strange Dibaryon
Resonances Via Coherent Double
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Abstract The non-strange B = 2 system (dibaryon) has been studied using coherent
neutral-meson photoproduction from the deuteron, γ d → π0π0d and γ d → π0ηd,
measured with the FOREST detector at the ELPH facility. A rather flat angular dis-
tribution of deuteron emission and a peak in the π0d invariant-mass distribution give
evidence for the 2.15-GeV isovector dibaryon. The excitation function of the total
cross section as a function of the γ d center-of-mass energy for the former reaction
shows the evidence for the existence of 2.47- and 2.63-GeV isoscalar dibaryons.
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96.1 Dibaryons

The study of the B = 2 systems (dibaryons) has a long history [1]. An early work by
Dyson and Xuong [2] predicts the sextet of non-strange dibaryons D I J with isospin
I , spin J , and I + J = 1, 3 based on the deuteron (D01)—the first known dibaryon,
and 3S1-NN state—, the 1S0-NN virtual states (D10), and a resonance-like structure at
M =2.16 GeV (D12) for the 3P2-πd (1D2-pp) amplitude of the partial-wave analysis
for π+d → pp. The recent observation of d∗(2380) (D03) by the CELSIUS/WASA
andWASA-at-COSY collaborations [3, 4] has made us pay attention to the dibaryon
sextet. It is important to establish the excitation spectrum of dibaryons in order to
understand their internal structures. A dibaryon is of particular interest to study a
phase transition of its basic configuration from a molecule-like state (such as the
deuteron) to a spatially-compact hexaquark hadron state.

Although the πd system has a resonance-like structure at around 2.15 GeV, it can
be also understood as a quasi-free (QF) Δ excitation from a nucleon in the deuteron
in the existing experimental data (π+d → pp and π±d → π±d). In photoinduced
reactions, γ d→π0d is a convenient approach to study d∗(2150). It is, however,
difficult to exclude the effect of a QF Δ excitation in this reaction. An alternative
reaction γ d→π0π0d is more advantageous to find d∗(2150) because the QF Δ

excitation is kinematically separable. Thus, we study γ d→π0π0d, aiming to observe
d∗(2150) in the π0d system through π0 decay from a possible higher-mass dibaryon
in the π0π0d system.

Mechanisms for γ d→π0π0d can be classified as:

1 QF π0π0 production on a nucleon followed by deuteron coalescence (QFC),
2 the first π0 is emitted from the QF nucleon, the intermediate d∗(2150) state is

generated from the NN orΔN reaction with the spectator nucleon, finally leaving
the second π0 and deuteron (semi-QF), and

3 both the two π0s and deuteron are emitted from a dibaryon resonance.

In the mechanism 1 (2), the second π0 should be emitted to compensate for the
momentum given to the QF participant nucleon by the first emitted π0 to coalesce
into a deuteron (the intermediate d∗(2150) state). Thus, the angular distribution of
deuteron emission shows a strongly backward-peaking (sideway-peaking) structure
for the mechanism 1 (2), while the mechanism 3 makes a rather flat distribution.
Since the three mechanisms give completely different angular distributions, the three
mechanisms can be separated (distinguished).

96.2 Experiments and Analysis

A series of meson photoproduction experiments [5] have been conducted with an
energy-tagged bremsstrahlung-photon beam [6–9] at the ELPH facility. The tagging
energy ranges from 0.75 to 1.15 GeV. The target used in the experiments is liquid
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to the coverage of the incident photon energy, and the vertical error shows the statistical error of
σ . The solid curve shows the fitted function expressed by a sum of three BW-peaks and phase-
space contributions. The lower hatched histograms show the systematic errors of σ . Typical π0d
invariant-mass Mπd distribution (right). The solid curve shows the fitted function expressed as a
sum of a Breit-Wigner peak, its reflection, and phase-space contributions, to the data. This figure is
taken from [12]

deuterium with a thickness of 45.9 mm. All the final-state particles in γ d→π0π0d
are measured with the FOREST detector [10], which consists of three different
electromagnetic-calorimeter (EMC) systems. Each system has a plastic-scintillator
hodoscope (PSH) placed in front of each EMC to identify charged particles.

Event selection is made for γ d→π0π0d→γ γ γ γ d, where the charged particles
(d candidates) are detected with the forward PSH. A kinematic fit with six constraints
is applied to select the reaction of interest: energy and three-momentum conservation,
and every γ γ invariant mass being the π0 mass. Here, the momentum of the charged
particle is obtained from the time delay assuming that the particle has the deuteron
mass. Events for which the χ2 probability is higher than 0.4 are selected to reduce
those from other background processes. The details of the analysis are described in
[11, 12] (Fig. 96.1).

96.3 Results and Discussion

The total and differential cross sections are deduced for γ d→π0π0d at the incident
energy ranging from 0.75 to 1.15 GeV. The excitation function as a function of γ d
center-of-mass systemWγ d is notmonotonically increasing but shows resonance-like
behavior peaked at around 2.47 and 2.63 GeV. The angular distribution of deuteron
emission is rather flat, and the kinematic condition for the obtained data completely
differs from the QFC and semi-QF processes. Thus, we consider the possibility that
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the resonance-like structure might be due to a manifestation of dibaryons. Both the
two nucleons obviously participate before emitting π0s.

The differential cross section dσ/dMπd as a function of πd invariant-mass Mπd

shows two peaks. The centroid of the low-mass peak is∼2.15 GeV independently of
the incident energy. However, that of the high-mass peak decreases with a decrease
of the incident energy, and finally the two peaks are merged into a bump. The high-
mass peak reflects the appearance of the 2.15-GeV peak in dσ/dMπd between the
other pion and deuteron (reflection). The resonance-like structure give a mass of
2.14±0.01 GeV with a width of 0.09±0.01 GeV. The angular distributions for the
two π0s limit Jπ of the state to 1+, 2+, or 3−. The 2+ assignment is consistent with
the theoretically predicted D12 state, and with the resonance structure of the 3P2-πd
amplitude.

The cross sections for γ d→π0ηd are also deduced in a similar analysis. The
angular distribution of deuteron emission shows an almost flat behavior, suggesting
a non-QFC process. The 2.15-GeV isovector resonance in the π0d subsystem also
appears in the dσ/dMπd distribution.

96.4 Summary and Acknowledgements

The total and differential cross sections have been measured for γ d→π0π0d and
γ d→π0ηd at incident energies from 0.75 to 1.15 GeV. The total cross section as a
function ofWγ d shows resonance-like behavior peaked at around 2.47 and 2.63 GeV
for the former reaction. The angular distributions of deuteron emission can never
be understood in the QFC mechanism for these reactions. The present work shows
evidence for the 2.15-GeV dibaryon in theπ0d channel. The details including figures
can be found elsewhere [12].

Acknowledgements The authors express their gratitude to the ELPH accelerator staff. This work
was supported in part by JSPS KAKENHI Grant Nos. 17340063, 19002003, 24244022, 26400287,
and 16H02188.

References

1. Clement, H.: On the history of dibaryons and their final observation. Prog. Part. Nucl. Phys.
93, 195–242 (2017). https://doi.org/10.1016/j.ppnp.2016.12.004

2. Dyson, F.J., Xuong, N.-H.: Y = 2 states in SU(6) theory. Phys. Rev. Lett. 13, 815 (1964)
3. Bashkanov, M., et al.: [CELSIUS/WASA collaboration]: double-pionic fusion of nuclear sys-

tems and the "ABC" effect: approaching a puzzle by exclusive and kinematically complete
measurements. Phys. Rev. Lett. 102, 052301 (2009)

4. Adlarson, P., et al.: [WASA-at-COSY collaboration]: abashian-booth-Crowe effect in basic
double-pionic fusion: a new resonance? Phys. Rev. Lett. 106, 242302 (2011)

5. Ishikawa, T., et al.: Meson Photoproduction Experiments at ELPH. In: JPS Conference on
Proceedings, vol. 10, p. 031001. Tohoku University (2016)

https://doi.org/10.1016/j.ppnp.2016.12.004


96 Study of Non-strange Dibaryon Resonances Via Coherent Double … 613

6. Ishikawa, T., et al.: The second GeV tagged photon beamline at ELPH. Nucl. Instrum. Meth.
A 622, 1 (2010)

7. Ishikawa, T., et al.: A fast profile monitor with scintillating fiber hodoscopes for high-intensity
photon beams. Nucl. Instrum. Meth. A 811, 124 (2016)

8. Matsumura, Y., Ishikawa, T., et al.: Development of a transmittance monitor for high-intensity
photon beams. Nucl. Instrum. Meth. A 902, 103 (2018)

9. Obara, Y., Ishikawa, T., et al.: Profile measurement of circulating electrons in a synchrotron by
inserting a carbon wire. Nucl. Instrum. Meth. A 922, 103 (2018)

10. Ishikawa, T., et al.: The FOREST detector for meson photoproduction experiments at ELPH.
Nucl. Instrum. Meth. A 832, 108 (2016)

11. Ishikawa, T., et al.: First measurement of coherent double neutral-pion photoproduction on the
deuteron at incident energies below 0.9 GeV. Phys. Lett. B 772, 398 (2017)

12. Ishikawa, T., et al.: Non-strange dibaryons studied in the γ d → π0π0d reaction. Phys. Lett.
B 789, 413 (2019)



Chapter 97
ηn Photoproduction and Nucleon
Resonances

Jung-Min Suh, Sang-Ho Kim and Hyun-Chul Kim

Abstract We present results of a recent work on the reaction mechanism of ηn
photoproduction off the neutron in the range of

√
s ≈ 1.5 − 1.9 GeV and discuss

the role of various nucleon resonances listed in the Particle Data Group (PDG). We
make use of an effective Lagrangian approach combining with a Regge method. The
total and helicity-dependent cross sections σ1/2, σ3/2 are computed and the numerical
results are in good agreement with the A2 experimental data.

97.1 Introduction

ηn photoproduction is one of themost practical and useful reaction processes to inves-
tigate various N ∗ resonances. More interesting is that the narrow bump-like structure
near

√
s ∼ 1.68 GeV is seen only at this neutron channel, which was coined as the

neutron anomaly [1–8].Anumber of theoretical studies have been performedwhether
this phenomena is due to the existence of the narrow resonance N (1685, 1/2+) or
not. In this talk, we revisit the γ n → ηn process, taking account of a total of fif-
teen N ∗ resonances given in the PDG and the N (1685, 1/2+) additionally. All the

J.-M. Suh (B) · H.-C. Kim
Department of Physics, Inha University, Incheon 22212, Republic of Korea
e-mail: suhjungmin@inha.edu

S.-H. Kim
Center for Extreme Nuclear Matters (CENuM), Korea University,
Seoul 02841, Republic of Korea
e-mail: sangho_kim@korea.ac.kr

Department of Physics, Pukyong National University (PKNU), Busan
48513, Republic of Korea

H.-C. Kim
Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata, Tokai, Ibaraki
319-1195, Japan
e-mail: hchkim@inha.ac.kr

School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455,
Republic of Korea

© Springer Nature Switzerland AG 2020
N. A. Orr et al. (eds.), Recent Progress in Few-Body Physics,
Springer Proceedings in Physics 238,
https://doi.org/10.1007/978-3-030-32357-8_97

615

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32357-8_97&domain=pdf
mailto:suhjungmin@inha.edu
mailto:sangho_kim@korea.ac.kr
mailto:hchkim@inha.ac.kr
https://doi.org/10.1007/978-3-030-32357-8_97


616 J.-M. Suh et al.

resonance parameters were extracted from the experimental data on the PDG [9] and
quark model predictions [10]. The numerical results show that the N (1685, 1/2+)

is an essential part of describing the ηn photoproduction together with the dominant
N (1535, 1/2−) resonance.

97.2 Formalism

The Feynman diagrams for the γ n → ηn reaction are drawn in Fig. 97.1. As a back-
ground contribution, we take into account ρ and ω Reggeon exchanges in the t chan-
nel, and N exchanges in both the s and u channels. We can construct the effective
Lagrangians for the photon (meson) and nucleon vertices as follows

Lγ NN = −N̄

[
eNγμ − eκN

2MN
σμν∂

ν

]
AμN ,

LV NN = −gV NN N̄

[
γμN − κV NN

2MN
σμνN∂ν

]
V μ + h.c.,

LηNN = gηNN

2MN
N̄γμγ5N∂μφη, (97.1)

where the values of coupling constants are fixed to be κN = −1.91 [9], gρNN = 2.6,
κρNN = 3.7, gωNN = 10.4, κωNN = 0.41, gηNN = 6.34 [11, 12], respectively.

In addition to these Born terms, we include the fifteen N ∗ resonances [9] and the
narrow N (1685, 1/2+) in the s-channel diagram.We can calculate the corresponding
transition amplitudes from the following the effective Lagrangians

L1/2±
γ NN ∗ = eh1

2MN
N̄Γ (∓)σμν∂

ν AμN ∗ + h.c.,

L3/2±
γ NN ∗ = −ie

[
h1

2MN
N̄Γ (±)

ν − ih2
(2MN )2

∂ν N̄Γ (±)

]
FμνN ∗

μ + h.c.,

L5/2±
γ NN ∗ = e

[
h1

(2MN )2
N̄Γ (∓)

ν − ih2
(2MN )3

∂ν N̄Γ (∓)

]
∂αFμνN ∗

μα + h.c.,

L7/2±
γ NN ∗ = ie

[
h1

(2MN )3
N̄Γ (±)

ν − ih2
(2MN )4

∂ν N̄Γ (±)

]
∂α∂βFμνN ∗

μαβ + h.c., (97.2)

nn

γ

nn

ηγ η

ρ, ω

n, n∗

γ η

n n n

t channel u channels channel

Fig. 97.1 Feynman diagrams for the γ n → ηn reaction
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for the electromagnetic interactions and

L1/2±
ηNN ∗ = −igηNN ∗ηN̄Γ (±)N ∗ + h.c.,

L3/2±
ηNN ∗ = gηNN ∗

Mη

∂μηN̄Γ (∓)N ∗
μ + h.c.,

L5/2±
ηNN ∗ = igηNN ∗

M2
η

∂μ∂νηN̄Γ (±)N ∗
μν + h.c.,

L7/2±
ηNN ∗ = −gηNN ∗

M3
η

∂μ∂ν∂αηN̄Γ (∓)N ∗
μνα + h.c., (97.3)

for the strong interactions with the notations

Γ (±) =
(

γ5
I4×4

)
, Γ (±)

ν =
(

γνγ5
γν

)
. (97.4)

Note that N ∗
μ, N

∗
μα , and N ∗

μαβ stand for the Rarita-Schwinger fields of spin −3/2,
−5/2, and −7/2, respectively. We refer to [13] for more details of how the resonance
couplings are determined.

97.3 Results and Discussion

Figure97.2 shows the numerical results of the total cross section with various contri-
butions. The total result describes theA2 datawell [6]. The contribution ofρ Reggeon
exchange becomes large as W increases. Meanwhile, the four N ∗ resonances, i.e.,
N (1520, 3/2−), N (1535, 1/2−), N (1685, 1/2+), and N (1710, 1/2+) are dominant
near threshold region.

To clarify the role of spin J = 1/2 and J ≥ 3/2 N ∗ resonances separately,
we draw the helicity-dependent cross sections in Fig. 97.3. Both the σ1/2 and σ3/2

are in good agreement with the A2 data [7]. It turns out from the σ1/2 that the
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Fig. 97.2 Total cross section for γ n → ηn adapted from [13]. The circles denote the A2 data [6]
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Fig. 97.3 Helicity-dependent cross sections for γ n → ηn adaped from [13]. The circles denote
the A2 data [7]

background term and N (1535, 1/2−) interfere constructively but destructively with
N (1685, 1/2+) and N (1710, 1/2+). The N ∗ resonances with higher spin J ≥ 3/2
also have certain effects as found from the σ3/2. The constructive interference effect
between the backgound and higher-spin N ∗ contributions plays an important role
in explaining the data. It implies that the N ∗ resonances with spin J = 1/2 and
J ≥ 3/2 are all correctly treated in the present model. That is, the N ∗ resonances
with spin J = 3/2, i.e., N (1520, 3/2−), N (1720, 3/2+), and N (1900, 3/2+) give
important contributions to the γ n → ηn reaction besides the dominant spin −1/2
N ∗ resonances N (1535, 1/2−), N (1685, 1/2+), and N (1710, 1/2+).

97.4 Conclusion and Outlook

In this talk, we presented a recent investigation of ηn photoproduction, employing
an effective Lagrangian approach combining with a Regge model. The total and
helicity-dependent cross sections were discussed in comparison with the A2 data. It
was found that the N (1685, 1/2+) plays a crucial role for the description of the γ n →
ηn reaction. This present results favor the existence of the narrow N (1685, 1/2+)

together with our recent work on the γ n → K 0� reaction where a clue on the
evidence of the N (1685, 1/2+) was also given [14].

Finally, we want to mention that a detailed analysis on the helicity amplitudes
in the partial-wave expansion is required in order to elucidate the existence of the
narrow N ∗(1685) resonance. The corresponding work is under way.

Acknowledgements H.-Ch.K is grateful to M. V. Polyakov for critical comments and criticism.
This work was supported by the National Research Foundation of Korea (NRF) grant funded by
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Chapter 98
Hidden-Charm and Bottom
Meson-Baryon Molecules Coupled with
Five-Quark States

Alessandro Giachino, Atsushi Hosaka, Elena Santopinto, Sachiko Takeuchi,
Makoto Takizawa and Yasuhiro Yamaguchi

Abstract We investigate the hidden-charm and hidden-bottom pentaquarks as
meson-baryon molecules coupled to the five-quark states. As a result of our cal-
culation it emerges that in the charm sector, one needs to add the five-quark potential
to the pion exchange potential in order to produce bound and resonant states, whereas,
in the bottom sector, the pion exchange interaction alone is strong enough to produce
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states. Thus, from this investigation, it comes out that the hidden-bottom pentaquarks
are more likely to be produced than their hidden-charm counterparts, and, for this
reason, we suggest that the experimentalists should look for the hidden-bottom pen-
taquarks.

98.1 Introduction

In 2015, the Large Hadron Collider beauty experiment (LHCb) collaboration
announced the observation of two hidden-charm pentaquarks, P+

c (4380) and
P+
c (4450), in Λ0

b → J/ψK− p decay [1–3]. These two pentaquark states are found
to have masses of 4380 ± 8 ± 28 MeV and 4449.8 ± 1.7 ± 2.5 MeV, with corre-
sponding widths of 205 ± 18 ± 86 MeV and 39 ± 5 ± 19 MeV. The spin-parity J P

of these states has not yet been determined. The parities of these states are preferred
to be opposite, in particular one state has J = 3/2 and the other one has J = 5/2.
With (J P

P+
c (4380)

, J P
P+
c (4450)

) = (3/2−, 5/2+) one obtains the best fit solution, but also

(3/2+, 5/2−) and (5/2−, 3/2+) provide acceptable results.
Hidden-charm pentaquark states, such as uudcc̄ and udscc̄ compact structures,

have been studied so far. Before the LHCb observation Yuan et al. in [4] studied the
uudcc̄ and udscc̄ systems by the non-relativistic harmonic oscillator Hamiltonian
with three kinds of the schematic interactions: a chromomagnetic-, a flavor-spin-
and instanton-induced- interactions. In [5] Santopinto et al. investigated the hidden-
charm pentaquark states as S-wave five-quark compact states with a constituent
quark model approach. The hidden-charm and hidden-bottom pentaquark masses
have been evaluated by Wu et al. in [6], by means of a color-magnetic interaction
between the three light quarks and the cc̄ (bb̄) pair in a color octet state. Takeuchi
et al. [7] has also investigated the hidden-charm pentaquark states with a quark
cluster model. The diquark model has also been applied in [8–12] to investigate the
compact five-quark state, but these authors do not provide any information about the
pentaquark widths. Unfortunately, there is so far no clear evidence of such compact
multiquark states while it is widely accepted that there are candidates for hadronic
molecular states. Now, the P+

c pentaquarks have been found just below the D̄Σ∗
c and

D̄∗Σc thresholds. Thus, the D̄Σ∗
c and D̄∗Σc molecular components are expected to

be dominant [13–27]. In general, if more than one state is allowed for a given set
of quantum numbers, the hadronic resonant states are mixtures of all the possible
states. For this reason, an important issue is to clarify how these components are
mixed in the physical hadrons. This problem prompted us to investigate the hidden-
charm pentaquarks and the hidden bottom pentaquarks as meson-baryon molecules
coupled to the five-quark states [28].
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98.2 Model and Results

In [28] we study pentaquark states as quantum superpositions of the meson-baryon
channels and the five-quark compact core. The inclusion of the five-quark state is
inspired by the recent work by Santopinto et al. in [5] and Takeuchi et al. in [7]. In
this work we model the coupling to the five-quark states as a short-range interaction
between themeson and the baryon, while the long-range force is provided by the one-
pion exchange potential. Table 98.1 summarizes the model space that we considered
for open charm hadrons. In the bottom sector, the model space can be easily obtained
by replacing the c quark with with b. As we discussed previously the interactions
between all the relevant channels is modelled with the one-pion exchange potential,
which is a well established interaction based on chiral symmetry and its spontaneous
breaking. The five-quark part describes the short distance dynamics is considered to
be consider to be in the order of 1 fm or less. Inspired by the recent discussion [7], we
consider 5q compact states formed by color-octet light quarks (3q) and color octet
cc̄. The relevant channels are summarized in Table 98.2.

The bound and resonant states are obtained by solving the coupled-channel
Schrödinger equation for ψMB which contains the one pion exchange potential,
OPEP, V π (r), and the five-quark 5q potential, V 5q(r):

H =
(
HMB V
V † H 5q

)
(98.1)

where HMB describes the meson-baryon part and contains Ki ; the kinetic energy
of each MB channel i and V π

i j is the OPEP potential, while H 5q is referred to as

the 5q channels. Figure 98.1 shows the Jacobi coordinates of “D̄ meson” and “Yc
baryon” in the 5q configuration. The numerical results for the hidden-charm meson-
baryon molecules are displayed in Fig. 98.2. The bound and resonant state energies
of the hidden-charm molecules are presented as a function of different values of a

Table 98.1 Various channels of open-charm meson-baryons of total spin parity J P with 2S+1L

Channels D̄Λc D̄∗Λc D̄Σc D̄Σ∗
c D̄∗Σc D̄∗Σ∗

c

J P

1/2− 2S 2S, 4D 2S 4D 2S, 4D 2S, 4D, 6D

3/2− 2D 4S, 2D, 4D 2D 4S, 4D 4S, 2D, 4D 4S, 2D, 4D, 6D, 6G

5/2− 2D 2D, 4D, 4G 2D 4D, 4G 2D, 4D,4 G 6S, 2D, 4D,6 D, 4G, 6G

Table 98.2 Channels of 5q’s with color octet qqq and cc̄ (bb̄) with possible total spin J . Notations
are [q3DC , S3q ]Scc̄(bb̄) where DC = 8 indicates that qqq form the color octet, S3q is the spin of

the light quarks qqq = uud , and Scc̄(bb̄) the spin of cc̄ (bb̄)

Channel [q38, 1
2 ]0 [q38, 1

2 ]1 [q38, 3
2 ]0 [q38, 3

2 ]1
J 1/2 1/2, 3/2 3/2 1/2, 3/2, 5/2
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Fig. 98.1 Jacobi coordinates of “D̄meson” and “Yc baryon” in the 5q configuration. qi (i = 1, 2, 3)
stands for the light quark, and c4 (c̄5) stands for the (anti)charmquark. The coordinateρ is the relative
coordinate of q1q2, λ is the relative coordinate between the center of mass of q1q2 and c4, r is the
relative coordinate of q3c̄5, while x is the relative coordinate between the centers of mass of q1q2c4
and c̄5q3. (APS copyright [28])

free parameter f
f0
. This parameter is introduced to parametrise the coupling strength

between the meson-baryon and the compact five-quark channels. The red solid line
are the eigenvalues of the coupled-channel equation 98.1 while the filled circles
gives the minimum value of the coupling, f

f0
, which is needed for the formation

of a resonant or bound state. Let us consider, for example, the solution obtained
for quantum number J P = 5

2
−
. As one can see from Fig. 98.2 when the coupling

constant f
f0
is larger than 25 one resonance appears below the D̄∗Σ∗

c threshold.When

the energy of a resonant state is lower than the lowest threshold, D̄Λc, (4150 MeV),
this state becomes a bound state, and the energy gap between its energy and the
lowest energy threshold, D̄Λc, is the binding energy for that state.

As one can see from Fig. 98.2, no states are produced when one eliminates the
coupling between the compact and themeson-baryon channels, i.e.when the coupling
constant f

f0
is set to zero, f

f0
= 0. This means that, in the hidden-charm sector, the

one pion exchange potential (OPEP) is not enough strong to produce bound and
resonant pentaquark states.

Figure 98.3 is similar as Fig. 98.2 but for it describes the situation in the bottom
sector. As one can see from Fig. 98.3 some bound states are produced without the
necessity to add the five-quark potential, i.e., even when f

f0
= 0. The only possibility

to explain this behaviour is that the attractive interaction provided by OPEP is strong
enough to bind the meson and baryon inside the pentaquark states. The main reason
is due to the fact that, in the hidden bottom sector, the kinetic energy of the meson-
baryon system is suppressed with respect to the charm sector because of the higher
reduced mass of the system. A secondary reason is the fact that, in the bottom sector,
the mixing effect are enhanced by the smaller mass splitting between the heavy
mesons, B and B∗, and between the heavy baryons Σb and Σ∗

b . Finally, we observe
that the number of resonant and bound states increases when one switches on the 5q
potential.
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Fig. 98.2 Bound and resonant state energies of the hidden-charm molecules (solid lines) with
various coupling constants f. Dot-dashed lines are the D̄Λc and D̄∗Λc thresholds. Dashed lines are
the D̄Σc, D̄Σ∗

c , D̄∗Σc and D̄∗Σ∗
c thresholds. The lowest threshold, D̄Λc, is at 4150 MeV and the

state whose energy is lower than the threshold is a bound state (Adapted from [28])

98.3 Conclusions

We showed how the negative parity hidden-charm (hidden-bottom) pentaquark states
can arise from the interplay between the meson-baryon channels, and the compact
five-quark configurations. As a result we found that, in the hidden charm sector, the
one pion exchange alone is not enough strong to produce resonant or bound states,
while, in the hidden bottom sector, it pentaquark states are produced even without
adding the coupling interaction between the compact five-quark configuration and
the meson-baryon molecular configuration. As the hidden bottom pentaquark states
are more stable than their hidden charm partners we encourage experimentalists
look for new resonant states in the hidden bottom sector. Finally, we observe that
another possibility to gain insight into the nature of the pentaquark states consists
of producing these states in a prompt production reaction. In fact, an observation
pentaquark states in prompt production would indicate that the pentaquark has a
compact nature, while on the contrary, a non-observation would not exclude the the
possibility that they are molecular states.
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Fig. 98.3 As Fig. 98.2, but for the bottom sector. The lowest threshold, B̄Λb, is at about 10,900
MeV and the state whose energy is lower than the threshold is a bound state (Adapted from [28])
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Chapter 99
Short Range π J/ψ − DD̄∗ Potential
Described by the Quark Exchange
Diagram

Yasuhiro Yamaguchi, Yukihiro Abe, Kenji Fukukawa and Atsushi Hosaka

Abstract Recently, unexpected Exotic hadrons have been reported in the heavy
flavor sector. Especially near the thresholds, these exotic states would be produced
by the hadron-hadron interaction dynamically. In this talk, we study the short range
πJ/ψ − DD̄∗ potential whose importance is indicated by the Lattice QCD study.
We compare the results from the D(∗) meson exchange, and the Born-order quark
exchange models, and find the large difference between two models.

99.1 Introduction

Exotic hadrons reported in the heavy flavor sector have been one of the interesting
topics in hadron and nuclear physics [1, 2]. Especially, the charged charmonium
Zc(3900) [3–6] is interesting. The ordinary charmonium being cc̄ does not have
electric charge, and hence Zc(3900) is a genuine exotic state which must have a
multiquark component such as cc̄ud̄. There have been a lot of theoretical studies of
Zc(3900), such as the multiquark picture, hadronic molecule, kinematical effect and
so on, which is summarized in [2].

The exotic states have also been studied by the Lattice QCD approach. Recently
HALQCD collaboration [7] study Zc(3900) as the hadron-hadron scattering includ-
ing theπJ/ψ − ρηc − DD̄∗ channels at the non physical pionmassmπ = 410 − 700
MeV. In their simulation, the interesting result is obtained, which indicates that
Zc(3900) is a virtual state induced by the strong πJ/ψ − DD̄∗ potential. The
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πJ/ψ − DD̄∗ potential needs the charm quark (hadron) exchange process, there-
fore this interaction had been considered to suppress due to the large charm quark
mass (>1 GeV).

In this talk, we study the short range πJ/ψ − DD̄∗ interaction by the theoretical
model approaches. We focus on the interaction for the quantum number J PC =
1+− with the total angular momentum J , parity P and C−parity C . The models
employing here are (a) Born-order quark exchange models [8, 9], and (b) the D(∗)
meson exchange model. In order to understand the mechanism of the πJ/ψ − DD̄∗
interaction, the results obtained by these models are compared.

99.2 Meson Exchange Model

The D meson exchange potential is obtained as the Born-term of the t−channel
Feynman diagram. The t−channel diagram is described by the effective Lagrangians
respecting to the heavy quark and chiral symmetries [10, 11]. The Lagrangians of
the πD(∗)D(∗) and J/ψD(∗)D(∗) couplings are given by

LπHH = − gπ

2 fπ
Tr

[
H1γμγ5∂

μπ̂ H̄1
]
, (99.1)

LψHH = g′Tr
[
J H̄2

↔
∂μγ

μ H̄1

]
+ H.c., (99.2)

with gπ = 0.59, g′ = 4/
√
mψm2

D , and the pion decay constant fπ = 93 MeV. The
heavy meson fields H and J are

H1 = 1 + v/

2

[
D∗μγμ + i Dγ5

]
, H2 = [

D̄∗μγμ + i D̄γ5
] 1 − v/

2
, (99.3)

J = 1 + v/

2

[
ψμγμ + iηcγ5

] 1 − v/

2
. (99.4)

From these Lagrangians, the meson exchange potentials are given by

V π = −1

2

(
gπ

fπ

)2 [
S1 · S2C(r;mπ) + S12(r̂)T (r;mπ)

]
τ 1 · τ 2, (99.5)

V D = 2

3

gψgπ

fπ
√
Eπ

[
S1 · S2C(r;mD) + S12(r̂)TD(r;mD)

]
, (99.6)

V D∗ = 2

3

gψgπ

fπ
√
Eπ

[
2S1 · S2C(r;mD∗) − S12(r̂)T (r;mD∗)

]
. (99.7)
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The spin operator Si (i = 1, 2) is given by the polarization vector ε or the spin-one
operator T . The tensor operator is S12(r̂) = 3(S1 · r̂)(S2 · r̂) − S1 · S2. The operator
τ 1 · τ 2 is for the isospin. The functions C(r;m) and T (r;m) are introduced in [12–
16].

99.3 Quark Exchange Model

The Quark exchange model is described by the Born-order quark exchange diagram
introduced in [8, 9]. The amplitude is given by M ∝ 〈φC ,φD|Hq |φA,φB〉 with the
quark Hamiltonian Hq and the meson wave function φi (i = A, B,C, D).

The constituent quark model Hamiltonian Hq is given by [8, 9]

Hq
i j =Kq +

(
−3

4
br + αs

r
− C

)
Fi · F j − 8παh

3mim j

(
σ3

π3/2
e−σ2r2i j

)
Si · S jFi · F j .

(99.8)

These parameters are determined to reproduce the meson masses, summarized in
Table99.1. Kq is the kinetic term, and Fi = λi/2 with the Gell-Mann matrix λi .

For the meson wave function φ, we employ the single Gaussian, φ(r) =
(4πbG)

−3/4 exp
(−r2/8bG

)
, with theGaussian parameter bG determined tominimize

E(bG) = 〈φ|Hq |φ〉. The meson masses and Gaussian parameter are summarized in
Table99.2.

Table 99.1 Parameters of the quark Hamiltonian determined to reproduce the meson masses in [8,
9]. The charm quark mass mc is also determined to fit the charmed meson masses

mq [GeV] mc [GeV] αs αh b [GeV−2] C [GeV] σ [GeV]

0.375 1.9 0.857 0.840 0.154 −0.4358 0.70

Table 99.2 The meson masses m and Gaussian parameter bG obtained in the single Gaussian
Approximation

(m [GeV], bG [GeV−2]) (m [GeV], bG [GeV−2]) (m [GeV], bG [GeV−2])

π (0.258, 0.854) D (1.876, 0.965) ηc (2.826, 0.261)

ρ (0.782, 2.549) D∗ (2.016, 1.298) J/ψ (2.910, 0.290)
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Fig. 99.1 The cross section of the πJ/ψ − DD̄∗ transition by a the quark exchange model and
b D(∗) exchange model. In (a), the solid line shows the cross section including all terms, spin-
spin (hyperfine), coulomb, and confinement, while the short-dashed line is only for the spin-spin
(hyperfine) term, the dashed-dot for coulomb term, and the long-dashed line for the confinement
term

99.4 Numerical Results

From the interactionmodels introduced inSects. 99.2 and99.3, the cross sectionof the
πJ/ψ − DD̄∗ transition is obtained numerically as shown in Fig. 99.1. Figure99.1a
is for the cross section by the quark exchange model. We find the large contribution
from the spin-spin term, while the coulomb term has aminor role. Since the spin-spin
term with the charm quark is suppressed, this strong spin-spin contribution found
here is given by the light quark dynamics

In comparison with Fig. 99.1a, the cross section by the meson exchange model
in Fig. 99.1b is much smaller than that by the quark exchange one. This observation
would be important to understand the short rangeπJ/ψ − DD̄∗ interaction. The D(∗)
exchange potential plays a minor role, while the very short-range quark exchange
contribution has the important role in the πJ/ψ − DD̄∗ scattering.

99.5 Summary

The understanding hadron-hadron interaction is important to investigate the exotic
structure produced dynamically near the thresholds. We study the short range
πJ/ψ − DD̄∗ potential which is described by the quark exchange and the meson
exchange models.We find that the cross section in the quark exchange model is dom-
inated by the spin-spin term which is contributed by the light quark dynamics. The
cross section obtained by the D(∗) meson exchange model is much smaller than that
by the quark exchange model. The large difference between two models is obtained,
and it would be useful to understand the short range πJ/ψ − DD̄∗ interaction.
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Chapter 100
The Origin of the Nucleon Mass

Cédric Lorcé

Abstract It is often claimed that 98% of the nucleon mass is generated by quantum
chromodynamics. The decomposition of the nucleon mass based on the trace of the
energy-momentum tensor suggests that gluons play by far a dominant role. About
25 years ago, Ji proposed another decomposition based on the energy component
of the energy-momentum tensor, leading to a quite different picture. Recently, we
critically revisited these decompositions and argued that both overlooked pressure
effects. In particular we showed that Ji’s decomposition, although mathematically
correct, makes little sense from a physical point of view.We identify the proper mass
decomposition along with a balance equation for the pressure forces.

100.1 Introduction

While the Brout-Englert-Higgs mechanism generates the current quark masses, it
accounts only for about 2% of the nucleon mass. The remaining 98% comes from
the relativistic kinetic energy and the strong interactions confining quarks and gluons
inside hadrons [1, 2], described by quantum chromodynamics (QCD).

The question of the origin of the nucleon mass can be addressed based on the
QCD energy-momentum tensor (EMT)

T μν = ψγμ i
2

↔
Dνψ − GaμλGaν

λ + 1
4 ημνG2, (100.1)

whereψ is the quark field,
↔
Dμ = →

∂μ − ←
∂μ − 2igAaμta is the symmetric non-abelian

covariant derivative,Gaμν is the gluonfield strength, and ημν is theMinkowskimetric.
The sum over the quark flavors is implicit. Note that in Particle Physics there is no
fundamental reason for requiring theEMT to be symmetric [3, 4]. Beside the classical
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term ψmψ, the trace of the renormalized EMT

T μ
μ = β(g)

2g G2 + (1 + γm)ψmψ, (100.2)

includes anomalous quantum contributions involving the β function and the anoma-
lous quark mass dimension γm , see e.g. [5–8].

In the following, we critically review the two standardmass decompositions found
in the literature, and propose a new one free of the problems associated with the
former [9, 10].

100.2 Standard Decompositions

100.2.1 Trace Decomposition

Using the covariant normalization 〈P ′|P〉 = 2P0 (2π)3 δ(3)(P ′ − P), Poincaré
invariance imposes that the forward matrix elements of the total EMT in a nucleon
state with momentum P take the form [11]

〈P|T μν(0)|P〉 = 2PμPν . (100.3)

Considering the trace of this expression and using (100.2), one finds that

2M2 = 〈P| β(g)
2g G2|P〉 + 〈P|(1 + γm)ψmψ|P〉. (100.4)

Since the second term is known to give a rather small contribution, this picture
suggests that most of the nucleon mass comes from gluons [12–14].

Although manifestly covariant, we find that the physical interpretation of this
decomposition is somewhat misleading for the following reasons:

1. We know from Quantum Mechanics that we are in principle free to choose the
normalization of states since physical quantities associated with an operator O
are expressed as 〈�|O|�〉/〈�|�〉. The standard trace decomposition does not
involve the normalization factor 1/〈P|P〉 and appears to be manifestly covariant
only because of the particular choice for 〈P ′|P〉.

2. The relation between the trace of the EMT and the nucleon mass holds only at
the level of the matrix elements and for the total EMT. At the operator level, it is
not known how to relate the individual operators β(g)

2g G2 and (1 + γm)ψmψ to
actual gluon and quark contributions to the nucleon mass.

Note that the forward matrix elements of any scalar operator are necessarily propor-
tional to some power of the nucleon mass, since the latter is the only natural scale at
our disposal. If we followed the same logic as with the trace operator, many of these
scalar operators would lead to quite different “decompositions” of the nucleon mass.
In summary, although the decomposition (100.4) is mathematically correct, one has
to be very careful with the physical interpretation of the individual terms.
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100.2.2 Ji’s Decomposition

A decomposition of the nucleon mass analogous to the virial theorem for a harmonic
oscillator and the hydrogen atom has been proposed by Ji [15, 16]. The idea is to
decompose first the renormalized QCD EMT into traceless and trace parts

T μν = T̄ μν + T̂ μν with T̂ μν = 1
4 ημνT α

α. (100.5)

The traceless part is then further decomposed into quark and gluon contributions
T̄ μν = T̄ μν

q + T̄ μν
g , whereas the trace part is further decomposed into quark mass and

trace anomaly contributions T̂ μν = T̂ μν
m + T̂ μν

a . The corresponding forward matrix
elements can be written as

〈P|T̄ μν
q (0)|P〉 = 2 a(μ2)

(
PμPν − 1

4 ημνM2
)
, (100.6)

〈P|T̄ μν
g (0)|P〉 = 2 [1 − a(μ2)] (

PμPν − 1
4 ημνM2

)
, (100.7)

〈P|T̂ μν
m (0)|P〉 = 1

2 b(μ
2) ημνM2, (100.8)

〈P|T̂ μν
a (0)|P〉 = 1

2 [1 − b(μ2)] ημνM2, (100.9)

where the coefficients a(μ2) and b(μ2) depend generally on the renormalization
scheme and scale μ.

According to the Hamiltonian formalism, the mass of a system is identified with
the total energy defined in the rest frame. Ji then proposed to decompose the nucleon
mass as

M = Mq + Mg + Mm + Ma, (100.10)

where the various contributions on the right-hand side are defined as Mi =
〈P|Hi |P〉/〈P|P〉|P=0 with

Hq =
∫

d3r ψ†(iD · α)ψ, (100.11)

Hg =
∫

d3r T̄ 00
g (r), (100.12)

Hm =
∫

d3r
(
1 + 1

4 γm
)
ψmψ, (100.13)

Ha =
∫

d3r T̂ 00
a (r). (100.14)

Note that the QCD equations of motion have been used to rearrange quark mass con-
tributions between T̄ 00

q and T̂ 00
m . Using the parametrization in Eqs. (100.6)–(100.9),

one finds that Mq = 3
4

(
a − b

1+γm

)
M , Mg = 3

4 (1 − a) M , Mm = 1
4

4+γm
1+γm

b M , and

Ma = 1
4 (1 − b) M .
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Sometimes, Ji’s decomposition is criticized because it is obtained in the nucleon
rest frame [13].Wedonot consider this as an actual problemsincemost of the physical
quantities, like e.g. energy and momentum, are known to be frame-dependent. For
massive systems like the nucleon, the rest frame plays a special role and is commonly
chosen as the preferred frame for a decomposition. Note also that if one insists
on manifest Lorentz invariance, it is always possible to trade a frame-dependent
quantity defined in a particular frame for a frame-independent quantity with simple
interpretation in that particular frame only [3, 17]. The archetypical example is the
four-momentum squared p2 = (p0)2 − p2 = m2, where m = p0| p=0 represents the
rest-frame energy. In the case of Ji’s decomposition, a covariant form can formally be
obtained by trading 〈T 00〉|P=0 for the Lorentz-invariant quantity 〈T μνuμuν〉, where
uμ = Pμ/M is the nucleon four-velocity.

The actual problem with Ji’s decomposition is that although T 00, T̄ 00 and T̂ 00 all
have the dimension of energy densities, they correspond to different thermodynamic
potentials. This is not apparent because the non-covariant treatment, focused on the
μ = ν = 0 component in the rest frame, is unable to distinguish pressure-volume
work from other forms of energy. In summary, although Ji’s decomposition (100.10)
is also mathematically correct, it amounts to adding apples and oranges since all four
individual contributions correspond to four different combinations of internal energy
and pressure-volume work.

100.3 New Decomposition

Lorentz covariance implies that the mass decomposition follows directly from a
decomposition of the EMT. Since the various components of the EMT correspond
to different mechanical properties, one should not consider a decomposition based
on the tensor structure like in (100.5), but rather a decomposition based on the sole
nature of the constituents. The QCD EMT can naturally be decomposed into quark
(i = q) and gluon (i = g) contributions T μν = ∑

i T
μν
i . The corresponding forward

matrix elements in a nucleon state read [3, 18].

〈P|T μν
i (0)|P〉 = 2PμPν Ai (0) + 2M2ημνC̄i (0), (100.15)

where Ai (0) and C̄i (0) are two gravitational form factors (GFFs) evaluated at zero
momentum transfer. Poincaré invariance (100.3) implies that

∑
i Ai (0) = 1 and∑

i C̄i (0) = 0. Defining the quark and gluon contributions as

T μν
q ≡ T̄ μν

q + T̂ μν
m and T μν

g ≡ T̄ μν
g + T̂ μν

a , (100.16)

these GFFs can easily be related to Ji’s coefficients as follows ai = Ai (0), bi =
Ai (0) + 4 C̄i (0).

If we average the expectation value of T μν
i over the nucleon volumeV = V M/P0
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〈〈T μν
i 〉〉 ≡ 1

V
〈P| ∫ d3r T μν

i (r)|P〉
〈P|P〉 = 〈P|T μν

i (0)|P〉
2M2

M

V
, (100.17)

we find using uμ = Pμ/M [9, 10]

〈〈T μν
i 〉〉 = (εi + p̄i ) u

μuν − pi η
μν (100.18)

with εi = [Ai (0) + C̄i (0)] M
V and pi = −C̄i (0) M

V . The structure in (100.18) is sim-
ilar to that of an element of perfect fluid in relativistic hydrodynamics and allows us
to interpret εi and pi as partial proper internal energy density and isotropic pressure
averaged over the nucleon, respectively.

Multiplying εi and pi by the nucleon proper volume V , we obtain the partial
internal energy Ui = εi V = [Ai (0) + C̄i (0)] M and pressure-volume work Wi =
pi V = −C̄i (0) M which satisfy the sum rules

M =
∑

i

Ui , 0 =
∑

i

Wi (100.19)

derived from Poincaré invariance (100.3). The first sum rule is nothing but the mass
decomposition we were looking for. The second sum rule expresses the stability of
the nucleon by imposing that the total pressure forces must balance between the
various parts of the system.

100.4 Discussion

Now that internal energy and pressure-volume work contributions are well iden-
tified, we can unravel the meaning of the old decompositions. Starting with the
trace decomposition (100.4) divided by 2M , we see that it does not correspond to
a decomposition of the total energy of the system, but rather to a decomposition
of the interaction measure I = ∑

i Ii with Ii = Ui − 3Wi . Since the total pressure-
volumework vanishes, the total interaction measure coincides with the nucleonmass
I = M . The fact that the gluon contribution dominates Ig 	 Iq does not mean that it
is responsible for most of the nucleon mass as claimed e.g. in [12–14]. It turns out in
fact that the nucleon mass is more or less equally shared between quarks and gluons
Uq ≈ Ug [9, 10]. What the dominance of the gluon contribution to the interaction
measure indicates is that the gluon average pressure pg = −pq is large and negative.
In average, gluons are therefore responsible for the net attractive forces inside the
nucleon, balanced by the net repulsive forces associated with quarks.

Turning now to Ji’s decomposition, we find that using the definition of quark and
gluon EMT given in (100.16), the four terms in (100.10) correspond to the following
combinations of average internal energy and pressure-volume work
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Mq = 3
4

1
1+γm

[
γmUq + (4 + γm)Wq

]
, (100.20)

Mm = 1
4

4+γm
1+γm

(
Uq − 3Wq

)
, (100.21)

Mg = 3
4

(
Ug + Wg

)
, (100.22)

Ma = 1
4

(
Ug − 3Wg

)
. (100.23)

Clearly, each term Mi represents a different physical quantity. One is adding apples
andoranges,which is not somethingwewould like for a genuinemass decomposition.
In order for Ji’s decomposition to make sense, one has to give up something. If one
sacrifices covariance, one can impose from the onset the further decompositionsUq =
Mq + Mm and Ug = Mg + Ma , keeping the pressure-volume works unchanged. If
one wants to preserve covariance, one then has to treat T̄ μν

i and T̂ μν
i as actual separate

EMTs. In that case, one is fixing arbitrarily the equation of state of the individual
contributions because of the restriction on the Lorentz structure. For example, the
gluon contribution in Ji’s decomposition is divided into kinetic+potential energy
treated as a pure radiation p̄g = 1

3 ε̄g , and trace anomaly treated as a cosmological
constant p̂a = −ε̂a . In other words, a covariant decomposition into four terms can
only be achieved by combining in an arbitrary way the two a priori independent sum
rules (100.19) into a single one.
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Chapter 101
Pion-Cloud Contribution to the N → Δ
Transition Form Factors

Ju-Hyun Jung and Wolfgang Schweiger

Abstract We examine the contribution of the pion cloud to the electromagnetic
N → Δ transition form factors within a relativistic hybrid constituent-quark model.
In this model baryons consist not only of the 3q valence component, but contain,
in addition, a 3qπ non-valence component. We start with constituent quarks which
are subject to a scalar, isoscalar confining force. This leads to an SU (6) spin-flavor
symmetric spectrum with degenerate nucleon and Delta masses. Mass splitting is
caused by pions which are assumed to couple directly to the quarks. The point-form
of relativistic quantum mechanics is employed to achieve a relativistically invariant
description of this system. The N → Δ transition current is then determined from
the one-photon exchange contribution to theΔ electroproduction amplitude.We will
give predictions for the ratios REM and RSM of electric to magnetic and Coulomb to
magnetic form factors, which are supposed to bemost sensitive to pion-cloud effects.

101.1 Formalism

For a proper relativistic description of the N → Δ transition form factors we make
use of point-form relativistic quantummechanics in connection with the Bakamjian-
Thomas construction [1]. Like in previous work [2, 3] we use this framework to
determine the one-photon-exchange amplitude for e− p → e−Δ+ scattering. From
this scattering amplitude we extract the electromagnetic p → Δ+ transition current
and determine the form factors by means of a covariant analysis of the transition
current. Thereby both, the nucleon and the Delta are assumed to consist of a 3q
and a 3q+π component and, in addition to the dynamics of electron and quarks, the
dynamics of the photon and the pion are fully taken into account. This is accom-
plished by means of a multichannel formulation that comprises all states which can
occur during the scattering process (i.e. |3q, e〉, |3q,π, e〉, |3q, e, γ〉, |3q,π, e, γ〉).
After reducing the mass eigenvalue equation for this system of coupled states to the
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3qe-component, one ends up with an eigenvalue equation of the form

[
M̂conf

3qe + K̂π(
√
s − M̂conf

3qπe)
−1 K̂ †

π + V̂ opt
1γ (

√
s)

]
|ψ3qe〉 = √

s |ψ3qe〉 , (101.1)

where V̂ opt
1γ (

√
s) is the 1γ-exchange optical potential,

√
s the invariant mass of

the scattering system and K̂π the qqπ vertex operator. We assume an instan-
taneous scalar and isoscalar confining force between the quarks, which enters
M̂conf

3q(π)e. The invariant 1γ-exchange amplitude for electroproduction of the Delta

is now obtained by sandwiching V̂ opt
1γ (

√
s) between (the valence component of)

physical electron-nucleon |eN 〉 and electron-Delta |eΔ〉 states , i.e. eigenstates of
[M̂conf

3qe + K̂π(
√
s − M̂conf

3qπe)
−1 K̂ †

π]. The crucial point is now to observe that, due to in-
stantaneous confinement, propagating intermediate states do not contain free quarks,
they rather contain bare nucleons N0 or bare DeltasΔ0 (or corresponding excitations,
which are neglected in our calculations). The bare particles are eigenstates of the pure
confinement problem. This allows us to rewrite the scattering amplitude in terms of
pure hadronic degrees of freedom with the quark substructure being hidden in strong
and electromagnetic vertex form factors of the bare baryons. This is graphically
represented in Fig. 101.1.

For scalar, isoscalar confinement the masses of the bare nucleon and Delta are
the same, mN0 = mΔ0 =: m0, and also the three-quark wave functions coincide due
to SU (6) spin-flavor symmetry. Instead of choosing a particular confining interac-
tion we therefore rather parameterize the three-quark wave function of N0 andΔ0 by
means of a Gaussian. Knowing the baremassm0, the (pseudovector) pion-quark cou-
pling fπqq and the constituent-quark massesmu = md =: mq , one can first calculate
the strong couplings and form factors at the πN0N0, πN0Δ0 and πN0Δ0 vertices and
in the sequel the renormalization effect of pion loops on the nucleon and Delta mass.

Fig. 101.1 The three graphs contributing to electroexcitation of the Δ resonance in the presence
of a pion cloud. The big blobs represent electromagnetic (transition) form factors involving the
bare nucleon N0 and the bare Delta Δ0. The small black blobs represent strong form factors at the
πN0N0,πN0Δ0 vertices. All these form factors are determined by the valence-quarkwave functions
of the bare baryons. A vertex form factor, calculated within a constituent-quark model [2] and the
same approach as used here, is also assumed at the pion-photon vertex
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Table 101.1 Model parameters for two common choices of the constituent-quark mass mq

mq [GeV] fqqπ m0 [GeV] α

Model I 0.263 0.8067 1.380 2.660

Model II 0.340 0.7565 1.390 2.585

Fixing the constituent-quarkmassmq in advance, we have varied the remaining three
parameters (m0, fqqπ and α) by means of a self-consistent procedure such that the
solution of a mass-eigenvalue problem analogous to (101.1) (just without electron
and photon) gives the physical nucleon and Delta masses. Our resulting parameters
for two common choices of the constituent-quark mass are given in Table101.1. A
more detailed account of the parameter fixing can be found in [4].

What is still necessary to calculate the leading-order electroproduction amplitude,
as depicted in Fig. 101.1, are the electromagnetic (transition) form factors of the bare
baryons. These are obtained from the first graph in Fig. 101.1 by identifying the bare
and the physical baryons. As one would expect, the one-photon exchange amplitude
for eB0 → eB ′

0 scattering can be written as (covariant) photon propagator times

electron current contracted with the baryonic current, MeB0→eB ′
0

1γ ∝ jeμ I
μ
B0→B ′

0
/Q2.

This allows to extract a microscopic expression for the baryonic current I μ
B0→B ′

0
. The

form factors are then obtained by means of a general covariant decomposition of
I μ
B0→B ′

0
. The resulting model current I μ

B0→B ′
0
, however,can be afflicted by unphysical

contributions (depending on the electron momentum) which are partly eliminated by
extracting the form factors in the infinite momentum frame. But problems with the
“angular condition” may still persist. This deficiency can be traced back to problems
with cluster separability inherent in the Bakajian-Thomas construction [1]. A more
detailed account of howwe deal with these problems in case of the N → Δ transition
current can be found in [5].

101.2 Results and Discussion

With the strong and electromagnetic form factors of the bare baryons we are now able
to calculate the pion-loop contributions to the electromagnetic p → Δ+ transition
form factors. We account only for the N0π component in the physical nucleon and
Delta, but neglect the Δ0π component. There is some evidence from phenomeno-
logical hadronic models that an SU (6) spin-flavor symmetric model like ours would
overestimates the Δ0π component considerably. A common choice for electromag-
netic p → Δ+ transition form factors is the one suggested by Jones and Scadron [6].
Pion-cloud effects are most visible in the small form factors G∗

E and G∗
C . What is of-

ten plotted are the ratios REM = −G∗
E/G∗

M and RSM = −(Q+Q−/(4m2
Δ))G∗

C/G∗
M ,

where Q± = √
(mΔ ± mN )2 + Q2. These are shown in Fig. 101.2 for the two param-

eterizations of our model given in Table101.1. Our results compare with the outcome
of other theoretical predictions coming from constituent-quark models [10–12]. For
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Fig. 101.2 Our model predictions for the ratios REM and RSM (for the definition, see text) as
compared with experimental data from MAMI [7], CLAS [8] and JLab [9]. Model I and model II
refer to the two parameterizations given in Table101.1. Curves labelled “w/o pion cloud” refer to
the conventional constituent-quark model without pion cloud, whereas the other results are those
for the full calculation, including the pion cloud

Q2 � 0.5 GeV2 our predictions for G∗
M agree well with the data, for vanishing Q2,

however, we underestimate the data by about 15% for model I and about 25% for
model II. Model I works also better for REM , whereas a better reproduction of RSM is
achieved with model II. The pion-cloud contribution is clearly visible in both ratios
and it goes into the right direction.

There is, of course, room left for improvement. One should keep in mind that
our starting point was SU (6) spin-flavor symmetry for the bare baryons. One could,
e.g., think of introducing SU (6) symmetry-breaking effects right from the beginning,
which lead to differentmasses andwave functions for the bare nucleon andDelta. This
perhapswill also lead to amore reasonable probability for finding theπΔ0 component
in the physical nucleon and Delta. Contributions from πΔ0 intermediate states could
then also help to improve agreement with data. It is the topic of future work to find
out, whether SU (6)-symmetry breaking effects on the bare baryon level (in addition
to pion-cloud effects) suffice to improve the agreement with data, or whether, e.g.,
an explicit d-wave contribution to the Δ wave function, as it is asserted by several
authors (see, e.g., [11]), will be necessary to achieve a satisfactory reproduction of
data.
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Chapter 102
Pasta Phases Within the QMC Model

G. Grams, A. M. Santos, P. K. Panda, C. Providência and D. P. Menezes

Abstract In this work the low density regions of nuclear and neutron star matter are
studied. The search for the existence of pasta phases in this region is performedwithin
the context of the quark-meson coupling (QMC) model, which incorporates quark
degrees of freedom. Fixed proton fractions are considered, as well as nuclear matter
in beta equilibrium at zero temperature.We analyze the influence of the nuclear pasta
on some neutron star properties.

102.1 Introduction

At very low nuclear matter density, a competition between the strong and the elec-
tromagnetic interactions takes place [1], leading to a configuration in which its free
energy per particle may be lower than the corresponding to the homogeneous phase
at the same density. The so-called pasta phases are therefore the preferred shapes
of some systems at these densities [2, 3]. These structures look like droplets, bub-
bles, rods, tubes and slabs [3], and are expected to exist [4] both in the crust of
neutron stars (zero temperature, very low proton fraction, matter in β- equilibrium)
and in supernova (finite temperature, proton fraction around 0.3). The existence of
the pasta phase in the neutron star crust was shown to considerably alter the neutrino
mean-free paths and its diffusion coefficients as compared with the homogeneous
matter results. The consequent differences in neutrino opacities certainly influence
the Kelvin-Helmholtz phase of the star evolution [5, 6].

In the present work, we study the possible existence of the pasta structures within
theQMCmodel at zero temperature and its dependence on the neutron star properties.
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102.2 The Quark-Meson Coupling Model

In the QMCmodel, the nucleon in nuclear medium is assumed to be a static spherical
MIT bag in which quarks interact with the scalar (σ) and vector (ω, ρ) fields, and
those are treated as classical fields in the mean field approximation (MFA) [7]. The
quark field, ψqN , inside the bag then satisfies the equation of motion:

[
i /∂ − (m0

q − gqσ ) − gqω ω γ0 + 1

2
gqρ τzρ03γ

0

]
ψqB (x) = 0 , q = u, d (102.1)

where m0
q is the current quark mass, and gqσ , g

q
ω and gqρ denote the quark-meson

coupling constants. The energy of a static bag describing nucleon N consisting of
three quarks in ground state is expressed as

Ebag
N =

∑
q

nq
�qN

RN
− ZN

RN
+ 4

3
π R3

N BN , (102.2)

where ZN is a parameter which accounts for zero-point motion of nucleon N and
BN is the bag constant. The set of parameters used in the present work is determined
by enforcing stability of the nucleon (here, the “bag”), much like in [8], so there is a
single value for proton and neutron masses. The effective mass of a nucleon bag at
rest is taken to be M∗

N = Ebag
N .

The equilibrium condition for the bag is obtained by minimizing the effective
mass, M∗

N with respect to the bag radius d M∗
N/d R∗

N = 0, where N = p, n. By fix-
ing the bag radius RN = 0.6 fm and the bare nucleon mass M = 939 MeV the
unknowns ZN = 4.0050668 and B1/4

N = 210.85MeV are then obtained. Further-
more, the desired values of B/A ≡ ε/ρ − M = −16.45MeV at saturation n = n0 =
0.15 fm−3, are achieved by setting gqσ = 5.9810, gω = 8.9817, gρ = 8.6510, where
gω = 3gqω and gρ = gqρ . The meson masses aremσ = 550 MeV,mω = 783 MeV and
mρ = 770 MeV.

The total energy density of the nuclear matter reads

ε = 1

2
m2

σσ + 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
03 + 3�vg

2
ωg

2
ρω

2
0ρ

2
03

+
∑
N

1

π2

∫ kN

0
k2dk[k2 + M∗2

N ]1/2, (102.3)

Thevectormeanfieldω0 andρ03 are determined throughω0 = gω(np + nn)/m∗2
ω , and

ρ03 = gρ(np − nn)/2m∗2
ρ , where nB = np + nn = ∑

N (2k3N )/(3π2), is the

baryon density, and the effective masses of the meson fields are m∗2
ω = m2

ω +
2�vg2ωg

2
ρρ

2
03 and m∗2

ρ = m2
ρ + 2�vg2ωg

2
ρω

2
0.

Finally, the mean field σ is fixed by imposing that ∂ε/∂σ = 0.
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Fig. 102.1 Left: Mass-radius relation for a family of neutron stars described with the QMC and
QMCωρ models with (QMC pasta and QMCωρ pasta) and without (QMC and QMCωρ) the pasta
phases. Right: Phase diagrams at T=0 obtained with CP approximation for QMCωρ with L = 69
MeV (1):Yp = 0.5, (2):Yp = 0.3, (3):β equilibrium, and for QMCwith L = 90MeV, (5):Yp = 0.3,
(6): β equilibrium, hm stands for homogeneous matter. Figures adapted from [9]

The bulk nuclear matter properties for the QMC are: B/A = −16.4 MeV,
n0 = 0.15 MeV, � = 0.00, M ∗ /M = 0.77, εsym = 34.5 MeV, L0 = 90 MeV and
K = 295 MeV. And for QMCωρ: B/A = −15.7 MeV, n0 = 0.15 MeV, � = 0.03,
M ∗ /M = 0.77, εsym = 30.9 MeV, L0 = 69 MeV and K = 295 MeV

102.3 Results

In this section we present our results for the pasta phases obtained with the QMC
model at zero temperature, within the coexisting phases approximation, where mat-
ter is organized in regions of lower density, generally with a neutron gas in the
background and regions of higher density. We would like to remark that pasta is
only predicted when its free energy per baryon is lower than the homogeneous npe
(neutron-proton-electron) matter (Fig. 102.1).

102.4 Conclusions

In the present work we have revisited the calculation of the pasta phases now using
a model with quark degrees of freedom, the QMC model. The general conclusions
related to the size of the pasta phases, its internal structure and the transition density
from the pasta to homogeneous matter go in line with the ones obtained in previous
works [1]. All EoSs satisfies the 2M� constraint for the neutron star maximummass.

The work presented here was published on the Physical Review C journal [9]
where you can find more details of our calculations and results.
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Chapter 103
Elastic Form Factor of Pseudoscalar
Mesons

Muyang Chen and Lei Chang

Abstract We calculated the elastic form factor of pion-like mesons with masses
m0−/GeV = 0.14, 0.47, 0.69, 0.83 on the space-like domain, upto Q2/GeV2 =
4, 5, 6, 7 respectively. Comparing the preliminary lattice QCD results with ours,
we find that the form factors on the domain Q2 < 1.0 GeV2 are consistent, while
the lattice QCD results can not all fit our pattern of the mass denpedence of the form
factor on larger Q2 region.

103.1 Introduction

Perturbation theory in quantum chromodynamics [QCD] is applicable to hard exclu-
sive processes; and for almost forty years the leading-order factorised result for the
elastic form factor of a pseudoscalar meson has excited experimental and theoretical
interest. Namely, ∃Q0 > ΛQCD, such that

Q2F0−(Q2)
Q2>Q2

0≈ 16παs(Q
2) f 2

0−ω2
0−(Q2), (103.1)

where f0− is the mesons leptonic decay constant; αs(Q2) is the leading-order
strong running-couplingαs(Q2) = 4π/[β0ln(Q2/Λ2

QCD)], withβ0 = 11 − (2/3)n f ,

n f is the number of active quark flavours; and ω0−(Q2) = 1
3

∫ 1
0 dx 1

x ϕ0−(x; Q2),
where ϕ0−(x; Q2) is the meson’s dressed-valence-quark parton distribution ampli-
tude (PDA).

However, the value of Q0 is not predicted by perturbative QCD. In the domain of
low Q2, people have to resort to non-perturbativemethod and experiment. The elastic
form factor of the pion have been investaged experimentally for more than 30years,
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restricted in the domain Q2 < 2.5 GeV2. The upgraded Jefferson Lab [JLab 12] aim
for precision measurements of Fπ(Q2) to Q2 ≈ 6 GeV2. Nowdays, no lQCD predic-
tions atmπ are available on the full domain accessible to JLab 12, but new results exist
on Q2 < 6 GeV2 at bound-statemass-squared valuesm2

0− ≈ 10m2
π, 25m2

π [1, 2].We
employ the continuum approach to the QCD bound-state problem to calculate the
pion elastic form factor and have a compare with the lQCD results.

103.2 Formulations

In the rainbow-ladder approximation, the pion elastic form factor is given by

2PνF(Q2) = Nc

∫ Λ

dk

d4k

(2π)4
tr

[
Sb(k3) Γ̄ ab̄(k1, k3;−P+)

×Sa(k1) iΓ
a
ν (k2, k1; Q)Sa(k2) Γ ab̄(k3, k2; P−)

]
, (103.2)

where Q is the photon momentum, P± is the momentum of the final and initial pion,
satistying the on shell condition P2± = −M2, M being the meson mass, S f is the

dressed quark propagator with flavor f , Γ ab̄ is the Bethe-Salpeter amplitude(BSA)
of the meson with valence quark a and antiquark b̄, Γ̄ ab̄ is its charge conjugate,
Γ f

ν is the quark-photon vertex with quark flavor f and Lorentz index ν. k1, k2, k3
are momenta of the the internal quarks. The notation

∫ Λ

dk = ∫ Λ d4k/(2π)4 stands for
a Poincaré invariant regularized integration, with Λ the regularization mass-scale.
We truncate the equations in the rainbow-ladder(RL) approximation. The rainbow
truncated Dyson-Schwinger equation(DSE) for the quark propagator in Euclidean
space is

S(p)−1 = Z2iγ · p + Z4mq(μ) + 4

3
Z2
2

∫ Λ

dq
G((p − q)2)D f

αβ(p − q)γαS(q)γβ,

(103.3)

where D f
αβ(k) =

(
δαβ − kαkβ

k2

)
1
k2 represent the free gluon propagator and the effec-

tive interaction is denoted by G(k2). Z2 is the wave functions and Z4 = Z2Zm , where
Zm is the mass renormalization constant, mq(μ) is the current quark mass at space-
like renormalization point μ.

The equation for the quark-photon interaction vertex, Γ̂ q
μ = Q̂qΓ q

μ , and themeson
amplitude are

Γ
q
μ (k; P) = Z2γμ − 4

3
Z2
2

∫ Λ

dq

[
G((k − q)2)D f

αβ(k − q)γαS
q (q+)Γ

q
μ (q; P)Sq (q−)γβ

]
,

Γ (k; P) = −4

3
Z2
2

∫ Λ

dq

[
G((k − q)2)D f

αβ(k − q)γαS(q+)Γ (q; P)S(q−)γβ

]
. (103.4)
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where k and P are the qq̄ state’s relative and total momenta, q± = q ± P/2. We
normalize the amplitude Γ (k; P) by the Nakanishi normalization condition [3]. To
solve the equations (103.3) and (103.4), we need to know the coupling function G(s),
and we employ the infrared constant model [4].

103.3 Results and Conclusion

Our results of the decay constants, charge radii and 2rd moment of PDA of the pion-
like mesons at ω = 0.4, 0.5, 0.6 GeV are listed in Table103.1, and the elastic form
factors are shown in Fig. 103.1. The main points of our results are:

Table 103.1 Input current-quark masses [one-loop evolved from an associated value of m̂] for four
pion-like mesons and related results computed with interaction width ω = 0.5 ± 0.1 GeV. M0− ,
f0− and r0− are the mass, decay constant and radius of the meson, and 〈ε2〉 is the secondmomentum
of the meson PDA. [In the table, all dimensioned quantities listed in GeV, except r0− , in fm.]

mζ2 M0− ω = 0.4 ω = 0.5 ω = 0.6

f0− r0− 〈ε2〉 f0− r0− 〈ε2〉 f0− r0− 〈ε2〉
0.0046 0.14 0.092 0.63 0.255 0.094 0.66 0.265 0.097 0.68 0.273

0.053 0.47 0.115 0.53 0.217 0.115 0.55 0.226 0.115 0.56 0.229

0.107 0.69 0.135 0.47 0.196 0.133 0.49 0.207 0.133 0.49 0.211

0.152 0.83 0.147 0.43 0.180 0.145 0.45 0.193 0.145 0.45 0.200

Fig. 103.1 The elastic form factor of the pion-like mesons: lines Fπ140, Fπ470, Fπ690, Fπ830, our
calculations with meson masses m0−/GeV = 0.14, 0.47, 0.69, 0.83, the gray shadows correspond
to ω ∈ [0.4, 0.6] GeV; expt. JLab2001 (see [5]) and expt. JLab2006 (see [6]) are the experimental
results; LQCD-Fπ470 (see [1]) and LQCD-Fπ690 (see [2]) are the lattice QCD results
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1. The charge radius decreases with increasing mass, i.e. the bound-states become
more pointlike; and r0− ∝ 1/ f0− , up to ln(m0−) corrections. r0− is an intrinsic
length-scale in these systems. The meson becomes a more highly correlated state
as it diminishes. Hence, steadily increasing values of Q2 are required to reach the
domain upon which (103.1) provides a useful guide to F0−(Q2).

2. f0−w0− , where w0− is the inverse moment of the PDA, is roughly constant on the
domain of meson masses considered. Consequently, the prediction of the hard-
scattering formula is weakly varying on 0− ∈ [0.1, 0.9] GeV, whereas the form
factor itself rises steadily with m0− , owing primarily to the decreasing radius of
the system.

3. The lQCD results in [1, 2] are mutually inconsistent: the lighter meson mass
in [1] is associated with a form factor which is larger in magnitude than that
describing the internal structure of the heavier 0−+−meson in [2]. Whilst the
lowscale results from both studies match our predictions, only [1] is consistent
with our calculations on the domain of larger Q2.
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Chapter 104
Light Hadron Spectroscopy at BESIII

Francesca De Mori

Abstract The BESIII experiment at the BEPCII electron-positron collider is
successfully operating since 2008 and has collected large data samples in the tau-
charm mass region, including the world’s largest data samples at the J/ψ and ψ(2S)
resonances. In particular their decays provide a rich and clean environment to study
hadrons consisting of light quarks and to search for exotics. In this report, recent
BESIII results of the light hadron physics program will be highlighted.

104.1 Introduction

Light hadron spectroscopy (LHS) is a unique laboratory to test Quantum Chromo
Dynamics (QCD) in low energy regime, where the perturbative approach is not
holding anymore. Beside the conventional hadrons, predicted by quark model, QCD
allows also exotic hadrons like glueballs, multi-quark states, molecules and hybrids.
One of the main aims of LHS is the search for exotic states. Many candidates have
been reported, but none of them has been unambiguously established yet.

The Beijing Electron Spectrometer III (BESIII) detector [1] is a general pur-
pose magnetic spectrometer, installed at the Beijing Electron Positron Collider II
(BEPCII). BEPCII is a double ring e+e− collider, hosted at the Institute of High
Energy Physics (IHEP) of Beijing (P. R. C.) with a tunable beam energy from
1.0 to 2.3 GeV. It reached its design luminosity of 1033 cm−2 s−1 in April 2016.
Since the beginning of its successfully operation in 2008, BESIII has collected the
world’s largest samples of J/ψ and ψ(3686): 2.25 × 108 and 1.06 ×108 in 2009
plus 1.09 × 109 and 3.41 × 108 in 2012, respectively.
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J/ψ and ψ(2S) radiative decays are gluon rich processes, with favourable
kinematics and they provide a clean and powerful environment to study light hadron
spectroscopy, without combinatorial background. Furthermore lattice QCD calcula-
tions [2] foresee, e.g., the 0+ glueball ground state in the range 2.3–2.6 GeV/c2, that
can be easily explored in charmonia radiative decays at BESIII.

104.1.1 X( p p̄) and X(1835)

A strong enhancement at p p̄ threshold, called X(p p̄), was observed for the first
time, more than 10years ago, by BESII [3] in J/ψ → γ p p̄, being confirmed
later by BESIII [4] and CLEO-c [5] in the same channel with the J/ψ from
ψ(2S) → π+π− J/ψ. Based on 2009 BESIII data, a Partial Wave Analysis of J/ψ
radiative decay in p p̄ has been performed, including Final State Interaction [6],
determining its spin-parity as 0−+. Similar structures have not been observed in
related channels, like ψ(2S) decays, ϒ(1S) → γ p p̄ or J/ψ → ω p p̄ [7]. The most
appealing interpretation of this structure describes it as a p p̄ bound state, the so-
called baryonium [8]. The analysis of J/ψ → γnn̄, on-going in BESIII, would help
to clarify this issue.

Studying the J/ψ → γη′π+π− decay, BESII observed a structure in the η′π+π−
invariantmass [9] in the samemass-region, close to the p p̄ threshold, namedX(1835).
Afterwards the X(1835) was confirmed by BESIII in the same process [10] with a
sample of 225 ×106 J/ψ. Its angular distribution was found to be consistent with
J P = 0−. The nature of this state is not fully understood yet and several hypotheses
have been proposed, explaining it as a p p̄ bound state or a glueball candidate, e.g.

Based on 1.09 × 109 J/ψ collected in 2012, BESIII was able to study the η′π+π−
invariant mass to investigate the coupling to p p̄with larger statistics. An abrupt in the
line-shape has been found near the p p̄ mass threshold [11]. The distorted line-shape
has been described equally well by both the Flatté formula [12], taking into account
the opening of the p p̄ decay channel in the mass spectrum, with an additional nar-
row resonance, named X(“1920”)(M=1918.6 ± 3.0 MeV/c2 and � = 50.6 ± 20.9
MeV/c2), as shown in Fig. 104.1 on the left, and the coherent sum of X(1835) plus a
narrow resonance near the p p̄ threshold (X(1870) with mass and width 1870.2 ± 2.2
MeV/c2 and 13.0 ± 6.1 MeV/c2). The large coupling to p p̄ indicates most likely a
connection between X(p p̄) and X(1835), but more investigations and more data are
needed to clarify the nature of these states.

For this purpose, it is important to search for other decaymodes. The X(1835) was
also observed byBESIII [13] in the J/ψ → γηK 0

S K
0
S decay, based on 1.3 × 109 J/ψ

events, i.e. the full statistics of 2009 and 2012. A clear structure has been observed in
the ηK 0

S K
0
S mass spectrum, peaking around 1.85 GeV/c2 and strongly correlated to

f0(980). A Partial Wave Analysis has been performed for M(K 0
S K

0
S) < 1.1GeV/c2

and M(K 0
S K

0
Sη) < 2.8GeV/c2. The results are shown in Fig. 104.1 on the right. The

final best fit includes: a X(1835) resonance in the f0(980)η channel, a X(1560)→
f0(980)η and a non-resonant f0(1500)η component. In the nominal solution the
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Fig. 104.1 On the left the fit of M(η′π+π−) with Flatté formula is shown overlapped with the data
points, adapted from [11]. On the right it is the reported the comparison between data and PWA fit
projections for the KsKsη invariant mass distribution (two entries/event), adapted from [13]

X(1835) is requiredwith a significance larger than 12.9σ and themass andwidth have

been determined to be (1844 ± 9+16
−25) MeV/c2 and (192+20

−17
+70

−43 )MeV/c2, respec-
tively. The spin-parity of X(1835) turns out to be J P = 0+− [13]. The resonance
parameters are consistent with those obtained for X(1835) from J/ψ → γη′π+π−
by BESIII, while this structure results to be wider than the X(p p̄).

104.1.2 η(1405)/η(1475)

A puzzling state, the η(1440), was first observed more than 50 years ago in pp colli-
sions. Further studies, by different experiments, reported evidences for the existence
of two pseudoscalar mesons in this region, the η(1405) and the η(1475). Theoretical
interpretations favour the η(1475) as the first radial excitation of the η0 while the
η(1405) is a candidate for a 0+ glueball in the flux-tube model but not in lattice
gauge calculations, that predict for this state a mass larger than 2 GeV/c2. Based on
a 1.31× 109 J/ψ sample, BESIII studied its radiative decay to γφ [16].

Two structures were observed in the γφ invariant mass spectrum for the first time.
The fit of the M(γφ) distribution, taking into account their possible interference, is
shown in Fig. 104.2 with their resonance parameters consistent with η(1475) and
X(1835). Their statistical significances are 13.5 σ and 6.3 σ, respectively. Further
analysis of the polar angle of the radiative photon in the J/ψ rest system is used to
investigate their spin-parity and it favoured their assignment to η(1475) andX(1835).

According to Zhao et al. [14, 15] the property of η(1405)/η(1475) in the J/ψ
radiative decays can be explained by the so-called Triangle Singularity Mechanism
(TSM). The spectrum could consist of a single state, i.e. the η(1440), but the TSM
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Fig. 104.2 Fits to the M(γφ) distributions (two combinations per event) for the case of (1) con-
structive and (2) destructive interference. Together with the data points, the fit results are shown in
red with the three fitted structures in green, cyan and black. The background is represented with a
blue dotted line while the interference contribution with long dashed line, adapted from [16]

can produce obvious shifts of peak position in different channels. Under the one-state
assumption, the partial width ratio between its γρ and γφ decay modes is predicted
to be �γρ

�γφ
= 3.8 in [15]. In our analysis [16] we found that this ratio is 11.10 ± 3.50

for destructive interference and 7.53 ± 2.49 for constructive interference, where the
branching fraction of J/ψ → γη(1405/1475) → γγρ was taken from BES mea-
surement [17]. The ratio is slightly larger than the prediction.

104.1.3 Conclusions

Thanks to the world’s largest J/ψ and ψ(3686) data samples, BESIII can play an
important role in the light hadron spectroscopy sector. Two “puzzles” have been
pointed out in this proceedings even if the current statistics does not allow BESIII
to find a conclusive answer. With the future increased statistics, towards 9 Billions
J/ψ, we expect new important results.
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Chapter 105
Relativistic Effects in Non-relativistic
Calculations of Electroweak Cross
Sections

G. Orlandini, N. Rocco, A. Lovato and W. Leidemann

Abstract In view of the growing interest in neutrino scattering with nuclei we show
that it is possible to extend to relatively high energies and momentum transfers the
accurate ab initio results obtained by the integral transform (IT) approach for quasi-
elastic (q.e) kinematics. This is made possible by performing the calculation in a
specific frame and by employing a q.e. kinematical model that helps in reducing the
frame dependence. The results are validated comparing theoretical and experimental
(e, e′) cross sections.

105.1 Introduction

In recent yearswehave seen a growing interest in understanding howneutrinos scatter
on nuclei. Several experiments are underway and others are planned. However, they
all share the difficulties of interpreting the results of the measurements, since it is
necessary to know the neutrino cross sections on the nuclei present in the detectors.
Resolving this problem by dedicated experiments is very difficult, so that one has to
rely on nuclear theory. However, in this case one has to solve the non perturbative
many-body problem of A strongly interacting nucleons, both in their initial (ground)
and final excited state.
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In the last decades theoretical nuclear physics has made remarkable progress in
producing accurate ab initio results for describing nuclear ground state properties. An
analogous accuracy in describing the nuclear dynamics at positive energies (many-
body scattering problem) represents a tremendous challenge. However, it has been
shown that, at least for not too heavy systems, one can aim at comparable accuracies,
by extending ground state techniques to excited states. Such approaches make use
of IT’s and are summarized in Sect. 105.2.

An additional problem is the rather high energy andmomentum transfers involved
in neutrino scattering. The accurate ab initio approaches mentioned above are based
on a nonrelativistic (n.r) quantum mechanical description of the A-nucleon system.
Hence, the range of reliability of those results has to be investigated. This can be
done testing the frame independence of the results at increasing energy/momentum
transfers. In Sect. 105.3 this aspect is discussed.

Since electron and neutrino scattering are very similar under the nuclear many-
body point of view, it seems appropriate to test the precision of theoretical results on
electron scattering cross sections. This is done in Sect. 105.4.

105.2 The Integral Transform Approach

At first order perturbation theory, the inclusive lepton scattering cross section is
described by so-called “inelastic structure functions” of form

Rμν(q, ω) =
∑

n

〈0|Θ†
μ|n〉〈n|Θν |0〉δ(ω − Erec − En + E0) , (105.1)

where |0〉, |n〉 and E0, En are the eigenstates and eigenenergies of the initial and final
nuclear states, respectively, while ω and q are the energy and momentum transferred
by the electroweak probe. The operators Θμν are the components of the proper 4-
currents and Erec represents the target recoil energy. Because of the difficulties in
calculating |n〉 one turns to calculate an IT of R(ω)

Φμν(σ ) =
∫

dωRμν(ω)K (ω, σ ) , (105.2)

where K (ω, σ ) is a suitable kernel that allows the direct calculation of Φμν(σ ).
The functions Rμν are recovered by inverting the transform. The inversion may be
delicate, since, due to inaccuracies in the calculation of Φ, instabilities may arise.
Two particular kernels are known in the literature. One is KE(ω, σ ) = e−σω, largely
used in many fields of physics. In condensed matter and nuclear physics the real
parameterσ coincideswith the imaginary time τ , which describes the evolution of the
many-body system and allows the application of diffusion Monte Carlo techniques
for the evaluation of ΦE. The inversion of ΦE can be problematic and requires a
very high accuracy in its calculation. The other kernel is a Lorentzian, KL(ω, σ ) =



105 Relativistic Effects in Non-relativistic Calculations … 665

[(ω − σR)2 + σ 2
I ]−1, where σ is complex. The transform ΦL can be accessed by

diagonalization methods. Due to the width σI , and different from ΦE, the transform
ΦL filters information only from a restricted energy range. This makes the inversion
of ΦL much less problematic than in the previous case.

105.3 Different Frames and the Role of Relativity

The importance of relativistic effects can be tested by studying the frame dependence
of results obtained within a n.r. framework. This can be achieved by performing the
n.r. calculation in different reference frames with a subsequent boost of the obtained
results to the laboratory (LAB) frame. If relativistic effects are not important the
results should all be very similar.

Besides the LAB frame, one can consider the Breit frame (B), where the nucleus
moves with −q/2 and the Antilab frame (AL) where the nucleus moves with −q.
In the q.e. region it is appropriate to consider also another frame, where the nucleus
moves with −Aq/2. This is a sort of Breit frame, but for the nucleon that in the q.e.
picture is the active one (ANB frame). This would have an average initial momentum
of −q/2 and a final one of +q/2.

In [1, 2] a study of the frame dependence of the longitudinal and transverse in-
clusive (e,e’) structure functions RL and RT has been performed and a noticeable
frame dependence has been found, both for 3He and 4He. At this point one should
remember that the n.r. calculation is always performed in the center of mass (c.m.)
system. Relativistically the separation of c.m. and internal energy cannot be per-
formed. However, one might expect that among all frames there should also be some
where the error introduced by such a separation is minimized. To find out the best
frame in that respect, one can apply the q.e. kinematics, namely that of a two-body
1-(A − 1) final state. It is well known that in this case one cannot at the same time
calculate internal (relative) momentum and energy in a relativistically correct way.
However, one can choose to calculate correctly one of them, say the relative momen-
tum p, and then use p2/2μ as the final internal energy (for further details of the q.e.
two-fragment model see [1, 2]).

105.4 Results

First we concentrate on the longitudinal structure function RL(q, ω) of 4He (nuclear
force AV18+IL7). In this caseΘ of (105.1) is the density operator ρ. In Fig. 105.1 the
result obtained via the IT approach with the kernel KE is compared with that of [3],
where the kernel KL has been used. The agreement is rather satisfactory, considering
that the ingredients of the two calculations are slightly different. In fact in the present
case ρ contains spin orbit corrections, moreover the three-body force is IL7, while
in [3] UIX has been used.
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Fig. 105.1 RL at q = 500
MeV with kernels KE as in
Green Function Monte Carlo
(GFMC) method and KL as
in Lorentz Integral
Transform (LIT) method.
(Adapted from [2])

The frame dependence (LAB, ANB) of the results can be observed in the left
panel of Fig. 105.2. One sees that the q.e. two-fragment model reduces the frame
dependence (LAB rel, ANB rel). One also notes that results obtained in the ANB
frame are little affected by the use of the two-fragment model. This indicates that
in this frame relativistic effects are minimized. In particular one notes that the peak
position does not change when the two fragment model is employed. This is under-
standable in the q.e. picture, where the peak energy in the ANB system is found at
ωANB = 0, a correct value both relativistically and non-relativistically.

In the right panel of Fig. 105.2 we report one of the results of [2] for the total
cross section. Besides the enhancement brought about by the two-body currents, it
has to be noticed the importance of the ANB frame to reproduce the peak position.

Fig. 105.2 Left: RL in ANB and LAB frame, with and without relativistic kinematics (two-
fragments). Right: (e, e′) total cross section from ANB frame calculation. The red line is the same
as the blue line with the relativistic kinematics. (Adapted from [2])
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Here we should mention that one has to work with interpolations to boost the results
from a given frame to the LAB frame. In order to do so a novel algorithm has been
developed, based on the concept of first-kind scaling (for further details see [2]).
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Chapter 106
Bethe-Salpeter Approach to Three-Body
Bound States with Zero-Range
Interaction

E. Ydrefors, J. H. Alvarenga Nogueira, V. A. Karmanov and T. Frederico

Abstract The relativistic three-boson system with zero-range interaction has
recently been investigated by our group by using the valence Light-Front and the
four-dimensional Euclidean Bethe-Salpeter equations. We review some results from
those studies, focusing on the impact of higher-Fock contributions on the computed
physical quantities. Furthermore, we have also solved the Bethe-Salpeter equation by
direct integration in Minkowski space and some first results from these calculations
are presented. A full solution in Minkowski space is important since it gives direct
access to dynamical observables such as electromagnetic form factors and momen-
tum distributions. The obtained results are in fair agreement with the ones computed
in Euclidean when the comparison is suitable.

106.1 Introduction

The Bethe-Salpeter (BS) equation [1, 2] constitutes a reliable framework for the
treatment of relativistic few-body systems in the non-perturbative regime. From the
numerical point of view, the simplest way to solve the integral equation is to deal
with its analytic continuation to Euclidean space through theWick rotation [3]. Some
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quantities, such as binding energies, are unchanged under this transformation. How-
ever, as shown in [4] the Euclidean BS amplitude cannot be used naively to compute
some dynamical observables. For such applications one needs the BS amplitude
solution in Minkowski space.

The BS equation for the system of two scalars with one-boson-exchange interac-
tion has been successfully solved inMinkowski space by several research groups, see
e.g. [5–8]. In those works the Nakanishi integral representation [9, 10] was adopted
to transform BS equation into a non-singular solvable form.

Understanding the structure of relativistic three-body systems is important for
applications in nuclear- and particle physics, but it is also more challenging com-
pared to two-body systems. The BS and Light-Front (LF) equations for the three-
boson system with zero-range interaction were introduced in [11]. The LF equation,
obtained by the integration over k− of the BS amplitude, only retains the valence
component of the BS amplitude, and was solved by Frederico in a limited range
and later re-analyzed in [12]. Recently, Ydrefors et al. [13] solved the BS equation,
derived in [11], in Euclidean space and it was found that many-body components
beyond the valence affect dramatically the structure of the three-body system. In this
contribution, we review some of the results calculated in [13], with a special empha-
sis on the contributions coming from higher-Fock states. As already mentioned, it is
essential to obtain the BS amplitude directly in Minkowski space. For this purpose,
we have also solved the BS equation by direct integration in Minkowski space and
some of the results are presented.

106.2 Bethe-Salpeter Equation

We consider in this work the system of three bosons, having equal mass m, with
zero-range interaction. The BS equation for the Faddeev component of the vertex
function reads [11]

v(p, q) = 2i F(M12)

∫
d4k

(2π)4

i

[k2 − m2 + iε]
i

[(p − q − k)2 − m2 + iε] , (106.1)

where p is the total four momentum of the three-body system and F(M12) denotes
the two-body scattering amplitude. Here the squaredmass of the two-body subsystem
is defined as M2

12 = (p − q)2.
The BS equation (106.1) constitutes a highly-singular integral equation, being

thus difficult to solve numerically. If the purpose is to compute binding energies (or
other well-defined quantities), one can transform (106.1) to the complex plane by
means of Wick rotation. In the rest frame, the Euclidean BS equation takes the form
[13]

vE (q ′
4, q

′
v) = 2F(−M ′2

12)

∫ ∞

−∞
dk ′

4

∫ ∞

0

dk ′
v

(2π)3

ΠE (q ′
4, q

′
v, k

′
4, k

′
v)

(k ′
4 − i

3M3)2 + k ′2
v + m2

, (106.2)
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whereΠE is a non-singular kernel (fully given in [13]) and we performed the change
of variables k = k ′ + p

3 and q = q ′ + p
3 , so that the Wick rotation could be done

without crossing any singularities of the integrand in (106.1).
In the Light-Front formalism, the equation for the three-body vertex function is

given by [11, 12]

�(k⊥, x) = F(M̄12)

(2π)3

∫ 1−x

0

dx ′

x ′(1 − x − x ′)

∫ ∞

0

d2k′⊥
M2

0 − M2
3

�(k′⊥, x ′) (106.3)

where the kernel of the integral equation is, again, smooth and is explicitly writ-
ten in [13]. The LF equation (106.3) is fully defined in Minkowski space, but it
only gives access to the valence component. For realistic calculations of dynami-
cal observables, it is thus important to study also the complete solution of (106.1)
directly in Minkowski space. By following the method introduced in [14], we thus
re-write (106.1) in the partially non-singular form [15]

v(q0, qv) = F(M12)

(2π)4

∫ ∞
0

k2vdkv

{
π i

εk

[
Π(q0, qv; εk , kv)v(εk , kv) + Π(q0, qv;−εk , kv)v(−εk , kv)

]

− 2
∫ 0

−∞
dk0

[
Π(q0, qv; k0, kv)v(k0, kv) − Π(q0, qv; −εk , kv)v(−εk , kv)

k20 − ε2k

]

−2
∫ ∞
0

dk0

[
Π(q0, qv; k0, kv)v(k0, kv) − Π(q0, q; εk , kv)v(εk , kv)

k20 − ε2k

]}
,

(106.4)

where the propagator singularities have been eliminated by using subtractions. The
kernel Π has now weak (logarithmic) singularities to be treated numerically, and is
explicitly given in [15].

106.3 Results

The Euclidean BS and LF equations were solved in [13] for various values of the
scattering length a, a parameter introduced to renormalize the two-body zero-range
interaction. In Fig. 106.1, we display the computed squared three-body mass, M2

3 ,
versus the inverse scattering length for the two lowest states obtained within these
approaches. The results clearly show the large impact of many-body contributions
on the structure of the three-body system. These additional contributions can be
interpreted as an effective three-body force of relativistic origin. Furthermore, it is
seen that for a > 0, the lowest state has a negative squared three-body mass and is
unphysical. However, it exists a range of negative of values of a, for which that state
has M2

3 > 0 and is physical. However, it should be noted that the M2
3 always remains

finite and a Thomas collapse in the non-relativistic sense is thus avoided.
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Fig. 106.1 Computed M2
3 versus the inverse scattering length for the Euclidean BS ground state,

LF ground state, Euclidean BS first excited state and the LF first excited state

Table 106.1 Eigenvalues of the three-body ground state for three scattering lengths, a, computed
by using the Euclidean three-body binding energies

am B3/m λ

−1.280 0.006 0.999 − 0.054i

−1.500 0.395 1.000 + 0.002i

−1.705 1.001 0.997 + 0.106i

We have solved the Minkowski-space BS equation (106.4) by multiplying the
right-hand side by a factor λ, using as inputs the two-body scattering length and
the corresponding three-body energy computed from the Euclidean BS equation
(106.2). Therefore, Minkowski and Euclidean space computations are consistent if
the eigenvalue λ = 1.0 is obtained. In the Table106.1, we show the computed λ for
three different values of the binding energy, i.e. B3/m = 0.006, 0.395, 1.001. It is
seen that for all three cases the real part is close to one. At this point, it should be
noticed that in the Minkowski-space calculations were used finite cut-offs on the
variables q0 and qv , so that a stable solution could be obtained. Differently from this,
in the solution of the Euclidean BS equation the infinite limits were retained by using
a mapping procedure. Consequently, the calculations are not fully comparable and
this is one of the reasons for the small imaginary parts and error in the real parts.

Our results show that the binding energies obtained by direct integration agree
with the Euclidean ones and more details on this work were explored in [15]. In that
paper, we also computed the three-body transverse amplitudes, that depend on the
momenta k1⊥ and k2⊥, and good agreement with the results calculated in Euclidean
space was obtained. However, the method is quite challenging from the numerical
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point of view, because of the many singularities which have to be taken into account
analytically and numerically. One way to improve the numerical accuracy and also to
be able to treatmore realistic kernels is to adopt theNakanishi integral representation.
This is a work in progress.
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Chapter 107
Meson-Baryon Scattering in
Extended-on-Mass-Shell Scheme Up to
NNLO

Junxu Lu, Lisheng Geng, Xiulei Ren and Menglin Du

Abstract In this present work, we study the scattering of a pseudoscalar meson off
one ground state octet baryon in covariant baryon chiral perturbation theory up to the
next-to-next-to-leading order. We remove the power counting breaking terms with
the extended-on-mass-shell scheme. We perform the first combined study of the
pion-nucleon and kaon-nucleon scattering data and show that the covariant baryon
Chiral perturbation theory can provide a reasonable description of the experimental
data for both channels.

107.1 Introduction

Chiral perturbation theory (ChPT), as a low-energy effective field theory of QCD,
plays an important role in our understanding of the non-perturbative strong interac-
tions [1]. Elastic meson-baryon scattering is a fundamental process that not only can
test our understanding of the strong interaction but also plays a relevant role in the
studies of the properties of single and multi baryons. Because of the large nonzero
baryon masses m0 in the chiral limit, lower order analytical terms appear in nominal
higher order loop calculations, and therefore a consistent power counting is lost [2].
In the past three decades, several solutions have been proposed. The most studied
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ones are the heavy baryon ChPT [3, 4], the infrared (IR) baryon ChPT [5], and the
extended-on-mass-shell (EOMS) BChPT [6, 7]. Among them, the EOMS BChPT
turns out to be more appealing because it satisfies all the symmetry and analyticity
constraints and converges relatively faster [8, 9].

In this talk, we present our work on meson-baryon scattering up to next-to-next-
to-leading order in the EOMS scheme.

107.2 Theoretical Formalism

In the isospin limit, the standard decomposition of the meson-baryon scattering
amplitude reads [2],

TMB = u(p′, s ′)
[
D + i

mi + m f
σμνq ′

μqνB

]
u(p, s), (107.1)

where the p(p′) and q(q ′) are the momentum for initial (final) baryons and mesons,
respectively.

In order to calculate the meson-baryon scattering amplitudes up to the leading
one-loop order, i.e.,O(p3), we need the following meson-meson and meson-baryon
Lagrangians:

Leff = L(2)
MM + L(4)

MM + L(1)
MB + L(2)

MB + L(3)
MB, (107.2)

where the explicit form of each term can be found in [10–12].
It should be noted that not all of the remainingO(p2) andO(p3) terms contribute

to a specific process. Particularly, for pion-nucleon and kaon-nucleon scattering, only
24 out of the total 37 LECs contribute. They are tabulated in Table. 107.1.

Because the baryon mass in the chiral limit does not vanish, the power counting
rules are violated [2]. Within the EOMS scheme, as shown in [7], these power count-
ing breaking terms are all analytic and can be absorbed into low energy constants.
Thus in the present work, we apply the MS − 1 first to absorb the ultraviolet diver-
gence and then the EOMS scheme to remove the PCB terms to restore the power
counting rules.

107.3 Fitting and Results

In the present work we focus on the πN and K N channels, because only for these
channels partial wave phase shifts are available.

With the amplitudes properly renormalized, we determined the LECs by fitting
to the partial wave phase shifts from the analysis of WI08 [13] for πN . And corre-
spondingly, the phase-shift analysis of the SP92 solution [14] are used for K N . The
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Table 107.1 Independent (combinations of) LECs contributing to πN and K N scattering. Note
that in the fitting process, we have neglected the contributions from tree level at O(p3) in the K N
channels

πN FIT K NI=0 FIT K NI=1 FIT

b1 + b2 +
b3 + 2b4

−7.64(6) b3 − b4 −0.767(1) b1 + b2 +
b4

−0.419(2) [GeV−1]

b5 + b6 +
b7 + b8

1.42(2) b6 − b8 0.126(1) 2b5 +
2b7 + b8

0.429(2) [GeV−2]

c1 + c2 1.34(1) 4c1 + c3 0.604(3) 4c2 + c3 0.616(1) [GeV−1]
2b0 + bD +
bF

−1.36(6) b0 − bF 0.093(1) b0 + bD −0.090(3) [GeV−1]

d2 0.61(2) d1 + d2 +
d3

0 d1 − d2 −
d3

0 [GeV−4]

d4 3.25(6) d4 + d5 +
d6

0 d4 − d5 +
d6

0 [GeV−2]

d8 + d10 1.45(3) d7 − d8 +
d10

0 d7 + d8 +
d10

0 [GeV−3]

d49 −0.32(12) d48 + d49 +
d50

0 d48 + d49 −
d50

0 [GeV−2]

χ2/d.o. f 0.154 χ2/d.o. f 0.971 χ2/d.o. f 0.471

fitting results are shown in Figs. 107.1 and 107.2. The corresponding fit results are
compared with the empirical data in both figures. For the sake of comparison, we
show as well the O(p3) results of the SU(3) heavy baryon(HB) [16] and the SU(2)
EOMS BChPT [15].

Clearly, the EOMS results can describe the phase shifts quite well. While the data
are onlyfitted up to

√
s = 1.13GeV, the phase shifts are described verywell even up to√

s = 1.16GeV. Besides, our calculation in SU(3) shows a compatible description
compared to that in SU(2), which implies that the inclusion of strangeness has small
effects on the fitting results. For the K N scattering, a quite good description of the
phase shifts can already be achieved at NLO. We found that in the EOMS ChPT,
the phase shifts alone cannot uniquely fix the eight LECs up to O(p3). For the sake
of comparison, we show as well the HB results of [16]. It is clear that the EOMS
descriptions are slightly better that the HB results when extended to higher energy
region.

107.4 Summary

In this talk, we present our results on meson-baryon scattering up to next-to-next-
to-leading order in the framework of covariant ChPT with the EOMS scheme. We
determined the LECs by fitting to the partial wave phase shifts fromGWUgroup.We
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Fig. 107.1 Pion-nucleon phase shifts adapted from [17]. The blue lines denote our results and the
dots theWI08 solutions. For the sake of comparison, we show as well the EOMS SU(2) results [15]
(green dot-dashed lines) and the HB SU(3) results [16] (red dashed lines)

Fig. 107.2 I = 0 (upper panel) and I = 1 (lower panel) K N phase shifts adapted from [17]. The
blue lines represent our results while the red dashed lines denote those of the HB ChPT [16]. The
dots donate the WI08 solutions

achieved a pretty good description forπN and K N channels simulatively. Compared
with those in the HB scheme, our results in πN channels are much better, while in
K N channels, the improvements are not significant as in πN cases.
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Chapter 108
Electromagnetic Transitions of Doubly
Charmed Baryons Within Light-Cone
Sum Rules

Er-Liang Cui, Hua-Xing Chen, Wei Chen, Xiang Liu and Shi-Lin Zhu

Abstract We study the electromagnetic transition of the Ξ ∗++
cc into Ξ++

cc γ by
employing the method of light-cone sum rules. The radiative decay width of the
Ξ ∗++

cc is estimated to be 13.7+17.7
−7.9 keV, which is large enough for it to be observed

in the Ξ++
cc γ channel. We propose to continually search for it in future LHCb and

BelleII experiments.

108.1 Introduction

The doubly heavy baryons, which provide an ideal platform to study the heavy quark
symmetry, have been investigated in various experimental and theoretical studies dur-
ing the past three decades [1]. Very recently, the doubly charmed baryonΞ++

cc (3621)
was observed by the LHCb collaboration in the mass spectrum of Λ+

c K
−π+π+ [2].

The discovery of theΞ++
cc (3621) quickly attractedmuch attention from the hadron

physics community, and lots of theoretical methods were employed to study it [3].
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Since the LHCb experiment preferentially retains longer-lived Ξ++
cc candidates and

favors the J P = 1/2+ [2], it is natural to continually search for the doubly charmed
baryon Ξ ∗++

cc of J P = 3/2+, which is possible to be observed in its radiative decay
Ξ ∗++

cc → Ξ++
cc γ. This has been investigated in various phenomenologicalmodels [4–

9].We have also used themethod of light-cone sum rules to study the electromagnetic
transition of theΞ ∗++

cc intoΞ++
cc γ [10]. In this paper we briefly introduce our method

and results.

108.2 Light-Cone Sum Rules and Numerical Analyses

In this section we use the currents JΞ++
cc

and JΞ∗++
cc ,α to perform the light-cone sum

rules. The two currents have been given in [11]. To use thismethodwefirst investigate
the following three-point correlation function:

Πα(p, k, q, ε) =
∫

d4xe−ik·x 〈0|JΞ∗++
cc ,α(0) J̄Ξ++

cc
(x)|γ(q, ε)〉 , (108.1)

where p(= k + q), k, q are the momenta of theΞ ∗++
cc ,Ξ++

cc , and γ, respectively; ε is
the polarization vector of the γ. Then we assume that the currents JΞ++

cc
and JΞ∗++

cc ,α

respectively couple to the two physical states through

〈0|JΞ++
cc

|Ξ++
cc 〉 = fΞ++

cc
uΞ++

cc
(p) , (108.2)

〈0|JΞ∗++
cc ,α|Ξ ∗++

cc 〉 = fΞ∗++
cc

uΞ∗++
cc ,α(p) . (108.3)

At the hadronic level, the amplitude of the Ξ ∗++
cc → Ξ++

cc γ is written as

MΞ∗++
cc →Ξ++

cc γ = e g εμνρσ uΞ++
cc

uΞ∗++
cc ,ρ pμqνε

∗
σ , (108.4)

where g is the coupling constant and e is the charge of the proton. By inserting
(108.2–108.4) into (108.1), we find Πα(p, k, q, ε) has the following pole terms:

Πα(p, k, q, ε) ≈ 2e

3
g εανρσ pνqρεσ × fΞ∗++

cc
fΞ++

cc

(p2 − M̃2)2
× (

p2 + M̃2
) + · · · ,

(108.5)

where we assume that p ≈ k � q, MΞ++
cc

≈ MΞ∗++
cc

, and M̃ ≡ (MΞ++
cc

+ MΞ∗++
cc

)/2
to obtain it. Note that we have kept only the double-pole term but omitted the single-
pole terms, which gives some but not large uncertainties.

At the quark-gluon level, we calculate Πα(p, k, q, ε) using the method of oper-
ator product expansion (OPE). The detailed results are shown in the [10].

Inserting all values of parameters [10] into the sum rules we obtained that the
coupling constant gΞ∗++

cc →Ξ++
cc γ is evaluated to be 0.30+0.16

−0.11 GeV
−2. Finally, we use

the following decay formula
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Table 108.1 Electromagnetic transitions of doubly heavy baryons, in units of keV

Process Our
results

[4] [5] [6] [7] [8] [9]

Ξ∗++
cc →

Ξ++
cc γ

13.7 +17.7
− 7.9 1.43 4.35 7.21 16.7 22.0 23.46 ±

3.33

Ξ∗+
cc →

Ξ+
ccγ

8.1 +11.1
− 4.9 2.08 3.96 3.90 14.6 9.57 28.79 ±

2.51

Ω∗+
cc →

Ω+
ccγ

5.4 +6.9
−3.1 0.95 1.35 0.82 6.93 9.45 2.11 ±

0.11

Ξ∗0
bb →

Ξ0
bbγ

0.11 +0.13
−0.07 – – 0.98 1.19 – 0.31 ±

0.06

Ξ∗−
bb →

Ξ−
bbγ

0.28 +0.24
−0.13 – – 0.21 0.24 – 0.0587 ±

0.0142

Ω∗−
bb →

Ω−
bbγ

0.08 +0.05
−0.04 – – 0.04 0.08 – 0.0226 ±

0.0045

ΓΞ∗++
cc →Ξ++

cc γ = | q |
8πM2

Ξ∗++
cc

× |1
4

∑
spin

MΞ∗++
cc →Ξ++

cc γ |2 , (108.6)

to obtain ΓΞ∗++
cc →Ξ++

cc γ = 13.7+17.7
− 7.9 keV, where |q| is the momentum of the photon

in the rest frame of the Ξ ∗++
cc . We also apply the same approach to investigate

the radiative decay processes includingΞ ∗+
cc → Ξ+

ccγ,Ω
∗+
cc → Ω+

ccγ,Ξ
∗0
bb → Ξ 0

bbγ,
Ξ ∗−

bb → Ξ−
bbγ, and Ω∗−

bb → Ω−
bbγ. All the results are listed in Table108.1.

108.3 Summary and Discussions

In this paper we have applied the method of light-cone sum rules to study the electro-
magnetic transition of the Ξ ∗++

cc into Ξ++
cc γ, whose coupling constant is evaluated

to be 0.30+0.16
−0.11 GeV

−2 and decay width to be 13.7+17.7
−7.9 keV. We have also investi-

gated electromagnetic transitions of some other doubly heavy baryons, whose decay
widths are all summarized in Table108.1 together with those obtained in [4–9] for
comparison. We propose to continually search for the state Ξ ∗++

cc of J P = 3/2+ in
the future LHCb and BelleII experiments.
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Chapter 109
Pion Effects in N and Δ Masses
and Strong Form Factors

Willibald Plessas and Regina A. Schmidt

Abstract Baryon resonances cannot be described realistically along {QQQ} con-
figurations only. Here we present results for N and Δ masses with explicit pion con-
tributions. We adhere to a coupled-channels formalism and construct a relativistic
constituent-quark model coupling a (bare) {QQQ} state to an additional {QQQπ}
channel. This approach allows to consistently derive strong form factors for the
πNN , πNΔ, πΔN , and πΔΔ interaction vertices and to calculate at the same time
one-pion effects on the N and Δ masses.

109.1 Motivation

Baryonground states can to a large extent be described reasonablywell along {QQQ}
configurations. This is especially true for the nucleons with regard to their mass as
well as their electromagnetic, weak, hadronic, and gravitational form factors [1]. The
same concept based on a relativistic constituent-quark model (RCQM) works also
for the baryons with flavors u, d, and s [2–5], and it can even be extended to the
heavy-flavor baryons containing charm and beauty [6–8].

However, as far as resonances are concerned, one obviously meets shortcomings
with regard to the hadronic decay properties of baryons. In general, the decay widths
turn out to be too small as compared to phenomenological values, specifically for
the single-π, η, and K decay modes [9–12]. The reasons are suspected to lie in
an inadequate description of the resonances as excited bound states (poles on the
negative real axis in the complex energy plane, thus with real eigenvalues) rather
than as proper resonant states (poles in the complex energy plane). The latter are
evidently connected with mesonic channels on top of the {QQQ} configurations.

In [13] we have already investigated the effects of one-π loops on the N and
Δ masses by following a coupled-channels (CC) approach on the macroscopic
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(hadronic) level. In summary it has there been found that the corresponding pio-
nic effects

1. reduce the mass of a bare ˜N by about 100 MeV to the realistic N mass of 939
MeV and

2. make the Δ mass complex with a similar reduction of its real part (resonance
energy) and produce a finite π-decay width Γ , where the value of the latter
remains still too small (by about 50%) in comparison to experiment.

The detailed results varied according to themodels employed for the πNN and πNΔ

interaction vertices, which were then taken from the literature.
Here we report first results from an analogous CC study on the microscopic

quark level. It will allow to generate consistent results for effects due to explicit π
contributions both for the interaction vertices and the baryon masses.

109.2 Coupled-Channels Constituent Quark Model

We start out by constructing a relativistic constituent-quark model based on a CC
mass operator of the form

⎛

⎝

M
˜QQQ K

π ˜QQQ

K †

π ˜QQQ
M

˜QQQ+π

⎞

⎠

(∣

∣ψQQQ
〉

∣

∣ψQQQ+π

〉

)

= m

(∣

∣ψQQQ
〉

∣

∣ψQQQ+π

〉

)

. (109.1)

It describes a bare cluster ˜QQQ of three confined quarks that is coupled to a channel
containing an additionalπ. It gives access to aπ-dressed baryon QQQ and, of course,
the QQQ+π scattering channel. The coupling interaction K

π ˜QQQ is furnished by a
π-Q potential derived from a pseudovector-type Lagrangian density as in [14]

LPV
πQQ(x) = − fπQQ

mπ
ψ̄(x)γμγ5τψ(x) · ∂μφ(x) (109.2)

connecting the Q fieldsψwith the fundamentalπ fieldsφ. After a Feshbach reduction
eliminating the QQQ+π channel one arrives at the eigenvalue equation for a dressed
baryon state

[M
˜QQQ + K

π ˜QQQ(m − M
˜QQQ+π

)−1K †

π ˜QQQ
︸ ︷︷ ︸

Vopt

]|ψQQQ〉 = m|ψQQQ〉 , (109.3)

where the eigenvalue m occurring both on the right- and left-hand sides is complex-

valued for decaying resonances. For a ˜QQQ cluster representing an arbitrary bare
baryon ˜B the corresponding optical potential in (109.3) can pictorially be viewed as
in Fig. 109.1.
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Fig. 109.1 Optical-potential terms for the π-Q interaction in (109.3)

Fig. 109.2 π˜N ˜N , π˜N ˜Δ, π ˜Δ˜N , and π ˜Δ ˜Δ interaction vertices

Further details on the construction of the CC relativistic constituent-quark model,
in particular the parameter ingredients, and on the method to solve the eigenvalue
equation (109.3) can be found in [15] and will be published in a forthcoming paper.

The big advantage of the presentmicroscopicCC theory is that it allows to produce
consistently the vertex form factors and simultaneously predicts the pionic effects
in the mass eigenvalues and eigenstates of a dressed baryon. For the vertex form
factors and corresponding coupling strengths we only need to equate themicroscopic
optical-potential term in (109.3) with the analogous one on the macroscopic level as
in [13]:

∫

K
π ˜QQQ(m − M

˜QQQ+π
)−1K †

π ˜QQQ

∼
∫

Fπ˜B˜B(k2π)Kπ˜B˜B (m − M
˜B+π)−1K †

π˜B˜B
F∗

π˜B˜B
(k2π) . (109.4)

In this way we obtain the various form factors Fπ˜N ˜N , Fπ˜N ˜Δ, Fπ ˜Δ˜N , and Fπ ˜Δ ˜Δ at the
interaction vertices shown in Fig. 109.2.

Due to limitations in space, we show here only the resulting π˜N ˜N and π˜N ˜Δ

form factors, where we can also compare with phenomenological meson-baryon
models and a previous microscopic prediction from a RCQM. As can be seen from
Fig. 109.3 the momentum dependences of the form factors produced by the CC
relativistic constituent-quarkmodel are very similar to the ones of the RCQM relying
on {QQQ} degrees of freedom only [14]. The same is true for the resulting π˜N ˜N
coupling constant, whereas the π˜N ˜Δ coupling constant differs to some extent (see
Tables 109.1 and 109.2). For π˜N ˜N both microscopic predictions, the one of the
RCQM and the one of the CC relativistic constituent-quark model, are also very
close to the meson-nucleon/baryon models of SL [16] and KNLS [18], whereas they
differ from the two versions of PR [17]. For π˜N ˜Δ the results fall more apart both
with regard to the momentum dependences of the form factors and the sizes of the
coupling strengths.

The pionic effects on the N mass turn out biggest for the CC relativistic
constituent-quark model followed by the RCQM of [14] and the phenomenolog-
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Fig. 109.3 Strong form factors for the π˜N ˜N and π˜N ˜Δ vertices as predicted by the present CC
relativistic constituent quark model in comparison to a previous RCQM [14] and phenomenological
meson-baryon models by Sato and Lee (SL) [16], by Polinder and Rijken (PR Gauss as well as PR
Multipole) [17] and by Kamano, Nakamura, Lee, and Sato (KNLS) [18]
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Table 109.1 Predictions of the present CC relativistic constituent-quark model for the π˜N ˜N cou-
pling constant and the pionic effects in the N mass in comparison to a previous RCQM [14],
and meson-baryon phenomenological models by SL [16], PR [17], and KNLS [18]. For further
explanations see the text

CC RCQM SL KNLS PR Gauss PR
multipole

f 2
π˜N ˜N

/4π 0.071 0.0691 0.08 0.08 0.013 0.013

mN 939 939 939 939 939 939

m
˜N 1096 1067 1031 1037 1025 1051

mN − m
˜N −157 −128 −92 −98 −86 −112

Table 109.2 Same as in Table109.1 but for the π˜N ˜Δ coupling constant and the Δ mass

CC RCQM SL KNLS PR Gauss PR
multipole

f 2
π˜N ˜Δ

/4π 0.239 0.188 0.334 0.126 0.167 0.167

Re[mΔ] 1232 1232 1232 1232 1232 1232

m
˜Δ 1327 1309 1288 1261 1329 1347

Re[mΔ] − m
˜Δ −95 −77 −56 −29 −96 −115

2 Im[mΔ] = Γ 67 47 64 27 52 52

Γexp(Δ → πN ) ∼ 117

ical meson-baryon models. The effect on the real part of the Δ mass (resonance
energy) produced by the CC relativistic constituent-quark model is quite similar to
the meson-baryon model of PR. However, the effect on the imaginary part of the
Δ mass, i.e. the π-decay width is largest, now comparable to the case of SL. Still
it remains much too small as compared to the experimental value, even though we
have in the intermediate state already assumed a realistic N with dressed mass m =
939 MeV.

We note that contrary to the N case the coupling constant of the CC relativistic
constituent-quark model at the π˜N ˜Δ vertex is relatively smaller than in the case of
SL. Also we must consider the coupling constants produced so far as bare coupling
constants. In the literature it is claimed that the dressed coupling constants would be
bigger by a factor of ∼1.3 [16]. If we enlarge the π˜N ˜Δ coupling constant of the CC
relativistic constituent-quark model by such an amount, the π-decay width of the Δ

is enhanced to 118 MeV, now in good agreement with experiment. Further studies
are necessary to explore this issue.

So far we have succeeded to set up a microscopic CC framework that is able to
describe the N and the Δ with explicit pionic contributions. Here we have reported
the results due to one-π loops. We have already checked the influences of higher
pionic contributions and found only negligible effects. These findings appear to be
reasonable for theΔ, which decays to almost 100% toπN . In case of other N resonant
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states it will presumably be necessary to include further mesonic channels, such as
ρN , ωN and so forth.
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Chapter 110
Poincaré Covariant Light-Front Spectral
Function and Transverse Momentum
Distributions

Emanuele Pace, Giovanni Salmè and Sergio Scopetta

Abstract In valence approximation the fermion correlator is simply related to the
light-front spectral function. Then the leading twist time-reversal even transverse
momentum distributions can be explicitly obtained from the light-front wave func-
tion of the system and the twist-three distributions are linear combinations of the
transverse distributions at leading twist.

110.1 Introduction

Transverse momentum distributions (TMDs) are a powerful tool to study hadron
structure [1]. Light-cone models have been used to study the three-dimensional
hadron structure, to disentangle contributions from different angular momentum
components and to investigate possible relations among the TMDs, with the aim to
offer a guide for the extraction of TMDs from experimental data [2, 3].

In this paper a Poincaré covariant, light-front (LF) spin-dependent spectral func-
tion is considered to investigate hadrons within the LF Hamiltonian dynamics in
valence approximation. We present both the most general expression for the spin-
dependent momentum distribution in terms of six scalar functions and a linear rela-
tion between the LF spectral function and the fermion correlator. This link implies
approximate relations between the six time-reversal even (T-even) TMDs, as well
relations between the leading twist and the twist-three TMDs [4].

E. Pace (B)
Università di Roma “Tor Vergata” and INFN, Sezione di Roma Tor Vergata,
Via Della Ricerca Scientifica 1, 00133 Rome, Italy
e-mail: pace@roma2.infn.it

G. Salmè
INFN, Sezione di Roma, P.le A. Moro 2, 00185 Rome, Italy

S. Scopetta
Università di Perugia and INFN, Sezione di Perugia, Via Alessandro Pascoli, 06123
Perugia, Italy

© Springer Nature Switzerland AG 2020
N. A. Orr et al. (eds.), Recent Progress in Few-Body Physics,
Springer Proceedings in Physics 238,
https://doi.org/10.1007/978-3-030-32357-8_110

691

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32357-8_110&domain=pdf
mailto:pace@roma2.infn.it
https://doi.org/10.1007/978-3-030-32357-8_110


692 E. Pace et al.

The LF spectral function, Pτ
M,σ ′σ (κ̃, ε, S), was defined in [5], starting from the

LF wave function for a three-body system with spin 1/2, third component M and
polarization vector S. The energy ε is the energy of a fully interacting two-particle
[23] subsystem and the variable κ̃ = (κ+, κ⊥) is the LF momentum for particle 1 in
the intrinsic reference frame of the cluster [1,(23)].

The spectral function is defined through the overlaps between the LF wave func-
tion of the system and the tensor product of a plane wave of momentum κ̃ and the
state which describes the intrinsic motion of the two-particle spectator subsystem.
The mentioned tensor product allows one to take care of macrocausality and to
introduce a new effect of binding in the spectral function. The LF spectral function,
through the Bakamjian-Thomas construction of the Poincaré generators [6], allows
one to embed the successful phenomenology for few-nucleon systems in a Poincaré
covariant framework and to satisfy at the same time normalization and momentum
sum rule. As a first test of our approach the EMC effect for 3He is being evaluated.
Preliminary results show encouraging improvements with respect to a convolution
approach with a momentum distribution [7].

110.2 Light-Front Spin-Dependent Spectral Function and
Transverse Momentum Distributions

110.2.1 Spin-Dependent Momentum Distribution

Integration of the LF spectral function on the intrinsic energy ε of the (A − 1) system,
gives the LF spin-dependent momentum distribution [5]

nτ
σ ′σ (x,k⊥;M,S) =

∫∑
dε

1

2 (2π)3

1

1 − x

ES

κ+ Pτ
M,σ ′σ (κ̃, ε, S) (110.1)

where κ+ = x M0[1, (23)], with M0[1, (23)] the free mass of the cluster [1,(23)],
and ES = √

4m2 + 4mε + |κ |2.Within the LF approach, themomentum distribution
can be expressed through the three available independent vectors : (i) the polarization
vector S; (ii) the unit vector n̂ (identified with ẑ) which defines the ± LF compo-
nents, v± = v0 ± n̂ · v, and (iii) the transverse (with respect to the z axis) momentum
component k⊥ = p⊥ = κ⊥ of the momentum p

nτ
σ ′σ (x,k⊥;M,S) = 1

2

{
b0,M + σ · fM(x,k⊥;S)

}
σ ′σ (110.2)

where fM(x,k⊥;S) is a pseudovector

fM(x,k⊥;S) = S b1,M + k̂⊥ (S · k̂⊥) b2,M + k̂⊥ (S · ẑ) b3,M
+ ẑ (S · k̂⊥) b4,M + ẑ (S · ẑ) b5,M. (110.3)
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The functions bi,M(x,k⊥) (i = 0, 1, ..., 5) and then nτ
σ ′σ (x,k⊥;M,S) can be

obtained from the LF wave function of the system in momentum space. It results
that the spin-dependent momentum distribution is an integral on the relative intrinsic
momentum k23 of the interacting spectator pair [4]

nτ
σσ ′(x,k⊥;M,S) = 2(−1)M+1/2

(1 − x)

∫
dk23

∑
L

Zτ
σσ ′(x,p⊥, k23, L ,S) (110.4)

where L is the orbital angular momentum of the contributions to the one-body off-
diagonal density matrix (only the values L = 0 or L = 2 are allowed).

110.2.2 Fermion Correlator and LF Spectral Function

The fermion correlator in terms of the LF coordinates is [1]

Φτ
α,β(p, P, S) = 1

2

∫
dξ−dξ+dξT eipξ

〈
P, S, A|ψ̄τ

β (0)ψτ
α (ξ)|A, S, P

〉
(110.5)

where |A, S, P〉 is the A-particle state and ψτ
α (ξ) the particle field (e.g. a nucleon of

isospin τ in a nucleus, or a quark in a nucleon). A linear relation exists between the
correlator in valence approximation, Φτp, and the spectral function [4]

Φ
τp
α,β(p, P, S) = D

2p+
∑
σσ ′

{
uα(p̃, σ ′) Pτ

M,σ ′σ (κ̃, ε, S) ūβ(p̃, σ )
}
, (110.6)

where D = [(P+)2 π ES]/{p+ mM0[1, (23)]}. Then, traces ofΦ p can be expressed
by traces of the spectral function:

Tr(γ +Φp) = D Tr
[
P̂M(κ̃, ε, S)

]
(110.7)

Tr(γ +γ5 Φp) = D Tr
[
σz P̂M(κ̃, ε, S)

]
(110.8)

Tr(/p⊥ γ + γ5 Φp) = D Tr
[
p⊥ · σ P̂M(κ̃, ε, S)

]
(110.9)

The proper integration on p− of (110.7–110.9) and taking p+ = x P+ gives relations
between the TMDs at leading twist and the functions bi,M in (110.2, 110.3), viz

f (x, |p⊥|2) = b0 Δ f (x, |p⊥|2) = b1,M + b5,M (110.10)

g1T (x, |p⊥|2) = M

|p⊥| b4,M Δ′
T f (x, |p⊥|2) = 1

2

{
2 b1,M + b2,M

}
(110.11)

h⊥
1L (x, |p⊥|2) = M

|p⊥| b3,M h⊥
1T (x, |p⊥|2) = M2

|p⊥|2 b2,M (110.12)
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Linear equations between transverse parton distributions were discussed in [2]

Δ f = Δ′
T f + |p⊥|2

2M2
h⊥
1T g1T = −h⊥

1L (110.13)

From the explicit expressions of the functions bi,M in terms of the wave function
of the system, one finds that these equalities hold exactly in valence approximation
when the contribution to the transverse distributions from the angular momentum L
= 2 is absent. This implies a vanishing value of the orbital angular momentum of the
particle in the system wave function [4].

On the contrary the quadratic relation presented in [2] does not hold in our
approach, even if the contribution from the angular momentum L = 2 is absent,
because of the presence of

∫
dk23 in the expressions (110.4) of the transversemomen-

tum distributions.
By evaluating proper traces of both the correlator and the spectral function, one

can also obtain the twist-three TMDs in terms of the functions bi,M and relate twist-
three and twist-two TMDs. In our approximation the same linear relations found in
[8] hold, once the gluon contributions are disregarded. Obviously the T-odd TMDs
vanish in valence approximation [4].

110.3 Conclusions and Perspectives

The LF spin-dependent momentum distribution for a spin 1/2 system composed of
three fermions (as 3He or a nucleon in valence approximation) can be expressed
through six functions bi,M, that can be written in terms of the LF wave function
of the system in momentum space. A simple relation exists between the fermion
correlator in valence approximation and the LF spectral function. Then it follows
that the TMDs are combinations of the functions bi,M.

As a result we found that the linear relations proposed between the T-even
twist-two TMDs hold in valence approximation whenever the contribution from the
L = 2 orbital angular momentum term in the one-body off-diagonal density matrix is
absent, while the quadratic relation does not hold even in this case. Furthermore, in
valence approximation the proper relations between the twist-three and the twist-two
TMDs hold, once the gluon contributions are disregarded.

In the close future we will evaluate the transverse momentum distributions for
a nucleon in 3He, that could be extracted from measurements of appropriate spin
asymmetries in 3−→He(−→e , e′ p) experiments at high momentum transfer.
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Chapter 111
Description of the Zc Exotics States
in a Quark Model Coupled Channel
Calculation

Francisco Fernández, Pablo G. Ortega, Jorge Segovia and David R. Entem

Abstract The nature of the Zc(3900)± and Zc(4020)± is analyzed in a coupled-
channels calculation, including D∗ D̄(∗) + h.c., πJ/ψ and ρηc channels, performed
in the framework of a constituent quark model and the Resonating Group Method.
The interactions among the different channels are dominated by the non-diagonal
terms, which indicates the Zc(3900)± and the Zc(4020)± are unusual structures. The
study of the analytic structure of the S-matrix on the complex energy plane leads
us to conclude that the behaviour of the line shapes in the πJ/ψ and the D∗ D̄(∗)

invariant mass distributions is due to the presence of virtual states.

111.1 Introduction

The discovery in 2011 by the Belle Collaboration in the bottom sector of the
Zb(10610) and Zb(10650) charged structures in theΥ (5S) → π+π−Υ (nS) reaction
showed the existence of structures with exotic nature wich cannot be described by
quark-antiquark pairs. The later discovery in 2013 by the BESIII and Belle Collabo-
ration of the charged structure Zc(3900) in the π+π− J/ψ invariant mass spectrum of
the e+e− → π+π− J/ψ process at

√
s = 4.26 GeV extended this kind of structures

to the charm sector. Soon after all these experimental activities, the BESIII Collabo-
ration reported the discovery of another charged state, the Zc(4020) resonance, in the
e+e− → π+π−hc channel with a mass of M = (4022.9 ± 0.8 ± 2.7) MeV/c2 and
a width of Γ = (7.9 ± 2.7 ± 2.6) MeV. The corresponding experimental references
for all these states can be found in [4].
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In the case of the Zc(3900) and Zc(4020), which are the objects of this study, the
closeness of their masses to DD̄∗ and D∗ D̄∗ thresholds, respectively suggest that
D(∗) D̄∗ components are significant in their wave functions. However, the fact that the
Zc structures have I = 1 makes the D(∗) D̄(∗) interaction too weak, because in these
channels the one-pion-interaction is weaker than in the I = 0 sector. This leaves the
coupled channel calculations as the most promising option to produce such structure.

This hypothesis has been confirmed by the work of Ikeda et al. [5], which per-
formed a lattice coupled-channels calculation taking into account the πJ/ψ, ρηc
and DD̄∗ channels and found that the interactions among them are dominated by
off-diagonal couplings which are not strong enough to produce a bound state or a
resonance, which may indicate that the Zc(3900)± can be explained as a threshold
cusp. However, there are technicalities involving LQCD computations, such as large
pion masses, small volumes and a set of interpolators not large enough for having
overlap with the physical state, which still prevent to make a definitive statement.

111.2 Theory

In this work we perform a coupled-channels calculation for the I G(J PC) = 1+(1+−)

sector, including the closest thresholds to the experimental masses of the Zc(3900)
and Zc(4020) hadrons, that is: πJ/ψ (3234.19 MeV/c2), ρηc (3755.79 MeV/c2),
DD̄∗ (3875.85 MeV/c2), D∗ D̄∗ (4017.24 MeV/c2), where the threshold masses are
shown in parenthesis. The system is described in the framework of a constituent quark
model successfully employed to explain the meson and baryon phenomenology from
the light to the heavy quark sector. The interested reader is referred to [8–11] for
detailed reviews about the naive quark model in which this work is based. The model
parameters and explicit expressions for the potentials can be also found therein.

The aforementioned CQM specifies the microscopic interaction among con-
stituent quarks. In order to describe the interaction at the meson level we employ the
Resonating GroupMethod, wheremesons are considered as quark-antiquark clusters
and an effective cluster-cluster interaction emerges from the underlying qq̄ dynam-
ics. The solution of the coupled-channels RGMequations is performed deriving from
a set of coupled Lippmann-Schwinger equations of the form

T α′
α (E; p′, p) = V α′

α (p′, p) + ∑
α′′

∫
dp′′ p′′2 V α′

α′′ (p′, p′′)
× 1

E−Eα′′ (p′′
)
T α′′

α (E; p′′, p) , (111.1)

whereα labels the set of quantum numbers needed to uniquely define a certain partial
wave, V α′

α (p′, p) is the projected potential that contains the direct and rearrangement
potentials, and Eα′′(p′′) is the energy corresponding to a momentum p′′. Once the
T -matrix is calculated, we determine the on-shell part which is directly related to
the S-matrix. Details of the procedure can be found in [6].
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111.3 Results

Our results for the invariant mass distribution of the DD̄∗, πJ/ψ and D∗ D̄∗channels
are shown in, respectively, the left and right panels of Fig. 111.1 and in left panel of
Fig. 111.2. Note that all channels mentioned in the above paragraph are included in
the calculation of the theoretical line shapes. To translate the decay rates into events,
we use a normalization factor NAB fitted for each channel. The shaded area around
the theoretical curve shows the statistical 68%-confident level (CL) of the fit.

The contribution of the different channels to the line shape are shown in the right
panel Fig. 111.2. When the DD̄∗ scattering channel is considered alone, a small
enhancement, basically due to the pion tensor interaction between the S and D
waves, appears but the generated peak is too wide. The inclusion of the ρηc channel
narrows that peak, making it more compatible with the experimental situation. On the
other hand, adding to the DD̄∗ channel the D∗ D̄∗ one generates a second structure
at its threshold opening associated to the Zc(4020) peak. One can see that the second

Fig. 111.1 Line shapes for DD̄∗ (left panel) and πJ/ψ (right panel) at
√
s = 4.26 GeV. Experi-

mental data are from [2, 3]. The theoretical line shapes have been convoluted with the experimental
resolution. The line-shape’s error is shown as a shadowed area

Fig. 111.2 Left panel: Line shapes for D∗ D̄∗ at
√
s = 4.26 GeV. Experimental data are from [1].

The theoretical line shapes have been convoluted with the experimental resolution. The line-shape’s
error is shown as a shadowed area. Right panel: Line shapes for different coupled-channels calcula-
tions. Only DD̄∗ channel (red, long-dashed line), DD̄∗ + D∗ D̄∗ (blue, dashed line), ρηc + DD̄∗
(green, dot-dashed line), ρηc + DD̄∗ + D∗ D̄∗ (orange, dotted line) and πJ/ψ + ρηc + DD̄∗ +
D∗ D̄∗ (black, solid line)
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enhancement is much higher than the experimental data if we only include D(∗) D̄∗
channels. The line shapemoves closer to the experimental situation when the ρηc and
πJ/ψ channels are considered in the calculation, showing that they play an important
role in building the observed enhancements.

To deepen into the nature of the Zc(3900) and the Zc(4020), we have examined
the analytic structure on the complex energy plane of the S-matrix for the differ-
ent coupled-channels calculations. For the Zc(3900), one can see that even for a
one-channel DD̄∗ calculation the S-matrix shows a pole (3871.37 − 2.17i) below
threshold in the second Riemann sheet. When the ρηc is included the pole remains in
the second Riemann sheet but moves to the real axis (3871.74 − 0.00i) correspond-
ing with a virtual state. The inclusion of the rest of the channels does not change
drastically the pole position. However, it is necessary to reproduce the experimental
line shape. The situation is similar in the case of the Zc(4020), which is interpreted
as a virtual state located below the D∗ D̄∗ threshold. A extended version of the work
can be found in [7].
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Chapter 112
Electromagnetic Properties of Singly
Heavy Baryons

June-Young Kim and Hyun-Chul Kim

Abstract In this presentation, we summarize selectively recent results of the elec-
tromagnetic form factors of singly heavy baryonswith spin 1/2 and related quantities,
which were derived within a framework of the self-consistent chiral quark-soliton
model. The results are compared with those from the lattice QCD and their physical
implications are discussed.

112.1 Introduction

The chiral quark-soliton model (χQSM) was developed as a pion mean-field
approach to describe the structures of the nucleon [1, 2]. The model was extended
to describe also hyperons [3–5]. Recently, the model was successfully applied to the
description of singly heavy baryons [6–10] in the limit of the infinitely heavy quark
mass (mQ → ∞). In this presentation, we summarize selectively a recent work on
the electromagnetic form factors of singly heavy baryons with spin 1/2 [11] and
compare the results with those from a lattice QCD [12].
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112.2 Results and Discussion

In Fig. 112.1, we show the results of the electric form factors of the charmed heavy
baryons Σ++

c and Ω0
c , comparing them with those from the lattice QCD [12]. The

present results seem to fall off faster than those from the lattice QCD. This can
be easily understood: When the value of the pion mass employed by the lattice
QCD calculation is larger than the experimental one, the nucleon EM form factors
decrease less slowly than the experimental data. This tendency can be also found in
the magnetic form factors of the heavy baryons as drawn in Fig. 112.2.

In Fig. 112.1, we depict the light-quark contributions of the valence and sea parts
to the electric form factors separately. In the present pion mean-field approach and
in the limit of mQ → ∞, the heavy quark can be considered as a point-like particle,
so that it plays only a part in making the concerned baryon charge complete. Note
that the heavy-quark contribution to the magnetic form factors also vanishes in the
limit of mQ → ∞. So, the light quarks govern all dynamics in a heavy baryon.

Fig. 112.1 Decomposition of the valence and sea contributions of the electric form factors for the
charmed baryons Σ++

c and Ω0
c , in the left panel, and the right panel, respectively. The results are

compared with those from the lattice QCD

Fig. 112.2 Decomposition of the valence and sea contributions of the magnetic form factors for
the charmed baryons Σ++

c and Ω0
c , in the left panel, and the right panel, respectively. The results

are compared with those from the lattice QCD
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Table 112.1 Dipole magnetic moments of the singly heavy baryons. The second and third columns
list the present results without and with the effects of SU(3) symmetry breaking, respectively

Bc μ
(ms=0)
Bc

μ
(ms=180)
Bc

[12, 13] [10]

Σ++
c 2.147 2.176 2.220(505) 2.15(10)

Σ+
c 0.537 0.445 – 0.46(3)

Σ0
c −1.073 −1.286 −1.073(269) −1.24(5)

Ξ+
c 0.537 0.603 0.315(141) 0.60(2)

Ξ0
c −1.073 −1.147 −0.599(71) −1.05(4)

Ω0
c −1.073 −1.014 −0.639(88) −0.85(5)

InTable112.1,we list the results of themagneticmoments of the charmedbaryons,
comparing them with those from the lattice QCD and from a “model-independent”
approach of the χQSM. We want to mention that the nuclear magneton in the model
is evaluated not by the experimental value of the nucleon mass but by the model
value, which is larger than the experimental one. Keeping this in mind, we find that
except for μΣ++ the present results turn out larger than those from the lattice QCD.
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Chapter 113
Performance of the FOREST/BLC
Spectrometer for Study of the η-nucleon
Interaction via the γd → pηn Reaction

S. Miyata, K. Aoki, H. Fujioka, Y. Honda, T. Hotta, T. Ishikawa, K. Itahashi,
H. Kanda, H. Kawai, K. Maeda, M. Miyabe, Y. Matsumura, N. Muramatsu,
H. Ohnishi, K. Ozawa, H. Shimizu, M. Tabata, A. O. Tokiyasu,
Y. Tsuchikawa, T. Ueda and C. Yoshida

Abstract The current experimental information about interactions between the η
meson and nucleon (N ) is not enough to understand the nature of the η meson in
a nucleus. We installed a new spectrometer and started an experiment to determine
the ηN scattering parameters at the Research Center for Electron Photon Science,
Tohoku University. We present the current status of the experiment.
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113.1 Introduction

The interaction between the η meson and nucleon (N ) is known to be attractive
due to the existence of the nucleon resonance N ∗(1535). However, there are large
uncertainties in the values of the scattering parameters especially the real part of the
scattering length (Re aηN =0.2–1.1 fm [1]), since it is difficult to realizeηn scattering.
An accurate determination of Re aηN is important to provide strong constraints on
the existence of an η-mesic nucleus [2], a bound state of an η meson in a nucleus.
The η bound nucleus has been searched for three decades. A new experiment is
prepared to measure Re aηN using a special kinematics. As for η photoproduction on
the deuteron, an η is likely to be produced almost at rest when the incident photon has
a certain momentum (∼ 0.94 GeV/c) and when protons are emitted in the forward
region (∼ 0◦). Then the final-state pη and pn interaction will be suppressed due to
the large pη and pn relative momentum. This kinematics is ideal for determination
of the low-energy ηn scattering parameters and the differential cross section as a
function of the ηn center-of-mass energy (relative ηn momentum) is sensitive to
Re aηN .

113.2 Experimental Setup

We perform the experiment using an energy-tagged bremsstrahlung-photon beam
(0.80–1.25 GeV) [3] from a 1.3 GeV electron synchrotron at the Research Center
for Electron Photon Science (ELPH), Tohoku University. The η mesons are detected
using the FOREST detector [4] via the η → γγ decay. The energy andmomentum of
the forward-going protons are measured with the BLC spectrometer consisting of a
bending magnet, two drift chambers (DCs), plastic-scintillator (PS) hodoscope, and
additional SF5 lead-glass (LG) counters for e/π separation [5]. The DCs are placed
4–4.5 m downstream from the target and rotated by 15.7◦ against the beam axis so
that protons with a specific momentum (∼ 0.94 GeV/c) enter the front face of each
DC at the incident angle θ of 0◦.

113.3 Forward Proton Measurements

In this section, the measurement of forward emitted protons are described. As shown
in Fig. 113.1, we placed DC1 and DC2 to determine the horizontal and vertical
positions. Because the charged particles emitted in the forward region go through
the bending magnet, a hit in the X direction can be interpreted as the momentum of
the particle. The wire number increases with the distance from the beamline. This
is because the magnet has a small coverage for forward emitted particles and the
particles enter the magnet with incident angles of approximately 0◦. For forward
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Fig. 113.1 Detector setup.
Protons emitted at the
forward angles (∼ 0◦) are
deflected by the magnetic
flux and are incident on the
front face of each DC. The
definition of the local
coordinates (X, Y , and Z ) in
the two DC system is
described

charged particles, there is a strong correlation between the hit wire number (DC1)
and θ, incident angle to DC1, as shown in Fig. 113.2a.We reconstruct incident angles
to the DCs using the hit positions in DC1 and DC2. The condition that both DC1
and DC2 have hits in the X direction limits the acceptance and the correlation is
in the range of 15–100. By selecting the events in the region between the lines in
Fig. 113.2a, we evaluate the arrival time at the PS hodoscope for charged particles.
Here, the arrival time is given by the difference between the hit time of a photon-
tagging counter set in the upstream and that of a PS hodoscope. Figure113.2b shows
the arrival time as a function of the hit X position in DC1. The zero point of the
arrival timing corresponds to the speed of light so that the particles with the speed
of light (mainly pions) and slower particles (protons) can be separated clearly.

113.4 Summary and Acknowledgements

In the ELPH facility, a new experiment for accurate determination of the ηN inter-
action is performed. In the experiment, the 1.3 GeV bremsstrahlung photon beam
is used. The experimental setup consists of the electromagnetic calorimeter used to
identify η production and spectrometer to detect forward charged particles. We can
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(b)(a)

Fig. 113.2 a Correlation between the incident angles and hit wire number (DC1). The lines (red)
represent the boundaries for selecting the events that contain the forward-emitted charged particles
from the target. b Correlation between the hit wire number (DC1) and the arrival timing. Protons
(right) can be distinguished from β = 1 particles (left)

separate slower hadrons from β = 1 particles in the forward region by the newly
installed spectrometer. The authors express their gratitude to the ELPH accelerator
staff. This work was supported in part by JSPS KAKENHI Grant Nos. 20684008,
24244022 and 26400287.
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Chapter 114
Strong Decays of pWave Heavy Mesons
in HHχPT

Jin-Yun Wu, Yong-Lu Liu, Jian-Rong Zhang, Chen Dong
and Ming-Qiu Huang

Abstract In this work, we studied the strong decays of the p wave heavy mesons
within the framework of heavy hadron chiral perturbation theory (HHχPT ). Up
to next-to-leading order in 1/Λχ, the chiral symmetry-breaking coupling con-
stants are extracted. The single-pion decay widths for D∗

s0(2317) and D
′
s1(2460)

are 9.2 ± 2.3KeV and 9.0 ± 2.1KeV, respectively. Meanwhile, the widths for their
beauty partners are also given under the heavy quark symmetry. The predicted widths
are consistent with the experimental measurements and comparable with other the-
oretical predictions.

114.1 Introduction

Themeasured masses and widths ofD∗
s0(2317) andD

′
s1(2460) citeexp1 do not match

the predictions from potential-based quark models citeGodfrey1991, unexpectedly,
i.e. they lie below the DK and D∗K thresholds respectively and their widths are
extremely narrow. Moreover, there is a big progress in 2015 on D∗±

0 by LHCb col-
laboration citeLHCb15X,LHCb15Y, and the gap between the masses of D∗±

0 and
D∗0

0 is greatly suppressed:

MD∗±
0

− MD∗0
0

∼ 90MeV(before 2015) →∼ 30MeV(after 2015) (114.1)
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This suppression will do a great favor to the determination of the chiral symmetry-
breaking coupling constants and finally the decay rates ofD∗

s0(2317) andD
′
s1(2460).

114.2 The Chiral Lagrangian

Considering heavy quark spin-flavor symmetry and light quark chiral symmetry, an
effective Lagrangian responsible for the strong decay S → HM (M is a light pseu-
doscalar meson) can bewritten with these superfields. The leading order contribution
in 1/Λχ and 1/mQ is

Lmix = hTr[H̄bSaA/abγ5] + h.c.. (114.2)

According to [5, 6], the corresponding chiral symmetry breaking corrections to next-
to-leading order in 1/Λχ read

Lsb
mix = 1/Λχ{κ1Tr[(H̄SA/γ5)ab(mξ

q)ba] + κ2Tr[(H̄SA/γ5)aa(mξ
q)bb]

+ κ3Tr[H̄aSaA/bcγ5(mξ
q)cb] + κ4Tr[H̄cSaA/bcγ5(mξ

q)ab]
+ κ5Tr[H̄aSbiv · DbcA/caγ5] + κ6Tr[H̄aSbiD/bcv · Acaγ5]} + h.c.. (114.3)

Meanwhile, the effective Lagrangian responsible for η − π0 mixing, through which
the pionic decays ofD∗

s0(2317) andD
′
s1(2460) occur, can be described by the isospin

violating piece in the chiral Lagrangian

Lη−π0 = m2
πf

2
π

4(mu + md )
Tr[m†

qΣ + Σ†mq]

= m2
π(mu − md )√
3(mu + md )

π0η + · · · . (114.4)

114.3 Coefficients

For simplify, as mentioned in [7], the following transformations of the parameters
are made:

(i) As κ2 can be absorbed into the definition of h, we set h
′ = h + 2(mu+md+ms)

Λχ
.

(ii) As κ5 and κ6 always enter in a fixed combination, they are properly represented
by a united parameter κ

′
5 = κ5 + κ6.

(iii) For κ1 and κ4, if we define κ
′
1 = κ1+κ4

2 and κ
′
4 = κ1−κ4

2 , they will be distin-
guishable that κ

′
1 concerns only the isospin conserving contributions, while κ

′
4

involves only the isospin violating contributions.
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Table 114.1 Results of the six 1/Λχ parameters by minimizing χ2

h
′

κ
′
1 κ2 κ

′
4 κ

′
5 χ2/2

0.56 ± 0.01 0.86 ± 0.11 0.52 ± 0.26 0.40 ± 0.31 0.28 ± 0.03 0.66 ± 0.01

By minimizing the χ2, the unknown chiral-symmetry breaking coupling constants
are extracted, as shown in Table114.1, together with the value of corresponding χ2.
The main contribution to the value of χ2 comes from the relatively large discrepancy
between the decay rates of D∗

0 and D
′
1 mesons.

114.4 Decay Widths and Conclusion

The results are shown in Tables114.2 and 114.3. It shows that our results are con-
sistent with the experimental constraints and comparable with the other theoretical
works in the literature. And the chiral symmetry-breaking corrections of cq̄ (bq̄) are
small in comparison with the leading order contributions, while those of cs̄ (bs̄) are
significant due to relatively large mass of the strange quark. The confirmation of
such predictions is expected in the near future by experiments at the LHCb and the
hadron B factories.

Table 114.2 Strong decay widths of D∗
s0(2317) to Dsπ

0 and D
′
s1(2460) to D∗

sπ
0 (in KeV)

Approach Γ (D∗
s0 → Dsπ

0) Γ (D
′
s1 → D∗

s π
0)

PDG [8] < 3.8 MeV < 3.6 MeV

[9] 21.5 21.5

[10] ≈ 10 ≈ 10

[11] 7 ± 1 7 ± 1

[12] 150 ± 70 150 ± 70

[13] 46.7–111.9 50.1–79.2

[14] 96 ± 19 78 ± 14

[15] 10–100 –

[16] 6 ± 2 –

Γ (leading) 5.0 ± 1.0 4.9 ± 1.0

Γ (full) 9.2 ± 2.3 9.0 ± 2.1
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Table 114.3 Predicted masses of the S doublet beauty mesons (in MeV). And strong decay widths
of B∗

0 and B
′
1 (in MeV), B∗

s0 and B
′
s1 (in KeV)

B∗
0(0

+) B
′
1(1

+) B∗
s0(0

+) B
′
s1(1

+)

Mass [17] 5708.2 ± 22 5753.3 ± 31 5706.6 ± 1.2 5765.6 ± 1.2

Γ [17] 269 ± 58 268 ± 70 – –

Γ [9] – – 21.5 21.5

Γ [14] – – 0.8 ± 0.8 1.8 ± 1.8

Γ [18] – – 13.6 ± 5.6 13.8 ± 3.6

Γ [19] 87 93 1.6 1.9

Γ [20] – – 55.2–89.9 57.0–94.0

Γ (leading) 284 ± 47 286 ± 52 6.5 ± 0.1 7.1 ± 0.1

Γ (full) 313 ± 53 314 ± 67 11.6 ± 1.6 12.3 ± 1.7
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Chapter 115
Relativity in Few-Hadron Systems:
Analysis of Baryon Electromagnetic
Transition Form Factors in the Covariant
Spectator Theory

M. T. Peña and G. Ramalho

Abstract We discuss the role of valence quarks and meson cloud excitations for
the Transition Form Factors (TFF) of the electromagnetic transition of the nucleon
(N ) to nucleonic excitations (N ∗), calculated within the Covariant Spectator model.
We extend TFF from the space-like to the time-like regime and calculate Dalitz
di-electron decay widths for the Δ(1232) and the N ∗(1520).

115.1 Introduction

Nucleonic excitations play a crucial role in the transitionof hadronmatter to theQuark
Gluon Plasma and the properties, as the critical end point, of the phase diagram of
QCD. On the other hand, diquark clusters seem to have a role not only in tetraquark
structures but also in baryons [1].

How N ∗ excited states decay and radiate in the highly dense medium is probed
experimentally in dilepton production rates from relativistic proton-proton and
heavy-ion reactions [2], and on the other-hand the microscopic structure of the
nucleon and its excited states is revealed by electron scattering measurements [3].
These methods appear unrelated. However they are connected since they explore
the same physical systems in different space-like and time-like ranges of photon
virtualities.

Baryon transition form factors (TFFs). TFFs and the evolution of the photon-quark
coupling with 4-momentum transfer squared, Q2, constitute the common ground
of the two methods. Form factors in the time-like region are measured from in-
medium dilepton production and probe particle production channels at small Q2,
i.e. the spectroscopy and formation of vector mesons. Form factors in the space-
like region are measured in electron scattering experiments and probe structure, as
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Timelike: Q2<0 Spacelike: Q2>0 

NN̄ → e+e−
e+e− → NN̄ Ne− → N∗e−

JLab/CLAS: 
most world data 

Electron scattering Timelike physical region

BES III, BELLE II FAIR 
HADES 

Non- 
accessible
region

TFF 
TFF TFF 

Q2 = −q2

Fig. 115.1 CLAS/JLab electron scattering data and HADES dilepton production data: results have
to match at the photon point. TFF sketch from [1]

shape and qqq excitations versus hybrid components. Spectroscopy and structure
influence both space-like and time-like regimes, in electron-scattering and dilepton
production reactions, respectively. Both regimes have to be matched smoothly at
the photon point Q2 = 0, and are illustrated in Fig. 115.1. This link is explored in
this work, that uses the constraints from electron scattering to calculate TFFs in the
time-like region.

Definition of degrees of freedom. What makes the information contained in baryon
TFFs so challenging is the interplay between the microscopic quark-gluon structure
and the hadronic states to which the baryonic resonances couple in their decays.
A prime example that illustrates this interplay is the missing strength of the domi-
nant magnetic form factor GM of the γ∗N → Δ(1232) transition in the region near
Q2 = 0 [4]. Theory, including state-of-the-art dynamical quark calculations of the
three-quark system based on the Dyson-Schwinger formalism [1], systematically
fails to describe the data in the region of small Q2.

This seems to support that for baryons three quark degrees of freedom are com-
plemented by structure effects beyond three constituents, and this is not surprising:
for small momentum transfer the photon does not have enough resolution for the
baryon structure, and therefore one expects that it couples to the baryon as a whole,
and not to each quark. In addition, in the region around Q2 = 0 chiral symmetry is
crucial. Chiral symmetry breaking in QCD originates a Goldstone boson, the pion,
with an almost vanishing mass. This is the reason why in the region around Q2 = 0,
where time-like and space-like form factors have to be in harmony, there are sig-
nificant contributions of pion-loops to the electromagnetic transition form factors.
This means that the photon sees the peripheral pion cloud instead of the inner three-
quark core of the baryon. Pions were indeed seen as crucial for the description of
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Fig. 115.2 Diagrams to be
added to the quark degrees of
freedom (top panel): the
photon couples with a pion
in flight dressing the full
baryon (a), or with the fully
dressed baryon while the
pion is in flight (b)

the neutron electric form factor in constituent quark models [4]. At high momentum
transfer, however, the direct coupling of the photon to an individual dressed quark is
expected to be more important.

In Fig. 115.2 we represent our convention for the separation of quark and baryon
degrees of freedom. We define here the “bare” quark contribution as the impulse
diagram on the top panel where the photon couples with only one dressed quark,
and the baryon degrees of freedom or “pion cloud” as the processes of diagrams (a)
and (b) on the lower panel, where the photon couples with the baryon as a system of
three interacting quarks.

115.2 The CST Model and the Electromagnetic Quark
Current

To access the importance of the pion cloud in electromagnetic transitions from first
principles, calculations for three-quark dynamics have to be extended to five quarks.
This was not yet done in the framework of QCD or any constituent quark model.
Here we take a first step into that direction, at a phenomenological level only. Our
model is rooted in the Covariant Spectator Theory (CST), a field theoretic based
framework, discussed in more detail in [5] where its successful application to the
meson spectrum is presented.

TheCSTmodel.WithinCST the covariant 4D integration over themomenta of the two
non-active quarks (not interacting with the photon) in the upper panel of Fig. 115.2—
formingwhat we call in what follows a “diquark”, just for simplicity and notmeaning
that it corresponds to a pole of the scattering matrix—is reduced to a 3D integra-
tion by a prescription of the energy integration that keeps the dominant energy pole
contribution. Within impulse approximation, i.e. for the contribution defined in the
upper panel of Fig. 115.2, the electromagnetic coupling does not depend on the rel-
ative motion variables of the quarks of the “diquark”, and we can integrate over
those variables, ending up with only the integration on the quark-“diquark” relative
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coordinate. The implication is that in the energy regime where the impulse approx-
imation is valid, one can use the effective quark-“diquark” result from integrating
out the internal “diquark” coordinates. The “diquark” here is not a “point diquark”
but has a scalar and/or pseudo-vector structure. The spin part of the wave functions
for several baryon systems is presented in [6–11] in terms of Dirac structures. It
was then possible to construct wave functions of several baryons that are explicitly
covariant, have the correct nonrelativistic limit [6, 7], and can include components
with angular momentum L > 0, in particular P and D waves [10].

In short, our model has three general features: (i) it is covariant; (ii) it assumes the
impulse approximation for the coupling of a baryonwith a photon for reasonably high
momentum transfer where the photon couples with only one of the three constituent
quarks at a time (Fig. 115.2 top panel); (iii) it uses Vector Meson Dominance (VMD)
for the quark-photon current [6]. VMD allows the model to be extrapolated from
space-like to the time-like kinematics. Also, it is VMD that allowed, where lattice
QCD data was available, contact with lattice QCD input for determining parameters
of the model. Aspects (ii) and (iii) are discussed next.

Vector meson dominance. Our starting point is that the quark-photon vertex Γμ [12]
is given by the inhomogeneous Bethe-Salpeter equation,

Γμ(p, Q) = γμ +
∫

d4q

(2π)4
K (p, q, Q)S(q + ηQ)Γμ(q, Q)S(q − ηQ) (115.1)

where η gives the photon 4-momentum fraction shared by the initial and final quark,
K is the quark-antiquark interaction, S is the quark propagator. The inhomogeneous
term is the coupling of the photon to a bare quark. The iterations of the quark-
antiquark interaction kernel K generate loops of quark-antiquark excitations summed
by the integral equation. It becomes clear from (115.1) how the meson spectrum
ties with the behavior of the quark-photon coupling: the infinite iteration of the
quark-antiquark interaction K generates poles at the vector meson masses for time-
like kinematics, and the first pole is the ρ meson pole. This justifies using a VMD
phenomenological parameterization for the quark current.

Because thequarks are effectively dressed andhave anomalousmagneticmoments,
the single constituent quark current jμq contains two terms

jμq = j1γ̂
μ + j2

iσμνqν

2M
, γ̂μ = γμ − �qqμ

q2
, (115.2)

where j1 and j2 are theDirac and Pauli quark form factors, and in our parametrization
M is taken as the nucleon mass. Each form factor ji (i = 1, 2) has an isoscalar and
an isovector component, respectively fi+ and fi− (functions of Q2), ji = 1

6 fi+ +
1
2 fi−τ3. The second term in the second equation in (115.2) is equivalent to using the
Landau prescription, and guarantees the conservation of the baryon current.

At the scales considered here contact quark-antiquark interactions can be assumed,
and the series of the integral equation (115.1) analytically summed with the meson
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Fig. 115.3 The pion form
factor in the timelike and
spacelike regions around
q2 = 0

polesmade explicit. The forms of theDirac andPauli quark form factors, f1± and f2±,
are then chosen to be consistent with this result from vector meson dominance [6, 7].
They involve mass parametersmv = mρ ormω of the light vector meson masses, and
aMh = 2M term that takes into accountmeson resonanceswith a largermass, aswell
as κ±, the quark anomalous magnetic moments. The parameter for the high energy
photon-quark vertex is fixed by deep inelastic scattering data. The functions f1± and
f2± are normalized to reproduce the charge and anomalous magnetic moment of the
u and d quarks. Themixture coefficients for the different vectormesons contributions
are phenomenologically fixed by the proton and neutron elastic electromagnetic form
factors and then used in the predictions of resonance TFFs.

Finally, for the diagram (a) of the baryon structure effects the coupling between
the photon and the pion is taken to be momentum dependent and fitted to the exper-
imentally well known the pion form, since the residue of the pion from factor Fπ at
the time-like pole is proportional to the ρ → ππ decay. Figure115.3 shows the fit
that we used in the calculations. Diagram (b) is more suppressed for the N ∗(1520)
than for the Δ(1232).

Constraints from LQCD. Because (i) the pion cloud effects are negligible for large
unphysical pion masses and (ii) the electromagnetic quark current is based on vector
meson dominance, the vector meson mass can be taken as a function of the running
pion mass, and the electromagnetic current bare quark core model in the upper
panel of Fig. 115.2 can be calibrated by the space-like LQCD data for large pion
masses. Afterwards, taking the limit of the model in the physical pion mass, the
experimental space-like data is well described in the high momentum transfer Q2

region. This procedure was checked first for the γ∗N → Δ(1232) reaction [13, 14].
The Δ(1232) wave function was fixed by the LQCD results for the three γ∗N →
Δ(1232) electromagnetic form factors, making use of a running pionmass to vary the
ρ meson mass. Then by subtracting the experimental data from the CST constituent
quark model, we inferred the pion cloud, and obtained that indeed it was non-zero in
the vicinity of Q2 ≈ 0. The extracted information on the pion cloud contribution to
the Δ(1232) electro-excitation is consistent with the results from QCD in the large
Nc limit [15], recently revisited in [16].
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115.3 Results in the Time-Like Region for the Δ(1232) and
the N∗(1520)

To extend the TFF from space-like (in electron-scattering) to time-like (in dilepton
production) regime, we generalize the physical Δ mass MΔ to a running Δ mass
W , making MΔ → W in the intermediate states away from the resonance pole.
Four-momentum conservation implies that there is an upper limit for q2 = −Q2 for
each value of W , and the excitation reaction becomes kinematically forbidden for
q2 > (W − M)2. Also, the VMD parametrization is again particularly convenient
for the time-like extension. To avoid the pole at q2 = m2

ρ we include a non-zero
width for the ρ. This extension reproduced the space-like results at the physical point
point W = MΔ [17], and enabled the first extraction of the Δ(1232) Dalitz decay
branching ratio by the HADES collaboration [2].

Our results for the γ∗N → N ∗(1520) (Jπ = 3/2+) transition [18] gives, as in the
Δ(1232) case, a good description of the helicity amplitudes and form factors for
large Q2. The time-like N ∗(1520) transition form factors in the region Q2 ≈ 0 are
dominated by the meson cloud contributions due to the orthogonality of the initial
and final state wave functions. At low Q2 the transverse A3/2 amplitude is found to
be negligible. The inferred meson cloud has predominantely an iso-vector character,
in agreement with the PDG data for this reaction, AV

3/2 = 0.13 GeV−1/2 for the iso-
vector component of the A3/2 amplitude at Q2 = 0, versus AS

3/2 = 0.01 GeV−1/2 for
the iso-scalar component. Once the form factors are calculated we obtain the Dalitz
differential light dilepton decay rate from

Γ ′
e+e−N (q,W ) ≡ dΓ

dq
(q,W )

2α

3πq3
(2μ2 + q2)

√
1 − 4μ2

q2
Γγ∗N (q,W ), (115.3)

with

Γγ∗N (q,W ) = 3α

32

(W − M)2

M2W 3

√
y+y−y+|GT (q2,W )|2, (115.4)

where q = √
q2, α is the fine-structure constant, y± = (W ± M)2 − q2, and

|GT (q2,W )|2 is the combination of the electromagnetic transition form factors
|GT (q2,W )|2 = 3|GM(q2,W )|2 + |GE (q2,W )|2 + q2

2W 2 |GC(q2,W )|2 (GM , GE

and GC are respectively the magnetic dipole, electric and Coulomb quadrupole form
factors). The Dalitz decay width is determined by the integral of Γ ′

e+e−N (q,W ) in
the region 4μ2 ≤ q2 ≤ (W − M)2.

Figure115.4 gives the first CST results for the ΓγN decay width of the N ∗(1520),
where the neutron and proton cases are separated. Our result GT (0, 1520) = 0.73 is
consistentwith thePDGdata.Our neutron andproton results do not differmuchdue to
the iso-vector dominance of themeson cloud current in themodel. Figure115.5 shows
in the left panel the differential di-electron production rate for the same resonance.
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Fig. 115.4 Proton (left) and neutron (right) results for the ΓNγ decay width of the N∗(1520). The
dashed-line shows the approximation of taking the photon coupling constant and equal to its value
at q2 = 0
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Fig. 115.5 Proton and neutron di-electron differential and total decay width of the N∗(1520). CFF
labels results obtained with constant photon-baryon coupling

Preliminary results from the HADES collaboration [19] confirm our results. The
right panel of Fig. 115.5 gives the results for the integrated decay width and shows
that for high energies the evolution of the photon coupling strength GT (q2,W ) with
q2 becomes important.

115.4 Conclusions and Outlook

CST calculations are consistent with LQCD in the large pion mass regime. When
combined with LQCD they allow the indirect extraction of meson cloud effects.
Our results show that the CST approach describes well the behavior of several
γ∗N → N ∗ hadronic vertices in an efficient way, at least in the high Q2 region.
The constant baryon-photon coupling approximation, usually taken in the literature,
can underestimate the N ∗(1520) di-electron differential Dalitz decay width. More
LQCD simulations below the N* threshold will help us to refine the interpretation of
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data provided by theoretical quark models. In particular, LQCD data for the electro-
magnetic form factors of the baryon octet are a precious source of information, due
to scarcity of experimental information. New experimental data at large Q2 and even
more precise data in all ranges can as well improve the interpretation of empirical
results.Dynamical calculations of “diquark” verticeswithinCST is to be done, to sup-
port the quark-“diquark” dominance in baryons, seen within the Dyson-Schwinger
approach [1].
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Chapter 116
Masses and Structure of Heavy
Quarkonia and Heavy-Light Mesons
in a Relativistic Quark Model

Alfred Stadler, Sofia Leitão, M. T. Peña and Elmar P. Biernat

Abstract Using the framework of the Covariant Spectator Theory, we calculated the
masses and vertex functions of heavy and heavy-light mesons, described as quark-
antiquark bound states. Our interaction kernel consists of an adjustable mixture of
Lorentz scalar, pseudoscalar, and vector linear confining interactions, together with a
one-gluon-exchange kernel.Weperformed a series of fits to the heavy and heavy-light
meson spectrum, and we discuss what conclusions can be drawn from it, especially
about the Lorentz structure of the kernel.

116.1 Theoretical Framework

We present results of calculations of the mass spectrum and structure of heavy and
heavy-light mesons in the framework of the Covariant Spectator Theory (CST) [1,
2]. Among the features that distinguish our CST treatment of qq̄ bound states from
other covariant approaches, such as Lattice QCD (e.g., [3–6]) andDyson-Schwinger-
Bethe-Salpeter equations [7–12], the more prominent are that we implement con-
finement through an effective linear confining interaction, and that we work in the
physical Minkowski space. An advantage is that we can calculate highly excited
meson states rather easily, which is not the case for the Euclidean approaches men-
tioned above.

The so-called one-channel covariant spectator equation (1CSE) for qq̄ bound
states is represented graphically in Fig. 116.1. It is obtained from the Bethe-Salpeter
equation (BSE) by carrying out the integration over the energy component of the
internal loop momentum in the complex plane and using Cauchy’s integral formula,
but keeping only the residue of the positive-energy propagator pole of the quark (in
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Fig. 116.1 The one-channel spectator equation (1CSE) for the bound-state vertex function Γ of
a quark (particle 1) and an antiquark (particle 2), interacting through a kernel V . On-shell four-
momenta are characterized through a “ ˆ ”, and the corresponding lines in the diagram are marked
with a “×”

our convention the mass of the antiquark is lower or equal to the mass of the quark).
Neglecting the residues of the kernel’s poles can lead to faster convergence to the
full BS result—with all ladder and crossed ladder diagrams—than the BSE in ladder
approximation, because these residues have a tendency to cancel [1].

The 1CSE has the correct one-body limit: when one quark becomes infinitely
heavy, the 1CSE becomes an effective one-body (Dirac) equation for the lighter
quark. It also has a smooth nonrelativistic limit. The more complicated full four-
channel CST equation (4CSE) includes all quark propagator poles, but the 1CSE is a
very good approximation for heavy and heavy-light systems. However, in contrast to
the 4CSE it is not charge-conjugation symmetric, which means that we cannot assign
aC-parity to its solutions for heavy quarkonia. On the other hand, themass difference
between axialvector C = + and C = − pairs is only 5–6 MeV in bottomonium and
14 MeV in charmonium, so this disadvantage is of no practical importance for our
purposes.

The dynamic of the qq̄ pair is determined by the interaction kernel V . We adopt
a kernel consisting of a covariant generalization of the linear (L) confining poten-
tial used in [13], a one-gluon exchange (OGE), and a covariantized constant (C)
interaction,

V = [
(1 − y)

(
11 ⊗ 12 + γ5

1 ⊗ γ5
2

) − y γ
μ
1 ⊗ γ2μ

]
VL(p, k)

+ γ
μ
1 ⊗ γ2μ [VOGE(p, k) + VC(p, k)] ,

(116.1)

where p = p̂1 − P/2 and k = k̂1 − P/2. The explicit expressions for the functions
VL(p, k), VOGE(p, k), and VC(p, k) can be found in [14].

Because the Lorentz structure of the confining interaction is not precisely known,
we allow for amixture of scalar-plus-pseudoscalar and vector structure, controlled by
a mixing parameter y that we determine by fitting to the data. Although in principle
scalar and pseudoscalar interactions break chiral symmetry, we have shown in [15]
that our equal-weight scalar and pseudoscalar linear confining interaction satisfies
the axial-vector Ward-Takahashi identity.
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Whatever value of y is used, the signs in (116.1) make sure that the nonrelativistic
limit of the kernel always yields the same Fourier transform of the Cornell potential,
V (r) = σr − αs/r − C . The three coupling strengths, σ, αs , and C , and in some
cases the quark masses, are free parameters of our models. We use Pauli-Villars reg-
ularization for the linear and the OGE kernels. The corresponding cut-off parameter
Λ is not fitted, but scaled with the heavy quark mass, in the form Λ = 2m1.

The 1CSE for the CST vertex function with a kernel of the general form V ≡∑
K VK (p, k)ΘK

1 ⊗ ΘK
2 , where in our case ΘK

i = 1i , γ5
i , or γ

μ
i , is

Γ ( p̂1, p2) = −
∫

d3k

(2π)3
m1

E1k

∑

K

VK (p, k)ΘK
1
m1 + /̂k1
2m1

Γ (k̂1, k2)
m2 + /k2

m2
2 − k22 − iε

ΘK
2 .

(116.2)

We then reformulate it as an equation for relativistic CST wave functions, which
are expanded in a set of basis functions with definite orbital angular momentum and
total quark-antiquark spin. We solve the equation for the wave functions numerically
by applying techniques developed in [13].

116.2 Numerical Results and Conclusions

Our globalmodel parameters (Table116.1), i.e., taken equal for all describedmesons,
were determined through least square fits to different sets of experimental masses
for J P = 0± and 1± mesons. The smallest set consisted of only 9 pseudoscalar (PS)
states, whereas the largest set contained a total of 39 states of all kinds (a detailed
list of these data sets can be found in [14]).

The mass spectra for the models of Table116.1 are shown in Fig. 116.2. Model
M0S1 was fitted with a fixed y = 0 (no Lorentz vector coupling in the confining
kernel) and fixed quark masses. It is remarkable that—although it was fitted to a set
of 9 PS states alone—it also predicts the full spectrum of J P = 0± and 1± mesons
almost as well as the more extensive fits. The results of M0S1 remain almost the same
once the PS component in the confining kernel is turned off (the largest difference is
about 40 MeV in PS cq̄), confirming the expectation that PS coupling does not play
an important role in mesons with heavy quarks.

In the fit ofM1S3, the quarkmasses and y were allowed to vary, yielding y = 0.20.
This seems to indicate that a 20% contribution of vector coupling in the confining
kernel is preferred. However, a systematic variation of y showed that the minimum
of the least-square-difference at y = 0.20 is very shallow, and fixing y anywhere
between 0 and 0.3 produces fits of essentially the same quality. As an example,
model M0S3 was fitted under the same conditions as M1S3, except that y = 0 was
imposed. The resulting rms difference to the data is almost as good as the one of
M1S3.

We conclude that our models provide a very good description of the heavy and
heavy-light meson masses. However, the mass spectrum alone does not constrain the
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Table 116.1 Kernel parameters of the models discussed in the text (we use mu = md ≡ mq ). Nst
is the number of states in the data set used in fitting the model,Δrms is the rms difference to the data
for the largest set. The values in boldface were held fixed. The units for the quark masses, Δrms,
and C are GeV, and σ is in GeV2

Model σ αs C y mb mc ms mq Nst Δrms

M0S1 0.2493 0.3643 0.3491 0.0000 4.892 1.600 0.4478 0.3455 9 0.037

M1S3 0.2022 0.4129 0.2145 0.2002 4.875 1.553 0.3679 0.2493 39 0.030

M0S3 0.2058 0.4172 0.2821 0.0000 4.917 1.624 0.4616 0.3514 39 0.031

Fig. 116.2 Spectrum of heavy and heavy-light mesons with J P = 0± and 1±. The symbols repre-
sent results of calculationswithmodelsM0S1 (circles),M0S1 with PS coupling turned off (triangles),
M1S3 (squares), and M0S3 (diamonds). The solid lines are experimental data from the PDG [16]

Lorentz mixing parameter y very much, and we have to look for other observables in
order to obtain more detailed information on the Lorentz structure of the confining
interaction. In first exploratory calculations of quarkonia decay constants we found
strong sensitivity to details of the wave functions, but a systematic study of the y
dependence has not yet been done.
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Chapter 117
The Molecular Nature of Some Ω0

c States

Glòria Montaña, Àngels Ramos and Albert Feijoo

Abstract A vector meson exchange model based on effective Lagrangians is used
to build the meson–baryon interaction in the charm+1, strangeness−2 and isospin 0
sector. The s-wave scattering amplitudes resulting from the unitarization in coupled-
channels show two resonances with masses and widths that are in very good agree-
mentwith those of the experimentalΩc(3050)0 andΩc(3090)0 states observed by the
LHCb collaboration. The interpretation of these resonances as pseudoscalar meson–
baryon molecules would mean the assignment J P = 1/2− to their spin–parity.

117.1 Introduction

A lot of theoretical effort in the field of baryon spectroscopy has lately arisen with
the aim of explaining the inner structure of the five narrow Ω0

c excited resonances
observed by the LHCb Collaboration [1] and possibly establishing their unknown
values of spin–parity. Some works suggest a css quark description within revisited
quarkmodels [2–9]while others propose a pentaquark interpretation [10–12].Models
that can describe some resonances as quasi-bound states of an interacting meson–
baryon pair [13–15] offer a complementary scenario, an approach that we have re-
examined in [16] in view of the new experimental data. It is plausible to expect that
some excitations in theC = 1, S = −2 sector can be obtained by adding a uū pair to
the natural css content of theΩ0

c , just as a pentaquark structure with a cc̄ pair is more
natural to explain the Pc(4380) and Pc(4450) excited nucleon resonances than an
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extremely high energy excitation of the three quark system. The hadronization of the
five quarks can then lead to bound states, generated by the meson–baryon interaction
in coupled channels. This possibility is supported by the fact that the masses of the
excited Ω0

c baryons under study lie near the K̄Ξc and K̄Ξ ′
c thresholds and that they

have been observed in the K−Ξ+
c invariant mass spectrum.

117.2 Formalism

The sought resonances are dynamically generated as poles of the scattering amplitude
Ti j , unitarized bymeans of the on-shell Bethe-Salpeter equation in coupled channels,
which implements the resummation of loop diagrams to infinite order:

Ti j = Vi j + VilGlTl j . (117.1)

The Gl function for the meson–baryon loop is regularized using the dimensional
regularization approach, which introduces the dependence on a subtraction constant
al(μ) for each intermediate channel l at a given regularization scale μ (see (18) in
[16]).

The s-wave interaction kernel Vi j is obtained from a t-channel vector meson
exchange amplitude [13], that has the same structure as the contact Weinberg-
Tomozawa term in the t � mV limit:

Vi j (
√
s) = −Ci j

1

4 f 2
(
2
√
s − Mi − Mj

)
Ni N j , (117.2)

with Mi , Mj and Ei , E j being the masses and the energies of the baryons, and Ni ,
N j the normalization factors N = √

(E + M)/2M .
The coefficients Ci j are obtained from the evaluation of the t-channel interaction

diagram, with the effective Lagrangians of the hidden gauge formalism:

LV PP = ig〈[∂μφ, φ
]
V μ〉 , (117.3)

LV BB = g

2

4∑

i, j,k,l=1

B̄i jkγ
μ

(
V k

μ,l B
i jl + 2V j

μ,l B
ilk

)
, (117.4)

describing the vertices coupling the vector meson to pseudoscalars (V PP) and
baryons (V BB), respectively, in the pseudoscalar meson–baryon (PB) scattering,
and assuming SU (4) symmetry [13].

The interaction of vector mesons with baryons (V B) is built in a similar way and
involves the three-vector VVV vertex, which is obtained from:

LVVV = ig〈[V μ, ∂νVμ

]
V ν〉 . (117.5)
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Table 117.1 The Ci j coefficients for the (I, S,C) = (0,−2, 1) sector of the PB interaction

K̄Ξc K̄Ξ ′
c DΞ ηΩ0

c η′Ω0
c

K̄Ξc 1 0
√
3/2 κc 0 0

K̄Ξ ′
c 1

√
1/2 κc −√

6 0

DΞ 2 −√
1/3 κc −√

2/3 κc

ηΩ0
c 0 0

η′Ω0
c 0

The resulting interaction is that of (117.2) with the addition of the product of polar-
ization vectors, εi · ε j .

The interaction potential is not SU (4) symmetric even though this symmetry is
encoded in the Lagrangians. It is broken with the use of the physical masses of the
mesons and baryons involved, and a factor κc = 1/4 that accounts for the highermass
of the charmed mesons exchanged in some of the non-diagonal transitions. In fact,
the transitions mediated by the exchange of light vector mesons like the dominant
diagonal ones do not make explicit use of SU (4) symmetry since they are effectively
projected into their SU (3) content.

The available PB channels in the (I, S,C) = (0,−2, 1) sector are K̄Ξc(2964),
K̄Ξ ′

c(3070), DΞ(3189), ηΩc(3246), η′Ωc(3656), D̄sΩcc(5528), and ηcΩc(5678),
with the corresponding thresholds in parenthesis. The doubly charmed D̄sΩcc and
ηcΩc channels are neglected as their energy is much larger than that of the other
channels. The matrix of Ci j coefficients for the resulting 5-channel interaction is
given in Table117.1.

In the V B case, the allowed states are D∗Ξ(3326), K̄ ∗Ξc(3363), K̄ ∗Ξ ′
c(3470),

ωΩc(3480),φΩc(3717), D̄∗
s Ωcc(5662) and J/ψΩc(5794), where, again, we neglect

the doubly charmed states. The coefficients Ci j can be straightforwardly obtained
from those in Table117.1 with: π → ρ, K → K ∗, K̄ → K̄ ∗, D → D∗, D̄ → D̄∗,
1/

√
3η + √

2/3η′ → ω and −√
2/3η + 1/

√
3η′ → φ.

Resonance poles of the scattering amplitude appear in the second Riemann sheet
of the complex energy plane. The residues at the pole position z p give the cou-
pling constants gi of the resonance to the various channels and the real part of
−g2i (∂G/∂

√
s)|z p corresponds to the compositeness, i.e., the amount of i th-channel

meson–baryon component.

117.3 Results

The values of the subtraction constant, al(μ = 1GeV), used when solving (117.1)
are chosen so as the loop function in dimensional regularization coincides with
the loop function regularized with a cut-off Λ = 800MeV at the channel threshold
(“Model 1”). The resulting PB scattering amplitude shows two poles,
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Table 117.2 Position (
√
s = M − iΓ/2), couplings and compositeness of theΩ0

c states generated
employing “Model 2”

0− ⊗ 1/2+ interaction in the (I, S,C) = (0,−2, 1) sector

M (MeV) 3050.3 3090.8

Γ (MeV) 0.44 12

|gi | −g2i dG/dE |gi | −g2i dG/dE

K̄Ξc(2964) 0.11 0.00 + i 0.00 0.49 −0.02 + i 0.01

K̄Ξ ′
c(3070) 1.80 0.61 + i 0.01 0.35 0.02 − i 0.02

DΞ(3189) 1.36 0.07 − i 0.01 4.28 0.91 − i 0.01

ηΩc(3246) 1.63 0.14 + i 0.00 0.39 0.01 + i 0.01

η′Ωc(3656) 0.06 0.00 + i 0.00 0.28 0.00 + i 0.00

M1 = Rez1 = 3051.6MeV, Γ1 = −2Imz1 = 0.45MeV

M2 = Rez2 = 3103.3MeV, Γ2 = −2Imz2 = 17MeV, (117.6)

corresponding to resonances with spin–parity J P = 1/2−. Their energies are very
similar to the second and fourth Ω0

c states discovered by LHCb [1].
These results clearly show that the meson–baryon dynamical models are able

to generate states in the energy range of interest, although the mass of our heavier
state is larger by 10MeV and its width is about twice the experimental one. In
an attempt to explore the possibilities of our model, we let the values of the five
subtraction constants vary freelywithin a reasonably constrained range and look for a
combination that reproduces the characteristics of the twoobserved states,Ωc(3050)0

and Ωc(3090)0, within 2σ of the experimental errors. Table117.2 displays the new
properties of the poles for a representative set of al(μ = 1GeV) with equivalent
cut-off values in the 320–950 MeV range (referred as “Model 2” in [16]). We note
that the strongest change corresponds to aK̄Ξc

, needed to decrease the width of the
Ωc(3090)0. Its equivalent cut-off value of 320 MeV is on the low side of the usually
employed values but it is still naturally sized.

We also show in Table 117.2 the couplings of each resonance to the various
meson–baryon channels and the corresponding compositeness. The lowest energy
state at 3050MeV has a strong coupling to K̄Ξ ′

c and has a high compositeness in this
channel but also couples appreciably to DΞ and ηΩc channels. The higher energy
resonance at 3090MeV couples strongly to DΞ and clearly qualifies as a DΞ bound
state with a compositeness in this channel of 0.91.

The five Ω0
c states were observed from the K−Ξ+

c invariant mass spectrum
obtained in high energy pp collision data by the LHCb [1], which is tremendously
difficult to model. In Fig. 117.1 we display a merely illustrative plot of the spectrum
that our model would predict that retains certain similarities with the spectrum of
Fig. 2 in [1] in the energy regions of the 3050 and 3090MeV states.

Next we discuss the dependence of these results on the assumed value of the
cut-off, as well as the influence of a certain amount of SU (4) symmetry violation
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Fig. 117.1 Sum of amplitudes squared times the momentum of the K− versus the K̄Ξc energy
in the centre-of-mass frame, where Ti→K̄Ξc

is the amplitude for the i → K̄Ξc transition obtained
here with “Model 2”, with i being any of the five coupled channels. The qK̄ acts as a phase-space
modulator. The calculated spectrum has been convoluted with the energy dependent resolution of
the experiment. (Adapted from [16])
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Fig. 117.2 Evolution of the position of the resonance poles with the cut-off, from Λ = 700MeV
(PB1) and Λ = 650MeV (PB2) at the right end of the solid lines to Λ = 1000MeV at the left
end. The grey areas indicate the regions of results covered when a variation of 30% in the SU (4)
breaking is assumed in the transitions mediated by heavy-meson exchange. (Adapted from [16])

associated to the fact that the charm quark is substantially heavier than the light
quarks. The solid lines in Fig. 117.2 indicate the evolution of the poles as the value of
the cut-off is increased from 700MeV for the low-energy pole (PB1) or 650MeV for
the high-energy one (PB2) to 1000MeV. On the other hand, we note that the violation
of SU (4) symmetry is already partly implemented by the use of the physical meson
and baryon masses in the interaction kernel. Moreover, only SU (3) is effectively
acting in the transitions mediated by light vector mesons and thus these will be left
untouched. Therefore, up to an additional 30% of SU (4) breaking is implemented
only in the matrix elements that connect states via the t-channel exchange of a
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charmed vector meson, and this is achieved by allowing the factor κc to vary in
the range (0.7−1.3)κc. The grey areas in Fig. 117.2 correspond to the regions in
the complex plane where the resonances can be found varying both the cut-off and
the amount of SU (4) violation. The fact that these bands of uncertainties include
the 3050MeV and the 3090MeV resonances measured at LHCb reinforces their
interpretation as meson–baryon molecules.

In the case of VB scattering we have followed a similar procedure to look for
resonances, which are degenerate in spin, J P = 1/2−, 3/2−. Employing subtrac-
tion constants mapped onto a cut-off of Λ = 800MeV, we see a similar pattern
as that found for the PB case. A lower energy resonance mainly classifying as a
D∗Ξ molecule appears at 3231MeV and a higher energy resonance is generated at
3419MeV and corresponds to a K̄ ∗Ξ ′

c composite state with some admixture of ωΩ0
c

and φΩc components. There is an additional pole in between these two, coupling
strongly to K̄ ∗Ξc states. These three resonances are located in an energy region above
the states reported by the LHCb collaboration where no narrow structures have been
seen [1]. We note, however, that the states found here from the V B interaction are
artificially narrow as they do not couple to, and hence cannot decay into, the PB
states that lie at lower energy.

Finally, we show the results of extending our model to the bottom sector by
employing the meson–baryon interaction kernels obtained from the Lagrangians
of (117.3)–(117.5), but replacing the charm mesons and baryons by their bottom
counterparts (see the details in [16]). A coefficient κb = 0.1 in certain non-diagonal
transitions that accounts for the much larger mass of the exchanged bottom vector
mesons with respect to the light ones is the analogous to κc.

Our results for the Ω−
b resonances are very similar to those found in the charm

sector. The PB interaction generates two states at 6418 and 6519MeV with spin
J P = 1/2−, the former couples strongly to K̄Ξ ′

c andηΩb while the later is essentially
a BΞ bound state. In the V B interaction we find J = 1/2−, 3/2− spin degenerate
Ω−

b states at 6560MeV, coupling strongly to B̄∗Ξ , 6665MeV, coupling to K ∗Ξb,
and 6797MeV, being a mixture of ωΩb, K̄ ∗Ξ ′

b and �Ωb.

117.4 Conclusions

Employing a t-channel vector meson exchangemodel with effective Lagrangians, we
have studied the interaction of the low-lying pseudoscalar and vector mesons with
the ground-state baryons in the charm +1, strangeness −2 and isospin 0 sector. Two
resonances with energies and widths very similar to some of theΩ0

c states discovered
recently at LHCb are found in the unitarized scattering amplitudes of the interaction
of pseudoscalar mesons with baryons. We have extended the model to the bottom
sector and predicted several Ω−

b resonances in the energy region 6400–6800MeV
with a molecular meson–baryon structure.

Several other works [17–20] have also addressed the possibility of interpreting
some of the Ωc states seen at CERN as quasi-bound meson–baryon systems, as
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well as the prediction of analogous states in the bottom sector [21], finding results
which are similar to those of our work [16] and hinting that the meson–baryon
description cannot be ignored when trying to understand the nature of these excited
heavy baryons.
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Chapter 118
Meson Studies with a Contact Interaction

Marco A. Bedolla and Elena Santopinto

Abstract We present the spectrum of ground state heavy-light mesons. Our analysis
is provided by a symmetry preserving Schwinger-Dyson Bethe-Salpeter Equation
(SDBSE) approach of a vector-vector contact interaction model. This model offers
a simple-to-implement alternative to perform exploratory studies of QCD. Despite
the simplicity of this model, our results for D are in agreement within 9%, and for
B within 2% when we compare them with experimental data.

118.1 Introduction

Heavy-light mesons are still a theoretical challenge within the Schwinger-Dyson
Bethe-Salpeter Equation (SDBSE) approach [1–3]. This approach has proven to
be a reliable instrument to explain a wide range of QCD phenomena. However, to
solve fully covariant kernels, we require brute force numerical computation when
evaluating at largemomentum transfer regions [4, 5]. Additionaly, studies of unequal
mass systems becomes amore difficult task becausewe have to deal with amultiscale
problem: the heavy and the light quarks regimes [6–9].

The contact interaction (CI) model appeared as an alternative to full QCD studies.
In this model, quarks interact not via mass-less vector-boson exchanges, but instead
through a symmetry preserving vector-vector contact interaction [10–14]. This inter-
action is embedded within the SDBSE approach in the rainbow-ladder approxima-
tion, and it implements confinement through a proper time regularization scheme.
A fully consistent treatment of the CI model is simple to execute, and it produces
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useful results that can be compared and contrasted with full QCD calculations and
experimental data.

In this work, we present the spectrum of heavy-light mesons using the CI model,
we compare with experimental data when these are avalaible. Our results are a direct
application of our ideas developed in previos works [15–17].

118.2 SDBSE Approach and CI Model

Since this work is a direct application of the unified CI model presented in [17],
we only present the model and the extension needed to make our calculations. For
complete description see [14, 15].

118.2.1 Contact Interaction Model

The SDBSE formalism solves the bound-state problem in terms of their building
blocks (quarks), and their interactions with gluons. In order to solve a meson bound
state equation, we need to know the quark propagator, the gluon propagator and the
quark-gluon interaction. In the CI model, we assume that the quark-gluon interaction
is led by symmetry-preserving vector × vector contact interaction; here, quarks are
attached through an interaction defined as

g2Dμν(k) =4παIR

m2
g

δμν ≡ 1

m2
G

δμν, (118.1)

Γ a
μ (p, q) =λa

2
γμ, (118.2)

wheremg = 800MeV is a gluonmass scale generated dynamically in QCD [18], and
αIR is the CI model parameter, which can be interpreted as the interaction strength
in the infrared region [19, 20].

With this interaction, we obtain a constant mass function. Since we need to solve
divergent integrals, we must adopt a regularization procedure. We employ the proper
time regularization scheme [21], and we obtain an expression for the mass function

M f = m f + M3
f

3π2m2
G

Γ (−1, τUVM
2
f , τIRM

2
f ) , (118.3)

where Γ (a, z1, z2) is the generalized incomplete Gamma function:

Γ (a, z1, z2) = Γ (a, z1) − Γ (a, z2) . (118.4)

The parameters τIR and τUV are infrared and ultraviolet regulators, respectively. A
nonzero value for τIR ≡ 1/ΛIR implements confinement [22]. On the other hand,
since the CI model represents a nonrenormalizable theory, τUV ≡ 1/ΛUV becomes
part of the model and therefore sets the scale for all dimensional quantities.
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118.2.2 CI model running coupling

In a previous work [17], we explained how the CI can be used to study light and
heavy mesons. When studying the heavy sector, a change in the model parameters
has to be done: an increase in the ultraviolet regulator, and a reduction in the coupling
strength. Subsequently, we found out that different set of parameters are needed in
order to study each sector: light, charm and bottom.
We define a dimensionless coupling in terms of the ultraviolet cutoff:

α = α(ΛUV) = αIR

m2
g

Λ2
UV . (118.5)

It is interesting that this dimensional coupling can be fitted by an inverse logarithmic
curve, as a reminiscent of the running coupling QCD with the momentum scale at
which it is measured:

α(ΛUV) = a ln−1 (ΛUV /Λ0) , (118.6)

where a = 0.923 and Λ0 = 0.357 [17]. With this fit, we can recover the value of the
strength coupling α once given a value ofΛUV . We maintain the infrared cutoffΛUV

and the gluon mass mg .

118.3 Results

In order to calculate the mass spectrum, we follow the expressions found in [15]. In
our approach, we retain each quark dressed mass computed in previous works [17].
We find the ΛIR and α parameters through (118.5–118.6) to obtain the pseudoscalar
meson experimental mass value. Subsequently, we calculate the othermesonsmasses
with those parameters.Wepresent our results in plots comparing our results on heavy-
light mesons with experimental data.

118.3.1 Charmed Mesons

We display the spectrum of D mesons in Fig. 118.1. Our spectrum is in good agree-
ment with experimental results. Additionally, in Fig. 118.2 we display the spectrum
of Ds mesons with the same parameters of D mesons. Our results are within 9% of
agreement with experiment for both set of mesons.

118.3.2 Bottom Mesons

In Fig. 118.3 we show the B-meson mass spectrum. Similar to D mesons, the spec-
trum agrees perfectly with experimental data. In addition, we present a mass value
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Fig. 118.1 Mass spectrum of ground-state D mesons in GeV. Our results were obtained with the
parameter set:αI R = 0.93π/4.528 andΛUV = 1.532GeV.The dynamically generated constituent-
like masses are Mn = 0.367GeV and Mc = 1.482GeV. Experimental (below) data are from [23]
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Fig. 118.2 Mass spectrum of ground-state Ds mesons in GeV. Our results were obtained with the
parameter set:αI R = 0.93π/4.528 andΛUV = 1.532GeV.The dynamically generated constituent-
like masses are Ms = 0.533GeV and Mc = 1.482GeV. Experimental data (below) are from [23]

for the scalar (0+) meson which we expect to be aproximately 60MeV below a future
experimental result.

In a similar fashion, Figs. 118.4 and 118.5 present our predictions for Bs and Bc

mesons, respectively. For Bs mesons, we expect that the 0+ channel to be around
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80MeV below a future experimental value. Similarly, for Bc mesons, we expect that
the 1− meson to be in perfect agreement with the experimental value. While for the
0+ and 1+ we expect to be within to 2% of agreement with experimental results.

118.4 Conclusions

We calculated the spectrum of heavy-light mesons through (118.6) to find the cou-
pling as a function of the ultraviolet cutoff fitted to 0−+ D, B and Bc mesons, while
the other masses are predictions of these parameters. When we study D and Ds

mesons, light coupling gets reduced by a factor of ≈4, by a factor of ≈12 for B and
Bs mesons, and a factor of≈60 for Bc mesons. Our mass spectrum is in a good agree-
ment with experimental data when it is avalaible. More details about our approach
will be described in a future publication [24].
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Chapter 119
XYZ Mesons at BESIII

Chang-Zheng Yuan

Abstract The BESIII is one of the leading experiments in the study of the hadron
spectroscopy. We report the progress in the study of the exotic hadrons, also called
XYZ states, at BESIII experiment with its unique data samples in e+e− annihilation
at center-of-mass energies of 3.8–4.6 GeV.

119.1 Introduction

In the conventional quark model, mesons are composed of one quark and one anti-
quark, while baryons are composed of three quarks. Although this picture is very
simple, it describes almost all the hadrons observed so far [1]. However, many
charmonium-like states were discovered at two B-factories BaBar and Belle in the
first decade of this century [2]. Whereas some of these are good candidates of char-
monium states, many other states have exotic properties, which may indicate that
exotic states, such as multi-quark state, hadronic molecule, or hybrid, have been
observed [3]. Experimentally, these states are also called XYZ states, to indicate
their nature is still unclear.

BaBar and Belle experiments finished their data taking in 2008 and 2010, respec-
tively, and the data are still used for various physics analyses. In 2008, the BESIII [4],
a τ -charm factory experiment at the BEPCII e+e− collider, started data taking, and
contributed to the study of the XYZ particles ever since. In this article, we focus
on the measurements of the three mostly studied XYZ states, i.e., the X (3872), the
Y (4260), and the Zc(3900), at BESIII [5].
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Fig. 119.1 Dalitz plot for selected e+e− → π+π− J/ψ events in the J/ψ signal region (left panel),
and unbinned maximum likelihood fit to the distribution of the Mmax(πJ/ψ) (right panel). Adapted
from [6]

119.2 The Charged Charmonium-Like State Zc(3900)

119.2.1 Discovery of the Zc(3900)

The BESIII experiment studied the e+e− → π+π− J/ψ process at a center-of-mass
(c.m.) energy of 4.26 GeV using a 525 pb−1 data sample [6], with J/ψ decays into
a pair of e+e− or μ+μ−. The J/ψ signal is selected by requiring the invariant mass
of the lepton pair is consistent with the J/ψ, and a sample of 1595 π+π− J/ψ events
with a purity of 90% is obtained. The intermediate states are studied by examining
the Dalitz plot (shown in Fig. 119.1) of the selected candidate events.

A structure at around 3.9 GeV/c2 was observed in the π± J/ψ invariant mass
distribution with a statistical significance larger than 8σ, which is referred to
as the Zc(3900). A fit to the π± J/ψ invariant mass spectrum with a constant
width Breit-Wigner (BW) function (Fig. 119.1), neglecting interference with other
amplitudes, results in a mass of (3899.0 ± 3.6 ± 4.9) MeV/c2 and a width of
(46 ± 10 ± 20) MeV. The Zc(3900) state was reported shortly after at Belle [7]
with initial state radiation (ISR) data and with CLEO-c data at a c.m. energy of
4.17 GeV [8], and the mass and width agreed very well with the BESIII measure-
ment.

119.2.2 Spin-Parity of the Zc(3900)

BESIII determines the spin-parity of the Zc(3900) based on a partial wave analysis
(PWA) of e+e− → π+π− J/ψ events at

√
s = 4.23 and 4.26 GeV [9]. Following the

event selection reported in [6], the numbers of selected candidate events are 4154 at√
s = 4.23 GeV and 2447 at

√
s = 4.26 GeV, with 365 and 272 background events,

respectively, estimated by using the J/ψ mass sidebands.
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The fit indicates that the spin-parity J P = 1+ of the Zc(3900) are favored by
more than 7σ over other quantum numbers (0−, 1−, 2−, and 2+). The pole mass
of the Zc(3900) is measured as (3881.2 ± 4.2 ± 52.7) MeV/c2 and pole width
(51.8 ± 4.6 ± 36.0) MeV. The Born cross sections for e+e− → π+Zc(3900)− +
c.c. → π+π− J/ψ are measured to be (21.8 ± 1.0 ± 4.4) pb at

√
s = 4.23 GeV and

(11.0 ± 1.2 ± 5.4) pb at
√
s = 4.26 GeV.

119.2.3 Observation of Zc(3900)∓ → (DD̄∗)∓

With the data sample at
√
s = 4.26 GeV, the BESIII experiment studied e+e− →

π±(DD̄∗)∓ with single-tag method (only one of the two D mesons is recon-
structed) and observed the open-charm decay Zc(3900)± → (DD̄∗ + c.c.)± [10].
The analysis is refined with double-tag method (both D mesons are reconstructed)
and more luminosity [11]. In this analysis, both e+e− → π+D0D∗− + c.c. and
π+D−D∗0 + c.c. are measured with data samples at

√
s = 4.23 and 4.26 GeV. The

double D tag technique allows the use of more D decay modes and the background
level is greatly suppressed.

The double-tag analysis only has ∼9% events in common with the single-tag
analysis, so the two analyses are almost statistically independent and the results can
be combined to have a better measurement. The combined pole mass and width
are (3882.2 ± 1.1 ± 1.5) MeV/c2 and (26.5 ± 1.7 ± 2.1) MeV, respectively. The
combined production rate σ(e+e− → π∓Zc(3900)±) × B(Zc(3900)± → (DD∗)±)

is (104.4 ± 4.8 ± 8.4) pb at
√
s = 4.26 GeV. The production rate σ(e+e− →

π∓Zc(3900)±) × B(Zc(3900)± → (DD∗)±) = (141.6 ± 7.9 ± 12.3) pb at
√
s =

4.23 GeV which is from double-tag method only.

119.2.4 Evidence for Zc(3900) → ρηc

BESIII searches for e+e− → π+π−π0ηc and intermediate states decay into ρηc with
data collected at 4.23, 4.26, and 4.36 GeV [12]. The recoil mass of one charged
pion (equivalent to the invariant mass of ρ±ηc) is shown in Fig. 119.2 for the data
at

√
s = 4.23 GeV, the Zc(3900)± signal is found while there is no significant

Zc(4020)± signal. The ρ±ηc invariant mass distribution is fitted with the contri-
butions from Zc(3900) and Zc(4020) together with a smooth background. 240 ± 56
Zc(3900)± events is observed with a statistical significance of 4.3σ (3.9σ including
the systematical uncertainty). The Zc(3900) signals at other c.m. energies and the
Zc(4020) signals at all the c.m. energies are not statistically significant.

Using the results from [9], the ratio of the branching fractions of different
Zc(3900)± decays is calculated as RZc(3900) = B(Zc(3900)→ρηc)

B(Zc(3900)→πJ/ψ)
= 2.1 ± 0.8 at

√
s =

4.23 GeV and less than 6.4 at
√
s = 4.26 GeV at the 90% C.L. The theoretical pre-

dictions for this ratio varies depending on model assumptions and ranges from a few
per cent to a few hundreds [13–18].
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s = 4.26 GeV

119.2.5 Observation of the Zc(4020)

The partner state of the Zc(3900) close to the D∗ D̄∗ is searched in e+e− → π+π−hc
and e+e− → (D∗ D̄∗)±π∓. BESIII measures cross sections of e+e− → π+π−hc at
c.m. energies of 3.90–4.42 GeV [19]. Intermediate states are studied by examining
the Dalitz plot of the selected π+π−hc candidate events. There is distinct signal
for an exotic charmonium-like structure in the π±hc system (Fig. 119.3). The mass
and width of the Zc(4020) are measured to be (4022.9 ± 0.8 ± 2.7) MeV/c2 and
(7.9 ± 2.7 ± 2.6) MeV, respectively. The statistical significance of the Zc(4020)
signal is found to be greater than 8.9σ.

The study of e+e− → (D∗ D̄∗)±π∓ process using data at
√
s = 4.26 GeV [20]

indicates the open-charm decay Zc(4020) → (D∗ D̄∗)± in the π∓ recoil mass
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Fig. 119.4 Measured cross section σ(e+e− → π+π− J/ψ) and the fit to the data. Adapted from
[24]

spectrum (see Fig. 119.3). The measured mass and width of the structure are
(4026.3 ± 2.6 ± 3.7) MeV/c2 and (24.8 ± 5.6 ± 7.7) MeV, respectively, and the
statistical significance is 13σ.

119.3 The Vector Charmonium-Like State Y(4260)

The vector charmonium-like states with quantum numbers J PC = 1−− that are usu-
ally calledY states, like theY (4260) [21], theY (4360) [22, 23], and theY (4660) [23].
These states show strong coupling to hidden-charm final states in contrast to the vec-
tor charmonium states in the same energy region (ψ(4040),ψ(4160),ψ(4415))which
couple dominantly to open-charm meson pairs [1].

119.3.1 e+e− → π+π− J/ψ

The cross sections of e+e− → π+π− J/ψ are measured precisely at c.m. energies
from 3.77 to 4.60 GeV using 9 fb−1 of BESIII data [24]. Figure119.4 shows the
measured cross sections, one can see clearly theY (4260) structure observed byBaBar
and Belle experiments, but it is peaked at around 4.22 GeV rather than 4.26 GeV
from the previous fits [7, 25].

Two resonant structures in the Y (4260) peak region are needed in a fit to the
cross sections. The first one has a mass of (4222.0 ± 3.1 ± 1.4) MeV/c2 and a width
of (44.1 ± 4.3 ± 2.0) MeV, while the second one has a mass of (4320.0 ± 10.4 ±
7.0) MeV/c2 and a width of (101.4+25.3

−19.7 ± 10.2) MeV. The mass of first resonance
is lower than that of the Y (4260) and it is much narrower. The second resonance
is observed in e+e− → π+π− J/ψ for the first time, with a statistical significance
larger than 7.6σ.
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It is worth pointing out that the lower mass structure (called Y (4220) hereafter)
is the main component of the Y (4260) structure but with improved measurement of
the resonant parameters thanks to the high luminosity data from BESIII.

119.3.2 e+e− → π+π−hc

In 2013, BESIII reported the cross section measurement of e+e− → π+π−hc at 13
c.m. energies from 3.9 to 4.4 GeV [19]. In 2017, BESIII presented a follow-up study
at c.m. energies from 3.9 to 4.6 GeV [26]. The cross sections are shown in Fig. 119.5.

Assuming the π+π−hc events come from two resonances, BESIII obtains M =
(4218.4+5.5

−4.5 ± 0.9) MeV/c2, Γ = (66.0+12.3
−8.3 ± 0.4) MeV for Y (4220), and M =

(4391.5+6.3
−6.8 ± 1.0) MeV/c2, Γ = (139.5+16.2

−20.6 ± 0.6) MeV for Y (4390). The param-
eters of the low mass structure are consistent with those of the resonance observed
in e+e− → ωχc0 [27] and in e+e− → π+π− J/ψ [24]. The high mass structure is
different from the Y (4360) [28, 29] and ψ(4415) [1].

119.3.3 e+e− → π+π−ψ(2S)

BESIII measures the cross sections of e+e− → π+π−ψ(2S) using 5.1 fb−1 of data
collected from 4.0 to 4.6 GeV [30]. The measurements are in good consistency with
previous BaBar and Belle results [28, 29], but with much improved precision, as
shown in Fig. 119.6.

As theBESIII data can only reach 4.6GeV, the parameters of theY (4660) are fixed
to Belle measurement [29] in the fit to the e+e− → π+π−ψ(2S) cross sections. The
data require a lower-mass resonancewith amassM = (4209.5 ± 7.4 ± 1.4)MeV/c2

and a width Γ = (80.1 ± 24.6 ± 2.9) MeV with a statistical significance of 5.8σ,
this is the first observation of the new decay mode Y (4220) → π+π−ψ(2S). The fit
results are also presented in Fig. 119.6.
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119.3.4 e+e− → ωχc0

The process e+e− → ωχc0 is observed for the first time and the cross sections or the
upper limits on the cross sections (when the signal is not significant) at the 90% C.L.
are determined [27, 31]. By assuming theωχc0 signals come from a single resonance,
the mass is determined to be (4226 ± 8 ± 6)MeV/c2, and width (39 ± 12 ± 2)MeV
(shown in Fig. 119.6). In fact, it is in the e+e− → ωχc0 mode that the Y (4220) (or
Y (4230)) structure was first reported [27]. The analysis was updated with more data
recently in [32].

119.3.5 e+e− → D0D∗−π+ + c.c.

BESIII reported measurements of the cross section of e+e− → D0D∗−π+ + c.c. at
c.m. energies from 4.05 to 4.60 GeV [33] (shown in Fig. 119.6), which is a significant
improvement over the Belle measurement [34] with ISR technique.



752 C.-Z. Yuan

A fit to the cross section is performed to determine the parameters of the resonant
structures. The fit yields a mass of (4228.6 ± 4.1 ± 6.3) MeV/c2 and a width of
(77.0 ± 6.8 ± 6.3) MeV for the lower mass structure, and a mass of (4404.7 ±
7.4) MeV/c2 and a width of (191.9 ± 13.0) MeV for the higher mass one. Here for
the higher mass state, the errors are statistical only. This is the first observation of
the Y (4220) decays into open-charm final state D0D∗−π+ + c.c..

119.3.6 Resonant Parameters of the Y(4260) from Combined
Fit

As the cross sections of different final states have some common features, and some
of the final states have been measured by different experiments, these data are used
to do combined fit to extract more information about the resonant structures [35, 36].

In [35], the authors use the measured cross sections of e+e− → ωχc0 [31],
π+π−hc [26], π+π− J/ψ [24], and D0D∗−π+ + c.c. [33] processes to determine
the resonant parameters of the Y (4220). The fit determines the mass of the Y (4220)
as (4219.6 ± 3.3 ± 5.1) MeV/c2 and the width is (56.0 ± 3.6 ± 6.9) MeV. The cou-
pling of this state to the lepton pair is also extracted.

119.4 The X (3872)

The X (3872) was observed in B± → K±π+π− J/ψ decays 15years ago at the
Belle experiment [37]. It was confirmed subsequently by several other experi-
ments [38–40]. BESIII observed a new process of the X (3872) production: e+e− →
γX (3872) → γπ+π− J/ψ [41].

The X (3872) signal is shown in Fig. 119.7 (left), the mass is measured as
(3871.9 ± 0.7 ± 0.2) MeV/c2 and the width is less than 2.4 MeV at the 90% C.L.
The statistical significance of X (3872) is 6.3σ. The energy-dependent cross sections
(Fig. 119.7 (right)) can be described with the Y (4260) resonance well, which sup-
ports the existence of radiative transition Y (4260) → γX (3872). The analysis was
updated with more data recently in [42].

Together with the hadronic transition of the Y (4260) → πZc(3900) [6–8], these
suggest that there might be some commonality in the nature of X (3872), Y (4260),
and Zc(3900), and so the model developed to interpret any one of them should also
consider the other two.
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119.5 Summary and Perspectives

BESIII has achieved a lot in the study of the XYZ states. There are still some data at
BESIII not analyzed and data at more energy points will be taken [43].More analyses
with these data samples will allow many improved understanding of the XYZ states,
especially the X (3872), Y (4260), Zc(3900), and Zc(4020). BEPCII is upgrading
the maximum c.m. energy from 4.6 to 4.9 GeV in two years, this will enable a full
coverage of the Y (4660) [23] and Y (4630) [44] resonances, improvedmeasurements
of their properties are expected.
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Chapter 120
Few-Body Insights of Multiquark Exotic
Hadrons

Javier Vijande, Jean-Marc Richard and Alfredo Valcarce

Abstract In this contribution we discuss the adequate treatment of the 4- and
5-body dynamics within a constituent quark framework. We stress that the varia-
tional and Born-Oppenheimer approximations give energies rather close to the exact
ones,while the diquark approximationmight be rathermisleading.Hall-Post inequal-
ities provide very useful lower bounds that exclude possible stable states for some
mass ratios and color wave functions.

120.1 Introduction

Recent contributions on multiquarks are stimulated by the discovery of a double-
charm baryon [1], which is interesting by itself and also triggers speculations about
exotic double-charmmesons QQq̄q̄ . For years, the sector of flavor-exotic tetraquarks
has been somewhat forgotten, and even omitted from some reviews on exotic hadrons,
as much attention was paid to hidden-flavor states QQ̄qq̄ . However the flavor-exotic
multiquarks have been investigated already some decades ago [2] and has motivated
an abundant literature (see [3] and references therein) that has been unfortunately
ignored in some recent papers.

In this contribution, we stress that a careful treatment of the few-body problem
is required before drawing any conclusion about the existence of stable states in
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a particular model. Not surprisingly, the main difficulties are encountered when a
multiquark state is found near its lowest dissociation threshold. The question of
whether or not there is a bound state requires a lot of care. We consider that it is
important to clarify the somewhat contradictory results in the literature. In particular,
some authors who use similar ingredients obtain either stability or instability for the
all-heavy configuration QQQ̄Q̄, and in our opinion, this is due to an erroneous
handling of the four-body problem.

120.2 Diquark Approximation

A few decades ago, the main concern in baryon spectroscopy was the problem of
missing resonances predicted by the quark model and not observed experimentally.
Many states of the symmetric quark model disappear if baryons are constructed
out of a frozen diquark and a quark. However, the missing resonances are not very
much coupled to the typical investigation channels πN or γN , which privilege states
with one pair of quarks shared with the target nucleon N . In recent photoproduction
experiments with improved statistics, some of the missing states have been identi-
fied, which cannot be accommodated as made of a ground-state diquark and a third
quark [4].

The diquark model is nevertheless regularly revisited, to accommodate firmly
established exotics such as the X (3872), or even candidates awaiting confirma-
tion. Unfortunately, some unwanted multiquarks are also predicted in this approach,
though this is not always explicitly stated or even realized. The issue of unwanted
multiquarks within the diquark model was raised many years ago by Fredriksson and
Jandel [5], and is sometimes rediscovered, without any reference to the 1982 paper.
The paradox is perhaps that the diquark model, that produces fewer baryon states,
produces too many multiquarks!

There are many variants of the so-called diquark model. An extreme point of
view is that diquarks are almost-elementary objects, with their specific interaction
with quarks and between them. Awhole baryon phenomenology can be built starting
fromwell-defined assumptions about the diquark constituentmasses and the potential
linking a quark to a diquark. Then, a diquark-diquark interaction has to be introduced
as a new ingredient for the multiquark sector.

Another extreme is to estimate the energy and wave function of, say (a1a2a3)
with masses mi and interaction vi j (r), first solving for (a1a2) with v12 alone with
energy η12, and then estimating the bound state of a point-like system (a1a2) of mass
m1 + m2 located at R12 interacting with a3 through the potential v13(r3 − R12) +
v23(r3 − R12), resulting in binding energy η12,3. Thus, the whole energy is given by
η12 + η12,3.

This strategy is of course fully justified for the deuterium atom considered as
a pne− system, as the inter-nuclear motion is not significantly modified by the
electron. On the other hand, this approach ruins some subtle collective binding, for
instance, that of Borromean states [6]. Also, one cannot see either how H−(pe−e−)
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Fig. 120.1 Comparison of the variational upper bound (green curve) and Hall-Post lower bound
(dotted blue curve), hardly distinguishable from the variational estimate at this scale, for the
tetraquarkHamiltonian (120.1)with a linear interaction.Also shown is the naive diquark-antidiquark
approximation (dashed violet curve). Adapted from [3]

could become bound in this approach, or the hydrogen molecule be described as a
“diproton” linked to a “dielectron”! In some other cases, like in the case of constituent
quark models, the method just overestimates the binding, since the ad-hoc clustering
lowers significantly the energy.

For simplicity, we consider for doubly-heavy tetraquarks the case of a frozen 3̄3
color wave function. Color mixing has to be introduced to have the proper threshold
in themodel, and it has been seen in explicit calculations that the mixing with meson-
meson configurations is crucial for states at the edge of stability. Nevertheless the
comparison of various approximations is instructive for the toy model,

H33 = p21 + p22
2M

+ p23 + p24
2m

+ v(r12) + v(r34)

2
+ v(r13) + v(r14) + v(r23) + v(r24)

4
.

(120.1)
In Fig. 120.1, we compare the exact solution of (120.1) with the approximation

consisting of first computing the QQ diquark with r12/2 alone and qq with r34 alone,
and then (QQ)(q̄q̄) as a meson with a potential r12,34 and constituent masses 2M
and 2m.

120.3 Relating Mesons, Baryons and Tetraquarks

In a recent paper, Eichten and Quigg [7] use heavy-quark symmetry to relate meson,
baryon and tetraquark energies. In a simplified version without spin effects, it reads

QQq̄q̄ = QQq + Qqq − Qq̄, (120.2)

where the configuration stands for the ground-state energy. For fixedm andM → ∞,
the identity is exact. For finite M , there is some departure. If one treats the tetraquark
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Fig. 120.2 Comparison of
the light quark energies for
QQq̄q̄ (solid red line) and
QQq (dotted blue line) as a
function of the QQ
separation x . The second
curve is shifted by the
difference of energies
Qqq − Qq̄ . The units are
such m = 1, M = 5 and
vi j = ri j . Adapted from [3]

QQq̄q̄ and the doubly-heavy baryon QQq in theBorn-Oppenheimer approximation,
one can compare the two effective potentials as a function of the QQ separation x ,
the baryon one being shifted by Qqq − Qq̄ which is independent of x . Without
recoil correction, the two potentials are identical at x = 0. For finite M , there is
slight difference, as the single q recoils against either M or 2M , and similarly qq
recoils against one or two heavy quarks.

The comparison is shown in Fig. 120.2. Clearly the two effective potentials are
very similar, and thus give almost identical energies, up to an additive constant that
corresponds to the last two terms in (120.2).

120.4 Hall-Post Inequalities

The Hall-Post inequalities have been derived in the 50s to relate the binding energies
of light nuclei with different number of nucleons [8]. They have been rediscovered
in the course of studies on the stability of matter [9], or to link meson and baryon
masses in the quark model [2, 10].

For their application to tetraquarks we consider the toy Hamiltonian (120.1). It
can be rewritten as,

(∑
pi

)
· (A(p1 + p2) + B(p3 + p4)) + h̃12(x12) + h̃34(x34)

2
+

∑ ′ ˜̃hi j (x, a, b)

4
,

˜̃h13(x, a, b) = 1

x

(
p1 − p3 + a p2 + b p4

2

)2
+ vi j , (120.3)

where the masses x12, x34 and x are readily calculated from the parameters A, B
and a, and b. This results into

E4(M,m) ≥ max
A,B,a,b

[E2(x12) + E2(x34) + E2(x)] . (120.4)
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Hence a rigorous lower bound is obtained from simple algebraic manipulations
and the knowledge of the 2-body energy as a function of the reducedmass. For a linear
interaction the results for E4/E2(1) as a function of M/m are shown in Fig. 120.1.
The sum 1/M + 1/m is kept equal to 2 to fix the threshold energy at 2E2(1).

120.5 Color Mixing and Spin-Dependent Corrections

Any model with a pairwise potential, due to color-octet exchange, induces mixing
between 3̄3 and 66̄ states in the QQ − q̄q̄ basis. Perhaps the true dynamics inhibits
the call for higher color representations such as sextet, octet, etc., for the subsystems
of a multiquark, but for the time being, let us adopt the color-additive model. If one
starts from a 3̄3 state with QQ in a spin triplet, and, for instance q̄q̄ = ūd̄ with spin
and isospin S = I = 0, then its orbital wave function is mainly made of an s-wave
in all coordinates. It can mix with a color 66̄ with orbital excitations in the x and y
linking QQ and q̄q̄ , respectively.

To illustrate the role of color-mixing for the AL1 potential we use the potential
AL1 by Semay and Silvestre-Brac [11]. Its central part is a Coulomb-plus-linear
term, while its spin-spin part is a regularized Breit-Fermi interaction with a smearing
parameter that depends on the reduced mass.

The energy, normalized to the lowest threshold, as a function of M/m without
and with color-mixing is shown in Fig. 120.3 (left). The ground state of the QQūd̄
with J P = 1+, which is a candidate for stability, has its main component with color
3̄3, and spin {1, 0} in the QQ − ūd̄ basis. The main admixture consists of 66̄ with
spin {1, 0} and an antisymmetric orbital wavefunction, and of 66̄ with spin {0, 1}
with a symmetric orbital wavefunction.

Fig. 120.3 (left) Effect of color-mixing on the binding of QQūd̄, within the AL1 model. The
tetraquark energy is calculated with only the color 3̄3 configurations (blue curve) and with the 66̄
components (green curve). (right) Effect of the spin-spin interaction of the binding of QQūd̄, within
the AL1 model. The tetraquark energy is calculated with (green line) and without (blue line) the
chromomagnetic term. Adapted from [3]
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It has been acknowledged in the literature that a pure additive interaction such
as (120.1) will not bind ccq̄q̄ , on the sole basis that this tetraquark configuration
benefits from the strong cc chromoelectric attraction that is absent in the Qq̄ +
Qq̄ threshold. In the case where qq = ud in a spin and isospin singlet, however,
there is in addition a favorable chromomagnetic interaction in the tetraquark, while
the threshold experiences only heavy-light spin-spin interaction, whose strength is
suppressed by a factor m/M .

To study the spin-dependent corrections, we make use once again of the AL1
potential. The results are shown in Fig. 120.3 (right) for QQūd̄, as a function of the
mass ratio M/m.

The system bbūd̄ is barely bound without the spin-spin term, though the mass
ratio mb/(mu � md) is very large. It acquires its binding energy of the order of
150MeV [3] when the spin-spin is restored. The system ccūd̄ is clearly unbound
when the spin-spin interaction is switched off. This is shown here for the AL1model,
but this is true for any realistic interaction, including an early model by Bhaduri et
al. [12]. The case of ccūd̄ is actually remarkable. Semay and Silvestre-Brac, who
used their AL1 potential, missed the binding because their method of systematic
expansion on the eigenstates of an harmonic oscillator is not very efficient to account
for the short-range correlations, and it was abandoned in the latest quark model
calculations. Janc and Rosina were the first to obtain binding with such potentials,
and their calculation was checked by Barnea et al. (see [3] for references).

The role played by color mixing and spin-dependent corrections has also been
addressed for hidden-charm pentaquarks (c̄cqqq) [13]. The main difficulties faced
when attempting to solve the 5-body problem including both color-mixing and spin-
dependent corrections is the larger numbers of color vectors and the increased com-
plexity of the radial equation. There are three independent color states for the pen-
taquarks: (i) (c̄c) singlet coupled to (qqq) singlet, (ii) (c̄c) octet coupled to the
first (qqq) octet, in which the quarks 3 and 4 are in a 3̄ state, and (iii) (c̄c) octet
associated to the second (qqq) octet, in which the quarks 3 and 4 form a sextet.
Besides this, the larger number of coordinate ensembles and its complexity makes
even more important than in the 4-quark case to use a reliable numerical technique
to solve the radial part. Few states were found to be bound. (J, I ) = (1/2, 3/2) and
(3/2, 3/2) are found below their lowest S- and D-wave thresholds: Δηc and DΣc.
In fact they are substantially lower, so that they remain stable or metastable even if
one accounts for the width of the Δ and considers that the actual lowest threshold
is Nπηc. (J, I ) = (5/2, 1/2) is above its lowest D-wave threshold while it is below
the lowest S-wave threshold. In this case, as highlighted long ago in [14], the contri-
bution of color vectors different from the singlet-singlet combination would prevent
by the centrifugal barrier the tunneling of the quarks to combine in a colorless object,
enhancing in this way the stability of this state.

The role of the spin-spin interaction versus the spin-independent one is shown
in Fig. 120.4 by modifying the strength of the chromomagnetic interaction using a
multiplicative factor. It is seen that the binding starts already with a small fraction
of the spin-spin interaction. This means that there is a favorable interplay of chro-
moelectric and chromomagnetic effects, although the binding disappears in the pure
chromoelectric limit.
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Fig. 120.4 Mass of the
(c̄cqqq) (J, I ) = (1/2, 3/2)
state and its thresholds as a
function of the strength of
the chromomagnetic
interaction, decreased by a
multiplicative factor Kσ1σ2 .
Adapted from [13]

120.6 Conclusions

Let us summarize. The few-body problem is rather delicate, especially for systems
at the edge of stability. In the case of four-quark states, the analogy with atomic
physics is a good guidance to indicate the most favorable configurations in the limit
of dominant chromoelectric interaction. However, unlike the positronium molecule,
the all-heavy configuration QQQ̄Q̄ is not stable if one adopts a standard quarkmodel
and solves the four-body problem correctly.

The mixing of the 3̄3 and 66̄ color configurations is important, especially for
states very near threshold. This mixing occurs by both the spin-independent and the
spin-dependent parts of the potential.

Approximations are welcome, especially if they shed some light on the four-body
dynamics. The diquark-antidiquark approximation is not supported by a rigorous
solution of the 4-body problem, but benefits of a stroke of luck, as the erroneous
extra attraction introduced in the color 3̄3 channel is somewhat compensated by the
neglect of the coupling to the color 66̄ channel. The equality relating QQq̄q̄ , QQq,
Qqq and Qq̄ works surprisingly well as long as one is restricted to color 3̄3, but
does not account for the attraction provided by color mixing. On the other hand,
for asymmetric configurations (QQq̄q̄), the Born-Oppenheimer method provides a
very good approximation, and an interesting insight into the dynamics.

In short, ccūd̄ with J P = 1+ is at the edge of bindingwithin current quarkmodels.
For this state, all contributions to the binding should be added, in particular themixing
of states with different internal spin and color structure, and in addition, the four-
body problem should be solved with extreme accuracy. In comparison, achieving the
binding of bbūd̄ looks easier. Still, with a typical quark model, the stability of the
ground state below the threshold cannot be reached if spin-effects and color mixing
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are both neglected. The crucial role of spin effects explains why one does not expect
too many states besides 1+ [15].

These effects become even more acute in the five-body case, where color-mixing
and a proper balance between chromoelectric and chromomagnetic terms are basic
to get binding.
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Chapter 121
Imaging the Partonic Structure of the
Nucleon

Barbara Pasquini

Abstract We discuss the main properties of different types of parton distribution
functions, which provide complementary multidimensional images of the partonic
structure of the nucleon. These distributions are the generalized parton distributions,
the transverse-momentum dependent parton distributions and the Wigner distribu-
tions. They have attracted increasing attention in the last years as they represent new
tools to study how the composite structure of the proton results from the underlying
quark-gluon dynamics.

121.1 Introduction

For a long time, the parton distributions have been explored in collinear processes
such as fully inclusive deep inelastic scattering processes. This corresponds to a
one-dimensional imaging of the proton as a set of partons moving collinearly with
the direction of motion of the parent hadron, identified as the longitudinal direction.
Recently, it has become clear that exclusive processes or semi-inclusive deep inelastic
processes open the way to study the partonic structure of hadrons in more dimen-
sions, using, respectively, generalized parton distributions (GPDs) and transverse-
momentum dependent parton distributions (TMDs). GPDs can be used to map the
partons in a mixed space of transverse spatial coordinates and longitudinal momen-
tum. TMDs generalize the concept of collinear parton distributions by including also
the dependence on the transverse momentum of the partons. GPDs and TMDs are
truly independent functions, but can be seen as different projections of a larger class
of distributions, known as generalized transverse-momentum dependent parton dis-
tributions (GTMDs). GTMDs have a direct connection with the Wigner functions,
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which represent the quantum mechanical analogues of the classical phase-space dis-
tributions. In the following sections,wewill discuss key features of these distributions
and our present understanding from available experimental data.

121.2 Generalized Parton Distributions

Exclusive electroproduction of a real photon or a meson off a nucleon target at high
momentum transfer is theoretically the cleanest way to access GPDs. Owing to the
factorization property of QCD, these processes give access to different flavor com-
bination of GPDs and are complementary to disentangle the various GPDs (see, e.g.,
[26, 46] for recent reviews of the GPD phenomenology). GPDs depend on three vari-
ables (considering the dependence on the factorization scale Q2 to be known): x , that
is the fraction of average longitudinal momentum of the active quark, referred to the
average target momentum; the skewness variable ξ and t , that are, respectively, the
fraction of longitudinal momentum and four-momentum transferred to the hadron
target. However, one does not have direct access to this multidimensional structure,
since the dependence on the three variables enters observables in nontrivial convolu-
tion with coefficient functions. Therefore, fits of GPDs require educated assumptions
for the choice of the fitting functions such to incorporate the known theoretical con-
straints of GPDs, i.e. polinomiality, sum rules, and positivity (see, e.g., [9, 13, 21,
30, 31, 38] for a detailed preface to the GPD formalism and properties). Fits existing
in the present literature are reasonably successful and it looks like there are no major
problems with the theoretical framework.

Impact parameter distributions can be reconstructed by taking a Fourier trans-
form of the GPDs in the variable t at ξ = 0. These distributions represent densi-
ties of partons with a given fraction of x as function of the position b⊥ from the
centre of momentum of the nucleon in the plane perpendicular to the longitudinal
direction [16]. A first attempt to obtain this information directly from photon elec-
troproduction measurements was illustrated in [22, 23], using a model-dependent
extrapolation to the point ξ = 0 that is not accessible experimentally. Recently, dis-
persion relation techniques have been used in [59] to constraint the GPDs at ξ = 0
from data. Both these analysis confirm that the width of the impact-parameter dis-
tribution for unpolarized quarks in unpolarized protons has a vey peaked transverse
profile in the limit of x → 1, as shown in Fig. 121.1. This behaviour is expected,
since, in this limit, the active quark is always very close to the transverse center of
momentum [16, 61].

The GPDs can also be viewed as the generating functions for the form factors of
the twist-two operators governing the interactionmechanisms of hard processes in the
deep inelastic regime. The most peculiar example are the form factors of the energy
momentum tensor (EMT), which can be studied indirectly looking at moments of
the GPDs. This is a unique and practical opportunity to access through electromag-
netic processes the EMT form factors, which are canonically probed through gravity.
We have four independent EMT form factors for the separate quark and gluon con-
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Fig. 121.1 The transverse position b⊥ of up quarks in an unpolarized proton as a function of the
longitudinal momentum fraction x . (Adapted from [59])

tribution, which reduce to three for the sum of quark and gluon terms due to the
conservation of the EMT [66]. They are usually referred as A(t), J (t) and D(t).
At t = 0, the corresponding “charges” for quarks and gluons give, respectively, the
fraction of nucleon momentum carried by the partons, the Ji’s relation [41] for the
quark and gluon contribution to the total angular momentum of the nucleon, and the
D-term which is sometimes referred as the “last unknown global property” [66].

The physical content of the information encoded in the EMT form factors is
revealed in the so-called Breit frame [65, 66] and has been recently discussed in
other frames in [48, 56]. Working in the Breit frame, the D-term form factor can be
related to the spatial distribution of shear forces s(r) and pressure p(r) as

p(r) = 1

3

∫
d3�

2m(2π)3
e−i�·r P0(cos θ) [t D(t)] , (121.1)

s(r) = 3

4

∫
d3�

2m(2π)3
e−i�·r P2(cos θ) [t D(t)] , (121.2)

where t = �2. The relation for the shear forces holds also for quark and gluon
separately, while it is defined only for the total system in the case of the pressure.
Thanks to (121.1) and (121.2), the form factor D(t) provides the key to introduce
mechanical properties of the nucleon and reflects the internal dynamics of the system
through the distribution of forces. Requiring that for the mechanical stability of the
system the corresponding force must be directed outwards, one expects the local
criterion 2s(r) + p(r) > 0, which implies that the D-term for any stable system
must be negative, D < 0, as confirmed in models [20, 29, 43], calculations from
dispersion relations [63] and lattice QCD [33] for the nucleon. Another consequence
of the EMT conservation is the von Laue condition, which shows how the internal
forces balance inside a composed particle, i.e.,

∫ ∞

0
p(r)r2dr = 0. (121.3)

This relation implies that the pressure must have at least one node. In all model
studies so far it was found that the pressure is positive in the inner region, and negative
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Fig. 121.2 Left panel (adapted from [66]): The DQ(t) form factor from the JLab analysis [19],
in comparison with the KM15 fit [47] and calculations from dispersion relations [63] and lattice
QCD [33], and results from the bag [43], chiral quark soliton [29] and Skyrme [20] model. Right
panel (adapted from [19]): quark contribution to the pressure distributions r2 p(r) as function of the
radial distance r from the centre of the proton

in the outer region, with the positive sign meaning repulsion towards outside and the
negative sign meaning attraction directed towards inside. Recently, an analysis of the
published JLab data measured at 6 GeV [28, 44] lead to experimental information on
the quark contribution to the D-term form factor [19], as shown in Fig. 121.2 (squared
in the left panel, referring to a scale ofμ2 = 1.5GeV2), in comparisonwith theKM15
fit [47] and calculations from dispersion relations [63] and lattice QCD [33] (all to
the scale of 4 GeV2) and scale independent results from the bag [43], chiral quark
soliton [29] and Skyrme [20] models. The D-term parameters fitted to the JLab data,
were used to plot the radial pressure distribution shown by the black solid curve in
the right panel of Fig. 121.2, by assuming that the gluon and quark contributions are
equal. The corresponding estimated uncertainties are displayed as the light-green
shaded area. The blue area represents the uncertainties from all the data that were
available before the 6 GeV experiment, and the red shaded area shows projected
results from future JLab experiments at 12 GeV. Within the uncertainties of the
analysis, the distribution satisfies the stability condition (121.3), with a zero crossing
near r = 0.6 fm separating the inner region of a positive repulsive distribution from
the outer region with a negative pressure responsible for the binding.

121.3 Transverse-Momentum Dependent Parton
Distributions

In order to be sensitive to intrinsic transverse parton momenta it is necessary to mea-
sure transverse momenta of the produced hadrons in the final state, e.g., in processes
like semi-inclusive lepton-nucleon deep inelastic scattering (SIDIS), hadron produc-
tion in e+e− annihilation or Drell-Yan (DY) processes in hadron-hadron collisions.
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In all these cases, factorization has been proved at leading twist enabling to access
information on TMDs as well as on fragmentation functions (FFs), which describe
the hadronization process of the hit quark decaying into the detected hadrons. The
study of factorization and evolution properties of TMDs and FFs has rapidly evolved
in the last years thanks to the contribution of several groups (see, e.g., the review
in [67] and references therein). While DY and e+e− annihilation processes provide
independent information on either TMDs or FFs, the SIDIS cross section involves
the convolution of one TMD and one FF. Therefore, for a clean extraction of TMDs
it is essential to have an independent and unbiased knowledge of FFs. At present, the
challenge of the phenomenological extractions is to develop a consistent procedure
to analyze all three kind of processes for a simultaneous fit of TMDs and FFs (for
a recent review on the phenomenology of TMD see, e.g., [14] and for a review on
TMD and FF measurements see, respectively, [4, 27]).

At leading twist, there are eight independent TMDs, three of them surviving
when integrated over the transverse momentum and giving rise to the familiar parton
density, helicity and transversity distributions. These three TMDs involve matrix
elements which are all diagonal in the orbital angular momentum (OAM), but probe
different transverse momentum and helicity correlations of the quarks inside the
nucleon. Viceversa, the other TMDs vanish without the contribution of quark OAM
and contain non-trivial information on the spin-spin and spin-orbit correlations of
the partons and nucleon. The OAM content of the different quark TMDs becomes
evident when using the representation of TMDs in terms of overlap of light-front
wave functions that are eigenstates of the OAM operator [12, 62, 64]. However, we
still do not have a direct and rigorous relation between TMDs and OAM, such, for
example, in the case of the Ji’s relation for GPDs. A relation between OAM and the
so called pretzelosity TMD has been suggested [5, 70], but this is valid only within
a particular class of models [49, 51] and it is not a rigorous prediction of QCD.

In the following, I will focus on the unpolarized TMD f1(x, k⊥) and the Sivers
function f ⊥

1T (x, k⊥), which have seen recently a considerable work from the phe-
nomenological point of view. The unpolarized TMD is present in all measurements to
construct the spin asymmetries which give access to the polarized TMDs, and there-
fore represents a fundamental building block. Several extractions of the unpolarized
TMD exist in literature (see, e.g., [14] and references therein). Among them, the
recent work by Scimemi and Vladimirov [69] reached the highest currently available
level of perturbative accuracy, but it takes into account a limited number of experi-
mental points, coming from DY and Z production. On the other side, the extraction
in [7] applies the TMD evolution at one order lower, but it includes the largest set
of data points available from experiments of different kinds, i.e. SIDIS, DY and Z
production, providing an important test for the universality property of TMDs. The
present extractions of f1 give indications that the width of the TMDs at low scales,
1–2 GeV, is around 300−500 MeV and increases to more than 1 GeV at the Z mass,
due to TMD evolution. Data indicate also that the width is probably increasing as
x decreases and there is room for a flavor dependence, even though also a flavor-
independent scenario is not ruled out. There are still important questions that need
to be answered with more precision in future analyses [6], also thanks to the avail-
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Fig. 121.3 Distributions in the transverse-momentum plane, at fixed x = 0.1, of unpolarized up
and down quarks inside a proton transversely polarized in the +y direction, as described by the
Sivers function. The deep red (blue) indicates large negative (positive) values for the Sivers function.
(Adapted from [1])

ability of new data. For example, we aim to reduce the uncertainties and eventual
bias in the choice of the functional form adopted as input in the fit as well as in
the prescription to deal with the non-perturbative part of the TMD evolution. The x
dependence along with the flavor dependence are practically unknown. Calculations
in different models [5, 18, 62, 68] and on lattice [60] indicate that the dependence of
the transverse-momentum distributions on the quark polarisation and flavor may be
significant at low scale, although it may be reduced under TMD evolution. A thor-
ough study in these directions is driving the upgrades of several existing facilities
(JLab, COMPASS and RHIC), and plays an important role also in the design and
construction of new facilities worldwide (EIC, FAIR, NICA and JPARC).

TheSivers function describes the difference between the probability to find a quark
with longitudinalmomentum fraction x and transversemomentumk⊥ inside a hadron
polarised transversely to its momentum direction, and the one where the polarisation
points in the opposite direction. As such it encodes the correlation between the
partonic intrinsic motion and the transverse spin of the nucleon, and it generates
a dipole deformation in momentum space, as shown in Fig. 121.3 for the density
distribution in the transverse momentum space at x = 0.1 of unpolarized up and
down quarks in a nucleon transversely polarized in the +y direction. The Sivers
function has been phenomenologically extracted by several groups, mainly from
analysing the azimuthal distributions of single hadrons in SIDIS (see, e.g., the review
of the different works in [14]). The existence of the Sivers function as well as of
the homolog Boer-Mulders function, describing transversely polarized quarks in an
unpolarized nucleon, is ultimately related to initial-state and final-state collinear
gluon interactions, which are summed into two different gauge links. This difference
in the gauge link leads to a modified universality properties of the Sivers and Boer-
Mulders functions, consisting in a sign flip in going from SIDIS to DY processes.
First experimental evidences of this sign change of the Sivers function come from
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the transverse spin asymmetries measured at RHIC in transversely polarized proton-
proton collision [2] and the pion-induced DY measurements at COMPASS [3].

121.4 Wigner Distributions

The concept ofWigner distributions in QCD for quarks and gluons was first explored
in [8, 42]. In these works, the standard three-dimensional Fourier transform in the
Breit framewas used, leading to six-dimensionalWigner distributions (three position
and three momentum coordinates), which are valid only for infinitely massive target
in order to get rid of relativistic corrections. A five-dimensional phase-space distribu-
tion free of relativistic corrections was introduced within the light-front formalism
in [50]. In this case, the Wigner distributions appear to be the Fourier transform
of GTMDs [24, 52, 57, 58], which reduce in particular limits to GPDs and TMDs.
However, theWigner distributions contain richer physics than TMDs andGPDs com-
bined, as they carry information about the correlations between the quarkmomentum
(x, k⊥) and transverse space position b⊥, which cannot be accessed by separately
studying TMDs or GPDs. Because of the uncertainty principle which prevents know-
ing simultaneously the position and momentum of a quantum-mechanical system,
these phase-space distributions do not have a simple probabilistic interpretation. For
this reason, they are often called quasi distributions, and only in the classical limit
they become positive definite. Nonetheless, the physics of phase-space distributions
is very rich and one can try to select certain situations where a semiclassical interpre-
tation is still possible. Currently, the best hope to access the GTMDs is in the low-x
regime for the gluon contribution [10, 15, 32, 35, 36, 40], while a single process
has been identified sofar for the quark sector [11].

At leading twist, there are 32 quark phase-space distributions, half of them being
associated to naive T-odd GTMDs and hence encoding initial and/or final-state inter-
actions. A detailed study of these distributions has been presented in [50, 53]. All the
contributions can be understood as encoding all the possible correlations between
target and quark angular momenta, see Table121.1. In particular, the function ρLU

for unpolarized quarks in a longitudinally polarized nucleon has attracted consider-

Table 121.1 Correlations between target polarization (SL , ST ), quark polarization (Sq
L , Sq

T ) and
quark OAM (�q

L , �
q
T ) encoded in the phase-space distributions ρX . U, L , T stand, respectively, for

unpolarized, longitudinal and transverse polarizations

ρX U L Tx Ty

U 〈1〉 〈Sq
L�

q
L 〉 〈Sq

x �
q
x 〉 〈Sq

y �
q
y〉

L 〈SL�
q
L 〉 〈SL Sq

L 〉 〈SL�
q
L Sq

x �
q
x 〉 〈SL�

q
L Sq

y �
q
y〉

Tx 〈Sx�
q
x 〉 〈Sx�

q
x Sq

L�
q
L 〉 〈Sx Sq

x 〉 〈Sx�
q
x Sq

y �
q
y〉

Ty 〈Sy�
q
y〉 〈Sy�

q
y Sq

L�
q
L 〉 〈Sy�

q
y Sq

x �
q
x 〉 〈Sy Sq

y 〉
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able attention because it gives direct access to the quark OAM. One has just to take
the phase-space average of the classical expression (b⊥ × k⊥) of the OAM as if the
Wigner distributions were classical distributions [50, 55], i.e.

Lq,g
z =

∫
dxd2b⊥d2k2⊥(b × k⊥)ρ

q,g
LU (x, b⊥, k⊥;W) =

∫
d2b⊥b⊥ × 〈k⊥〉q,g, (121.4)

where 〈k⊥〉q,g is the distribution in impact-parameter space of the quark/gluon mean
transverse momentum, i.e.

〈k⊥〉q,g =
∫

dxd2k⊥k⊥ρ
q,g
LU (x, b⊥, k⊥;W). (121.5)

In (121.4), the shape of the Wilson lineW determines the type of OAM [17, 34].
For a staple-like Wilson line, like e.g. the one involved in the description of SIDIS
scattering and DY processes, (121.4) leads to the canonical quark/gluon OAM, cor-
responding to the Jaffe-Manohar definition [37], irrespective of whether the staple is
future or past-pointing. For a straight Wilson line, it leads to the kinetic quark OAM,
corresponding to the Ji’s definition [41], and to the Ji-Xiong-Yuan [39] definition of
the gauge-invariant gluon OAM. Under a Fourier transform, the phase-space distri-
bution is related to the GTMD F1,4 [34, 45, 50], providing a relation between the
OAM and GTMDs that gives access to the so far elusive canonical OAM in lattice
QCD [25]. As an example, in Fig. 121.4 we show the distribution of the quark mean
transverse momentum obtained within a light-front constituent quark model [54,
55]. We clearly see that in a longitudinally polarized nucleon, the quarks have on
average nonzero OAM. The u quarks tend to orbit anti-clockwise inside the nucleon,
corresponding to Lu

z > 0 since the proton is represented with its spin pointing out
of the figure. For the d quarks, we see two regions. In the central region of the

Fig. 121.4 Distributions in impact parameter space of themean transversemomentum 〈kq
⊥〉 [fm−3]

of unpolarized quarks in a longitudinally polarized nucleon. The nucleon polarization is pointing
out of the plane, while the arrows show the size and direction of the mean transverse momentum
of the quarks. The left (right) panel shows the results for u(d) quarks. (Adapted from [55])
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nucleon, b⊥ < 0.3 fm, the d quarks tend to orbit anti-clockwise like the u quarks. In
the peripheral region, b⊥ > 0.3 fm, the d quarks tend to orbit clockwise. The mean
transverse momentum 〈k⊥〉q is always orthogonal to the impact-parameter vector
b⊥. In principle, there can also be a radial component, representing the effect of
initial and final state interactions. Such interactions being absent in the model, we
do not see any radial contribution.
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Chapter 122
Nucleon Parton Distribution Amplitude:
A Scalar Diquark Picture

Cédric Mezrag, Jorge Segovia, Minghui Ding, Lei Chang
and Craig D. Roberts

Abstract We report progress on the development of Perturbative Integral
Representation Ansätze to compute the nucleon Faddeev Wave function, using an
explicit quark-diquark picture. Our formalism is able to handle non-pointlike diquark
and to mimic the strong, dynamical correlations observed when solving the Faddeev
Equation. We then project the wave function in order to compute the leading-twist
Parton Distribution Amplitude.

122.1 Introduction

Oneof themain objective ofmodern physics is tomanage to describe hadron structure
in terms of quarks and gluons, the fundamental degrees of freedom of Quantum
Chromodynamics (QCD). A major effort is undertaken, both on the experimental
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and theoretical sides. Insight of hadron structure can be gained experimentally thanks
to the so-called factorisation theorem, which allows us to split cross sections or
amplitudes of various inclusive or exclusive processes into a “hard part”, expandable
in perturbation theory, and “soft part” encoding the non-perturbative information on
hadron structure.Within this framework, parton distribution amplitudes (PDAs) play
an important role in our understanding of exclusive processes at large momentum
transfer [1–4].

The PDAs can be computed from the Lightfront Wave Functions (LFWFs) by
integrating out, to a certain scale ζ, the transverse momentum degrees of freedom
of every parton belonging to the considered Fock state. If the energy involved in the
scattering event is high enough, the so-called leading twist PDA, coming from one
of the projection of the lowest Fock state is expected to dominate the description of
exclusive processes. Contrary to the light-quark meson sector, where a significant
effort has been performed in the recent years both using continuum techniques [5–7]
and lattice-QCD [8–11], the nucleon leading-twist PDA remains to be computed at
experimentally available energy, as only few modern attempts have partially tackled
the issue [12–14]. However, its limit when the typical scale, ζ, goes to infinity is
known and called the asymptotic PDA.

In this paper, we report the results (and the improvements made since [14]) of our
approach to compute an insightful PDA for the nucleon. It relies on twomain ingredi-
ents. First, we take advantage of the emerging picture coming from decades of work
on solving the Faddeev equation [15–19] yielding a borromean picture of the nucleon
[20]. This picture, which implies the constant breaking and formation of dynami-
cal diquark correlations within baryons, has scored phenomenological successes
(see e.g. [21–25]). Then, the Perturbation-Theory Integral Representation (PTIR)
introduced by Nakanishi [26, 27] plays the second essential role in our approach.
It allows us to write Bethe-Salpeter and Faddeev amplitudes in terms of a known
momentum-dependent kernel and amomentum-independent Nakanishi weight func-
tion. Interestingly, PTIR is proved to be valid at all order of perturbation theory, and
has already been used successfully in themeson sector to compute PDAs and beyond,
Parton Distribution Functions (PDFs) and Generalised Parton Distributions (GPDs)
(see [5, 28–38]).

122.2 Generalities

In order to define the nucleon PDA, we need to introduce two light-like vectors n
and p, related to the nucleon momentum P such that pμ = Pμ − nμP2/(2P · n).
Introducing a three-quarks matrix element, we can define the nucleon leading twist
PDA in Euclidean space as:
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〈0| εi jk
(
ũi↑(z1n)C†/nu j

↓(z2n)
)

/ndk
↑(z3n) |P,λ〉

= i
1

2
(p · n) fN /nB↑

∫
Dxϕ([x])e−i p·n ∑

i xi zi , (122.1)

where ũ is the quark field u transposed, B is the baryon Euclidean Dirac spinor, fN
is the normalisation constant of the PDA, or the value of the wave function at the
origin, [x] = (x1, x2, x3), and

Dx = dx1dx2dx3δ

(
1 −

3∑
i=1

xi

)
and q↑↓ = L↑↓q = 1 ± γ5

2
q. (122.2)

The PDA can be readily computed once the nucleon Faddeev wave function χ is
known. The latter is the non-amputated version of the Faddeev amplitude Ψ . As
already emphasised in the introduction, modern studies of the Faddeev amplitude
strongly suggest the existence of dynamical diquark correlations,1 and we therefore
describe the amplitude as:

Ψ = ψ1 + ψ2 + ψ3, (122.3)

where the labels refer to the quark bystander. ψ1,2 can be deduced from ψ3 by cyclic
permutations of the indices. One can decompose:

ψ3 = N 0
3 + N 1

3 (122.4)

N 0
3 = [

Γ 0(k, K )
]α1α2

τ1τ2
Δ0(K ) [S(�; P)B(P)]α3

τ3
, (122.5)

N 1
3 = [

Γ j;1
μ (k, K )

]α1α2

τ1τ2
Δ1

μν(K )
[A j

ν(�; P)B(P)
]α3

τ3
(122.6)

whereN 0
3 andN 1

3 are respectively the scalar and axial-vector diquark contributions
to ψ3, ({p}, {α}, {σ}) are respectively the momenta, Dirac and isospin labels of
the nucleon Faddeev Amplitude. We have P = p1 + p2 + p3, K = p1 + p2, � =
p3 − 1/3P , k = p1−p2

2 . The j sum runs over the isospin projections. The functions
Γ are the diquark correlations amplitudes, Δ0 and Δ1

μν are the diquark propagators.
Finally, the functions S and A j

ν are the quark-diquark Faddeev amplitudes. We left
the colour structure implicit as it generates only an overall prefactor absorbed in the
normalisation constant.

We do not tackle the computation of the PDA directly. Instead, we compute
the general form of its Mellin moments, and deduce the PDA from this general
expression. They are defined through:

〈xl1xm2 〉 =
∫

Dx xl1 x
m
2 ϕ(xi ), (122.7)

1We stress that these diquarks are not the elementary ones introduced 50years ago.
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where, due tomomentum conservation, only two indices are necessary to obtain their
entire set. Putting (122.7) in perspective with (122.1), it is straightforward to realised
that the Mellin moments are expectation values of local operators. Consequently, we
do not need to handle Euclidean, complex valued “light-like” combinations of the
Faddeev amplitude internal momenta. The moments are given through the projection
of the Faddeev Amplitude with:

i

2
fB p · n/nB↑〈xl1xm2 〉 =

∫
Dxxl1x

m
2

∫
d4�

(2π)4

×
∫

d4k

(2π)4

3∏
i=1

δ
(
xi − pi · n

P · n
)

χ(p1, p2, p3)O
ϕ
21O

ϕ
3

(122.8)

where the projection operators are:

Oϕ
21 = L↓C†/nL↑, Oϕ

3 = /nL↑. (122.9)

122.3 Examples for a Scalar Diquark

We exemplify the computation of the PDA based on the scalar diquark component of
the Faddeev Wave Function. The leading twist projection of (122.8) can be written
in terms of γ · L0 with:

L0ν = 1

4
Tr

[
γν/nL↑S(p3)Γ̃

0 S̃(p2)L
↓C†/nL↑S(p1)S

]
Δ0(K )

= 1

4
Tr

[
S(p3)Γ̃

0 S̃(p2)L
↓C†/nL↑

]
Tr

[
γν/nL↑S(p1)S

]
Δ0(K ), (122.10)

where S is the quark propagator. The scalar diquark contribution to the leading
twist PDA can therefore been split into two parts, one being the PDA of the scalar
diquark itself, the second the projected quark-diquark amplitude. These two pieces
are unsurprisingly convoluted through the momentum of the diquark.

A rigorous evaluation of the PDA certainly requires the computation of L0 using
propagators and amplitudes computed within a QCD-connected, symmetry preserv-
ing framework. However, multiple example have highlighted the fact that, the use of
algebraic models based on Perturbative Integral Representation (PTIR) reveals itself
already insightful [7, 32–35, 39]. We will therefore proceed with developing such a
model for the nucleon Faddeev Amplitude.
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122.3.1 Scalar Diquark Model and Structure

We start by modelling and evaluating the structure of the scalar diquark itself, fol-
lowing (122.10). For this, wemodel the quark propagator and the diquark correlation
vertex through:

S(p) = (−i /p + M)σM(p2), η0Γ (k, K )C† = iγ5

∫
dz(1 − z2)σΛΓ

(q+)

(122.11)
where σM(p2) = (p2 + M2)−1 and q+ = q + (z/2)K . We then used the methods
developed in [5, 35] in order to compute the Mellin moments of the Scalar diquark
PDA. We therefore introduce:

Dm
0 (K 2) = 1

P · n
∫

d4k

(2π)4

(
k · n
P · n

)m

Tr
[
S(p3)Γ̃

0 S̃(p2)L
↓C†/nL↑

]
, (122.12)

use a Feynman parametrisation to rearrange the denominator and introduce a care-
fully thought change of variable, in such a way that we can obtain:

Dm
0 (K 2) = η′

0

(
K · n
P · n

)m+1 ∫
dvdudβ(1 − z2(β, u, v))βm

[
(β(v(β − 2) + β) + u(v − β2)

] [M2 + K 2
] , (122.13)

with z(β, u, v) = −1 + 2(u − β)/(u − v), 0 ≤ v ≤ β ≤ u ≤ 1 and:

M = 4
(1 − u + v)M2 + (u − v)Λ2

Γ(
β(v(β − 2) + β) + u(v − β2)

) (u − v) . (122.14)

Equation (122.13) allows us to directly extract a pointwise expression for the DA, as
the expansion of a continuous function in terms of Mellin moments is unique. In the
case where M = ΛΓ , it is actually even possible to obtain a simple, algebraic result
for the structure of the diquark:

η′′
0 (y)ϕ0(x̂2, x̂3) = 12y

(
1 − y

x̂2 x̂3
ln

[
1 + x̂2 x̂3

y

])
, (122.15)

with y = M2/K 2, and η′′
0 (y) ensuring the PDA is normalised to 1 for every y. Inter-

estingly, this result is compatible with previous continuum studies of the pion PDA
[5, 40]; namely the limit when y � 1, i.e. K 2 	 Λ2

Γ the PDA goes to the asymp-
totic one: ϕ0(x̂2 x̂3) → 6x̂2 x̂3. This can be understood as the correlation amplitudes
momentum-space extent is far larger than the bound-state’s mass-scale, yielding an
effectively scale-free system. On the other hand, when y 	 1, i.e. K 2 � Λ2

Γ the
system tends to look like a pointlike particle and ϕ(x̂2, x̂3) → 1. One should note
that the end-point behaviour of our PDA is linear, independently of y.
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Fig. 122.1 Comparison of the 4 first Chebychev moments of the nucleon Faddeev Amplitude. Blue
curves, results of the present model; red curves, realistic solution of the Faddeev Amplitude from
[24]

122.3.2 Scalar Quark-Diquark Amplitude

In order to obtain the scalar diquark contribution to the nucleon PDA, it is necessary
to perform the convolution of our scalar diquark structure with the quark-diquark
Faddeev wave function. The latter is modelled using an effective diquark propagator
and a Faddeev amplitude also computed thanks to PTIR:

Δ0(K
2) = σM0(K

2), S(�, P) = iη
∫

dz(1 − z2)ρ(z)σ3
Λ0

(�2−), (122.16)

with �− = � − (1 + 3z)/6P . In the purpose of determining a realistic weight, we
expand the ρ function on the 3/2-Gegenbauer polynomial basis and we tune the
coefficients in order to reproduce the first Chebychevmoments coming from realistic
numerical solution of the Faddeev equation [23, 24]. The results, shown in Fig. 122.1,
are in fair but not perfect agreement with the realistic computations. From that point,
we apply the same computing strategy than before in order to integrate the system
over �. The results are shown on Fig. 122.2. The nucleon PDA appears to be skewed
with respect to the asymptotic one, emphasising that the bystander quark is more
likely to carry the baryon lightfront momentum than the two quarks forming the
strong diquark correlation.
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Fig. 122.2 Left: Result obtained for the computation of the Scalar diquark contribution using
the parameters (in unit of the nucleon mass): {M, M0,ΛΓ ,Λ0} = {2/5, 9/10, 3/5, 6/5}; Right:
asymptotic nucleon PDA

122.4 Conclusion

We present here a new step toward realistic models of the baryon PDA, by improving
our previous work and presenting the preliminary results we obtain in the scalar case.
The results are qualitatively identical to the previous ones, the scalar distribution is
skewed, emphasising the bystander quark, but quantitatively different as they are now
less skewed. We now look at extending our improved description of the Nakanishi
weight functions to the Axial-vector diquark contributions, and beyond to the first
radial excitation of the nucleon, namely the Roper resonance.
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Chapter 123
Hadron Spectroscopy and Structure in
the Dyson-Schwinger Approach

Gernot Eichmann

Abstract The Dyson-Schwinger/Bethe-Salpeter approach and its application to
hadron spectroscopy and structure calculations are briefly summarized. The method
allows one to calculate meson and baryon spectra, form factors, scattering ampli-
tudes and other quantities fromQCD’s correlation functions. The spectrum of excited
baryons is discussed alongwith advances towards understanding their transition form
factors.

123.1 Motivation

The nucleon and its excitation spectrum have traditionally been at the heart of strong
interaction studies. The proton is the only truly stable hadron and an ubiquitous ingre-
dient in hadron structure experiments: from elastic and deep inelastic ep scattering
to pp and p p̄ reactions, Nπ scattering, pion photo- and electroproduction, nucleon
Compton scattering and more; also searches for physics beyond the Standard Model
are typically performed on protons and nuclei. In addition, these experiments create
meson and baryon resonances too and thereby allow us to extract their properties.

The data collected at Jefferson Lab, CERN and other facilities around the world
show that hadrons are more complicated than the naive quark model suggests. For
example, ostensibly simple baryon resonances may be mixtures of three-quark and
multihadron states, and even our understanding of the nucleon is far from complete.
Hadrons are complicated objects made of quarks and gluons, and it is the complexity
of their interaction described by Quantum Chromodynamics (QCD) that encodes
phenomena such as confinement and spontaneous chiral symmetry breaking. With
quarks close to being massless, the dynamics of gluons plays a key role: for all we
know today, the major fraction of the mass of the proton and other light hadrons is
produced by glue.
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A theoretical description of hadrons is tied to a thorough understanding of nonper-
turbative QCD, which requires combined efforts from lattice QCD, functional meth-
ods, amplitude analyses, phenomenologicalmodels and other theoretical approaches.
Here we give a brief account of progress with functional methods, in particular the
combination of Dyson-Schwinger equations (DSEs) and Bethe-Salpeter equations
(BSEs), in calculating hadron spectroscopy and structure properties from QCD. For
details we refer to the review [1].

123.2 From QCD’s Correlation Functions to Hadrons

The basic starting point are QCD’s correlation functions or n-point functions, some
of which are collected in Fig. 123.1: the ‘dressed’ quark and gluon propagators, the
quark-gluon vertex, three-gluon vertex and so on. In contrast to the few tree-level
propagators and interactions that define the classical Lagrangian, the full information
on the quantum field theory is encoded in its (infinitely many) correlation functions.
These can be calculated from QCD’s partition function, either directly using lattice
QCD, or by deriving coupled equations for them, namely the DSEs which are the
quantum equations of motion.

The DSEs are nonperturbative, self-consistent, exact equations which form an
infinitely coupled system. At large momenta the coupling becomes small and they
reproduce perturbation theory, as illustrated in Fig. 123.1 for the quark propagator. At
small momenta, on the other hand, they encode effects which cannot happen at any
order in perturbation theory, such as the nonperturbative generation of a quark mass
scale (a ‘constituent-quark mass’) due to spontaneous chiral symmetry breaking, or
the disappearance of the massless gluon pole and thus a gluon ‘mass gap’; see [2–5]
and references therein.

Because the correlation functions are gauge-dependent, one has to choose a gauge
and themost convenient one in practice is Landau gauge. Landau-gauge lattice results

Fig. 123.1 Top: Some of QCD’s elementary n-point functions. Bottom: Nonperturbative quark
DSE together with its perturbative expansion
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Fig. 123.2 Top: Four-point qq̄ correlator, its pole behavior and the corresponding meson Bethe-
Salpeter equation. Bottom: Covariant Faddeev equation for a baryon

for some of the elementary two- and three-point functions are available, see e.g. [6–
10] and references therein. A different approach is the functional renormalization
group (FRG), which leads to a similar tower of equations [11, 12]. To arrive at closed
equations which can be systematically improved, the functional methods require
truncations, either by neglecting higher n-point functions or higher-order terms in
the quantum effective action. For the two- and three-point functions investigated so
far [13–17] the three methods—lattice QCD, FRG equations and DSEs—provide
qualitatively similar results, which suggests that a quantitative agreement is indeed
within reach.

The properties of higher n-point functions become progressively more com-
plicated since they depend on an increasing number of kinematic variables and
Lorentz/Dirac tensors. General principles such as Lorentz invariance and gauge
invariance pose constraints on them, which should be worked out before calculating
their dynamical properties. So far, apart from the two- and three-point correlators, the
structure of higher n-point functions is still largely unknown territory but progress
is underway [12, 17–20].

Also the properties of hadrons are encoded in the correlation functions, namely
in higher n-point functions which permit a spectral representation in terms of gauge-
invariant hadron bound states andmultiparticle states. For example, the qq̄ four-point
function contains all meson poles, and so does any other n-point function that creates
meson quantum numbers (qq̄g, qq̄qq̄ etc.). Likewise, the qqq six-point function
contains all baryon poles. The residue at a pole defines the Bethe-Salpeter (BS)
wave function Ψ shown in Fig. 123.2, which encodes the properties of the respective
hadron.

The BS wave function can be calculated from its BSE, which at the same time
determines the mass of the state. The BSEs for mesons and baryons are shown in
Fig. 123.2. They are homogeneous integral equations in momentum space, which
become eigenvalue equations for the respective qq̄ and qqq kernels. The three-body
BSE is also known as the covariant Faddeev equation; in this case the kernel is the
sum of the irreducible two- and three-quark kernels.

In practice, the general strategy is to keep the full relativistic structure of the
BS wave functions intact and make approximations only at the level of the kernels.
A popular truncation is the so-called rainbow-ladder interaction, where the two-
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body kernels are approximated by a vector-vector interaction with a momentum-
dependent effective interaction α(k2). The quark propagator is solved from its DSE
in Fig. 123.1, which dynamically breaks chiral symmetry: if the interaction is strong
enough, it produces a running quark mass function which becomes large at small
momenta and transforms the current quark into a dynamical ‘constituent quark’. The
resulting mass function is what makes hadron masses large even in the chiral limit of
massless current quarks, whereas the pseudoscalar mesons remain massless because
they are the Goldstone bosons of spontaneous chiral symmetry breaking. Rainbow-
ladder has been frequently used in hadron spectrum and structure calculations [21,
22]. It provides a good overall description of heavy mesons but also light mesons in
the pseudoscalar and vector channels [23–28], their decays, form factors, scattering
amplitudes and, as it turns out, also a range of baryon properties including masses,
elastic and transition form factors and more [1]. Moreover, the analogous four-quark
equation for tetraquarks reproduces the mass pattern of the light scalar mesons [29].

To make a step forward to a quantitative understanding of hadron properties, one
must improve the description of the underlying n-point functions. For example, in
a recent beyond rainbow-ladder calculation all two- and three point functions in the
system were solved, so that the BS kernel is no longer an input but a dynamical
result [34]. This significantly improves the light meson spectrum: while the pseu-
doscalar and vector-meson ground states are less sensitive, the scalar and axialvector
mesons (which are too strongly bound in rainbow-ladder) acquire large repulsive
shifts, which puts them in the ballpark of experimental results, see Fig. 3.21 in [1].

123.3 Excited Baryons

Most baryon spectroscopy calculations so far have been performed in rainbow-ladder
and attempts to go beyond rainbow-ladder are progressing [1, 30, 35]. In fact, already
the rainbow-ladder kernels reproduce the masses of the nucleon, the Δ(1232) and
the Roper resonance N (1440), cf. Fig. 123.3. The remaining channels, however,

Fig. 123.3 Nucleon and Δ spectrum for J P = 1/2± and 3/2± states. The three-body (open
boxes [30, 31]) and quark-diquark results (filled boxes [32]) are compared to the PDG values
with their experimental uncertainties [33], see [32] for details
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come out too low, which is similar to the situation in the meson sector beyond pseu-
doscalar and vector mesons. The three-body calculations are numerically expensive
especially for excited states, because with the full structure of the relativistic Fad-
deev amplitudes the equations become eigenvalue problems for matrices of the size
106 × 106 . . . 109 × 109 depending on the numerics.

At this point a quark-diquark interpretation can provide further insight. Instead of
solving the three-body Faddeev equation directly, one can approximate it to a quark-
diquark BSE where the baryon is treated as a quark-diquark system that interacts
by quark exchange. To minimize the model input in such approaches [38–41], the
diquark ingredients in [32] were calculated self-consistently from their DSEs and
BSEs, so that also the quark-diquark systemcan be traced back to the sameunderlying
quark-gluon interaction.

As a result, the three-quark and quark-diquark results essentially agree with each
other; the N (1/2+) andΔ(3/2+) channels are described well but the remaining ones
show deficiencies. Those are due to the higher-lying diquarks: whereas N and Δ

are dominated by scalar and axialvector diquarks, the remaining channels are also
sensitive to pseudoscalar and vector diquarks [42] which are ‘too strongly bound’
just like their scalar and axialvector meson partners. By reducing the strength of
these diquarks through one parameter, which is fixed by the ρ − a1 splitting in the
meson sector, one arrives at the spectrum in Fig. 123.3 [32]. One observes a 1:1
correspondence between the number of levels with PDG states and the masses are in
almost quantitative agreement. An extension of the approach to the hyperon spectrum
is underway [43].

The Faddeev amplitudes carry a rich tensorial structure which can be organized
into eigenstates of spin and orbital angular momentum (OAM) in the rest frame [1,
38]. The resulting s, p, d and f -wave components (L = 0, . . . , 3) in Fig. 123.4
are different from the nonrelativistic quark model, where each baryon has definite
L . Relativistically, these components can mix: the nucleon and Δ(1232) have p-
wave components, the N (1535) has s waves, and p waves are even dominant for the
Roper. The subleading partial waves have consequences for form factors, for example
in the Nγ → Δ transition [44], which demonstrates that relativity is important in
the description of light baryons. Although these features should appear in other
relativistic approaches as well, they are rarely discussed; exceptions are the covariant
spectator theory [45] and light-front holographic QCD [46]. In the relativistic quark
model of [47] there is no reference to non-traditional OAM contributions in baryons,
but it is conceivable that they can appear after boosting the wave functions, e.g. in
form factor calculations [48].

In addition to spectroscopy, more detailed properties of excited baryons can be
extracted from their electromagnetic transition form factorsγ∗N → N ∗. Figure123.5
shows the generic properties of transition form factors. In the spacelike region
(Q2 > 0) they are accessible in meson photo- and electroproduction experiments
at Jefferson Lab, ELSA andMAMI [49–51]. These have been the main experimental
sources for the discovery of newnucleon resonances and the combination of precision
data with multichannel partial-wave analyses has led to the addition of several new



788 G. Eichmann

Fig. 123.4 Orbital angular-momentum contributions in the Faddeev amplitude of each baryon (in
%); all bars sum up to 100% [36]. The rectangular backgrounds are the orbital angular-momentum
assignments in the non-relativistic quark model [37]

Fig. 123.5 Top: Generic behavior of an electromagnetic transition form factor in the spacelike and
timelike regions. Bottom: Form factor diagram in the Faddeev approach

states to the PDG [33]. The timelike region (Q2 < 0) above N N̄ ∗ threshold is accessi-
ble in e+e− ↔ N N̄ ∗ reactions, whereas the near timelike region Q2 > −(m∗ − m)2

can be measured through the Dalitz decays N ∗ → Ne+e− at HADES/GSI [52].
In the Faddeev approach, whose form factor decomposition is shown in the bot-

tom panel of Fig. 123.5, these different kinematical regions are tightly connected.
Spacelike results for elastic and transition form factors are available from both three-
body [53–55] and quark-diquark calculations [41, 44], see [1] for a review. With
the exception of missing meson-cloud effects at low Q2, they describe the existing
data relatively well. The timelike structure, on the other hand, should be dominated
by ρ,ω, . . . bumps because a photon can fluctuate into vector mesons. The bumps
originate in the quark-photon vertex, which is the contraction of the qq̄ four-point
function in Fig. 123.2 with γμ and thus inherits its vector-meson poles. The mesons
in rainbow-ladder are stable hadrons and produce poles on the real axis instead of
poles in the complex plane on higher Riemann sheets. Thus, to access the time-
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like properties of form factors one must implement the proper resonance mecha-
nism beyond rainbow-ladder but also develop the necessary numerical tools in terms
of residue calculus and contour deformations. Both strategies are currently being
explored [56, 57].

123.4 Nucleon Resonances from Compton Scattering

In the last decade meson photo- and electroproduction experiments have become
the main tools for gathering information on the baryon excitation spectrum. Under-
standing the structure and dynamics of scattering amplitudes is clearly important:
dynamical reaction models and amplitude analyses based on general principles such
as unitarity, analyticity and crossing symmetry are necessary to organize the exper-
imental data and disentangle the various partial-wave contributions to extract reso-
nance properties. Moreover, scattering amplitudes contain an abundance of informa-
tion in addition to spectroscopy and thus their study also serves a purpose beyond
the extraction of resonances.

An example is nucleon Compton scattering (CS), which encodes a broad range of
applications from nucleon polarizabilities, structure functions, two-photon correc-
tions to form factors and the proton radius puzzle to generalized parton distributions,
see e.g. [58–61] for reviews. Our experimental knowledge of the CS amplitude is
restricted to a few kinematic limits where direct measurements are possible, such as
real and virtual CS and the forward limit.

Here we only focus on the nucleon resonances that appear in CS through the pro-
cess γ∗N → N ∗ → γ∗N . The absence of spurious singularities in the CS amplitude
poses constraints on the transition current matrix elements γ∗N → N ∗, which must
satisfy electromagnetic gauge invariance and spin-3/2 gauge invariance [62]. The
most general tensors according to these principles can be found in [63], along with a
structure analysis of CS including all measured nucleon resonances with J P = 1/2±
and J P = 3/2±. As a consequence, the corresponding transition form factors are free
of kinematic constraints, so their only singularities are physical poles and cuts such
as in Fig. 123.5.

An example is theRoper resonance, the first excitation of the nucleon. For timelike
Q2 its transition form factors should resemble Fig. 123.5, so that their rise at low
spacelike Q2 is due to the first ρ-meson pole. However, to see such a behavior one
must first cast the experimental data into the constraint-free form factors F1(Q2) and
F2(Q2) corresponding to the tensors in [63]. These are shown in the top panels of
Fig. 123.6 for spacelike Q2. The bands are fits to the data and analogous fits for all
nucleon resonances with J P = 1/2± and J P = 3/2± can be found in [63].

The existing reaction models usually do not extract the form factors but instead
their helicity amplitudes (bottom panels), which are linear combinations of the form
factors but not free of kinematic constraints. In particular, in the case of the Roper
both A1/2 and S1/2 must vanish at the pseudothreshold Q2 = −(m∗ − m)2, where
m and m∗ are the nucleon and Roper masses. For example, the MAID curve [67] in
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Fig. 123.6 γ∗N → N (1440) transition form factors and helicity amplitudes. The PDG [33] and
CLAS data [50, 64, 65] are shown together with the A1/MAMI point for S1/2 [66] and the MAID
parametrization (dashed) [67]. The bands are fits [63]. The form factors are dimensionless and the
helicity amplitudes carry units of 10−3 GeV−1/2

Fig. 123.6 is compatible with the recent A1/MAMImeasurement for S1/2 at very low
Q2 [66] but does not reproduce the behavior at the pseudothreshold. This translates
into a turnover of F1(Q2) at very low Q2, whichwould be difficult to explain from the
analytic structure in the timelike region if the first ρ-meson pole has a positive residue.
While such kinematic constraints must be implemented explicitly in the helicity
amplitudes, they follow automatically when using constraint-free form factors.

The Q2-dependence of several transition form factors is still poorly known, espe-
cially at low Q2: even the best known resonances such as the N (1440), N (1520)
and N (1535) do not have any data below Q2 � 0.3 GeV2. In view of connecting
the properties of form factors across the spacelike and timelike regions, this clearly
motivates the need for future measurements at low Q2.
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Chapter 124
A Possibility of Nuclear Reaction Near
the Three-Body Break-Up Threshold

Shinsho Oryu, Takashi Watanabe, Yasuhisa Hiratsuka, Masayuki Takeda
and Yoshio Togawa

Abstract We investigate a possibility of nuclear reaction near the three-body
break-up threshold (3BT) by a viewpoint of the three-body Hamiltonian. We study
a virtual molecule: CsD2 which is well developed in a cuboctahedron CsD2Pd12-
cluster, where CsD2 is surrounded by the Pd12-cage. We found that the energy levels,
which are obtained without the Coulomb repulsive potential, could be boosted up
by the repulsive Coulomb correction, however the Coulomb excited resonant-level
does not decay by the barrier of Pd12-cage. The boost up effect resolves a difficulty
of the penetration problem. If the molecular level Emol and the boosted up nuclear
levels Enucl(<Emol) can not close each other at the top of the Coulomb barrier or the
3BT, then their wave functions do not overlap, and the electromagnetic multipole
(EMM) moment becomes zero. Thereby, the molecular level is stable without such
an EMM-transition. However, if both of the molecular state and the excited nuclear
state approach each other by a long range hadron potential, then the molecular state
transfers to the nuclear La states by the EMM-transition: Cs(2d,γ )La with proper
selection rules, step by step.

Recently,Watari investigated a cuboctahedron: Pd13/Dn and also CsD2Pd12 by using
the well-known electron-density functional method, and found that a quasi-molecule
CsD2 is well developed inside of the Pd-cluster [1].

In this paper, we would like to investigate the d-Cs-d three-body problem for the
reaction Cs(2d,γ )La which is surrounded by the Pd-cage from a viewpoint of the
three-body Hamiltonian. The total Hamiltonian is given by

H = (K3−ion + V had
3−ion + VC

3−ion) + (KZ−el + V M
ion−el + V M

el−el)

= Hhad + hM
c (124.1)
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with the Hamiltonian for three-hadron: Hhad , and electrons: hM
c . They are defined

by

Hhad = K3−ion + V had
3−ion + VC

3−ion, (124.2)

≈ K3−ion + V had
3−ion + V M

3−ion, (124.3)

hM
c = KZ−el + V M

ion−el + V M
el−el , (124.4)

and also we define the molecular Hamiltonian,

HM = (
K3−ion + VC

3−ion

) + hM
c , (124.5)

where in (124.2), K3−ion , V had
3−ion and VC

3−ion are the kinetic energy terms for the
three hadrons, the corresponding three hadron potentials, and the three Coulomb
repulsive potentials. In (124.2), (124.3), V M

3−ion differs from VC
3−ion where V M

3−ion
is modified by electrons which break in the ion-chain. However, the difference is
negligible, because the ratio of inner electrons for the large Z is very small, and
also the effect for V M

3−ion is calculated over the electron region: 0 ≤ r < ∞. In the
electron Hamiltonian hM

c for the Z -electrons system, KZ−el , V M
ion−el , and V M

el−el are
the kinetic energy for Z -electrons, and the attractive ion-electrons potentials, and the
repulsive electron-electron potentials, respectively.

The eigen-equation for (124.1): H |Ψ >= E |Ψ > should be solved in the region
0 ≤ r < ∞, however, it is technically rather hard. Therefore, we adopt the second
best way to find a solution where the Hamiltonian is divided for two parts Hhad with
the eigen function |ψ >, and hM

c with the electron wave function |ψM >. Therefore,
the total wave function |Ψ > could be given by |Ψ >= |ψ ⊗ ψM >.

On the other hand, the molecular Hamiltonian satisfies

< Ψ |HM |Ψ > = < Ψ |K3−ion|Ψ > + < Ψ |V M
3−ion|Ψ >

+ < Ψ |hM
c |Ψ >≡ εM , (124.6)

where the first two terms of the right hand side (r.h.s.) belong to the hadron part, and
the last term belongs to the electron system.

Therefore, the expectation value for the electron Hamiltonian: hM
c for the three

fixed ions becomes

< Ψ |hM
c |Ψ >= εM− < Ψ |V M

3−ion|Ψ >= εM − εM
c , (124.7)

with the static approximation: < Ψ |K3−ion|Ψ >= 0, and also

< Ψ |VC
3−ion|Ψ > = < Ψ |VC

Csd1 + VC
Csd2 + VC

d1d2 |Ψ >≡ εc, (124.8)

< Ψ |V M
3−ion|Ψ > = < Ψ |V M

Csd1 + V M
Csd2 + V M

d1d2 |Ψ >≡ εM
c , (124.9)
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for the d2-Cs-d1 three-ion system. The difference between εc and εM
c is very

small as mentioned above. In (124.7), the molecular energy: εM is obtained from
< Ψ |hM

c |Ψ > which is boosted up by the value εM
c ,

εM =< Ψ |hM
c |Ψ > +εM

c . (124.10)

For the eigenvalue of the hadron Hamiltonian, let us adopt a highest nuclear
(HN)-level: Enmax = η(< 0), we obtain by using (124.2), (124.3), and also (124.8),
(124.9),

< Ψ |Hhad |Ψ > = < Ψ |(Khad + V had
3−ion)|Ψ > + < Ψ |VC

3−ion|Ψ >

= η+ < Ψ |VC
3−ion|Ψ >= η + εc (124.11)

≈ η+ < Ψ |V M
3−ion|Ψ >= η + εM

c . (124.12)

In (124.11) and (124.12), the HN-level is boosted up to near the 3BT or the top
of the Coulomb barrier. Therefore, if η ≈< Ψ |hM

c |Ψ > is satisfied, the equilibrium
between the hadron state and the molecular state could be realized. By the boost-up
effect, the values η + εM

c and< Ψ |hM
c |Ψ > +εM

c are close to the top of the Coulomb
barrier or the 3BT. Therefore the molecular wave function of the CsD2 state could
easily penetrate the VC

3−ion Coulomb barrier.
In conclusion, (124.1), (124.10), and (124.11), (124.12) give the total energy by,

< Ψ |H |Ψ > = < Ψ |Hhad |Ψ > + < Ψ |hMc |Ψ >

= (
η + εc

)+ < Ψ |hMc |Ψ >= (
η + εMc

)+ < Ψ |hMc |Ψ > (124.13)

= (η + εc) + (εM − εc) = (η + εMc ) + (εM − εMc )

= η + εM = E, (124.14)

where< Ψ |Hhad |Ψ >≈< ψ |Hhad |ψ >≡ Enmax = η is calculated only in the hadron
system, while < Ψ |hM

c |Ψ >≈< ψM |hM
c |ψM > can be obtained in the electron sys-

tem corresponding to the three-ion coordination. This means that the numerical
calculations should be done separately in the nuclear region, and in the molecular
region. Thus, we can obtain both results accurately.

If the |η| is too large in the hadron system, theHN-level of the d-Cs-d nuclear bind-
ing energy will be smaller than the top of the Coulomb barrier, where the molecular
wave function and the hadron wave function do not overlap, therefore the EMM-
moment becomes very small, and the transfer cannot occur. If η + εM

c comes very
close to the molecular binding energy: εM by a long range hadron potential, such a
state could transfer to the HN-level [2–7], and to the deeper nuclear levels step by
step by the EM-transitions, until the La (see Fig. 124.1).

There are some experimental reports about the low temperature nuclear synthesis
which aremainly observed in the Pd-crystal [8–10]. If these experiments are trustwor-
thy, our theory may be helpful to investigate them. On the contrary, the experimental
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(b)

(a)

Fig. 124.1 An image of the one-dimensional effective Cs-d potential in the Pd12-cage on the d-
Cs-d linear bond. The right-half of wine-bottle-like potential for central Cs-ion is illustrated. The
boost-up effect for the energy levels by the Cs-d Coulomb barrier is sketched. The vertical axis is
the energy with theMeV scale, and the horizontal axis is the distance fromCs to d with the log-scale
by fm. The Cs-d repulsive Coulomb plus the nuclear potential, and a repulsive Pd12-cage (dotted
red line) are illustrated. The black dashed line represents the correction by electrons with V M

ion−el

and V M
el−el , and the black dotted line shows the nuclear potential with a long range effect. The black

solid line is an image of the total effective two-body potential. Energy levels are indicated by blue
solid lines under the zero Coulomb level (a), and also under the top of the Cs-d Coulomb barrier
(b), where some of them belong to the molecular states. The boost-up effect raises the energy levels
of (a) to (b). Therefore, the penetration difficulty is resolved

success could approve not only the present theory, but also our prediction for the
supper long range hadron potential [2–5].

The authors would like to express our deep gratitude to Drs. N. Watari, I. Toyoda,
S. Tsuruga, A. Kodama, and I. Lagaris for valuable discussions and comments. The
financial support is provided by MHI Co. Ltd.
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Chapter 125
The Problem of Cluster Separability in
Relativistic Few-Body Systems

Wolfgang Schweiger, Nikita Reichelt and William H. Klink

Abstract An appropriate framework for dealing with hadron structure and hadronic
physics in the few-GeV energy range is relativistic quantum mechanics. The
Bakamjian-Thomas construction provides a systematic procedure for implement-
ing interactions in a relativistic invariant way. It leads, however, to problems with
cluster separability. It has been known for some time, due to Sokolov’s pioneering
work, that mass operators with correct cluster properties can be obtained through
a series of unitary transformations making use of so-called packing operators. In
the present contribution we sketch an explicit construction of packing operators for
three-particle systems consisting of distinguishable, spinless particles.

125.1 Relativistic Quantum Mechanics

By a relativistic quantummechanicswemean a quantum theory for a finite number of
particles invariant under Poincaré transformations. Speaking more formally, one has
to find a representation of all the Poincaré generators in terms of self-adjoint operators
on an appropriate Hilbert space such that these operators satisfy the Poincaré algebra.
For an interacting theory it is well known that at least three of the Poincaré genera-
tors have to contain interaction terms. Depending on which of the Poincaré genera-
tors become interaction dependent, one distinguishes different forms of relativistic
dynamics [1]. For our purposes it turns out to be most convenient to use the point-
form of relativistic dynamics in which all the components of the four-momentum
operator Pμ contain interactions, whereas the generators of Lorentz-transformations
stay interaction free [2].

The only systematic procedure for implementing interactions in the Poincaré
generators of an N -particle system such that the Poincaré algebra is preserved was
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suggested long ago by Bakamjian and Thomas [3]. In the point form this procedure
amounts to factorizing the four-momentum operator into a four-velocity operator
and a mass operator and putting interaction terms into the mass operator:

Pμ = MV μ
free = (Mfree + Mint)V

μ
free = Pμ

free + Pμ
int . (125.1)

Since the mass operator is a Casimir operator of the Poincaré group, the constraints
on the interaction terms that guarantee Poincaré invariance become simply that Mint

should be a Lorentz scalar and that it should commutewith V μ
free, i.e. [Mint, V

μ
free] = 0.

A very convenient basis for representing Bakajian-Thomas (BT) type mass oper-
ators consists of velocity states [2], |v;k1, μ1;k2, μ2; . . . ;kN , μN 〉. These specify
the state of an N -particle system by its overall velocity v, the particle momenta ki

in the rest frame of the system (
∑

i ki = 0) and the (canonical) spin projections μi

of the individual particles. The overall velocity factors out in velocity-state matrix
elements of BT-type mass operators, leading to the separation of overall and internal
motion of the system.

125.2 Cluster Separability and Packing Operators

An important requirement for a quantum mechanical system, in addition to rela-
tivistic invariance, is cluster separability. Cluster separability roughly means that
subsystems of a quantum mechanical system should behave independently, if they
are sufficiently space-like separated. There are weaker and stronger notions of clus-
ter separability depending, e.g., on whether it is demanded for the S-operator or the
Poincaré generators [4]. Also the kind of convergence of these quantities when let-
ting the separation distance go to infinity plays an important role. We are interested
in cluster separability of the Poincaré generators and, in particular, of the invariant
mass operator. For our purposes it is useful to introduce a purely algebraic notion of
cluster separability which we call coupling constant separability. Coupling constant
separability means that, for a particular clustering, after separation of the clusters,
operators behave as if there were no interaction between the clusters. It does not say
much about the range of the interactions, but for the construction we are going to
make it is a useful and reasonable concept.

Problems with cluster separability start to show up for interacting three-particle
systems and are closely connected with how the two-particle subsystems are imple-
mented in the three-particle Hilbert space. Let us assume for simplicity spinless,
distinguishable particles and start with BT-type four-momentum operators for the
two-particle subsystems, Pμ

i j = Mi j V
μ

i j free, i, j = 1, 2, 3, i �= j . The third particle
is then added by means of the usual tensor-product construction,

P̃μ

i j |k := Pμ

i j ⊗ Ik + Ii j ⊗ Pμ

k . (125.2)
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The individual four-momentum operators P̃μ

i j |k describe 2+1-body systems in a
Poincaré invariant way and also exhibit coupling constant separability. One may
now think of adding the four-momentum operators for the different clusterings, as in
the non-relativistic case, to end upwith a fourmomentumoperator for a three-particle
system with pairwise interactions, P̃μ

123 = P̃μ

12|3 + P̃μ

23|1 + P̃μ

31|2 − 2Pμ
123 free . But the

components of P̃123 do not commute, [P̃μ
123, P̃

ν
123] �= 0 since [Mi j int, V

μ

j ] �= 0. The

three-particle system, described by the four-momentum operator P̃μ
123, is thus not

relativistically invariant. The first step to overcome this problem is to factorize the
four-momentum operators for the different clusterings again into a mass operator
and a four-velocity operator:

P̃μ

i j |k = M̃i j |k Ṽ
μ

i j |k with M̃2
i j |k = P̃i j |k · P̃i j |k . (125.3)

The four-velocities Ṽ μ

i j |k contain interactions and differ for different clusterings. The
key observation is now that there exist unitary operatorswhich relate the four-velocity
operators, since they all have the same spectrum (R3). One can find, in particular,
unitary operators Ui j |k such that

Ṽ μ

i j |k = Ui j |k V
μ
123 freeU

†
i j |k . (125.4)

Applied to the four-momentum operators P̃μ

i j |k these unitary operators pack the

interaction dependence of the four-velocity operators Ṽ μ

i j |k into the mass opera-

tor Mi j |k = U †
i j |k M̃i j |kUi j |k such that P

μ

i j |k = U †
i j |k P̃

μ

i j |kUi j |k = Mi j |kV
μ
123 free is of BT-

type. ThereforeUi j |k were called packing operators by Sokolov in his seminal paper
on the formal solution of the cluster problem [5]. The new four-momentum operator
Pμ
123BT = Pμ

i j |k + Pμ

i j |k + Pμ

i j |k − 2Pμ
123 free = M123BTV

μ
123 free is now also of BT-type

and thus provides a relativistic invariant description of a three particle system with
pairwise two-particle interactions; but it still misses coupling-constant separabil-
ity, as one can easily check. The way out is a further unitary transformation which
involves the packing operators we have already introduced:

Pμ
123 =

(∏
Ui j |k

)
Pμ
123BT

(∏
Ui j |k

)†
. (125.5)

IfUi j |k → 1 for separations ki | j , jk|i and i | j |k and if (
∏

Ui j |k) commutes with the
generators of Lorentz transformations, it can be shown that such a generalized BT
construction leads to relativistic invariance and coupling-constant separability of the
resulting three-body model [5].

The procedure just outlined solves the cluster problem for three-body systems
formally, but its practical applicability depends strongly on the capability to calculate
the packing operators. The solution to this problem can also be found in Sokolov’s
paper [5]. The trick is to split the packing operator further into a product of unitary
operators which depend on the corresponding two-particle mass operators in a way
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to be determined, Ui j |k = W †(Mi j )W (Mi j free). With this splitting one can rewrite
Eq. (4) in the form W (Mi j free)V

μ
123 freeW

†(Mi j free) = W (Mi j )Ṽ
μ

i j |kW †(Mi j ) . Since
this equation should hold for any interaction, the right- and left-hand sides can be
chosen to equal some simple four-velocity operator, for which V μ

i j free ⊗ Ik is a good
choice. In order to compute the action of W it is then convenient to take bases
in which matrix elements of V μ

123 free, V
μ

i j free ⊗ Ik and Ṽ μ

i j |k can be calculated. This

is the basis of (mixed) velocity eigenstates |vi j ; k̃i , k̃ j ,pk〉 = |vi j ; k̃i , k̃ j 〉 ⊗ |pk〉
of Mi j |k free if one wants to calculate the action of W (Mi j free) and corresponding
eigenstates of Mi j |k if one wants to calculate the action of W (Mi j ). It turns out
that the effect of these operators is mainly to give the two-particle subsystem i j the
velocity vi j |k of the whole three-particle system. After some calculations one finds
that the whole effect of the packing operator Ui j |k on the mass operator M̃i j |k is just
the replacement of kinematical factors in the mixed velocity-state matrix elements,
so that the transformed mass operator Ui j |k M̃i j |k Ui j |k attains BT-type structure [2]:

1
m ′ 3/2

i j m3/2
i j

v0
i j δ

3(v ′
i j − vi j )

↓√
v ′
i j ·v123

m ′ 3/2
123

√
vi j ·v123
m3/2

123

v0
123 δ3(v ′

123 − v123).

(125.6)

Here mi j and m123 are the invariant masses of the non-interacting two-particle sub-
system i j and the non-interacting three-particle system, respectively, vi j and v123 are
the corresponding four-velocities.

125.3 Concluding Remarks

Knowing the packing operators and their action on the mass operators M̃i j |k , we
can construct a three-body mass operator M123 = (

∏
Ui j |k) M123 BT (

∏
Ui j |k)† for

distinguishable, spinless particles that has correct cluster properties. The inclusion
of spin should be straightforward. The treatment of identical particles is, however,
more intricate, because the simple product (

∏
Ui j |k) has to be replaced by some

kind of symmetrized product to preserve the symmetry under exchange of particles.
Although the formal solution of the cluster problem and explicit expressions for the
packing operators have been known for quite some time [4, 5], cluster separability has
always been neglected in practical applications. Thismaywell be justified for weakly
bound nuclear systems [6], but has to be thoroughly investigated for strong binding.
With our results we are now, at least in the simple case of spinless, distinguishable
particles, in the position to perform numerical studies for clarifying the precise role
of cluster separability in relativistic three-body systems.
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Chapter 126
Scattering with Real-Time Path Integrals

W. N. Polyzou and E. S. Nathanson

Abstract Sharp-momentum transition matrix elements for scattering from a
short-range Gaussian potential are computed using a real-time path integral. The
computation is based on a numerical implementation of a new interpretation of the
path integral as the expectation of a potential functional with respect to a complex
probability distribution on cylinder sets of paths. The method is closely related to a
unitary transfer matrix computation.

126.1 Path Integrals and Complex Probabilities

Path integrals [1, 2] provide a means for treating problems in quantum mechanics
that are often difficult to treat by other means. Normally path integral calculations
are limited to quadratic interactions or generating perturbation theory. When the
time can be made imaginary they can also be approximated using Monte Carlo [3]
integration.

Most applications are naturally formulated using real time. Scattering is one such
application. While the computation of real-time path integrals is more challenging, it
is interesting to explore how far real-time applications can be pushed. Onemotivation
is because real-time path integrals represent unitary time evolution, direct treatments
of real-time path integrals have the potential to be candidates for applications of
quantum computing algorithms.

The problem with the interpretation of the real-time path integral as an integral is
that the measure has to be additive on a countable union of disjoint measurable sets.
When the measure is not positive, the evaluation of a countable sum of non-positive
numbers can be both infinite or finite, depending on how it is evaluated.
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In [4–6] the Feynman path integral is reinterpreted as the expectation of a potential
functional

E[F] F[γ ] := e−i
∫
V (γ (t))dt (126.1)

with respect to a complex probability on a space of paths. It was shown in [5, 6] that
this interpretation results in a global solution of the Schrödinger equation.

Classical probabilities on the real line are defined on measurable sets that are
generated by intervals under complements and countable unions. These sets are the
Lebesgue measurable sets. A Probability is a non-negative Lebesgue measurable
function that integrates to 1.

TheHenstock-Kurzweil integral [7, 8] provides an extension of the Lebesgue inte-
gral that is defined similar to a Riemann integral. Hesntock developed an alternative
probability theory based on this integral. Henstock’s probability agrees with classical
probability theory when the probability is non-negative, however he realized that it
could be extended to non-positive and complex probabilities if countable additivity
was replaced by finite additivity. Muldowney [4] suggested that this interpretation
could also be extended to reinterpret path integrals not as integrals, but as the expec-
tation of a potential functional with respect to a complex probability distribution on
a space of paths. Jørgensen and Nathanson verified that this interpretation leads to
approximations that converge to global solutions of the Schrödinger equation.

In one dimension the path-integral representations of the unitary time evolution
operator for a particle of mass μ in a potential V can be expressed as:

〈x0|e−i Ht |ψ〉 =

lim
N→∞(

μ

2π iΔt
)N/2

∫ N∏

i=n

dxne
i μ

2Δt (xn−1−xn)2−iV (xn)Δt 〈xN |ψ〉. (126.2)

where Δt := t/N . This follows from the Trotter product formula [9] and is the
standard form of the path integral. It is expressed as the limit of N -dimensional
integrals as N → ∞.

The complex probability interpretation arises by expressing the real line as the
union of a finite number of disjoint intervals

R = (−∞, x1n)︸ ︷︷ ︸
I0n

[x1n, x2n)︸ ︷︷ ︸
I1n

, · · · , [xM−1,n, xM,n)︸ ︷︷ ︸
IM−1,n

, [xM,n,∞)
︸ ︷︷ ︸

IM ,n

. (126.3)

and replacing the integral over each time slice by a sum of integrals over each of
these intervals

〈x0|e−i Ht |ψ〉 =

lim
N→∞(

μ

2π iΔt
)N/2

∑

m1···mN

N∏

n=1

∫

Imn

dxne
i μ

2Δt (xn−1−xn)2−iV (xn)Δt 〈xN |ψ〉. (126.4)
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Computationally the intervals should be chosen so e−iV (x) is approximately con-
stant on each interval. This also applies to the half-infinite intervals, where on these
intervals, for a scattering problem with a short-range interaction, e−iV (x) ≈ 1. When
these conditions hold the potential terms can be factored out of the integral, and
evaluated at any point ymn ∈ Imn:

〈x0|e−i Ht |ψ〉 ≈

lim
N→∞(

μ

2π iΔt
)N/2

∑

m1···mN

N∏

n=1

e−iV (ymn)Δt
∫

Imn

dxne
i μ

2Δt (xn−1−xn)2〈xN |ψ〉. (126.5)

What remains has the form
〈x0|e−i Ht |ψ〉 ≈

lim
N→∞

∑

m1···mN

P(x0, Im1, · · · , ImN )e−i
∑

n V (ymn)Δt 〈ymN |ψ〉 (126.6)

where

P(x0, Im1, · · · , ImN ) = (
μ

2π iΔt
)N/2

N∏

n=1

∫

Imn

dxne
i μ

2Δt (xn−1−xn)2 (126.7)

represents the complex probability that a path passes through ImN at time t1, ImN−1

at time t2, . . . Im1 at time tN . It has all of the properties of a complex probability. The
approximation converges in the limit that N gets large, the size of the intervals gets
small, and the boundary of the half-infinite intervals approaches ±∞. In principle
the intervals and evaluation points needed for a given accuracy are determined by
the Henstock theory of integration.

This representation has the advantage that, if the intervals are chosen the same
way on each time slice, the potential only needs to be evaluated at a small number
of points where the potential is not zero.

The computational problem is that the number of cylinder sets grows like MN in
the limit that both M and N become infinite. In order to make this computable the
complex probability is approximately factored [10] into a sum of products of one-
step complex probabilities. They represent the complex probability of starting at a
point in a given interval and coming out in another interval. This has the property that
sum over all final intervals is 1, since the particle has to come out in some interval.
The factorization has the form

P(x0, Im1, · · · , ImN ) ≈ P(x0, Im1)

N∏

n=2

P(ym(n−1), Inm) (126.8)
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Table 126.1 Sums of complex probabilities (5000 intervals)

y
∑

n �(P(y, In))
∑

n 	(P(y, In))

−25.005001 p = 1.000000e+00 + i(5.273559e−16)

−20.204041 p = 1.000000e+00 − i(1.387779e−16)

−15.003001 p = 1.000000e+00 + i(2.775558e−17)

−10.202040 p = 1.000000e+00 + i(2.775558e−16)

−5.001000 p = 1.000000e+00 + i(7.771561e−16)

0.200040 p = 1.000000e+00 + i(3.608225e−16)

5.001000 p = 1.000000e+00 + i(1.665335e−16)

10.202040 p = 1.000000e+00 + i(5.273559e−16)

15.003001 p = 1.000000e+00 + i(8.049117e−16)

20.204041 p = 1.000000e+00 + i(1.137979e−15)

25.005001 p = 1.000000e+00 − i(2.164935e−15)

where

P(ym, Ik) =
√

1

iπ

∫ √
μ

2Δt (xk+1−ym )

√
μ

2Δt (xk−ym )

eiβ
2
dβ (126.9)

can be evaluated analytically [11]. With this factorization the “path integral” can be
approximated by

〈x0|e−i Ht |ψ〉 ≈

∑

m1···mN

P(x0, Im1)e
−iV (ym1)Δt

N∏

n=2

P(ym(n−1), Inm)e−iV (ymn)Δt 〈ymN |ψ〉. (126.10)

This expresses the path integral as the N -th power of a complex matrix, applied to
a vector. Powers of matrices can be efficiently computed. In addition, because the
matrix can be computed analytically, the matrix elements can be evaluated on the
fly, so it is not necessary to store large matrices.

The table shows the sum of the one-step probabilities over 5000 intervals for
various values of y. The imaginary part sums to zero with no visible round-off error
(Table 126.1).
The goal of this exercise is to calculate scattering observables. The basic observables
are functions of on-shell transition matrix elements

〈p f |T (Ei0
+)|pi 〉 ≈ 〈ψ f 0(0)|Ve−i Ht |ψi0(−t)〉 (126.11)

where 〈p|ψ f 0(0)〉 and 〈p|ψi0(0)〉 are narrow Gaussian wave packets centered at p f

and pi with delta-function normalizations (i.e. they integrate to 1). The initial state
is evolved to −t using the free dynamics. In one dimension the on-shell transition
matrix elements are related to phase shifts and transmission and reflection coefficients
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Fig. 126.1 V(x),〈x |ψ0i (0)〉

by

e2iδ±(E) = 1 − 2π i
μ

|p| 〈±p|T (E + i0+)|p〉 (126.12)

T = 1 − 2π i p

μ
〈p|T (E + i0+)|p〉 R = −2π i p

μ
〈−p|T (E + i0+)|p〉 (126.13)

This methodwas tested by computing the half-shell scatteringmatrix elements for
a particle of massμ off of a repulsive Gaussian potential of−λe−(r/r0)2 . Because this
is a time-dependent computation it is necessary to choose the parameters carefully.
The time has to be chosen so, after accounting for wave packet spreading, the wave
packet should be outside of the range of the potential. The exhibited calculations
are for μ = 1, r0 = 1, λ = 5, pi = 5 and Δp = 0.25. The calculations used 120
time steps and 10,000 intervals between ±15. The results are compared to an exact
numerical calculation.

Figures126.1 and 126.2 show the width of the wave packet and potential. The
second figure shows that at t = −3 the wave packet is out of the range of the poten-
tial, which means that the time limit can be replaced by an evaluation at t = 3.
Figures126.3 and 126.4 show the real and imaginary parts of the half-shell transi-
tion matrix elements using the path integral (short dashes) compared to the exact
calculation (long dashes) of the same quantity.

While this is not the most efficient method to solve this problem, it demonstrates
that real-time path integrals can be used to calculate scattering observables. The
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Fig. 126.2 V(x),〈x |ψ0i (−3)〉

Fig. 126.3 Re(T) exact vs path integral
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Fig. 126.4 Im(T) exact vs. path integral

exhibited calculations used fixed time steps and interval widths. There are many
possible improvements in computational efficiency.

Themost important observation is that after the one-step factorization, themethod
is numerically equivalent to a unitary transfer-matrix calculation. The factorization
that arises from the Trotter product formula allows the transfer matrix to be factored
into a product of a potential term and a one step probability matrix. The potential
term is exactly unitary and the complex one-step probability matrix is approximately
unitary. Because the calculated quantity is a matrix element of the product of the
potential with a wave operator, it is only necessary to evolve the system for a finite
time in a finite volume. These observations are the key to understanding both the
strength and limitations of this method. A reasonable expectation is that, with some
refinement, this method could be applied to the same class of problems that can be
treated using transfer matrix methods.

Acknowledgements This work supported by the U.S. Department of Energy, Office of Science,
Grant number: DE-SC0016457.
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Chapter 127
A Simple Tool to Study Many-Body
Forces

Claude Semay and Guillaume Sicorello

Abstract The envelope theory, also known as the auxiliary field method, is a
technique to compute approximate solutions of a quantum system with N identi-
cal particles. The basic idea is to replace the Hamiltonian H under study by an
auxiliary Hamiltonian H̃ which is solvable, the eigenvalues of H̃ being optimized
to be as close as possible to those of H . The method is easy to implement since it
reduces to find the solution of a transcendental equation. We show here that the enve-
lope theory can be extended to compute the eigensolutions of a system of identical
particles with a type of many-body forces often used in phenomenological models.

127.1 Introduction

Generally, two-body forces are the only type of interaction considered in many-body
quantum systems. But three-body forces (and more generally many-body forces)
are sometimes a crucial ingredient in atomic physics [1], nuclear physics [2], or
hadronic physics [3]. Many-body forces have deep theoretical foundations, but their
structure can be very difficult to compute. Effective forms can then be used to take
into account at best possible these complicated many-body contributions. Among
the possible structures for a K -body force in a N -body system, the one chosen in
this work is given by

N∑

{i1,...,iK }
V

(
r{i1,...,iK }

)
with r2{i1,...,iK } =

{i1,...,iK }∑

i< j

r2i j , (127.1)
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where r2i j = (r i − r j )
2 and {i1, . . . , iK } is a set of K particles among the N pos-

sible ones, with i1 < . . . < iK . The sum
∑N

{i1,...,iK } runs over the C
K
N different sets

{i1, . . . , iK }, while the sum ∑{i1,...,iK }
i< j runs over the C2

K different pairs in a particular
set {i1, . . . , iK }, where CB

A is a usual binomial coefficient.
The envelope theory (ET) [4–6], independently rediscovered under the name of

auxiliary field method [7], is a simple technique to compute approximate solutions,
eigenvalues and eigenvectors, of many-body systems with arbitrary kinematics in D
dimensions [8, 9]. The basic idea is to replace the Hamiltonian H under study by an
auxiliary Hamiltonian H̃ which is solvable, the eigenvalues of H̃ being optimised to
be as close as possible to those of H . Quite good approximations can be obtained for
various systems containing up to 10 bosons [10]. The accuracy can be improved, but
to the detriment of the possible variational character [11]. TheETcanyield interesting
results for systems of N identical particles, whose Hamiltonians are given by [8]

H =
N∑

i=1

T (pi ) +
N∑

i=1

U (si ) +
N∑

i< j

V
(
ri j

)
, (127.2)

with pi = | pi | and si = |r i − R|, where R = 1
N

∑N
i=1 r i is the centre of mass posi-

tion. T is the kinetic energy, and U and V are potentials (� = c = 1). As only the
internal motion is relevant,

∑N
i=1 pi = 0. The momentum pi and position r i of the

particle i are conjugate variables.
The purpose of this work is to show that ET can treat Hamiltonians with K -body

forces of type

H =
N∑

i=1

T (pi ) +
N∑

i=1

U (si ) +
N∑

{i1,...,iK }
V

(
r{i1,...,iK }

)
. (127.3)

Let us note that the Hamiltonian can contain several many-body potentials with
various values of K . We keep here only one many-body contribution to lighten the
notations. The one-body termU is kept, because its treatment is a little bit different.

In Sec. 127.2, the exact solution for the non-relativistic system of N identical
harmonic oscillators with K -body forces is given, with the ET equations for general
Hamiltonians. An analytical example is presented in Sec. 127.3.

127.2 Envelope Theory Equations

The Hamiltonian H̃ mentioned in the previous section is

Hho = 1

2μ

N∑

i=1

p2i + ν

N∑

i=1

s2i + ρ

N∑

{i1,...,iK }
r2{i1,...,iK }, (127.4)
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whose exact solutions are given by [7]

Eho = Q

√
2

μ

(
ν + N CK−2

N−2 ρ
)

with Q =
N−1∑

i=1

(
2 ni + li + D

2

)
, (127.5)

where D is the dimension of the space. The set of equations giving an approximate
energy of Hamiltonian (127.3) is given by

E = N T (p0) + N U
( r0
N

)
+ CK

N V

(√
C2

K

C2
N

r0

)
, (127.6)

p0 = Q

r0
, (127.7)

N p0 T
′ (p0) = r0U

′
( r0
N

)
+ CK

N

√
C2

K

C2
N

r0 V
′
(√

C2
K

C2
N

r0

)
, (127.8)

where the particular state considered is fixed by the value of Q. Detailed calculations
to obtain these equations are given in [12]: p0 (which can be interpreted as a mean
momentum for a particle) and r0 (which is linked to the radius of the system) are
intermediate variables which are determinate by (127.7) and (127.8). If K = 2, the
equations in [8] are recovered. Let us note that (127.8) is also obtained by setting
dE/dr0 = 0 with the constraint (127.7), which shows the extremum character of
E . As expected, the exact solution (127.5) is recovered for T (x), U (x) and V (x)
proportional to x2.

The approximate energy E can be an upper or a lower bound. Using the compar-
ison theorem [13], a simple procedure exists to verify if such a situation happens. It
is necessary to define three functions bT , bU and bV such that

T (x) = bT (x2), U (x) = bU (x2) and V (x) = bV (x2). (127.9)

It can be shown that, if b′′
T (x), b′′

U (x) and b′′
V (x) are all concave functions, E is an

upper bound [5]. Conversely, if all these second derivatives are convex functions,
E is a lower bound. If the second derivative is vanishing for one or two of these
functions, the variational character is solely ruled by the convexity of the other(s).
In the other cases, the variational character of the solution cannot be guaranteed.

127.3 An Analytical Example

Let us consider the generic kinetic energy

T (p) = Dα pα, (127.10)
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with Dα > 0 and α > 0, in order that T be positive and growing with the modulus
of the momentum p, and the power-law K -body potential

V (r) = a sgn(b) rb with a > 0. (127.11)

Then, (127.7) and (127.8) implies that

r0 =
[

α N Dα Qα

CK
N a |b|

(
C2

N

C2
K

)b/2
]1/(b+α)

. (127.12)

After some simple algebra, the approximate energy is given by

E = sgn(b) (b + α)

[(
N Dα

|b|
)b (

a CK
N

α

)α (
C2

K

C2
N

)α b/2

Qα b

]1/(b+α)

. (127.13)

The sign of E must be given by the sign of b, so the constraint b > −α appears.
With α = b = 2, the exact solution is found. For K = α = 2 and b = −1, this result
coincides with the one in [10], where the numerical accuracy has been tested. For
K = 2 and Dα = α = 1, it coincides with a calculation in [7]. An upper bound is
obtained if α ≤ 2 and b ≤ 2. Another analytical example is given in [12], where
results about critical coupling constants [14] are also presented.
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Chapter 128
Hyperspherical Harmonics Method with
Particle Excitation Degrees of Freedom

Fabrizio Ferrari Ruffino, Winfried Leidemann and Giuseppina Orlandini

Abstract We introduce a few extensions to the Hyperspherical Harmonics (HH)
approach in order to include intrinsic excitations degrees of freedom. To this end we
adapt the HH expansionmethod, usually built up starting from a fixedmass-weighted
set of Jacobi coordinates, to the more general case where an arbitrary weighted set
of coordinates is adopted. We provide a few results for 3- and 4-body bound state
calculations.

128.1 Introduction

The HH expansion method has been widely used for ab-initio calculations of nuclear
systems. The method has been extended in different ways in order to treat a variety
of interaction models like 3-body forces and non-local potentials. Here we introduce
our recent extension in order to employ HH basis sets built over arbitrarily weighted
sets of internal coordinates. This enables us to explicitly include particle transition
degrees of freedom, as is the case for most of the models involving hyperons. In fact,
with a few exceptions, almost all the available hyperon-nucleon (Y N ) interaction
models are based on the explicit Λ-Σ coupling. Moreover in the S = −2 sector
additional channels open up: ΛΛ, ΛΣ , ΣΣ and NΞ . This is similar to the NN
case, where a few models include explicit Δ-resonance degrees of freedom, like, for
example, the AV28 potential [1].

In line with our recent introduction of the HHmethod in the hypernuclear S = −1
sector [2] and in view of a future application in the S = −2 sector, we present here the
extensions and the transformations needed in order to treat particle transition degrees
of freedom. Separation energies of 3- and 4-bodyΛ-hypernuclei with a realisticΛ-Σ
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coupling YN interaction are calculated and already benchmarked with results from
the literature in [2], here we give a further improvement of some of those results. A
preliminary calculation of the triton binding energy and wave function is performed
by considering the explicit Δ(1232) isobar degrees of freedom and including all the
NN , NΔ and ΔΔ channels. In this last case we adopt the AV28 potential.

128.2 Formalism

The explicit inclusion of particle excitation degrees of freedom implies that the
particle masses are no longer fixed parameters, but they may depend on the state of
the system. For example, the hamiltonian of Λ-hypernucleus is given by

H = T + ΔM +
∑

i< j

VNi N j +
∑

i

VNiY . (128.1)

Since the Λ hyperon has zero isospin, the strong ΛπΛ vertex is forbidden due to
isospin conservation. Thus the Λ particle can exchange one pion only via the ΛπΣ

vertex. This means that a Y N force with pion exchange (OPE) must explicitly take
into account the Λ-Σ coupling. In (128.1) the ΔM matrix is related to the mass
difference in energy units between the Λ and the Σ particles. The kinetic energy T
and a generic term of the hypernuclear part of the potential, VNY , have the following
block structure:

T =
(
TΛ

TΣ

)
; VNY =

(
VNΛ−NΛ VNΣ−NΛ

VNΛ−NΣ VNΣ−NΣ

)
, (128.2)

where the upper diagonal block is defined over the subset of the basis where the
hyperon is a Λ-particle, while, in the lower subset, a Σ-hyperon is considered. The
potential operator couples the two subsets through the mixing terms VNΛ−NΣ and
VNΣ−NΛ.

Since the standard HH basis is built over the mass-weighted set of Jacobi coordi-
nates, two different sets have to be included (one for theΛ and one for theΣ particle).
Therefore the multidimensional integration of the mixing matrix elements cannot be
reduced with standard HH techniques, due to the nontrivial relations between both
HH coordinate sets. Obviously, the more particle excitation degrees of freedom are
present, the more complex such a problem becomes.

In the following we briefly introduce the ways allowed to overcome the problem.
The transformation from cartesian to Jacobi coordinates is usually represented by

means of the orthogonal matrix S:

vr = 1√
m

M · ST · vη ; Mi j = √
mi δi j , (128.3)
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where vr and vη are identical vectors defined, respectively, on the cartesian and on
the Jacobi basis.

Each set of weights that defines a Jacobi system of coordinates is built over a set
ζ of A real positive parameters:

ζ = {μi > 0 : i = 1, . . . , A} . (128.4)

In the standard case each parameter μi coincides with the physical mass mi . The
advantage of such a choice is the simpler form of the kinetic energy operator.

The transformation fromone set of ζ -weighted coordinates to another ζ ′-weighted
is defined as:

Wζ ′ζ = Sζ ′ M−1
ζ ′ Mζ STζ , (128.5)

where Sζ is the matrix defined in (128.3). The above matrix is upper triangular and it
can be easily proved that each i-th subspace

〈
η1, . . . , ηi

〉
defined by the first i internal

Jacobi coordinates is invariant under any transformation Wζ ′ζ when ζ and ζ ′ differ
only by the last i parameters. When μ′

i �= μi for all i , the subspace given by all the
N internal coordinates is still invariant, therefore the separation of the η

ζ
0 coordinate

from the internal set can be always preserved by keeping η
ζ ′
0 = η

ζ
0 .

By means of aW transformation a generic A-body Hamiltonian can be expressed
in terms of a ζ -weighted set of Jacobi coordinates:

H [η(ηζ )] = H(Wζ · ηζ ) = Hζ (η
ζ ) + ΔTζ , (128.6)

whereWζ transforms a ζ -weighted Jacobi set into amass-weighted one. The operator
Hζ is the analogue of the Hamiltonian H but with the physical masses replaced by
the weight parameters in ζ and ΔTζ is the difference between the kinetic energy
operator T and the analogue operator Tζ :

ΔTζ = T (ηζ ) − Tζ (η
ζ ) . (128.7)

By defining the ΔTζ operator one is free to work with the desired set of weight
parameters without additional complications with respect to the mass-weighted case.
However convergence is necessairly affected in some measure.

In this way, in order to calculate the mixing blocks of (128.2), one can simply
adopt a fixed HH set of coordinates for both the Λ- and Σ-subsets and shift the
mass-dependence into the kinetic energy operator:

T =
(
TΛ

TΛ + ΔTΛ−Σ

)
. (128.8)

Another way is to explicitly define the representation in the HH basis of the
W transformations. It can be shown that the latter are compositions of kine-
matic rotations belonging to the orthogonal group O(A − 1) and real 1-d scaling
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transformations. Therefore, by defining the real scaling transformations in the HH
basis, one is able to define anyW transformation.We define theW coefficients repre-
senting a 1-d scaling transformation (over the last Jacobi coordinate) in the following
way:

∣∣Ln′(ρ ′,ΩN )
〉 |Y[K ′

N ](Ω ′
N )〉 =

∑

[KN ],n
W [K ′

N ],n′
[KN ],n |Ln(ρ)〉 ∣∣Y[KN ](ΩN )

〉
, (128.9)

where we have stressed the fact that, in general, the dependence on ρ and ΩN is no
longer separate in the HH basis after a weight transformation.

128.3 Numerical Results

As a first step we have performed a number of numerical tests in order to verifiy the
accuracy and numerical convergence of the approach shown above.We have obtained
good results and convergence both for soft- and hard-core potentials. Then we have
adopted the first approach described above for the calculation of binding and sepa-
ration energies of 3- and 4-body Λ hypernuclei with explicit Σ degrees of freedom.
We have also set up a calculation for the 3H binding energy and wave function by
including channels with one and twoΔs, however, results are still preliminary in this
case. The energies of the Λ-hypernuclei have been reported in (Table 128.1).

The accuracy in the 4-body case is lower due to much larger computational effort,
however the agreement is good in bot 3- and 4-body cases.

In Table 128.2 we show the preliminar results of our 3-body calculation with the
AV28 interaction model.

While the agreement between the wave function components related to the Δ

components seems good, we still have a quite large discrepancy with the binding
energy. A deeper study on the convergence of this last calculation is in progress.

Table 128.1 Binding energies andΛ separation energies (BΛ) in MeV for various nuclear systems
and interaction models

VNN + VYN System NSHH FY GEM

AV8′ 2H [−2.226(1)] −2.226(1) −
AV8′+sNSC97f 3

ΛH −2.413(3) −2.415(1) −2.42(1)

BΛ 0.187(3) 0.189(1) 0.19(1)

AV8′ 3H −7.76(0) −7.76(0) −7.77(1)

AV8′+sNSC97f 4
ΛH −10.08(2) − −10.10(1)

BΛ 2.32(2) − 2.33(1)

Results for Faddeev-Yakubovsky (FY) and Gaussian expansion method (GEM) as given in [2]
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Table 128.2 Δ and Δ-Δ probabilities for 3He with AV28 potential

Method %(Δ) %(ΔΔ) E0

NSHH 1.6 1.1 [[−6.7]]
C.C 1.6 1.1 −7.30(1)4

128.4 Conclusions

The present aim is to obtain a definite result for theAV28 calculation of the 3Hnucleus
by reaching full convergence. To this end a number of refinements of the above
formalism are under development, in particular the inclusion of a suitable effective
interaction procedure and the combination of both theW coefficients formalism and
the ΔT one.

A deeper and general discussion on W -trnasformations and the W coefficients
formalism will be presented soon.
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Chapter 129
Trions in Three-, Two-
and One-Dimensional Materials

Roman Ya. Kezerashvili

Abstract The effect of reduction of dimensionality on the Coulomb potential and
the binding energy of positively X+ and negatively X− charged trion is presented.
In bulk semiconductors X+ is unbound, while in 2D layered and 1D semiconductors
both trions are bound and binding energies of X+ are bigger than X−.

129.1 Introduction

The study of a few-body electron-hole system in three-, two- and one-dimensional
(3D, 2D, 1D) configuration spaces is of great fundamental significance in physics.
Atomic or molecular thin 2D layers and 1D system such as quantum wires and nan-
otubes allow to address the role of Coulomb interactions in confined geometries. It
was realized that for 2D semiconductors, the dielectric environment plays a crucial
role and influences the effective strength of the Coulomb potential inside a semi-
conductor layer [1], which allows the formation of tightly bound two-, three- and
four-body electron-hole complexes such as excitons, trions and biexcitons. Exci-
tons and charged trions have been discovered in 2D transition metal dichalcogenides
(TMDCs) monolayers. The strong exciton and trion binding in TMDC materials
arises from the reduced screening in the 2D geometry as well as effective masses of
both the electron and the hole. In fact, screening effects play a fundamental role in
determining the electron dynamics and the binding energy of excitonic complexes.
Moreover, the screening dictates the optical and transport properties of 2D devices
[2].

Although the exciton complexes like trions in solid state physics are very similar
to the three-body bound systems in atomic and nuclear physics, there are major
differences: i. Screening effects, resulting from the host lattice, make the Coulomb
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force much weaker than in atomic systems; ii. Band effects, which make the effective
masses of the electrons and holes smaller than the bare electron mass.

In this short note we address how the reduction of dimensionality affects the
binding energy of trions in bulk and low-dimensional semiconductors.

129.2 Effects due to the reduction of dimensionality

Wannier-Mott trions in bulk and low-dimensional semiconductors represent a three-
body system with two identical particle: AAB. Negative X− and positive X+ trions
are formed in semiconductors when an exciton is correlated with an additional elec-
tron in a conduction band or hole in a valence band, respectively, and produces
complexes with two identical particles: eeh or ehh. The Schrödinger picture within
the framework of the effective-mass potential model approach is well suited to
describe Wannier-Mott trions and quantum-confined structures. The corresponding
Schrödinger equation for the trion in 3D, 2D and 1D configuration space reads as

(
j DT +

j D∑
i<k

V (rik)

)
� j D(r12, r23, r13) = E jD� j D(r12, r23, r13), (129.1)

where index j = 3, 2, 1 presents the dimensionality of the space and the position vec-
tors ri are defined in the jD space. In (129.1) j DT = − �

2

2mA

J D
A1 �− �

2

2mA

J D
A2 �− �

2

2mB

J D
B �

is a three-body kinetic energy operator, where J D� is the Laplace operator for
each particle and j DV (rik) is a pairwise potential in the jD configuration space.
One can obtain the expectation value for the ground state energy as E jD =〈
j DT

〉+
〈

j D∑
i<k

V (rik)

〉
. The later expression could be viewed as the sum of the average

value of the operators of kinetic and potential energies in 3D, 2D and 1D config-
uration space, respectively, obtained by using the corresponding eigenfunction of
the trion � j D

(
r12, r23,r13

)
in 3D, 2D and 1D configuration spaces. The decrease of

dimensionality produces a variation in the energy spectrum of the system, as well as
affects the Coulomb interaction between an electron and hole. For example, let us
consider the effect of the reduction of the dimensionality on the kinetic energy. In
the two-body problem when the interaction is described by the Coulomb potential
due to the reduction of dimensionality only for the kinetic energy, one can observe
that the spectrum of energy is changes from E3D ∼ n−2 (Rydberg series) in the 3D
case, to E2D ∼ (n− 1/2)−2 in the 2D case. Therefore, for example, the ground state
energy increases by a factor of 4. Thus, the reduction of dimensionality decreases the
kinetic energy of the 2D exciton due to the decrease of the degrees of freedom from
three to two. However, the reduction of dimensionality affects the potential energy
of the charged carriers’ interaction, while this interaction is still electromagnetic. In
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particular, the Coulomb potential due to the decrease of dimensionality is modified
to the potential [3] in a 2D system and cusp-type potential in a 1D system:

3DV (r) = ke2

εr
⇒2DV (r) = πke2

(ε1 + ε2)ρ0

[
H0

(
r

ρ0

)
+ Y0

(
r

ρ0

)]
⇒1DV (z) = πke2

ε(a)

A

z − z0
.

(129.2)

In (129.2) k = 9 × 109 Nm2/C2, ρ0 is the screening length, ε, ε1 and ε2 are the
dielectric constants of a bulk and two materials that the 2D layer is surrounded by,
respectively, and H0(r/ρ0) and Y0(r/ρ0) are the Struve function and Bessel function
of the second kind, respectively. For r � ρ0 the potential has the 3D bare Coulomb
tail and becomes 3DV (r), while when r � ρ0 it becomes a logarithmic potential:(
ke2/ερ0

)[
ln(r/2ρ0) + γ

]
, where γ is the Euler constant. Thus at r � ρ0 the effect

of the induced polarization becomes dominant—the 1/r singularity is replaced by
a weaker logarithmic dependence. For a 1D case in (129.2) a dielectric constant
depends on a radius a of a nanowire.

To better understand the difference between the screening in 3D and 2Dmaterials
let us follow [2] and consider the effect of the macroscopic polarization induced
by a point charge surrounded by a 3D and 2D dielectric medium, respectively. The
electric field at a distance r from the charge is the sum of the external field produced
by the charge, e/r2, and the induced field due to the polarization of the medium.
This charge distribution produces a field of the same functional form ke/εr2 and
the screening is given by a simple multiplicative renormalization by the dielectric
constant ε. In contrast to the 3D case, in the 2D case the system is polarizable only on
the plane and induced field is equivalent to the electric field produced by a uniform
charge distribution on a circle of radius r. As a consequence it will be a function
of r, but with a functional form substantially different from the electric field ke/εr2

and with a nonlocal macroscopic screening showing a logarithmic divergence for
small distances [3]. Contrary to the 3D system, where the macroscopic screening is
mapped in a dielectric constant, in 2D system the screening is nonlocal so that in the
2D Fourier space it is described by a q-dependent macroscopic dielectric function
[2, 3], which should be contrasted to the multiplicative renormalization of the charge
in 3D case, as seen in (129.2).

There are different models of the effective interaction potential in 1D quantum
wire: (i) the singularity of the Coulomb potential is cut off at r = a, where a is
the radius of a wire, and the effective potential is 1DV (z) ∼ (z2 + a2)−1/2; (ii)
The effective 1D interaction is modeled as cusp-type Coulomb potential 1DV (z) ∼
A(z + r0)

−1, where the parameters A and r0 are determined self-consistently by
employing the eigenfunctions of the lateral confinement of electrons and holes.
Figure 129.1 depicts the electric field lines between the interacting electron and
hole. For 2D materials field lines are screened in plane and mainly lie unscreened in
the vacuum. In 1D materials field lines lie mainly in the vacuum, hence screening is
heavily suppressed.
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Fig. 129.1 The scheme of electric fields for two interacting particles in a uniform dielectric
environment in 3D, 2D and 1D materials

129.3 Binding energy of trions

3D trions. Calculations of the binding energies of trions in different 3D materials
using the Faddeev equations in configuration space [4] give the following results for
X−: 3.6 meV (InN), 0.5 mev (GaAs), 2.1 meV (ZnSe) and 0.6meV (CdTe) and X+ is
unbound. In calculations the ratio of mass me/mh for these materials is varied from
0.07 to 0.27 and for these ratios the exciton binding energies are in good agreement
with experimental data and theoretical calculations. The binding energy for X− and
X+ are equal if me = mh or if one ignores the interaction between two identical
particles.

In [4] we considered the hypothetical model, which controls the strength of inter-
action between identical particles for both trions and leads to a weaker Coulomb
interaction between the identical particles and hence an increased trion binding
energy. Our calculations for the distributions of electrons and holes in X± based
on the Faddeev equations shows that the X− has a more extended distribution for
two electrons, while the two holes in X+ are considerably closer to each other. There-
fore, comparing the interactions of three particles in X±, one concludes that while
the eh attraction is the same, the hh repulsion is stronger in X+ than the ee one in X−
due to more close localization of the two holes. This repulsion reduces the energy of
trions so that X+ becomes unbound for all considered dielectric constants.
2D trions. Follow [5, 6] for the nonrelativistic trion (129.1) in a 2D configuration
space can be written using the formalism of hyperspherical harmonics. Within this
approach the binding energies of trions in the TMDCs monolayers are calculated
and presented in Table 129.1. Analyses of the results shows that in contrast to 3D

Table 129.1 The ratio of binding energies BX+ and BX− of charged trions for different TMDCs
that have different ratio of effective electron me and hole mh masses

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

me/mh 0.819 0.863 0.821 0.739 0.756 0.602

ρ0,Å 38.62 51.71 73.61 37.89 34.72 49.56

BX+/BX− 1.012 1.044 1.023 1.005 1.006 1.022
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case X+ is bound, moreover the binding energy of X+ always exceeds the binding
energy of X−.
1D trions. The study of X± trions in 1D semiconductor wires within a variational
approach [7] and of X+ in the Born-Oppenheimer approximation [8] shows that
trion binding energies are defined by two parameters: the mass ratio, me/mh , and
the radius of the quantum wire a. Both X+ and X− are bound. With the increase of
mass ratio me/mh and a the binding energies of X± trions are decreasing, but the
BX+ > BX− and the binding energy BX+ varies more dramatically than BX− .

To conclude, a decrease of dimensionality leads to a decrease of the degrees of
freedom in the system, which, obviously, decreases the kinetic energy of the system.
At the same time, a decrease of dimensionality reduces the screening that leads to
weaker interaction. The combinations of these two effects finally leads to 2D and
1D bound trions because with the reduction of dimensionality the kinetic energy
decreases faster than the potential energy, while in 3D X− is bound and X+ is
unbound. Therefore, lowering the dimensionality of the system makes the effects of
interaction between particles much more pronounced, resulting in an increase in the
binding energy of trions.
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Chapter 130
A Statistical Analysis of the Nuclear
Structure Uncertainties in µD

Oscar J. Hernandez, Sonia Bacca, Nir Barnea, Nir Nevo-Dinur,
Andreas Ekström and Chen Ji

Abstract The charge radius of the deuteron (D), was recently determined to three
times the precision compared with previous measurements using themeasured Lamb
shift in muonic deuterium (μD). However, the μD value is 5.6 σ smaller than the
world averaged CODATA-2014 value (Pohl R et al. (2016) Science 353:669 [1]). To
shed light on this discrepancy we analyze the uncertainties of the nuclear structure
calculations of the Lamb shift in μD and conclude that nuclear theory uncertainty is
not likely to be the source of the discrepancy.
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130.1 Introduction

The two-photon exchange (TPE) contribution is a crucial ingredient in the precision
determination of the charge radius from Lamb shift (LS) measurements in muonic
atoms. The charge radius is extracted from the measurements of the 2S-2P energy
splitting �ELS through

�ELS = δQED + δTPE + δFS(r
2
d ), (130.1)

valid up to fifth order in (Zα), where Z is the charge number of the nucleus and α is
the fine structure constant. The term δQED denote the quantum electrodynamic (QED)
corrections, δTPE are the nuclear structure corrections dominated by the two-photon
exchange, and δFS(r2d ) is the finite size correction proportional to the deuteron charge
radius rd . The bottle-neck in the precise determination of rd are the nuclear structure
corrections. In this work, we overview the process of the uncertainty quantification
of δTPE in μD using nucleon-nucleon (NN) potentials at various orders (from LO to
N4LO) in chiral effective field theory (EFT).

130.2 Analysis of Uncertainties

To quantify the total theoretical uncertainties of δTPE, all relevant uncertainty sources
must be identified and estimated [2, 3]. These various sources are:

– σstat: uncertainties arising from the spread of the low-energy constants (LECs) α̃

in the nuclear potential;
– σTMax

Lab
: uncertainties from the maximum lab energy TMax

Lab used in the fits of the NN
potential;

– σ�: uncertainty due to the truncation of the chiral order;
– σ�: uncertainty from the variations of the the cut-off � in the NN potentials;
– ση: uncertainty due to the expansion (on a parameter known as η) which we use
in relating δTPE to the nuclear response functions;

– σJ: uncertainties from systematic approximations in the electromagnetic operators
Jμ(x);

– σN: uncertainties due to single nucleon physics;
– σZα: uncertainties arising from higher (Zα) corrections.

For an observable A, the statistical uncertainties σstat(A) induced by variations in the
LECs α̃ of theNNpotential are calculated around their optimal values α̃0 by assuming
that the LECs follow a multivariate Gaussian probability distribution. Under these
conditions the leading approximation to σstat(A) will be given by

σ 2
stat(A) = 〈A2〉 − 〈A〉 = JACov(α̃0)JTA, (130.2)
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where Cov(α̃0) represents the covariance matrix of the LECs at the optimum, and
JA is the Jacobian vector of A with respect to the LECs,

JA,i =
(

∂A

∂α̃i

)
α̃=α̃0

. (130.3)

The systematic uncertainties TMax
Lab arise from the energy span in the NN scattering

data used to fit the LECs. This uncertaintywas estimated from theNkLOsim potentials
(k = 0, 1, 2) [4] by varying themaximum lab energies of the fit from 125 to 290MeV
and their uncertainties σTMax

Lab
where found to dominate over the statistical uncertainties

σstat.
The chiral truncation uncertainties σ� originate from the calculation of an observ-

able A(p) at a finite order ν, with associated momentum scale p. This observable is
assumed to obey the same expansion as the underlying NN-force given by

A(p) = A0

ν∑
μ=0

cμ(p)Qμ, (130.4)

where A0 is the result at leading order, Q is the expansion parameter, and cμ(p) are
observable and interaction specific coefficients assumed to be independent and of
natural size. Assuming that the next higher-order term �(1)

ν ≡ cν+1Qν+1 dominates
the truncation uncertainty in the calculation of A(p), then the Bayesian posterior
P(�(1)

ν ) is given by Furnstahl et al. [5]

P(�(1)
ν ) =

∫
dc̄ P(cν+1|c̄)P(c0|c̄)P(c2|c̄)...P(cν |c̄)P(c̄)

Qν+1
∫
dc̄ P(c0|c̄)P(c2|c̄)...P(cν |c̄)P(c̄)

, (130.5)

where P(cμ|c̄) is the distribution of cμ conditioned on the scale parameter c̄ and
P(c̄) is the prior. In this contribution we update the results in [2] by evaluating the
68% confidence intervals of the posteriors given in (130.5) that represent the chiral
truncation uncertainty σ�. The posterior distributions A0�

(1)
ν from N2LO to N4LO

for δTPE using the chiral potentials from [6] are given in Fig. 130.1 for the priors
A, B, C from Table I in [5].

Alongwith chiral truncation uncertainties, the chiral NN-potentials carry a param-
eter � that regulates the interactions. The systematic uncertainties σ� arising from
the regulators was probed using multiple cut-off values in the calculations of δTPE.
These variations were found to be more significant than the uncertainties due to the
chiral truncation.

The η-expansion arises from the calculation of δTPE as a power series of the
dimensionless operator η � 1. In the work of [2, 3], this expansion was carried out
to sub-sub-leading order in η and the truncation uncertainty ση from higher order
terms was determined to be 0.3%.
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Fig. 130.1 Posterior distributions of the truncation uncertainties at different orders in the chiral
EFT expansion (A0�

(1)
2 , A0�

(1)
3 , A0�

(1)
4 ) inmeVunits for δTPE in the leading-omitted term approx-

imation using the potential in [6] with (R0,�) = (0.8, 600) [fm, MeV]. The expansion parameter
is Q = 0.23, σ = 1 for prior B, c̄< = 0.1 and c̄> = 10

Uncertainties from approximations in the electromagentic operators Jμ(x), were
estimated from the dipole response functions of Arenhövel [7] that included MEC
and relativistic corrections. Both of these effects were of the order 0.05%.

The uncertainties σN from single nucleon contributions to the TPE are an input in
our analysis and taken from [8, 9] and [10]. Lastly, there was an estimated 1% uncer-
tainty from higher order (Zα)6 corrections, that include the three photon exchange.

130.3 Results and Conclusions

The results of the analysis outlined in the previous section are summarized in
Table130.1. The systematic nuclear physics uncertainty σsyst is a combination of
the σ�, σJ and σTMax

Lab
uncertainties, while σTotal is a quadrature sum of all items in

Table130.1. The calculation of σ� through the explicit calculation of the 68% confi-
dence interval of the Bayesian posteriors instead of the prescription in [6] increases
the lower bound slightly in σTotal from −0.024 meV in [2] to −0.023 meV when
using the σN values of [8] since the values of σ� at N4LO for prior A are smaller

Table 130.1 The uncertainty breakdown of the δTPE at N4LO

Source % Uncertainty Uncertainty in meV

σsyst +0.5 +0.008

−0.6 −0.011

σstat 0.06 ±0.001

ση 0.3 ±0.005

σN 0.6/1.2 ±0.0102 [8]/±0.0198 [10]

σZα 1.0 ±0.0172

σTotal 1.3/1.6-1.7 +0.022/+0.028

−0.023/−0.029
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when computed this way. The final value for the TPE correction was taken to be
the average value of the calculations at N4LO yielding δTPE = −1.715 meV with
the final uncertainty σTotal. This value differs from the experimentally determined
value from [1] of δTPE = −1.7638(68) meV by less than 2 σ , which is not signifi-
cant. From Table130.1 we find that the uncertainties arising from the nuclear model
dependence, σsyst and σstat, are small in comparison to the higher order σZα or σN [10]
uncertainties which dominate the total uncertainty. It is therefore unlikely that any
differences between the experimental and theoretical determinations of δTPE stem
from models of the NN-forces.
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Chapter 131
Loss of Conformality in Efimov Physics

Abhishek Mohapatra and Eric Braaten

Abstract The loss of conformal invariance in Efimov physics is due to the merger
and disappearance of an infrared and an ultraviolet fixed point of a three-body renor-
malization group flow as the spatial dimension d is varied. In the case of identical
bosons at unitarity, it is known that there are two critical dimensions d1 = 2.30 and
d2 = 3.76 at which there is loss of conformality. For d < d1 and d > d2, the beta
function of the three-body coupling has real roots which correspond to infrared and
ultraviolet fixed points. The fixed points merge and disappear into the complex plane
at the critical dimensions d1 and d2. For d1 < d < d2, the beta function has complex
roots and the renormalization group flow for the three-body coupling constant is a
limit cycle.

131.1 Introduction

In relativistic systems, the conformal symmetry group includes Poincaré symmetry
and continuous scaling symmetry as subgroups. From the renormalization group
(RG)perspective, scale invariance in any systemarises at thefixedpoints of aRGflow.
Ageneralmechanism for the loss of conformal invariance in the system is themerging
of an infrared (IR) and an ultraviolet (UV) fixed point and their disappearance into
the complex plane as an external parameter is varied [1]. In nonrelativistic systems
with short-range interactions, Efimov discovered that the spectrum of a three-body
system can have a sequence of infinitely many shallow three-body bound states with
an accumulation point at the three-body threshold [2]. This phenomena is called
the Efimov effect. In the case of identical bosons in three spatial dimensions, the
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spectrum of Efimov states reflects a discrete scaling symmetry with discrete scaling
factor eπ/s0 ≈ 22.7, where s0 = 1.00624.

In this article, we use the RG perspective to explicitly show how the loss of
conformal invariance happens in Efimov physics in the case of identical bosons as
the spatial dimension d is varied. We discuss briefly the fixed points in the two-
body sector in Sect. 131.2. In Sect. 131.3, we discuss the fixed points and the loss
of conformal invariance in the three-body sector in more detail. We summarize our
results in Sect. 131.4.

131.2 Two-Body Sector

In three spatial dimensions, the low-energy scattering of two nonrelativistic particles
with short-range interactions is characterized by the s-wave scattering length a only.
The zero-range limit is defined by taking the range of interaction to zero with the
scattering length a held fixed. In the unitary limit defined by a → ±∞, the two-body
system is scale invariant. From the RG perspective, scale invariance arises at zeros
of the beta function, which correspond to RG fixed points.

We consider the behavior of identical bosons in the zero-range limit in d dimen-
sions. We use the effective field theory (EFT) of Bedaque, Hammer and van Kolck
(BHvK) that was used to calculate the behavior of three identical bosons in three
spatial dimensions [3]. This EFT has a dynamical field ψ and an auxiliary diatom
field Δ. The BHvK Lagrangian density is

LBHvK = ψ†
(
i

∂

∂t
+ 1

2
∇2

)
ψ + g2

4
Δ†Δ − g2

4

(
Δ†ψ2 + ψ†2Δ

)
− g3

36
(Δψ)† (Δψ) ,

(131.1)
where g2 and g3 are the bare two-body and three-body coupling constants. The
perturbative expansion of the off-shell two-body scattering amplitude in powers of
g2 is UVdivergent. It can be regularized by imposing a cutoffΛ on the loopmomenta.
The bare coupling g2 must depend on the cutoff Λ to exactly compensate for the Λ

dependence in the two-body amplitude. The explicit dependence of the two-body
coupling g2 on the cutoff Λ is given in (5) of [4]. We define a dimensionless two-
body coupling ĝ2 by

ĝ2(Λ) = 1

(d − 2)(4π)d/2�
(
d
2

)Λd−2g2(Λ). (131.2)

In terms of the dimensionless coupling ĝ2, the RG equation is

Λ
d

dΛ
ĝ2 = (d − 2) ĝ2

(
ĝ2 + 1

)
. (131.3)

The β function defined by the right hand side of the above equation has zeros at
ĝ2 = −1 and ĝ2 = 0, which are an UV and a IR fixed point of the RG flow. The IR
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fixed point corresponds to the trivial non-interacting limit,whereas theUVfixed point
corresponds to the non-trivial unitary limit. There are scale-invariant interactions in
the two-body sector at the UV fixed point.

131.3 Three-Body Sector

Discrete scale invariance in Efimov physics can be associated with an RG flow
governed by a limit cycle [3]. The RG equation for the three-body coupling g3 was
first derived by Braaten and Hammer in d = 3 in [5]. The RG equation for g3 in d
spatial dimensions was derived by us in [4]. The detailed derivation of the results in
this section are given in [4].

The dependence of the three-body coupling g3 on the UV cutoff Λ can be deter-
mined from the off-shell atom-diatom amplitude. In the center-of-mass frame, the
atom-diatom amplitude is a function of the incoming and outgoing relative momenta
p and k and the total energy E . It satisfies the Skorniakov-Ter-Martirosian (STM)
integral equation [6], which is given explicitly in (131.4) of [4]. The integral equation
involves a dimensionless three-body coupling Ĝ(Λ) defined by

Ĝ(Λ) = Λ2g3(Λ)

9g2(Λ)2
. (131.4)

In the limit Λ → ∞, the solutions to the STM equation depend log-periodically
on the cutoff Λ. The dependence of the three-body coupling g3, or equivalently the
dimensionless coupling Ĝ, on Λ can be determined by demanding that the solutions
to the integral equation are well behaved in the limit Λ → ∞. Since Ĝ is the only
coupling in the integral equation, the β function for Ĝ can only depend on Ĝ. The
RG equation for the dimensionless coupling Ĝ is

Λ
d

dΛ
Ĝ = 1 − s2

2
+ (

1 + s2
)
Ĝ + 1 − s2

2
Ĝ2, (131.5)

where s2 is a function of dimension d that satisfies a transcendental equation:

2 sin

(
d

2
π

)
2F1

(
d−1+s

2 , d−1−s
2

d
2

∣∣∣∣14
)

+ cos
( s
2
π

)
= 0. (131.6)

The transcendental equation has infinitely many branches of solutions for s2 as a
function of d, but the physically relevant branch is shown in Fig. 131.1. At d = 3,
the value of s2 is −s20 , where s0 = 1.00624 determines the discrete scale factor eπ/s0

of Efimov physics. There are two critical dimensions for which (131.6) is satisfied
for s2 = 0:

d1 = 2.30, d2 = 3.76. (131.7)
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Fig. 131.1 The relevant
branch of solutions of
(131.6) for s2 as a function
of the dimension d. The
value of s2 decreases from 1
at d = 2 and d = 4 to a
minimum value of −1.016 at
d = 3.04. Adapted from [4]

2 3 4

d

-1

-0.5

0

0.5

1

s2

d
1

d
2

These lower and upper critical dimensions for the Efimov effect were first derived in
[7].

In the regions d < d1 and d > d2, the value of s2 is positive. The β function in
(131.5) for the dimensionless coupling Ĝ has zeros at Ĝ+ and Ĝ−, which correspond
to a UV and an IR fixed point of the RG flow:

Ĝ± = −1 ± s

1 ∓ s
. (131.8)

As d approaches d1 from below and d2 from above, the value of s approaches 0, so
the two fixed points approach −1.

In the region d1 < d < d2, the value of s2 is negative. The β function for Ĝ has
complex zeros, which implies that there are no fixed points. The RG flow for Ĝ is
instead governed by a limit cycle:

Ĝ(Λ) = −cos
[
s0 log (Λ/Λ∗) + arctan s0

]
cos

[
s0 log (Λ/Λ∗) − arctan s0

] , (131.9)

where Λ∗ is a constant momentum scale and s0 = √−s2. The expression for Ĝ in
(131.9) is a log-periodic function of cutoff Λ with period eπ/s0 . At unitarity, the
two-body sector is scale invariant (ĝ2 = −1), but the three-body sector has discrete
scale invariance with discrete scaling factor eπ/s0 .
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131.4 Summary

In this work, we explicitly showed how conformality is lost in Efimov physics in
the case of identical bosons as the spatial dimension d is varied. There are critical
dimensions d1 = 2.30 and d2 = 3.76 at which conformality is lost [7]. For d < d1
and for d > d2, the RGflow has IR andUVfixed points that merge together at d = d1
and at d = d2, respectively. In the region d1 < d < d2, there are no fixed points and
the RG flow is governed by a limit cycle with discrete scaling factor eπ/s0 .
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Chapter 132
Neutron Matter in the Unitary Limit
with Implicit Renormalization of Short
Range Interactions

E. Ruiz Arriola, S. Szpigel and V. S. Timóteo

Abstract We study a strongly interacting many-fermion system in the unitary limit
using an implicit renormalization framework and compute the Bertsch parameter
ξ considering only contact interactions. The main ingredient of the calculation is
the scale separation between low and high momentum degrees of freedom, which
we take as the Fermi momentum kF, and the assumption that the physics below
this momentum scale can be re-parametrized into the low energy coefficients of the
contact interactions. Once the unitary renormalization conditions are imposed on the
two-body scattering amplitude obtained from the contact interactions, we evaluate
ξ at leading order (LO), next-to-leading order (NLO) and next-to-next-to-leading
order (NNLO).

132.1 Introduction

The S-wave nucleon-nucleon (NN ) scattering length is negative and has amagnitude
more than twenty times the nucleon size and almost ten times the typical nuclear
force effective range. That means neutron matter at low densities is off the unitary
limit only by the finite effective range. The first Quantum Monte Carlo calculation
of a many-fermion system with short-range two-body attractive interaction with
infinite scattering length was made in 2003 and estimated the energy per particle
of such gases, in units of the energy of the non-interacting gas, to be ε/ε0 = ξ =
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0.44 ± 0.01 [1]. Later, in 2012, it was shown that neutronmatter at very low densities
behaves as a gas of ultra cold atoms and the energy is essentially given by the
contribution from the S-wave [2].

Here we want to fix a set of contact interactions so that the unitary limit conditions
for two nucleons are satisfied by using an implicit renormalization procedure [3, 4].
Then, using the Fermi momentum as our separation scale between high and low
momentum degrees of freedom, we can restrict the calculation to the mean field
level.

132.2 Unitary Limit and Contact Interactions

The two-body scattering amplitude is given by

T2(k, k) ∝ 1

k cot δ − i k
, (132.1)

where k is the on-shell center-of-mass (CM) momentum and δ stands for the phase-
shifts. By means of the Effective Range Expansion (ERE), the term kcotδ can be
written as

k cot δ = −1

a
+ 1

2
r k2 − 1

4
v k4 + · · · , (132.2)

where a, r and v are respectively the scattering length, effective range and shape
parameter. At low energies, the k4 term can be neglected and the unitary limit corre-
sponds to −a → ∞ and r → 0. In this case, the phase-shift is energy-independent:
δ = π/2 and the energy per particle of a strongly interacting many-fermion system
is given by ε = ξ × ε0, where ξ is the Bertsch parameter and ε0 is the energy per

particle of the non-interacting Fermi Gas: ε0 = 3
5

�
2k2F
2m .

Table132.1 shows three different results from calculations of the Bertsch param-
eter based on ab initio Monte Carlo simulations.

The ab initio calculations are fundamental and precise but they require extreme
computational resources. Here we want to provide a simple calculation using a set of
contact interactions renormalized implicitly by the unitary limit conditions (instead
of the physical S-wave scattering length and effective range).

Table 132.1 Bertsch parameter from ab initio Monte Carlo simulations

References [5] [6] [7]

ξ 0.372(5) 0.3897(4) 0.388(1)
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In momentum space, the set of contact interactions up to NNLO is given by

V×(p, p′; X) = A0
︸ ︷︷ ︸

LO

+B2 (p2 + p′2)

︸ ︷︷ ︸

NLO

+C4(p
4 + p′4) + D4(p

4 × p′4)

︸ ︷︷ ︸

NNLO

,

(132.3)
where the strengths X = (A0, B2,C4, D4) are determined by the the implicit renor-
malization method [3, 4], which consists of calculating the two-body scattering
T -matrix with V by solving the Lippman-Schwinger equation and then matching it
to the effective range expansion:

T×(p, p′; k, X) = V×(p, p′; X) + 2

π

∫ kF

0
dq q2 V×(p, q; X)

T×(q, p′; k, X)

k2 − q2 + iε
,

(132.4)

tan δ×(k; X) = −k T×(k, k; k, X) , (132.5)

k cot δ×(k; X) = − 1

T×(k, k; k, X)
� −1

a
+ 1

2
r k2 + · · · . (132.6)

Note that the final renormalized interaction depends on the inputs for the scattering
length a and the effective range r . So, if the unitary conditions are imposed, the phase-
shifts will be energy independent and equal to π/2. Deviations from the unitary limit
can be studied by departing from −1/a = 0 and r = 0 when matching the contact
T -matrix to the effective range expansion. Here we present only results at the unitary
limit a = −∞ and r = 0.

132.3 Neutron Matter at LO, NLO and NNLO

An upper variational estimation for the energy per particle of neutron matter can
be obtained through a mean field level calculation. At this level, the Hartree-Fock
approximation gives

ε× = ε0 + 4

π m

∫ kF

0
dk

(

k2 − 3k3

2kF
+ k5

2k3F

)

V×(k, k; X) , (132.7)

where m is the fermion mass. At each order, once the strengths of the contact terms
have been determined by the implicit renormalization with the unitary limit con-
ditions on the scattering length and effective range (−1/a = r = 0), the Bertsch
parameter is simply given by:
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Table 132.2 Bertsch parameter with only contact interactions at different orders

V× LO NLO NNLO

ξ× 0.444 0.467 0.420

ξ× = 1 + 4

πε0m

∫ kF

0
dk

(

k2 − 3k3

2kF
+ k5

2k3F

)

V×(k, k; X) . (132.8)

The results for LO, NLO and NNLO are shown in Table132.2. The LO result
is close to the value obtained in [1]. Moving to NLO increases the value of ξ×
and adding the NNLO terms makes ξ× go down to a value even smaller then the
LO contribution but still doesn’t reach the Monte Carlo values, which are closer to
what is obtained in experiments with Fermi gases [8, 9]. It seems that higher order
terms are still required for better convergence. However, considering the simplicity
of our calculation at the mean field level with only two-body contact interactions and
implicit renormalization, the results are quite reasonable.

132.4 Conclusions

We use an effective field theory approach to the unitary Fermi gas by applying an
implicit renormalizing scheme on a set of contact interactions with the unitary limit
conditions for the scattering length and the effective range. We then calculate the
energy per particle of the many-fermion system at the mean field level for the first
three orders of the momentum expansion: LO, NLO and NNLO. The values we
obtain for the Bertsch parameter ξ are larger than those obtained through Quantum
Monte Carlo simulations (see Tables132.1 and 132.2). Nevertheless, higher order
contact interactions (e.g. NNNLO) seem to be required to reach the experimental
value ξ = 0.370(5)(8) [9]. From the chiral effective field theory point of view, the
relative success of our implicit renormalization approach to the unitary Fermi gas can
be attributed to the dominance of the contact interactions over pion exchanges in the
S-waves. Apart from including higher order terms, in our approach it is also possible
to evaluate the effective range dependence of the Bertsch parameter by changing the
renormalization conditions to support finite ranges. Work in these directions is in
progress.
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Chapter 133
Bosonic Drops with Two- and
Three-Body Interactions Close
to the Unitary Limit

A. Kievsky, A. Polls, B. Juliá-Díaz, N. Timofeyuk and M. Gattobigio

Abstract When the binding energy of a two-body system goes to zero the two-
body system shows a continuous scaling invariance governed by the large value of
the scattering length. In the case of three identical bosons, the three-body system in
the same limit shows the Efimov effect and the scale invariance is broken to a discrete
scale invariance. As the number of bosons increases correlations appear between the
binding energy of the few- and many-body systems. We discuss some of them as the
relation between the saturation properties of the infinite system and the low-energy
properties of the few-boson system.

133.1 Introduction

The ground state properties of 4He and 3He droplets with N atoms have been studied
in a series of papers [1–4]. The energy per particle, EN/N can be described, as
N → ∞, using a liquid-drop formula in terms of x = N−1/3

EN/N = Ev + Esx + Ecx
2 (133.1)

where Ev , Es and Ec, are the volume, surface and curvature terms respectively.
Results for the infinite liquid can be obtained from calculations at finite values of N .
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Since the value at saturation can be obtained independently, these studies probe the
validity of the extrapolation formulas used to predict the properties of the infinite
system typically computed in droplets having a few hundred atoms.

More recently helium drops have been studied usingmodern helium-helium inter-
actions [5, 6]. In [7] a diffusion Monte Carlo (DMC) method has been used to study
clusters up to 10 atoms interacting through the Tang, Toennies, and Yiu (TTY)
potential [8]. Helium trimers and tetramers have been studied around the unitary
limit varying the potential strength [9–12]. It has been shown that with a very small
reduction of the strength (about 3%) the binding energy of the helium dimer disap-
pears. In fact the helium dimer is very close to the unitary limit having a two-body
binding energy of about 1.3 mK and a large two-body scattering length of about
189 a0 (a0 is the Bohr radius).

We can observe two, very different, descriptions of light helium clusters. On
one hand, several models of the helium-helium interaction are available. On the
other hand, the large value of the helium-helium scattering length locates the small
clusters of helium close to the unitary limit in which universal behavior can be
observed. Accordingly, the particular form of the potential is not important, many
properties are determined from a few parameters as the two-body scattering length
a and the trimer ground state energy E0

3 (or the first excited state E
1
3). Specific (soft)

potential models can be constructed in order to reproduce those data and used to
calculate binding energies of droplets and the saturation properties of the infinite
system [13]. In this way, a direct link between the low energy scale (or long-range
correlations) and the high energy energy scale (or short-range correlations) can be
established.

133.2 Helium Dimer and Trimer with Soft Potential Models

In the following we study the ground state energy of the N = 2, 3 boson systems
using a soft gaussian potential constructed to reproduce the low-energy behavior of
the system. We define the two-body interaction as

V (ri j ) = V0e
−r2i j /d

2
0 (133.2)

with the two gaussian parameters, V0 and d0, determined from the dimer energy, E2,
and the two-body scattering length a. Realistic helium-helium potentials can be used
to calculate E2 and a, subsequently used to fix V0 and d0. In this way, the gaussian
interaction results in a low-energy representation of the original potential. Using the
LM2M2 interaction [14], widely used in the description of helium clusters, as the
reference interaction, the values V0 = −1.2343566 K and d0 = 10.0 a0 can be used.
To study correlations between observables we can start analyzing the Efimov radial
law
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En
3/(�

2/ma2) = tan2 ξ (133.3)

κ∗a = e(n−n∗)π/s0
e−�(ξ)/2s0

cos ξ
, (133.4)

that gives, in the zero-range limit, the three-boson spectrum En
3 in terms of the

universal function �(ξ) and the three-body parameter κ∗, defined by the energy at
the unitary limit of the reference level n∗, En∗

3 = �
2κ2∗/m. Equation (133.4) indicates

that the product κ∗a is a function of the angle ξ . Assuming that for real systems the
product κ∗a is still a function of ξ we can propose:

κ∗a = [κ∗a]G (133.5)

where [κ∗a]G is the value of the product calculated with the gaussian potential at
the angle ξ . To verify this hypothesis we consider the ground state binding energies
of the dimer E2 = 1.303 mK and trimer E3 = 126.4 mK as given by the LM2M2
potential defining the angle ξ as E3/E2 = tan2 ξ = 97.0. Modifying the strength of
the gaussian potential to V0 = −1.24294 K and calculating the dimer and trimer
energies, the same angle is obtained. Moreover, a gaussian potential has the prop-
erty that its three-body parameter verifies κ∗ = 0.488/d0 [15, 16]. The two-body
scattering length using the modified strength is a = 170.50 a0. Accordingly, we can
estimate the three-body parameter κ∗ of the LM2M2 interaction, knowing that the
scattering length is 189.41 a0, as

[κ∗]LM2M2 = 170.5

189.41
0.488/d0 . (133.6)

The obtained value is κ∗ = 0.044 a0−1 in complete agreement with the LM2M2
value given in the literature. We have shown that the three-body parameter can be
determined by three quantities, the dimer and trimer energies and the two-body
scattering length.

133.3 Saturation Properties of the N-Boson System

In the following we analyze correlations between the saturation properties of the infi-
nite system and the low-energy behavior of the few-boson systems. To this endwe use
as the reference interaction the Aziz HFDHE2 potential used in [3] to compute bind-
ing energies of helium droplets. A low energy representation of the HFDHE2 poten-
tial is obtained by defining the parameters of the gaussian potential V0 = −1.208018
K and d0 = 10.0485 a0, giving a trimer ground state binding energy of E0

3 = 139.8
mK. This value is substantially greater than the value obtained using the HFDHE2
potential: E0

3 = 117.3 mK. It is well known that to tune the trimer binding energy
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Fig. 133.1 Binding energy
per particle up to N = 10
atoms. The results of the
SGP for different values of
the three-body force range
ρ0 are shown as red circles
and compared to the
HFDHE2 results
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to the expected value a slightly repulsive three-body force has to be introduced. As
proposed in Refs. [17–21] we define the following three-body force

W (ρi jk) = W0e
−2ρ2

i jk/ρ
2
0 , (133.7)

where ρi jk is the hyperradius of particles i, j, k defined as ρ2
i jk = (2/3)(r2i j + r2jk

+ r2ki ). For selected values of the range ρ0, the strength W0 is fixed to reproduce the
HFDHE2 trimer ground state binding energy E0

3 . The binding energy of the droplets
EN can be computed using this soft gaussian potential (SGP) and can be studied
as a function of the range ρ0. In Fig. 133.1 the binding energies of helium drops
up to N = 10 are shown as a function of ρ0 and compared to the HFDHE2 values
from [3] using the Green Function Monte Carlo (GFMC) method. Though a small
dependence on ρ0 can be seen, an overall good description is obtained.

The ρ0 dependence is analyzed in Fig. 133.2 in the case of the tetramer binding
energy. It can be seen that there is a value of ρ0, around 8.5a0, that gives the best
description of this quantity. The next step is to compute the droplets binding energies
up to N ≈ 100 and extract the saturation energy from (133.1). This is shown in
Fig. 133.3 where the results for different values of ρ0 form the dark band. The results
using the optimum value of ρ0 = 8.5a0 are shown as (blue) points. They follow, with
acceptable accuracy, the GFMC results using the HFDHE2 potential shown as the
(red) solid line. Using the optimum value of ρ0 it is possible to determine Ev , Es and
Ec defined in (133.1). From the results of the SGP in the range 20 ≤ N ≤ 112 the
following values are obtained (in K)

EN/N = 6.98 − 18.6 x + 10.3 x2 . (133.8)

They can be compared to the values (in K) obtained with the GFMC method Ev =
7.02, Es = −18.8 and Ec = 11.2 using the HFDHE2 interaction.



133 Bosonic Drops with Two- and Three-Body Interactions … 855

Fig. 133.2 The tetramer
binding energy as a function
of the three-body force range
ρ0. The value of the
HFDHE2 potential is shown
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Fig. 133.3 The binding
energy of the droplets as a
function of the number of
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We conclude that after tuning the range of the three-body force to reproduce as
better as possible the tetramer binding energy, the soft gaussian potential, consisting
of a two- and a three-body term, with the four parameters determined by the dimer,
trimer and tetramer binding energies and the two-body scattering length is able to
estimate with good accuracy the energy per particle of the infinite system.

133.4 Conclusions

In the present work we have analyzed correlations between different observables
imposed by the proximity of the system to the unitary limit. Due to the large value
of the two-body scattering length, helium drops are well suited to study these phe-
nomena. Correlations of this type can also be studied in nuclear systems, since the
n − n and n − p scattering lengths are large [22, 23]. Here we have shown results for
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helium drops using a gaussian soft interaction to determine the three-body parameter
κ∗. Noticeably, the result was in extremely good agreement with the values given
in the literature calculated directly using the LM2M2 potential. Secondly, using the
HFDHE2 as the reference potential, we have calculated binding energies for helium
drops up to N = 112 and, using a liquid-drop formula, we have extracted the sat-
uration energy. We have observed that using the optimum value for the range of
the three-body interaction a good estimate of the experimental saturation energy is
obtained. In this way we have clarified the existing correlations between different
observables imposed by the unitary limit in many-body systems close to the unitary
limit.
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Chapter 134
Evaluation of Correlations in Nuclear
Matter by Using Spectral Expansion
for the In-Medium Propagator

O. A. Rubtsova

Abstract A very brief description of the new technique which allows to calculate
correlations in medium (e.g. in nuclear matter) by using a spectral expansion for
the in-medium T -matrix is given. The case of the Galitskii–Feynman in-medium
propagator is discussed and its relation to a paring instability.

134.1 Introduction

Correlations in nuclear matter (or some other medium) can be evaluated by using the
integral T -matrix formalism [1] which has similar features with solving of scattering
problems in vacuum. Recently, the diagonalisation technique [2] has been proposed
for both type of calculations. In the approach, an effective in-medium Hamiltonian
is introduced which allows finding the in-medium T -matrix at many energies and
relative momenta by using discretized spectral expansion for the in-medium propa-
gator.

In this paper, the case of the Galitskii–Feynman (GF) particle-particle and hole-
hole (pphh) propagator within the mean field approximation is discussed. Here the
effective Hamiltonian is non-Hermitian and may have complex eigenvalues signal-
ing about a pairing instability and opening of a superfluid phase. Below the main
results of the approach are reported briefly, in particular, reconstruction of momen-
tum dependencies of pairing gaps in different partial NN channels without solving
gap equations. The detailed explanation can be found in [2–4].
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134.2 Diagonalisation Technique for the In-Medium
T -matrix

In-medium T -matrix satisfies the integral equation:

T (E) = V + VGII
0 (E)T (E), (134.1)

where V is the bare NN interaction and GII
0 (E) is the propagator. Below, a case of

the GF propagator is discussed which has a form:

GII
0 (E) = Q

E + i0 − H0Q
− P

E − i0 − H0P
. (134.2)

Here Q and P are Pauli-projectors to pp- and hh- subspaces correspondingly and
H0Q and H0P are the mean-field free Hamiltonians [3].

It has been suggested [2, 3] to evaluate the in-medium T -matrix from the rela-
tion T (E) = V + VGII(E)V in which the total in-medium propagator GII(E) is
introduced. This operator can be represented [3] in a form:

GII(E) = [E + i0 · J − H0 − JV ]−1, (134.3)

where H0 = H0P + H0Q is the total pphh free Hamiltonian and J is a ‘sign’ operator
in (P + Q) space [3].

Thus, the operator GII(E) can be considered as a ‘generalized resolvent’ of the
effective Hamiltonian H = H0 + JV which is non-Hermitian due to the operator J .
To find the spectral expansion for H and subsequently for GII(E), the discrete wave-
packet representation over the relative momentum k is employed. This discretization
results in a finite-dimensional (matrix) form of all operators [3].

Finally, by using the constructed discretized spectral expansion for the total prop-
agator, one gets an explicit expression for the fully off-shell in-medium T -matrix at
any required energy [3, 4]. Apart from other advantages, this representation allows
to separate forward- and backward-propagating parts of the T -matrix which are
required in the complete self-consistent scheme [1].

Also, one can study a scattering problem for the in-medium total Hamiltonian H .
The on-shell elements of the constructed T -matrix define amplitudes for the two-
channel scattering problem with the hole-hole and particle-particle channels which
are coupled by the interaction JV . The corresponding partial phase shifts satisfy the
in-medium version of the Levinson theorem [5].

The total Hamiltonian may have complex eigenvalues E±1 = E0 ∓ i�0 which
indicates a pairing instability. However these states can be considered in a strict
manner [3]. In particular, the imaginary part of the corresponding eigenvalue coin-
cides with the pairing gap at the Fermi-momentum Δ(kF ) = �0 [6, 7]. Recently, it
has been shown [3, 4] that momentum dependence of the gap Δ(k) can be found
form the corresponding eigenfunction |z1〉 of H :
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Fig. 134.1 Absolute values of total and partial pairing gaps in the coupled NN channels 3SD1
at kF = 1.2 fm−1 (left panel) and 3PF2 at kF = 2.5 fm−1 (right panel) found from the (134.4)
(dashed curves) and from the solution of the gap equation [3] (solid curves). The CD Bonn NN
potential [8] is used

〈k|V |z1〉/k = BeiφkΔ(k), (134.4)

where |k〉 is the plane-wave state, B is a real constant and φk is a phase factor.
Thus, the diagonalisation procedure for the effective Hamiltonian H allows find-

ing pairing gaps in different spin-angular NN channels without solving the conven-
tional gap equations. In Fig. 134.1 the partial as well as total pairing gaps for 3SD1

and 3PF2 channels are represented at zero center of mass momentum K = 0. This
procedure can be generalized to a case of non-zero K as well [4].

Opening and closing of the superfluid regime correspond to the phase transitions
in dependencies of the effective Hamiltonian eigenvalues on density [3]. These phase
transitions can be observed in all three NN channels where the pairing takes place,
i.e. 1S0, 3SD1 and 3PF2. The most interesting picture is seen in 3SD1 coupled NN
channel, where real bound states of H are transformed into states with complex
conjugated eigenvalues (see the details in [3]). This behavior might be related to the
known problem of the BCS–BEC crossover.

134.3 Conclusions

The effective Hamiltonian treatment with the wave-packet continuum discretization
occurs to be an efficient tool for the in-medium T -matrix calculations [2, 3]. The
approach allows to study pairing beyond the conventional BCS treatment. The for-
malism will be generalized within the Self-Consistent Greens Function framework
[1] for calculations of few-body correlations in nuclear matter.

Acknowledgements The author appreciate a partial financial support from the RFBR grants 19-
02-00014 and 19-02-00011.
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Chapter 135
Universality and the Coulomb
Interaction

Christiane H. Schmickler

Abstract We study the relationship between universal effects and the Coulomb
interaction. Here, we present our approach and a first illustrative example. Under-
standing the relationship of universality and the Coulomb interaction is important
for weakly bound nuclear few-body systems. The example nucleus we study is the
excited state of 17F which we model as a proton and an 16O core. We use a Gaussian
potential to represent short-range forces together with a Coulomb potential. Our cal-
culation uses the Gaussian ExpansionMethod (GEM), which is a variational method
well-suited to our problem. We find that we need to choose the range of the Gaus-
sian potential in addition to the potential strength that reproduces the right scattering
length. We propose to fit the range of the Gaussian potential such that the effective
range is reproduced. We show that this approach leads to consistent results for 17F.

135.1 Introduction

The Efimov effect has been in the focus of few-body research ever since its obser-
vation in cold atom experiments [1]. Even before that, there was discussion in the
literature about whether and where the Efimov effect plays a role in nuclear physics
[2].

However, the long-range Coulomb interaction complicates this picture in the
nuclear sector and many studies to date focussed on the question of whether there
would be an Efimov state without the Coulomb force.

In our studies, of which this paper is a first excerpt, we try to answer the question
of which effect the Coulomb force has on would-be Efimov states and under which
circumstances the Efimov picture is relevant in spite of the Coulomb interaction.
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To this end, we use well-tested methods of calculating universal properties of
few-body systems, namely Gaussian potentials and variational methods, and add a
Coulomb interaction to the system.

Here, we investigate a specific example system, 17F( 12
+
), which we describe as an

16O nucleus plus a single proton. This state is a proton halo and a shallow bound state.
As a dimer it is well-suited as a first test of our methods. The trimer and tetramer
calculations will be presented in an upcoming more in-depth article.

135.2 Interaction and Methods

As we are interested in universal behaviour, we use a simple Gaussian potential plus
the Coulomb potential.

H2 = − �
2

2μ

∂2

∂r2
+ V0e

− r2

2r20 + �cZ1Z2
α

r
(135.1)

We solved this system with the Gaussian Expansion Method (GEM) that was
developed by Kamimura et al. [3]. It is a variational method with geometrically
spaced Gaussian basis functions which is well-suited to this problem because the
matrix elements can be calculated analytically and it gives accurate results without
much fine tuning.

135.3 Coulomb-modified Effective Range Expansion

The usual effective range expansion has to be modified to account for the fact that
the Coulomb interaction is long-range. This is achieved by simply replacing the free
outside wave functions used to calculate the scattering length and effective range by
Coulomb functions.

This leads to the Coulomb-modified effective range expansion:

C2
η,0 p cot δ̃0(p) + γh(η) = − 1

aC
+ 1

2
rCeff p

2 + . . . , (135.2)

where p is the wave number, η = μc2αZ1Z2/(�cp) and γ = 2μc2

�c αZ1Z2 with the

reduced mass μ and charge numbers Z1 and Z2, C2
η,0 = 2πη

e2πη−1 , h(η) = ��′(iη)

�(iη)
−

log(η) and δ̃0(p) is the phase shift between the ingoing and outgoing Coulomb
wave functions. This determines the Coulomb-modified scattering length aC and
the Coulomb-modified effective range rCeff. For more detail, the reader is referred to
[4–6].
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135.4 Application to 17F

We will concentrate on showing one application, namely 17F as a dimer of 16O and
a proton, in this article and refer to another publication for more general results and
more applications [7].

The first excited state of 17F is a well-known proton halo. This means that in first
approximation it can be described as a dimer of the core (16O) and a proton [8]. From
the values for the binding momentum γ = 13.6MeV and the ANC A ≈ 80 fm− 1

2

presented in [8], we calculated the 16O-p Coulomb-modified scattering length and
the Coulomb-modified effective range to be aC = 4475.96 fm and rCeff = 1.18737 fm
according to the formulae derived in [8].

However, plugging in the parameters for this system, i.e. aC , Z1 = 1, Z2 = 8 and
the reducedmassμ ≈ 873MeVwill lead to an ambiguity becausewe obtain different
curves for different r0 as shown in the left panel of Fig. 135.1. This ambiguity has
to be resolved in order to make any kind of prediction. From the point of view of
the effective range expansion, (135.2), the most obvious parameter to fit after the
scattering length is the effective range.

To this end,we calculated the effective range for different ranges r0 of theGaussian
short-range potential. We selected results reproducing the scattering length of aC =
4475.96 fm ± 80 fm. These are shown in the right panel of Fig. 135.1. The value of
rCeff rises monotonically with r0 in the range we explored. Thus, we can uniquely
identify a value for r0 that reproduces the correct Coulomb-modified effective range
for this system. For 16O+p, r0 = 2.75 fm.

Going back to the left panel of Fig. 135.1, we can see that the determined value
for r0 reproduces the binding energy of the 17F proton halo state well. The physical
value is at the point where the horizontal and vertical lines cross, and the curve for
r0 = 2.75 fm crosses the vertical line very close to that point.

Fig. 135.1 Left panel: Different dimer predictions for different values of the range r0 of the Gaus-
sian short-range potential. The vertical orange line is the value of the scattering length in the 16O+p
system, the horizontal orange line is the binding energy of the 17F( 12

+
) state. Right panel: Deter-

mination of the effective range at the point of the 16O-p scattering length for different r0. The
horizontal line shows the value of the Coulomb-modified effective range in the 16O+p system
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Note that this is only a consistency check, because in the formula for the scattering
length from [8] the effective range and the binding energy is an input. The effective
range in turn contains as additional input the asymptotic normalization coefficient,
which can bemeasured. Therefore we use the binding energy as an input to determine
the scattering length,whichwe in turn use as an input for obtaining the binding energy.
Since the methods that were used to connect scattering length and binding energy
are different, however, this is a good consistency check between the methods.

In addition, we also calculated the root-mean-square (rms) radius for 17F( 12
+
) and

found rrms = 5.3 fm. This is in very good agreement with [9].

135.5 Summary and Conclusion

We showed in this paper a first demonstration of our method, i.e. using a Gaussian
potential together with the Coulomb interaction to test universal properties of weakly
bound states. We applied our method to a proton halo state, 17F( 12

+
), which we

regarded as a dimer of a proton and a 16O core.
To make the result unique we have to fix r0, which is the range of our Gaussian

potential. This is unnecessary in systems without the Coulomb interaction, because
the result would be the same for all r0 after converting it into the right units. Having
to fix r0 is due to the Coulomb interaction introducing an additional scale to the
system.

We chose to fix r0 such that the Coulomb-modified effective range would be
reproduced, which gave us the correct binding energy and rms radius for 17F( 12

+
).

This is a promising first test of our method which we can build upon in future work.
Wewill expand this approach to trimers and tetramers of identical charged bosons

in another publication [7].

Acknowledgements The author thanks H.-W. Hammer for a careful reading of the manuscript and
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Chapter 136
Effective Field Theory for the
Heteronuclear Efimov Effect

Lucas Platter

Abstract I discuss recent results describing heteronuclear systems using effective
field theory. I will focus on three-body systems with two identical particles that inter-
act resonantly with a third particle. Specifically, I will consider recent calculations
of universal scaling function that can be used to compute the temperature dependent
recombination rate for positive scattering length and the inclusion of a finite effective
range at zero temperature.

136.1 Introduction

Three identical bosons with a scattering length a much larger than the range R of the
interaction will display the Efimov effect whose signature is an approximate discrete
scaling invariance in three-body observables [1, 2]. For example, in the limit of infi-
nite scattering length, successive states in three-body spectrum are characterized by
binding energies whose ratio Bn/Bn+1 approaches λ2 with λ = 22.7. The parameter
λ is the scaling factor and it can be different in other systems that display the Efimov
effect such as in heteronuclear systems where it depends on the mass ratio.

Various approaches have been used to describe and analyze the Efimov effect. The
zero-rangemodel describes it in terms of zero-range interactionswhose range is taken
to zero while two-body properties such as the two-body scattering length. The effec-
tive field theory (EFT) for short-range interactions is a related approach. In general,
EFTs turn a separation of scales into a small expansion parameter. The separation of
scales is frequently associated with degrees of freedom integrated out of the theory.
The EFT for short-range interactions employs the separation of scales between the
scattering length and the range of the interaction as its expansion parameter. When
the EFT for short-range interactions is applied to atoms, deep bound states associated
with the van der Waals interaction with binding energies larger than (ml2)−1 are the
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degrees of freedom that are integrated out. When it is applied to nucleons, it is the
short-distance part of the pion exchange interactions that is integrated out.

Here we will consider the heteronuclear three-body system in which two identical
particles interaction resonantly with a third one. This system was considered first by
Helfrich et al. [3] who analyzed the properties of this system at leading order in the
EFT. Below, I will discuss results that extend this work to recombination processes in
ultracold gases at finite temperature and results that incorporate the effects of a finite
effective range and that of a small scattering length between the identical atoms.

136.2 Effective Field Theory for Heteronuclear Atomic
Systems

The universal features of the Efimov effect can easily be calculated with an effective
field theory constructed for short-range interactions that lead to a large scattering
length [2]. At the heart of an EFT is its Lagrange density that is in our case

L =
∑

i=1,2

ψ†
i

(
i∂t + ∇2

2mi

)
ψi − d†

12

(
i∂t + ∇2

2(m1 + m2)
− Δ12

)
d12

− g12

(
d†
12ψ1ψ2 + ψ†

1ψ
†
2d12

)
. (136.1)

The masses of the particles of type 1 and type 2 are denoted with m1 and m2,
respectively. Implicit to this Lagrangian is the assumption that the scattering length
a22 between particles with mass 2 is small and the scattering length a between
particles 1 and 2 is large. The two-body coupling constant g12 is tuned to reproduce
the scattering length a.

The resulting leading order of the EFT low-energy expansion is equivalent to
the zero-range limit and leads therefore to a Skorniakov–Ter-Martorisian (STM)
equation, that is a Faddeev integral equation for zero-range interactions, when the
momentum space amplitude for atom-dimer scattering is constructed. The integral in
this integral equation is over momenta up to a certain cutoff Λ and observables will
remain strongly cutoff-dependent unless an additional three-body force is introduced
to absorb this cutoff dependence [4, 5]. Here, the term

L3 = −hd†
12ψ

†
2d12ψ2 , (136.2)

is added to the Lagrangian above. The coefficient h of this three-body force is then
a function of the cutoff Λ and has to be adjusted such that the STM equation that
includes this three-body force reproduces a desired observable.
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136.3 Three-Body Recombination at Positive Temperature

Experiments searching for signatures of Efimov physics are frequently carried out
at ultracold but non-zero temperatures. The finite temperature implies that the three-
body recombination amplitude has to be averaged over different energies using a
Boltzmann distribution to obtain the recombination rate αT at finite temperature.
The quantity that needs to be averaged is the so-called recombination rate K J

3 where
the superscript J denotes the total angular momentum of the three-body channel
under consideration. The recombination rate can also be expressed through the S-
matrix element SA2D,A2D which describes elastic atom-dimer scattering

K (J )
3 (E) = 128π2μ3/2

μ
3/2
A2D

(2J + 1)

x4
(
1 − |SA2D,A2D|2) a4

2μ
, (136.3)

where μ denotes the reduced mass of the (1, 2) two-body system, and μA2D is the
three-body reduced mass. Efimov’s radial law provides a convenient way to factorize
the S-matrix into functions that depend only on the scaled variable x = E/E2 (E
is scattering energy and E2 = (ma2)−1 denotes the two-body binding energy) and a
three-body parameter θ∗

S(J=0)
A2D,A2D

= s22(x) + s21(x)2e2iθ∗−2η∗

1 − s11e2iθ∗−2η∗
. (136.4)

We can therefore easily calculate recombination amplitudes for any system (with
arbitrary three-body parameter θ∗ once the universal scaling functions si j are known.
For three identical bosons that was done on the positive scattering length side in [6]
and for negative scattering in [7].

For the heteronuclear system under consideration here, negative scattering lengths
were considered in [8]. We considered positive scattering lengths in [9]. Figure136.1
shows the recombination rate as a function of the scattering length a for the 40K−87Rb
system as measured by Bloom et al. [10].

136.4 A Finite Effective Range in the Heteronuclear System

In the previous section, we noted already that experimental measurements are carried
out at values of the scattering length at which finite range effects become sizeable.
EFT provides a convenient way to include these corrections without specification
of the underlying microscopic model. Following the previous work in [11, 12] we
carried out a perturbative analysis of the heteronuclear system in [13]. We derived
relations that can be used to predict the positions of recombination features in the
presence of finite effective range and a small scattering length a22 between the two
identical particles
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Fig. 136.1 The
recombination rate constant
αT as a function of the
scattering length a for
40K−87Rb with
η∗ = 0.05(02) [3]. The
three-body parameter is
adjusted to reproduce a
recombination minimum at
a∗0 ≈ 5000a0. The dotted
red line at 450 nK
corresponds to the average
temperature at which the
data of Bloom et al. was
taken [10]

ai (n) = λnθiκ
−1
∗ + (Ji + nσ)r0 + (Yi + nη)a22 , (136.5)

where i = +,−, 0 denotes a particular recombination feature (e.g. a+ denotes a
recombination minimum on the positive scattering length side). The parameters Yi
and Ji depend on the system under consideration, however, differences of two of
these parameters such as Yi − Y j are universal numbers.

136.5 Summary

I have discussed recent results for the heteronuclear three-body system with two
identical particles that interact through a large scattering length with a third, different
particle.We showed that the recombination rate at finite temperature dependence can
be calculated with universal scaling functions and Efimov’s radial law. I showed a
comparison of our results with an experimental measurement by Bloom et al. [10].

I also discussed how the effects of a finite effective range can be included to
describe its impact on observable features at zero temperatures using EFT. An anal-
ysis of the EFT results leads to universal relations that can be used to predict the
positions of recombination features.
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Chapter 137
Dipole-Dipole Interactions Between
Neutrons

Renato Higa, James F. Babb and Mahir S. Hussein (in memoriam)

Abstract In this work we present results of the dipole-dipole interactions between
two neutrons, a neutron and a conducting wall, and a neutron between two walls. As
input, we use dynamical electromagnetic dipole polarizabilities fitted to chiral EFT
results up to the pion production threshold and at the onset of the Delta resonance.
Our work can be relevant to the physics of confined ultracold neutrons inside bottles.

Casimir-Polder forces betweenneutrons. TheCasimir effect is a quite popular exam-
ple of a non-trivial phenomenon arising from quantum fluctuations on the vacuum
energy. The Casimir-Polder force was originaly devised to address the mismatch of
the van der Waals 1/r6 tail of interatomic interactions and observations of Overbeek
on quartz powder in colloid suspension. The correct asymptotic 1/r7 behavior is
obtained by taking into account retardation effects due to the finiteness of the speed
of light. Shortly after, Casimir related this force to quantum fluctuations of the vac-
uum between two neutral objects. Such force should appear due to the change in
the zero-point electromagnetic energy between two neutral, conducting plates, an
experimentally confirmed fact since then (see [1] and references therein).
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Table 137.1 Parameters of (137.1), (137.2) fitted to the theoretical curves of [8]. αn(0) and βn(0)
units are 10−4fm3, the remaining ones in MeV

αn(0) a1 a2 βn(0) b1 b2 ωΔ ΓΔ

Set 1 13.9968 12.2648 1621.63 4.2612 8.33572 22.85 241.484 66.9265

Set 2 11.6 2.2707 2721.47 3.7 8.67962 24.2003 241.593 68.3009

Set 3 12.5 5.91153 2118.79 2.7 9.27719 26.328 241.821 70.8674

A huge body of work has been devoted to this subject in atomic physics [2].
Feinberg and Sucher [3] derived the Casimir-Polder (CP) interaction between two
neutral spinless particles via the two-photon exchange mechanism and general
analytical properties of the related Compton scattering sub-amplitudes. The result is
given in terms of atomic dipole polarizabilities reflecting the linear response to an
external electromagnetic field. Arnold [4] was the first to calculate the CP interaction
between two neutrons, however, at that time only the static, electric dipole polariz-
ability data were available with nowadays outdated values. We extended Arnold’s
idea [5, 6] to include dynamic electric and magnetic dipole polarizabilities with
updated information from low-energy chiral effective field theory analysis. We also
performed calculations of the CP-interaction between a neutron and a wall, and one
neutron between two walls. In the following we summarize our main results and
present an outlook for future studies.

Compton scatteringandneutronpolarizabilities. Compton scattering onboth proton
and neutron became a wide subject in hadron physics comprising many theoretical
and experimental efforts around the world. See recent review [7] for the current
status of this line of research, where one also finds the intricate details on how to
extract information on the polarizabilities from the Compton scattering amplitudes.
Chiral effective field theory (χEFT), the effective theory of the underlying strong
interactions (QCD), has being used to make rigorous and systematic predictions
to Compton scattering observables at photon energies around and below the Δ-
resonance excitation energy. The most recent χEFT calculations of Lensky et al. [8]
for the electric αn(ω) and magnetic βn(ω) dynamical dipole polarizabilities of the
neutron is shown in Fig. 137.1 together with our low-energy parametrizations

αn(ω) = αn(0)
√

(mπ+a1)(2Mn+a2)(0.2a2)2√
(
√
m2

π−ω2+a1)(
√
4M2

n −ω2+a2)
[|ω|2+(0.2a2)2

] , (137.1)

βn(ω) = βn(0)−b21ω
2+b32 Re(ω)

(ω2−ω2
Δ)2+|ω2Γ 2

Δ| , (137.2)

with the set of parameters from Table137.1 (more details in [5]).
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Casimir-Polder forces. Between two neutrons, it is given by [2, 3, 5, 9]

VCP,nn(r) = − α0

πr6
Inn(r),

Inn(r) =
∫ ∞

0
dω e−2α0ωr

{[
αn(iω)2 + βn(iω)2

]
PE (α0ωr)

+
[
αn(iω)βn(iω) + βn(iω)αn(iω)

]
PM(α0ωr)

}
,

PE (x) = x4 + 2x3 + 5x2 + 6x + 3, PM(x) = −(x4 + 2x3 + x2),

(137.3)

where α0 ≈ 1/137 is the electromagnetic fine structure constant.
For the neutron-Wall (nW) CP potential one has [5, 10, 11]

VCP,nW (r) = − α0

4πr3
JnW (r), JnW (r) =

∫ ∞

0
dω e−2α0ωrαn(iω)Q(α0ωr),

Q(x) = 2x2 + 2x + 1. (137.4)

Finally, for two Walls separated by a distance L and one neutron in between, at a
distance z from the midpoint [5, 10, 11],

VCP,WnW (z, L) =
− 1

α0πL4

∫ ∞

0
u3du α

(
i

u

α0L

) ∫ ∞

1

dv

sinh(uv)

[
v2 cosh

(
2z

L
uv

)
− e−uv

]
.

(137.5)

Results. Our results are shown in Fig. 137.2. First row, VCP,nn as function of the
separation distance r . In the left panel, the (orange) curves with smaller magnitudes
stand for dynamical, ω-dependent polarizabilities while the (gray) ones with higher
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Fig. 137.1 Dynamic electric (left) and magnetic (right) polarizabilities, as functions of the photon
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to our parametrizations using the numbers specified in Table137.1. Adapted from [5]
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Fig. 137.2 Results for the various CP-interactions. See text for details. Adapted from [5]

magnitudes stand for the static limit. On the right panel, the (orange/gray) short-
dashed/long-dashed curves are VCP,nn multiplied by appropriate factors (100r6/r7),
the (orange/gray) solid lines are the arctan parametrization [12] that phenomeno-
logically makes the transition from short-distance van der Waals to the asymptotic
1/r7 Casimir-Polder behavior [4]. Second row, VCP,nW and shows similar qualita-
tive behavior as VCP,nn . Third row, VCP,WnW as function of L and z. For ultracold
neutrons, these attractive CP forces may compete with repulsive Fermi pseudopo-
tential, e.g., VF ≈ 252 neV for Ni [5].
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Chapter 138
Universal Phillips Lines for Identical
Bosons and Particles of Different Masses

Vladimir Roudnev

Abstract The universal modification of the Phillips line is considered. We study the
shape of the line for identical bosons and non-identical particles. The results suggest
that the universal Phillips line is a manifistation of universality as ubiquitous as the
Efimov effect.

138.1 Introduction

There are two observations that were made in the very end of 1960s and have been
atrracting the few-body community’s attention for a long time: the Phillips line
[1] and the Efimov effect [2]. The Phillips line—the linear correlation between the
neutron-deuteron scattering length and the triton bound state energy—constitutes
a phenomenological observation for a very particular three-body system, whereas
the Efimov effect is a universal theoretical prediction: it emerges for any three-body
system which holds at least two subsystems with the two-body scattering lengths
larger than all the other length scales. The latter case is often called “the univer-
sal interaction regime” in which only the leading orders of the two-body effective
range expansions govern the three-body dynamics. It is exactly the regime which
can be efficiently modeled on the base of Skorniakov-Ter-Martirosian (STM) equa-
tions. Application of the STM equations to studying the Phillips line by Efimov and
Tkachenko [3] has demonstrated that the realistic models for the neutron-deuteron
system produce results rather close to those based on the STM equations.

The question, however, whether the Phillips line is amanifestation of the universal
interaction regime as ubiquitous as the Efimov effect remained unattended.
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138.2 Identical Bosons

The study of the universal line for three identical bosons has been presented in detail
earlier [4]. Let us briefly recall the major ideas and results of this work.

We shall assume that the two-body interaction supports a single bound state with
the energy E2, the three-body system may have one or more bound states, and the
energy of the three-body bound state closest to the two-body threshold is E3, μ12 =
m1m2/(m1 + m2) andμ1(23) = m1(m2 + m3)/(m1 + m2) are the reduced masses of
the pair (12) and the particle 1 with respect to the pair (23). The two-body scattering
length is referred to as a2, and the particle-dimer scattering length a3 stands for the
particle-dimer scattering length. In the case of large positive two-body scattering
length a2 the following scaling holds−E2 ≈ 1/(2μ12a22). Similarly, at the two-body
threshold of the three-body system, the very same scaling law takes the form of E2 −
E3 ≈ 1

2μ1(23)a23
. This relationship suggests to introduce the following dimensionless

parameters α and ω

α ≡ a3
√−2μ1(23)E2 ∝ 1√

E3/E2 − 1
≡ ω .

α can be thought of as a dimensionless particle-dimer scattering length, and the
dimensionless parameter ω characterizes the proximity of the near-threshold three-
body bound state to the two-body threshold.

The typical shape of the universal line is shown in Fig. 138.1. As the ratio of
the two-body scattering length to the effective range increases (the values of the
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Fig. 138.1 Typical behavior of the dimensionless parameters α and ω for three-body bosonic
systems (adapted from [4])
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ratio are indicated along the line), the dimensionless parameters α and ω first follow
an interaction-dependent half-loop, and for sufficiently large scattering length—
approaching the universal interation regime—it starts following a universal line

α ≈ α1

1/ω − 1/ω0
+ ω + α0 (138.1)

with α0 = 5.5, α1 = 4 and ω0 = 0.419. The critical value of ω = ω0 corresponds
to a new three-body bound state being formed near the two-body threshold, and the
corresponding virtual state is responsible for the negative part of the universal line.
As this state turns into a bound state, the system jumps into the far linear positive
end of the diagram and continues to descend along the same universal line.

The universal regime manifest itself not only in the Efimov effect, but also in the
proximity of the three-body system threshold parameters α and ω to the universal
line. Two special points on this line corresponding to zero and infinite particle-dimer
scattering length can be marked at E3

E2
≈ 2.54 and E3

E2
≈ 6.7 correspondingly.

138.3 Non-symmetric Systems

Unlike the fully symmetric systems of bosons, the non-symmetric system case might
be complicated not only by the presence of multiple two-body thresholds, but also
by their relative positions. Here we only consider a few scenarios where only one
two-body threshold is present. In these scenarios we assume that two of the three
particles are identical, but they do not form a bound state.

We start from the case of three equal mass particles which is the closest to the
case of three identical bosons. In contrast with the latter case we assume that the
scattering length in one of the pairs is negative. As we can see from Fig. 138.2a,
the general shape of the line is similar to the bosonic case, but the position of the
pole which corresponds to the appearance of the subsequent excited states of the
three-body system is different. It is shifted to a lower value, which means that the
ratio between the energies of the three-body Efimov state that just appeared and the
one that already exists is bigger. A similar observation can be made for the particles
of different masses (Fig. 138.2c, d). For the systems with one heavy and two light
particles the subsequent Efimov states have larger energy ratio, and for the opposite
case of two heavy and one light particle the subsequent Efimov states lie closer to
each other. This property is evident in the behavior of the universal lines’ poles: they
consistently shift towards bigger or smaller values of ω.

Onemore example of non-identical particles is given by the three-nucleon system.
This example is especially interesting: the triton has only one bound state. The
proximity of the results obtained with realistic potential models [5] to the universal
line indicates (Fig. 138.3) that the interaction in the system is dominated by the
universal Efimov interaction, and the triton can be considered an example of a single
bound state Efimov system.
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Fig. 138.2 Universal lines for non-identical particles: a equal masses, one unbound pair; bm1 = 1,
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Chapter 139
Efimov Physics Beyond Three Particles

Betzalel Bazak

Abstract Efimov physics originally refers to a system of three particles. Here we
review recent theoretical progress seeking for manifestations of Efimov physics in
systems composed of more than three particles. Clusters of more than three bosons
are tied to eachEfimov trimer, but no independent Efimov physics exists there beyond
three bosons. The case of a few heavy fermions interacting with a lighter atom is
also considered, where the mass ratio of the constituent particles plays a significant
role. Following Efimov’s study of the (2 + 1) system, the (3 + 1) system was shown
to have its own critical mass ratio to become Efimovian. We show that the (4 + 1)
system becomes Efimovian at a mass ratio which is smaller than its sub-systems
thresholds, giving a pure five-body Efimov effect. The (5 + 1) and (6 + 1) systems
are also discussed, and we show the absence of 6— and 7—body Efimov physics
there.

139.1 Introduction

Universal aspects of few-body systems with large scattering length have attracted
attention in recent years from both theory and experiment perspectives [1]. Univer-
sality occurs when there is a large separation between the scale of the underlying
physics and the scale of the phenomena observed. For example, if the inter-particle
interaction range is much shorter than the spatial extent of the wave function gov-
erned by the scattering length a, most of the time the particles will be out of the
potential range and therefore not sensitive to its fine details.

A few examples of relevant systems come to mind. In low-energy nuclear physics
the scattering length of the singlet and triplet channels are as ≈ −23.4 fm and at ≈
5.42 fm, while the long-range part of the nucleonic interaction, determined by the
pion mass, is R ≈ �/mπc ≈ 1.4 fm.
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Larger scale separation can be found in 4He atoms. Here the He-He scattering
length is a ≈ 90 Å, while the Van Der Waals interaction range is rvdW ≈ 5.4 Å.

Another interesting case is ultracold atoms near Feshbach resonance. Here the
scattering length can be tuned to arbitrary value using, for example, externalmagnetic
field,

a(B) = abg

(
1 + Δ

B − B0

)
.

A fascinating effect was predicted by Efimov [2] for three identical bosons with
resonating interaction: the existence of infinite tower of bound trimers. For a recent
review see [3].

In this paper, we study Efimov physics beyond three particles.We start with a short
review of universal features and Efimov physics in three identical bosons and in the
(2 + 1) system, which is a mixture of two identical fermions and distinguishable
particle. Then we go beyond three particles and discuss the N > 3 identical bosons
system, as well as the (N + 1) systems with N ≤ 6.

139.2 Methods and Results

In order to study universality, one would like to neglect the system-specific details
and concentrate on the universal features.

To do so one could use the zero-range limit, i.e. eliminate the spatial extent of the
potential while applying the Bethe-Peierls boundary condition when two particles
touch each other,

∂ log(ri jψ)

∂ri j
−−−→
ri j→0

−1

a
(139.1)

where ri j = |r j − r i | is the distance between any pair of interacting particles.

139.2.1 The Universal Dimer

A trivial example for universality is the existence of universal dimer composed of
two identical bosons of mass m for a > 0. Working in the center-of-mass frame and
taking the zero-range limit, one has to solve the free Schrödinger equation for the
relative coordinate r and to apply the Bethe-Peierls boundary condition (139.1) at
zero, giving for the bound state ψ(r) ∝ exp(−r/a)/r corresponds to an energy of
−1/ma2, where here and thereafter � is set to 1.

This prediction is indeed valid for the three examples mentioned above. The
deuteron binding energy, 2.22 MeV, is fairly close to the universal prediction
1/ma2t ≈ 1.4 MeV. The 4He atoms dimer binding energy was measured recently
to be about 1.76(15) mK [4], where the universal prediction is 1/ma2 ≈ 1.48 mK.
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Since the next correction is of order of r0/a, where r0 is the effective range, one
would expect the universal prediction to be even better with ultracold atoms, and
indeed this is the case [5].

139.2.2 Efimov Physics in Three Identical Bosons

Adding another identical boson, the situation is changed dramatically, as Efimov has
shown [2].

To see that one can start from the Faddeev equation for zero-range potential,
and then transform to hyperspherical coordinates. In the unitary limit a −→ ∞,
the energy is then determined by one-dimensional equation for the hyper-radius,
ρ2 ∝ r212 + r223 + r213,

(
− d2

dρ2
+ s2 − 1/4

ρ2

)
R(ρ) = ER(ρ), (139.2)

where s is the eigenvalue of the corresponding hyper-angular equation. Equation
(139.2) has two interesting features. First, the effective three-body potential has long
range∝ ρ−2, in contrast to the zero-range two-body interactionwe start with. Second,
it exhibits scale invariance, therefore if R(ρ) is a solution with the corresponding
energy E , R(λρ) is also solution with the energy λ2E for arbitrary λ.

At small ρ, E can be neglected, and the solution for (139.2) is R±(ρ) ∝ ρ1/2±s .
The solution behavior is therefore determined by s. For s2 > 0 the solution can be set
to R+(ρ), while for s2 < 0 the solution is a combination of two oscillating functions,
whose relative phase is still needed to be fixed.

In the latter case the effective potential is attractive and one faces fall of a particle
to the center of ρ−2 potential, i.e. the energy here is not bound from below [6].

Introducing three-body potential barrier at some finite ρ0 saves us from this
collapse by setting the system ground state. The scale invariance is now broken
into discrete scale invariance, with λn = e−πn/|s|, and therefore the energies are
quantized, giving infinite series of bound states with geometric-series spectrum
En = E0e−2πn/|s|. Here ρ0 is a three-body parameter, which sets the ground state
energy and also fixes the relative phase of R±. s is the scale factor which governs the
scaling characters of the energies and the wave functions. For three identical boson
it has the value s = 1.00624 i .

This prediction had to wait about four decades before its verification in ultracold
gases experiments, where particle loss from the trap is a three-body process, showing
a significant signal when newEfimov state is formed. Studies of loss features of ultra-
cold 133Cs [7], 39K [8], and 7Li [9, 10] gases gave the first experimental verification
for Efimov physics.

The existence of Efimov trimers in 4He atoms was predicted long ago [11], where
due to the finite scattering length only two trimers should exist. Only recently the
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excited trimer was seen experimentally [12], giving another verification for Efimov’s
prediction.

139.2.3 Efimov Physics Beyond Three Identical Bosons

Shortly after Efimov original paper, Amado and Greenwood have claimed that there
is no Efimov effect for four or more particles [13].

However, three-body Efimov physics has a footprint in the four body system, were
two tetramers are tied to each Efimov trimer [14], a prediction which was verified in
ultracold atoms experiments [15]. The tetramer and trimer energies are correlated,
similar to the correlation between triton and alpha binding energies known as the
Tjon line [16, 17].

Larger clusters of identical bosons also exist, and their energies are correlated to
the trimer energy, therefore not showing independent N -boson Efimov physics [18].
See, however [19].

139.2.4 Mass Imbalanced Fermionic Mixtures

Another system relevant to Efimov physics is a mixture of identical fermions and
distinguishable particle with different mass.

Consider two heavy atomswithmassM interactingwith a light atomwithmassm.
First, we apply the Born-Oppenheimer approximation, valid in the limit of M � m
[20, 21]. Here the motion of the light particle is first solved assuming the heavy
particles position is fixed at ±R/2, giving

ψ±
R(r) ∝ e−κ(R)|r−R/2|

|r − R/2| ± e−κ(R)|r+R/2|

|r + R/2| (139.3)

where r is the light particle position. Applying the boundary condition (139.1) gives

κ±(R) ∓ e−κ±(R)R

R
= 1/a. (139.4)

The energy of the light atom ε±(R) = −κ2±(R)/2m is then considered as an effective
potential between the heavy atoms. Theminus state corresponds to repulsive effective
potential, while the plus state induces attractive potential,

ε+(R) ≈
{− 0.16

mR2 R/a 	 1

− 1
2m

(
1
a2 + exp(−R/a)

aR

)
R/a � 1

(139.5)
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Fig. 139.1 The effective potential between heavy particles induced by the light particle as a function
of their distance, for differentmass ratios in the Born-Oppenheimer approximation. For a smallmass
ratio, the effective interaction is repulsive (green). As the mass ratio increases p-wave resonance
occurs (blue), then the potential well becomes deep enough to support bound trimer (red), and
finally, the attraction wins and Efimov states emerge (black)

The heavy-particles equation for R 	 a is therefore identical to (139.2), replacing
ρ by R. Here s2 = l(l + 1) − 0.16M/m + 1/4 for angular momentum l.

In the bosonic case, the ground state has l = 0, giving purely attractive −1/R2

effective potential, and therefore Efimov physics.
In the fermionic case, the permutation symmetry dictates odd angular momentum

and the ground state has l = 1. The centrifugal barrier l(l + 1)/MR2 therefore com-
petes with the −1/mR2 attraction, where the competition is governed by the mass
ratio. Figure139.1 shows the effective potential for various mass ratios M/m.

This simple picture indeed catches the physics here. For a small mass ratio, the
effective potential is repulsive, andnobound trimer exists.As themass ratio increases,
the potential becomes more attractive, and a p-wave resonance occurs. Indeed this
resonance was found in ultracold 40K–6Li mixture [22]. For larger mass ratio the
potential well is deep enough to support a universal 1− bound state [23]. For even
larger mass ratio the system becomes Efimovian [24].

To proceed beyond this approximation, it is convenient to follow Skorniakov
and Ter-Martirosian formalism [25, 26]. Here instead of solving the Schrödinger
equation, one utilizes the zero-range potential to get an integral equation.

For the (N + 1) case, the STM equation in momentum space is [27],

1

4π

(
1

a
− κ

)
F(q1, . . . ,qN−1) =

∫
d3qN
(2π)3

∑N−1
i=1 F(q1, . . . ,qi−1,qN ,qi+1, . . . ,qN−1)

−2μE + μ
M

∑N
i=1 q

2
i + μ

m

(∑N
i=1 qi

)2 ,

(139.6)
where μ = Mm/(M + m) is the reduced mass. The function F(q1, . . . ,qN−1) can
be considered as the relative wave function of N − 1 heavy atoms with momenta
q1, . . . ,qN−1 and a heavy-light pair, the momentum of which equals −∑N−1

i=1 qi .
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Fig. 139.2 The energies of
the universal (N + 1) states
in units of the dimer binding
energy, as a function of the
mass ratio. Shown are results
for the 1− (2 + 1) state (red),
the 1+ (3 + 1) state (green),
and the 0− (4 + 1) state
(blue). The inset shows
zoom-in on the thresholds
region. Adapted from [27]

Here

κ =
√√√√−2μE + μ

M

N−1∑
i=1

q2
i + μ

M + m

(
N−1∑
i=1

qi

)2

. (139.7)

For a specific value of total angular momentum and parity Lπ , the equation can
be further simplified. For the (2 + 1) case the relevant symmetry for both universal
trimer and Efimov state is 1−. The function F therefore takes the form F(q) =
f (q)ẑ · q̂, leaving one-dimensional equation which can be easily solved for E , as can
be seen in Fig. 139.2. The universal trimer binding threshold could thus be obtained,
M/m = 8.173, in agreement with the results obtained in [23] in the hyperspherical
formalism.

To find the mass ratio where the system becomes Efimovian one would like to
calculate the scale factor s which approaches zero at that point. For that, one can
calculate the large-q asymptote of f , which has the form

f (q) ∝ q−2−s . (139.8)

Solving (139.6) for f and fitting the results to extract s, the Efimov threshold can be
found at M/m = 13.607, in agreement with the result of [24].

An interesting alternative, which may be more suitable for larger systems, is to
utilize the mapping between the free-space system with finite a and the trapped
system at unitarity [28, 29], whose energy is

E = �ω(s + 2n + 1) (139.9)

where ω is the trap frequency, s is the same scale factor and n counts hyper-radial
excitations. Hence, one can extract the scale factor s from the trapped energies.

Now that we have built our toolbox, we can face an interesting question: how
many heavy fermions can be bound by a single light atom?
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For the (3 + 1) case the relevant symmetry is 1+, and F takes the form F(q1,q2) =
f (q1, q2, q̂1 · q̂2)ẑ · q̂1 × q̂2, leaving a three-dimensional integral equation which
can be solved in deterministic method. It was shown that a universal 1+ tetramer
exists for a mass ratio M/m � 9.5 [30]. Moreover, an 1+ Efimov states exist above
M/m > 13.384 [31].

Adding another fermion, the relevant symmetry is 0−, therefore F(q1,q2,q3) =
f (q1, q2, q3, q̂1 · q̂2, q̂1 · q̂3, q̂2 · q̂3)q̂1 · q̂2 × q̂3, but the resulting six-dimensional
integral equation is too hard to be solved with conventional method. Hence a novel
method, which we call the STM-DMC method, is introduced [27, 32], where f
is treated as density probability function for so-called walkers, whose stochastic
dynamics is governed in such a way that their detailed-balance condition is (139.6).
Given E , a is than changed in each iteration to keep the walkers’ number constant.

Using this method, (139.6) can be solved for the (2 + 1), (3 + 1), and (4 + 1)
cases, getting both energies and scale factors. Figure139.2 shows the energies of the
universal states in these systems, its inset focuses on their thresholds. Known results
are reproduced, i.e. the thresholds for the (2 + 1) universal trimer and Efimov states.
Moreover, we can locate better the threshold of the (3 + 1) universal tetramer to be
8.862 [27], and confirm the threshold for four-body Efimov states [31].

We can now explore the terra incognita (4 + 1) system. Here we find a 0− uni-
versal pentamer as well as 0− Efimov states. In Fig. 139.2 we also plot the energies
for the universal 0− pentamer, showing it is bound for mass ratio above 9.672. In
Fig. 139.3 we show the scale factor for this system, showing Efimov 0− states emerge
here above M/m = 13.279 [27].

The different threshold for the (N + 1) states are summarized in Table139.1.
We see that the (N + 1) systems with N = 2, 3 and 4 exhibit similar behavior,

showing pure N + 1-body Efimov physics. Does this pattern continue for N ≥ 5?
The relevant symmetry for the (5 + 1) ground state is 0−, signaling that the addi-

tional fermion populates an excited s-shell, which has a radial node. This causes
the stochastic method to suffer from a sign problem. Hence we choose here another
approach, which is to extract the scale factor from the energies in a harmonic trap.

These energies were calculated using a Gaussian potential with a finite range R0,

V (r) = −V0 e
− r2

2R20 (139.10)

Table 139.1 The thresholds for universal and Efimov states in the (N + 1) systems

System Lπ Universal state Efimov state

2+1 1− 8.173 13.607

3+1 1+ 8.862 13.384

4+1 0− 9.672 13.279

5+1 0− ? –

6+1 2− ? –
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Fig. 139.3 The scale factor as extracted from the energies of the (N + 1) state in a harmonic trap at
unitarity, as a function of the mass ratio. The Efimov limit corresponds here to s = 0. Circles stand
for the results extrapolated from finite-range gaussian potential to the zero-range limit. Dashed
curves are for results acquired directly in the zero-range limit, by solving the STM equation on a
grid (for (2 + 1) and (3 + 1) systems) or with stochastic method (for the (4 + 1) case). The Dashed
curves for the (5 + 1) and (6 + 1) cases taken from the (4 + 1) case with appropriate shift, showing
no Efimov effect exists in these cases

where the results are extrapolated to the zero-range limit R0 −→ 0. The (N + 1)-
body Schrödinger equation is solved using a basis of correlated gaussians, chosen
by the stochastic variational method [33]. Using (139.9), the scale factor is then
extracted [34].

In Fig. 139.3 we show the (N + 1) system scale factor for N ≤ 6. Efimov thresh-
old here is signaled by s = 0. Results obtained with other methods are also shown.
Indeed the scale factors for N = 2, 3 and 4 hit zero at the Efimovian threshold.
However, no sign for Efimov physics is found in the N = 5 and 6 systems.

139.3 Conclusion

Efimov physics beyond three particles is studied here. For identical bosons, no inde-
pendent Efimov effect exists beyond three particles, although bosonic clusters are
tied to each Efimov trimer. For the (N + 1) case of N identical fermions interact
with distinguishable particle, Efimov states occur for mass ratio exceeds the relevant
threshold for the (2 + 1), (3 + 1), and (4 + 1) systems. However, no Efimov state
exists for the (5 + 1) and (6 + 1) systems.

Acknowledgements I would like to thank Dmitry Petrov for useful discussions and communica-
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Chapter 140
Ab Initio Calculation of Nuclear
Structure Effects in Light Muonic Atoms

Chen Ji

Abstract Nuclear structure effects to theLamb shift in lightmuonic atoms are driven
by the two-photon exchange contribution, whose evaluation relies significantly on
nuclear theory. Using ab initio calculations, we have studied nuclear structure effects
in several light muonic atoms, including μ2,3H and μ3,4He+ [1–5]. The two-photon
exchange is associated with nuclear electromagnetic sum rules. The calculation was
done with the implementation of state-of-the-art nuclear potentials, derived either
phenomenologically or from chiral effective field theory. The statistical and system-
atic uncertainties from nuclear theorywere analyzed by potential-model comparison,
and by using power-counting and parameter-optimization techniques, that have been
developed in chiral effective field theory. High precision of the ab initio results is
crucial for accurately extracting nuclear charge radii in muonic atom spectroscopy.

140.1 Introduction

The proton charge radius, extracted by the CREMA collaboration (PSI) in the high-
precision spectroscopy of muonic hydrogen [6, 7], revealed a 6σ deviation from
the CODATA value, i.e., an average of experimental results in ordinary hydrogen
spectroscopy and electron-proton scattering [8]. This mysterious discrepancy may
originate from unknown systematic uncertainties in different experiments, and is
also speculated due to missing quantum electrodynamics (QED) contributions or the
breaking of lepton universality.

A tremendous theoretical and experimental efforts have been made to probe
the proton radius puzzle. One direction towards resolving the discrepancy is to
re-examine the proton charge radius measured in ordinary hydrogen spectroscopy.
However, two new experiments on the hydrogen 2S–4P and 1S–3S transitions [9,
10] found contradictory results on the proton radius: one is consistent with muonic
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hydrogen and the other agrees with the CODATA value. The CREMA collaboration
tackled the problem via a different path by extending their experiments to other light
muonic atoms [11]. They performed a series of Lamb shift measurements in muonic
deuterium (μ2H) and helium ions (μ3,4He+). By comparing the nuclear charge radii
rE extracted from muonic atom experiments and the ones from ordinary atom spec-
troscopy or electron–nucleus scattering, one can test how the radius discrepancy
changes in lepton-nucleus systems with different light nuclei. The unveiled pattern
can provide valuable hints for explaining the radius puzzle.

Inmuonic atom spectroscopy, themeasurement of theLamb shift has been reached
at extremely high precision. However, to extract the value of rE from the measured
Lamb shift relies strongly on the theoretical inputs, which need to be calculated
with very high accuracy. Those inputs include the QED contribution and the nuclear
structure correction to the atomic spectrum. Since the muon is 200 times heavier
than the electron, the muon orbits the nucleus about 200 times closer in an atom.
Therefore, the nuclear structure correction in a muonic atom is considerably larger
than that in an ordinary atom [12]. The Lamb shift δLS, measured in a muonic atom
with high precision, is related to the nuclear charge radius rE by

δLS = δQED +AOPE r
2
E + δTPE. (140.1)

The first term, δQED, is the QED contribution, which has been calculated with high
accuracy. The rest two terms are nuclear structure corrections, which are depicted in
Fig. 140.1 as the effects driven by themuon-nucleus one-photon exchange (OPE) and
two-photon exchange (TPE) processes. The OPE term is proportional to r2E, where
the coefficientAOPE, of order m3

μ(Zα)4, is precisely determined in theory. The TPE
contribution, δTPE, is of order (Zα)5. Its evaluation relies on our accurate knowledge
of the nuclear dynamics and structure.

The current bottleneck for accurately extracting rE from (140.1) relies in the the-
oretical calculation of δTPE, with precision of a few percent to distinguish between
the experimental results in muonic and electronic atoms. We present here an update
to our recent progress of calculating δTPE in different light mounic atoms. The cal-
culation utilized the nuclear ab initio methods, which have been greatly developed
in the past few decades.

Fig. 140.1 The muon-nucleus one-photon and two-photon exchange effects
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140.2 Ab Initio Theory for Two-Photon Exchange

The δTPE contribution can be separated into elastic and inelastic parts, δTPE = δZem +
δpol. The elastic part δZem, named Zemach/Friar term, is proportional to the electric
Zemach moment [13, 14]. The inelastic part δpol, called the nuclear polarizability
contribution, reflects the virtual excitation and de-excitation of the nucleus within the
TPE process. The typical energy scales associated with the excitation of the nucleus
and the nucleon are respectively around 30 MeV and 300 MeV. The scale separation
indicates that one can study the nuclear and nucleonic parts of δTPE separately using
different effective theories. Therefore, for the elastic and inelastic parts of TPE, we
have δZem = δA

Zem + δNZem and δpol = δA
pol + δNpol. The superscripts A and N denote

respectively the contributions from the atomic nucleus and the nucelon. The ab initio
calculation is to solve the nuclear part of TPE, i.e., δA

Zem and δA
pol. In this approach,

the structure and reaction mechanism of the atomic nucleus is described in terms of
constituent nucleons interacting with two- and three-nucleon forces.

The key ingredient for obtaining the TPE contributions is to calculate a series of
generalized sum rules (GSR)

ΣGSR =
∫

dω g(ω)SO(ω), (140.2)

with different energy-weight functions g(ω) and nuclear structure functions SO(ω).
The dominant contribution involves the electric dipole structure function with an
energy weight proportional to

√
mμ/ω, where ω denotes the excitation energy of

an intermediate nuclear state in the TPE process. Using the Laczos sum rule (LSR)
approach [15], we can integrate over the full nuclear excitation spectrum inGSR. The
method is embedded into an expansion over a discrete sets of localized functions.
By doing so, one can numerically diagonalize the few-nucleon Hamiltonian. We
used the harmonic oscillator (HO) basis expansion in the two-nucleon system and
the hyperspherical harmonics (HH) basis expansion in the three-nucleon and four-
nucleon systems. In the latter case,we utilized the effective interaction hyperspherical
harmonics (EIHH) [16, 17] method to numerically achieve faster convergence.

The evaluation of the nucleonic part of the TPE contribution is beyond the scope
of nuclear ab initio calculations, which do not describe the internal structure of the
nucleon. Using dispersion relation analysis on electron-proton scattering data, δNTPE
in μH was evaluated in [18, 19]. The corresponding nucleonic contributions in other
light muonic atoms can be directly related to that in μH by simply multiplying some
scaling coefficients.

A detailed calculation of each individual contribution to δTPE can be found in our
recent review paper [5].
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140.3 Results and Error Estimates

Wepresented in 2014 [1] the calculation of δTPE inμ2H usingχEFTnucleon-nucleon
interactions with a series of different parameterizations. Based on the χEFT power
counting, the order-by-order low-energy expansion of the nuclear interactions allows
us to analyze the systematic uncertainty of χEFT predictions calculated at a given
EFT order. In μ2H, the nuclear-force uncertainty in δTPE was estimated to be 0.6%.
The result is highly consistent with calculations using the AV18 phenomenological
potential [20, 21] and the zero-range potential [22], and also agrees with results from
dispersion relation analysis [23]. However, the later has larger uncertainty due to the
lack of electron-deuteron quasi-elastic data at low energies and forward angles.

The experimental results of the Lamb shift in muonic deuterium was pub-
lished by the CREMA collaboration in 2016 [24]. A deuteron charge radius of
rd = 2.12562(78) fm was extracted. Its uncertainty is dominated by the theoret-
ical uncertainty of δTPE. The mean value is by 6.0σ smaller than the CODATA
value [8]. It also deviates by 3.5σ from the result in ordinary e2H spectroscopy [25].
Reference [24] also indicates a 2.6σ discrepancy in the measured isotope shift,
r2d − r2p, between ordinary atoms [26] and muonic atoms.

Recently, we re-analyzed uncertainty of the TPE contribution in μ2H originat-
ing from the χEFT Hamiltonian [2]. By calculating TPE contributions within a set
of simultaneously optimized chiral forces [27], we found that the statistical uncer-
tainty due to variances of low-energy constants in χEFT are negligible compared
to the systematic uncertainty. The later was estimated from the cutoff variation and
order-by-order convergence in χEFT using potentials up to N4LO. The systematic
uncertainty was found well under control. The result is consistent with our pre-
vious calculation, but still deviates from δTPE extracted from the μ2H Lamb shift
experiment.

In the past five years, we performed ab initio calculations of δTPE in μ3H, μ3He+,
and μ4He+. By probing the three-nucleon and four-nucleon dynamics, one can
thoroughly investigate the systematic nuclear structure uncertainty of δTPE in these
muonic atoms. For these calculations, we adopted two nuclear potential models.
One is the phenomenological AV18+UIX two- and three-nucleon forces [28, 29].
The other one is from one parameterization of χEFT [30, 31].

The QED and nuclear structure contributions to the Lamb shift in μ3,4He+ have
been summarized in [32, 33] to prepare analyzing the experimental data and deter-
mining the 3,4He charge radii in the future. These experiments can also provide
an accurate isotope shift of charge radii in helium isotopes, which has raised great
interest to the atomic physics community [34].

We list in Table140.1, the elastic and inelastic, nuclear and nucleonic contribu-
tions to δTPE calculated in several light muonic atoms, together with the estimated
uncertainties. The result is an update to our previous studies (see [5] for details).
One can observe that the nucleonic contribution to δTPE is generally smaller than
the corresponding nuclear part. Therefore, the reliable determination of the nuclear
TPE and its uncertainty is key to this problem. From μ2H to μ3,4He+, we found that
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Table 140.1 Contributions to δTPE in light muonic atoms (in meV), with separated contributions
from individual nucleons and from the few-nucleon dynamics. The uncertainties of individual
contributions δ

N ,A
pol , δ

N ,A
Zem and δTPE are in the brackets. Table adapted from [5]

δNZem δNpol δAZem δApol δTPE

μ2H −0.030(02) −0.020(10) −0.423(04) −1.245(13) −1.718(17)

μ3H −0.033(02) −0.031(17) −0.227(06) −0.480(11) −0.771(22)

μ3He+ −0.52(03) −0.25(13) −10.49(23) −4.23(18) −15.49(33)

μ4He+ −0.54(03) −0.34(20) −6.14(31) −2.35(13) −9.37(44)

Table 140.2 Estimation of relative uncertainty (%) of δAZem, δ
A
pol, and δATPE, based on a compilation

of various causes of uncertainty. The total uncertainty sums up each individual one in quadrature.
Table adapted from [5]

μ2H μ3H μ3He+ μ4He+

δAZem δApol δATPE δAZem δApol δATPE δAZem δApol δATPE δAZem δApol δATPE

NA 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.4 0.1 0.3 0.4 0.4

NM 0.5 0.3 0.4 2.4 1.3 1.7 1.8 0.7 1.5 4.6 3.9 4.4

ISB 0.2 0.2 0.2 0.2 0.7 0.5 0.2 1.8 0.5 0.5 2.2 0.5

NS 0.8 0.3 0.0 0.9 0.6 0.2 1.3 1.2 0.9 2.0 2.7 1.2

R − 0.0 0.0 − 0.1 0.1 − 0.4 0.1 − 0.1 0.0

C − 0.4 0.3 − 0.5 0.3 − 3.0 0.9 − 0.4 0.1

ηE − 0.4 0.3 − 1.3 0.9 − 1.1 0.3 − 0.8 0.2

(Zα)6 − 0.7 0.5 − 0.7 0.5 − 1.5 0.4 − 1.5 0.4

Total 0.9 1.0 0.8 2.2 2.3 2.0 2.2 4.2 2.1 5.1 5.5 4.6

the relative uncertainty due to nuclear structure models increases in systems with a
heavier nucleus; while the relative uncertainty from atomic physics is of similar size
in each muonic atom.

Because δTPE is the limiting factor in analyzing the Lamb shift experiments, it
is crucial to quantify the uncertainty in the TPE calculations. We explore all pos-
sible causes of uncertainty in the predicted results. For the nuclear part, δA

TPE, the
uncertainty comes from numerical accuracy (NA), nuclear-model uncertainty (NM),
isospin symmetry breaking corrections (ISB), nucleon-size corrections (NS), rela-
tivistic corrections (R), Coulomb corrections (C), higher-multipole expansion (ηE),
and (Zα)6 corrections. Detailed uncertainty evaluation for each muonic atom is
given in [5]. The summary of individual uncertainty sources for δA

TPE is listed in
Table 140.2. For the nucleonic part, δNTPE, the uncertainty in each muonic atom is
obtained by scaling propagation of the corresponding uncertainty in μH from dis-
persion relation analysis. The total uncertainty of δTPE is obtained by summing the
uncertainties of δA

TPE and δNTPE in quadrature.
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140.4 Conclusions

The TPE contribution is a crucial input from theory that determines the accessible
accuracy for extracting the nuclear charge radii from the Lamb shift measurements
in muonic atoms. Nuclear ab initio calculations have made reliable predictions on
the δTPE contributions in light muonic atoms, which have substantially reduced the
uncertainty of TPE compared to other methods and approaches. A precision of the
order of a few percent has been reached in our studies of the TPE contributions in
μ2,3H and μ3,4He+. The high precision prediction will help the CREMA collabo-
ration to achieve accurate determination of the nuclear charge radii and the isotope
shift in helium isotopes. These upcoming experimental results may help to solve the
proton radius puzzle.
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Chapter 141
Investigating Shakeoff Process in Precise
Correlation Measurements in Nuclear β
Decay

E. Liénard , P. Delahaye , X. Fléchard , B. Pons and G. Quéméner

Abstract Precise measurements of correlations in nuclear β decays are currently
employed to probe the Standard Model. When the β particle and recoiling daughter
ion are detected in coincidence, these measurements further allow the observation
of the ion charge-state distribution which results from the atomic shakeoff process
induced by the nuclear decay. This is of great interest for fundamental atomic physics.
This paper presents the results obtained at GANIL by means of LPCTrap experi-
ments with 6He1+, 35Ar1+ and 19Ne1+ ions. Comparison with theoretical values is
also presented and suggests further investigations.

141.1 Introduction

141.1.1 Correlations in Nuclear β Decay

Precision measurements in nuclear β decay constitute sensitive probes of the Stan-
dard Model of elementary particles (SM), complementarily to high energy physics
experiments [1]. Correlations between particle momenta and/or spins enable to test
the violation of fundamental symmetries or the V-A structure of the SM, according to
the behavior of vectors involved in the correlation term under symmetry operations
(P and T). In particular, the β-ν angular correlation term, aβν

�pe . �pν

EeEν
, is invariant under

P and T operations and enables either to search for exotic scalar or tensor currents
beyond the V-A theory in pure Fermi (F) or Gamow-Teller (GT) transitions, or to
determine precisely themixing ratio between theGT and F parts inmirror transitions.
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Since neutrinos are difficult to detect, sensitive observables for β-ν angular cor-
relation measurements are kinematic parameters affected by the recoiling daughter
nucleusmotion. Twomethods are commonly used: (i) a directmethod inwhich either
the recoil energy distribution [2] or the recoil ion time of flight (ToF) distribution
thanks to its detection in coincidence with the β particle [3], is measured or (ii) an
indirect method in which the Doppler shift of a delayed particle (γ or p) emitted
during the recoil motion [4–6] is measured. The direct method requires the use of
very clean radioactive sources, ideally placed in vacuum, due to the very low recoil
kinetic energy (~1–2 keV at most). The development of intense radioactive beams in
new generation facilities coupled to efficient beam handling techniques has allowed
the use of atom or ion traps to define excellent radioactive sources in very clean
environment [3, 7–9]. However, the high precision level targeted (~0.1%) requires a
deep knowledge of the experimental setup to properly manage any effect potentially
affecting the shape of the recoil energy or ToF distribution. The analysis of data
is performed with the help of realistic simulations considering a set of systematic
effects as complete as possible [10, 11]. For instance, the effect due to the shakeoff
process has to be considered since it modifies the charge state of the recoil ion. This
process is introduced in the next section.

141.1.2 The Shakeoff Process

Electron shakeoff (SO) is a fundamental atomic process in which a bound electron
is excited into the continuum because of a sudden change of the central potential.
Nuclear β decay, which modifies the nuclear charge, may induce such an ionization
process. If one neglects the SO process, the β decay of singly charged ions basically
leads to:

β−: A
Z X

1+ → A
Z+1Y

2+ + β− + ν̄e (141.1)

β+: A
Z X

1+ → A
Z−1W

0 + β+ + νe (141.2)

As low energy neutrals are very difficult to detect, it is worth noting that in the
second case, the recoil atom cannot be properly detected, while SO, yielding singly-
and multi-charged ions W q+, greatly facilitates the measurement. It is even worse
with atom traps in which the radioactive source is neutral: detection of recoils in
β+ decay then requires a double SO process [12]. The probability of multiple SO
processes depends obviously on the number of electrons available but also on the
probability of other atomic processes such as electron shakeup (excitation) or Auger
emission. This finally leads to charge state distributions that should emphasize the
dominant atomic processes.

The β decay is a very fast process inducing a nuclear potential change with a
typical time of 10−18 s, which justifies the use of the sudden approximation (SA)
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in the theoretical models describing SO. However this hypothesis had not been yet
experimentally verified before the first experiment performed at GANIL with the
LPCTrap setup described in the next section.

141.2 LPCTrap@GANIL

The LPCTrap setup is installed at the low-energy beam line LIRAT of the SPIRAL1-
GANIL facility. Technical details on the setup are given in [13]. The central element
of the device is a transparent Paul trap designed to confine singly charged radioactive
ions, almost at rest, in a small volume. The trap consists of 6 concentric rings with an
open geometry, allowing easy injection and extraction aswell as an efficient detection
in coincidence of the β particles and recoil ions.

The low energy radioactive beam is provided by the ECR source of the SPIRAL
facility at 10 keV kinetic energy (typical energy dispersion: ~20 eV). In the LIRAT
beam line, the installation is equipped with a Radio Frequency Cooler-Buncher
(RFQCB) for the preparation of the beam by reducing the emittance and the produc-
tion of ion bunches. In the transparent Paul trap, the ions, also cooled down by elastic
collisions with an inert gas injected at very low pressure (10−6–10−5 mbar), have
energies of about 0.1 eV at equilibrium and the diameter of the ion cloud located at
the centre of the trap is of the order of 2.5 mm.

In the detection setup, a telescope and a micro-channel plate position sensitive
detector (MCPPSD) detect the β particles and the recoil ions respectively. The β

telescope, located 10 cm away from the center of the trap, is made of a 60 × 60 mm2

300 μm thick double-sided silicon strip detector for position readout, followed by a
7 cm thick plastic scintillator coupled to a photomultiplier to measure the β particle
kinetic energy and to deliver the start signal for the recoil ion ToF measurement. The
stop signal is provided by the MCPPSD, installed at the end of the ion spectrometer.
This spectrometer is located in front of the telescope at the opposite side from the
trap center. The ions emitted towards the spectrometer are accelerated by a −2 kV
potential after they cross a collimator located in front of a 50 cm long free flight
tube. An electrostatic lens allows the collection of all the ions on the MCPPSD. This
spectrometermakes LPCTrap a unique and unprecedented setup for themeasurement
of charge-state distributions of ions associated to the β decay of singly charged
radioactive ions. The performances of the whole setup for experiments performed
with 6He, 35Ar and 19Ne are given in [14].

141.3 The 6He1+ Case

According to Eq. (141.1), one single electron remains bound to the 6Li2+ recoil ion
after the β− decay of 6He1+. Therefore the final ion charge-state distribution only
depends on pure SO, and the basic assumptions underlying the usual descriptions



906 E. Liénard et al.

of SO can be checked precisely by means of direct comparison with experiment.
Full quantum calculations, employing hydrogen-like wavefunctions, were thus per-
formed in the framework of the SA with the aim to probe the reliability of this latter
fundamental approximation. The calculations led to the SO probability (see [15] for
details):

PSO = (2.33810 + 0.00412Erec(keV)) × 10−2

where Erec is the recoil kinetic energy.
Figure 141.1 shows the recoil ion ToF distribution measured at GANIL using

LPCTrap. A total of 1.2 × 106 final coincidences has been collected and analyzed
with realistic simulations including all the identified systematic effects [15]. The
induced corrections and systematic uncertainties are summarized in Table 141.1.
In the simulations, the SM value was used for aβν , considering a variation of the
parameter in a range compatible with the current experimental precision [16]. The
difference in MCP efficiency due to different thresholds for the two charge states

Fig. 141.1 Experimental
6Li ions ToF distribution
following 6He1+ decay, with
the fit superimposed
(adapted from [15])
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Table 141.1 Systematic
effects considered in the
analysis. (See text for details)

Source Corr. (10−5) Error (10−5) Method

aβν 4.0 [16]

β scattering 39 4.0 GEANT4

Background 3.5 Present data

Eβ calibration 1.7 Present data

MCP efficiency −9 1.2 Present data

Total 30 7.0
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was also taken into account. The agreement between the simulated and experimental
distributions is excellent and it has enabled to deduce the following experimental SO
probability:

PSO = 0.02339(35)stat(07)syst.

The mean recoil energy corresponding to the events selected in the experimental
data analysis has been substituted in the theoretical expression to compute the mean
SO probability. A correction to the SA has been further estimated to account for the
finite duration of the potential change, including also the direct collision mechanism
between the bound electron and β particle, yielding δPSO = −20 × 10−5. Finally,
the mean theoretical SO probability is <PSO> = 0.02322, in perfect agreement with
the experimental value.

141.4 The 35Ar1+ Case

According to Eq. (141.2), the recoiling 35Cl species are neutral after the β+ decay of
35Ar1+ ions but the SO process allows easier and direct detection of the recoil ions.
Multielectron systems require a more sophisticated model to understand the charge-
state distribution measured in the experiment. The calculation is performed in the
framework of the SA, using an independent particle model (IPM) with Hartree-Fock
wavefunctions to compute the ionization SO probabilities [17]. Subsequent Auger
decays are also explicitly included in the calculation, and we discriminate between
SO and Auger contributions to the production of charged daughter ions.

Figure 141.2 (Left) shows the recoil ion ToF distribution measured at GANIL
using LPCTrap [17]. A total of 1.5 × 106 final coincidences has been collected. The
experimental relative SO probability, indicated on the spectrum, was obtained by
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peak integration including two corrections: the overlap of peak tails deduced from
basic simulations (assuming SM aβν) and the charge dependence of the recoiling
ion detection efficiency. The comparison with the model is again excellent when
including Auger emission (see Fig. 141.2 Right), and this confirms the paramount
importance of Auger contribution to the production of high charge states. Moreover,
the number of 35Cl atoms produced during the experiment has been estimated using
the number of detected β particles reduced by the number of coincidences corrected
by the overall absolute detection efficiency for ions. This estimation leads to 72(10)%
of neutral 35Cl, which is also in good agreement with the 73.9% ratio obtained from
the calculation.

141.5 The 19Ne1+ Case

The last case studied with LPCTrap concerns the charge-state distribution of the
recoiling 19F ions after the β+ decay of 19Ne1+ ions [18]. A total number of 1.3× 105

final coincidences has been collected in the spectrum shown in Fig. 141.3 (Left). The
data were analyzed using the same method as for 35Cl and the theoretical relative SO
probabilities were obtained using the same approach as before. Here, the agreement
seems better when Auger emission is neglected (see Fig. 141.3 Right), which is
not satisfactory and clearly coincidental. The production of neutrals, experimentally
estimated to be 69.5(4.2)%, is also badly reproduced by the model which provides a
value of 76.5%.We traced back the root of the experimental/theoretical discrepancies
to the inaccuracy of the multielectron SO probabilities computed by means of the
IPM whose reliability worsens for systems with low nuclear charge [18].
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141.6 Conclusion

The SO process has been investigated in three nuclear β decays, starting from an
ideal one-electron system which has enabled to confirm for the first time the reliabil-
ity of the sudden approximation. In systems involving many electrons, primary SO
ionization is followed by secondary processes which modify the recoil charge-state
distribution. In 35Ar1+ decay, Auger emission is dominant and monitors the pro-
duction of the highest charge states, which is not observed in 19Ne1+ decay. In this
last case, Auger emission does not play such an important role so that the theoreti-
cal/experimental discrepancies which have been observed reveal the importance of
electron correlations in the primary SOmechanism, beyond the independent electron
assumption. Introducing such correlations in the calculation of SO probabilities con-
stitutes a theoretical challenge and their importance as function of the nuclear charge
Z could be directly gauged in future LPCTrap experiments performed at GANIL
using beams (21Na, 23Mg, 33Cl, 37K) provided by the new SPIRAL1 sources [19].
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Chapter 142
Hypernuclear Spectroscopy with
Heavy-Ion Beams: Present Status
and Perspectives

Christophe Rappold and Takehiko R. Saito

Abstract Research on the strange quark involves the study of the baryon-baryon
interactionswithin SU(3) f . The determination of the interaction strength between the
hyperons (baryon containing a s-quark) and the nucleons is crucial for the description
of the equation of state of neutron stars. The HypHI (Hypernuclei with Heavy Ion)
collaboration demonstrated the feasibility of the spectroscopy of hypernuclei pro-
duced in ion-induced reactions. A first experiment was performed with a 6Li beam
bombarding a carbon target at 2 AGeV. The experimental approach was developed
to measure and study hypernuclei produced in the projectile rapidity region of the
nuclear collisions. SuchΛ-hypernuclei are produced by the coalescence between aΛ

hyperon produced in the mid-rapidity region of the participant zone and a spectator
fragment. The current status of the HypHI project are reviewed: the results on 3

ΛH
and 4

ΛH are presented, together with the possible signal of nnΛ. The forthcoming
experiment at the fragment separator FRS at GSI is described, aiming to improve the
hypernuclear spectroscopy. The main goal is to verify the existence or not of a nnΛ
bound state. The spectroscopy of 3

ΛH and study of its lifetime will be also pursued.
The study of 3

ΛH and possibly of 4
ΛH will be used to demonstrate the feasibility of

the new experimental approach of using a fragment separator for the measure of the
decay fragments. Finally, further prospects within the HIAF facility on hypernuclear
spectroscopy by heavy-ion reaction will be mentioned.
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142.1 Introduction

The hypernucleus, a bound state of hyperons and nucleons, has been one of the focus
to comprehend the baryon-baryon interaction. One of main topic is the determination
of the equation of state of baryonic matter up to the strangeness sector. Nuclear
spectroscopy with heavy-ion beams and fixed nuclear targets has recently become a
powerful tool to study hypernucleus.

142.2 HypHI Project: Results and Present Status

The first HypHI (Hypernuclei with Heavy Ion) experiment at GSI was performed
with a 6Li beam bombarding a carbon target at 2 AGeV. The experimental approach
was developed to measure and study hypernuclei produced in the projectile rapidity
region of the nuclear collisions. The Λ-hypernuclei are yielded by the coalescence
between a Λ hyperon from the mid-rapidity region of the participant zone and the
spectator fragments. The produced hypernuclei in the projectile rapidity region have
a velocity similar to the beam projectile, therefore are Lorentz boosted. Their decay
length in the laboratory frame is thus long enough to allow the weak decay to happen
well behind the target. The produced hypernuclei can then be observed and mea-
sured in-flight in a large decay volume located behind the target. By inferring the
4-vector of the decay particles induced from the hypernuclear decay, the invariant
mass spectroscopy of hypernuclei can be achieved.

Using heavy-ion beamon a solid targetmaterial allows producing fragmentswith a
large isospin distribution. Thus, the yield of exotic hypernuclei can be large enough
to allow the precise spectroscopy of the hypernuclei of interest. One of the main
objectives of the HypHI project is to study the high isospin effect in the hyperon-
nucleon interaction by observing first off the mesonic weak decay of proton- and
neutron-rich hypernuclei. The experiment was performed with 6Li beam at 2 A GeV
and3 × 106 ions per second on a graphite target of 8.84 g/cm2.As discussed in [1], the
experimental setup, exhibited in Fig. 142.1, consisted of three tracking stations, TR0,
TR1, TR2, of scintillating fiber detector arrays, and two drift chambers, BDC, SDC,
for the displaced vertex measurement. Additionally, three scintillating hodoscope
walls, TOF+, TFW, ALADiN TOF, were used for tracking, energy loss and time-of-
flight measurements of charged particles across the ALADiN dipole magnet. For the
vertex reconstruction, the tracking system was placed in front of the dipole magnet
around the decay volume of hypernuclei. Two separated detector sets, consisting
of TOF+ and TFW & ALADiN TOF hodoscope walls, were positioned behind the
magnet to measure respectively the positively and negatively charged particles.
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Fig. 142.1 Layout of the experimental setup

142.2.1 Spectroscopy of 3
Λ
H and 4

Λ
H light hypernuclei

The hypernuclear reconstruction focused on the two-body mesonic weak decay of
3
ΛH → π− + 3He, 4ΛH → π− + 4He and Λ → π− + p. Then the measurement of the
displaced vertex of the hypernuclear weak decay in the free space of the laboratory
gives a clear lifetime measurement.

Those experimental results on the hypernuclear production are published [1, 2].
The 3

ΛH and 4
ΛH signals were extracted from the invariant mass distributions (Fig.

142.2). The 3
ΛH and 4

ΛH signal significance is respectively 4.7σ and 4.9σ [1]. With
the 3

ΛH and 4
ΛH signal observation, the lifetimes were estimated via the unbinned

maximum likelihood method. The profiled likelihood ratio of the lifetime estimator
was used to infer the best estimate and the confidence interval at one-standard devi-
ation. The experimental 3

ΛH and 4
ΛH lifetime was obtained as 183+42

−32 ± 37 ps and
140+48

−33 ± 35 ps respectively [1].
These inferred 3

ΛH and 4
ΛH lifetime was compared with the previous published

results and a good agreement with the previous measurements was reported [1].
After a world data comparison of 3

ΛH and 4
ΛH lifetimes, the combination of existing

measurements was performed in order to extract a more precise estimation of the
experimental lifetime values [3]. The goal was to provide amore decisive perspective
fromexperiments to be comparedwith theoretical estimations. The combined average
and one-standard deviation of the lifetime for 3

ΛH and 4
ΛH were respectively 216+19

−16

ps and 192+20
−18 ps in 2014 with the available experimental data. The exclusion bands

at 95% confidence level, which are suitable for the comparison with the theoretical
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Fig. 142.2 Invariant mass distribution for candidates of Λ, 3ΛH and 4
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mental data is shown by the filled circles. The opened triangles represent invariantmass distributions
of the mixed event analysis to estimate the background contributions. Figure adapted from [1]

calculations, were then deduced to be [186 ps, 254 ps] for 3ΛH or [158 ps, 233 ps] for
4
ΛH in 2014.

The obtained results reported a shorter lifetime of the 3
ΛH and 4

ΛH compared to
their theoretical structuremodels [3],which had strong implications on the theoretical
models of the hypernuclear structure.
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142.2.2 Possible Signal of 3
Λ
n in the D + π− and T + π−

Reconstruction

Separate results showed the indications of a possible bound state of two neutrons
and one Λ hyperon, 3

Λn or nnΛ [4]. Other decay channels were investigated, and
in particular the decay channels d+π− and t+π− were reconstructed. Figure142.3
shows the invariant mass spectra of d+π− and t+π− decay reconstruction when the
decay vertex position is behind the target material. A clear signal peak can be seen,
and the significance of the signal contribution was inferred to be 3.7σ and 5.2σ for
the distributions in Fig. 142.3 [4].

For d+π− and t+π− decay channel, the lifetime of the mother candidates were
extracted to be 181+30

−24 ± 25ps and 190+47
−35 ± 36ps, respectively. Those lifetimevalues

are indicative of weak decay processes. It implied that a strangeness-changing weak
interaction occurred.

The simplest bound system involving strangeness that could decay into a t+π−
channel was considered to be a bound system of two neutron and one Λ hyperon:
nnΛ or 3Λn. Similarly, d+π− could have been considered to be from the decay of nΛ,
however previous experimental results on pΛ and nΛ have strongly disproved those
states [4].

Meanwhile, recent theoretical calculations have shown that such a state is unlikely
bound [5–7]. This possible bound state is thus open issue to be investigated in the
forthcoming experiment.
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mass distribution of the mixed event analysis, estimating the background-only contribution. Figure
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142.3 Future Perspectives

With this current experimental approach of the HypHI project for the hypernuclear
spectroscopy, the accuracy and statistics need to be improved. The experimental
method also has to be further developed with different detection techniques and
beams at higher energies.

142.3.1 Prospects in Hypernuclear Physics for FRS at
GSI-FAIR

A new project to study hypernuclei has been proposed at GSI: it will employ the
WASA central detector, currently at COSY in Jülich, Germany, and under trans-
portation to GSI, for pion measurement combined with the high resolution fragment
separator, FRS, for measuring decay residues. The novel experiment at the FRS frag-
ment separator for the FAIR-Phase 0 beam-time period was proposed and approved
in order to assess the existence of the nnΛ possible bound state. A new experimental
concept has been under development [8]. Also to determine the feasibility of the
experimental method, the experiment will be performed with similar conditions of
the previously successful experiment. Light hypernuclei 3

ΛH,
4
ΛH and nnΛ will be

the species of interest that are to be reconstructed and identified by invariant mass
method.

After the two-body decay, a narrow magnetic rigidity acceptance window will
be set for the FRS in order to measure precisely the momentum of outgoing decay
fragment. The layout of the FRS is shown in top panel of Fig. 142.4. The detection
apparatus at the S2 experimental area will be responsible for the measurement of a
largeportionof the emittedπ− as shown inbottompanel of Fig. 142.4.The acceptance
and efficiencies have been evaluated and the invariant mass resolution is expected to
be at least twice better with at worst an order of magnitude more of statistics than
during the first HypHI experiment.

142.3.2 Further Perspective at HIAF

Another novel development at higher energies is in progress for the future heavy-ion
accelerator facility in China, High Intensity heavy ion Accelerator Facility, HIAF
[9]. The HIAF facility will consist of several heavy-ion storage rings as shown in
Fig. 142.5: one ring of 34 Tm, BRing, for accumulation and acceleration of injected
heavy-ion beam from the linear accelerator, iLinac. A second ring, SRing, is part of
the HIAF facility for spectroscopy experiment based on storage ring, placed behind
a High Energy Fragment Separator of 25 Tm that will provide rare-isotope beam to
the SRing.
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Fig. 142.4 Experimental layout of the forthcoming FAIR-Phase 0 experiment. In the top panel, the
FRS layout: the beam is delivered to the experimental area S2 where the production of hypernuclei
will occur and where the detection apparatus for the light particles will be placed. The FRS segment
from S2 to S4 will be employed as a high-resolution forward spectrometer for the decay fragment of
interest. In the bottom panel, the WASA cylindrical detector apparatus that will be placed in the S2
area. The light particles like pions will be measured within the solenoid magnet of the cylindrical
detector

With the synchrotron of 34 Tm, BRing, the available beam energy is up to
4.25 AGeV for A/Z = 2. It will open opportunities to study in-flight double-
strangeness hypernuclei with heavy-ion induced reaction on fixed target similarly
to the HypHI project. The design of the future hypernuclear experimental setup is
on-going. It would combine a solenoid magnet and a dipole magnet. The solenoid
with its dedicated integrated detection system would detect the light hadrons pro-
duced in themid- and projectile rapidity.While the dipole magnet placed well behind
the solenoid with its planar detection system would measure precisely the out-going
heavier decay fragments. It will be a new scope of work to us to perform an in-depth
research program on S = −1 and S = −2 hypernuclei by means of precise invariant
mass spectroscopy.
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Fig. 142.5 Layout of the HIAF facility. The main characteristics of each sub-systems are shown.
Figure adapted from [9]

142.4 Conclusion

After the completion of the first experimental campaign of the HypHI project, the
feasibility of the hypernuclear spectroscopy via heavy-ion induced reaction was
demonstrated. The experimental lifetime measurement of light hypernuclei 3ΛH and
4
ΛH has become a hot topic in the recent years with the additional experimental
results from the STAR and ALICE collaborations. Further theoretical calculations
are needed to explain and comprehend the lifetime of light hypernuclei. Besides, new
development and evidences are to be required to seal the fate of the experimental
observation of the nnΛ. Improvement of the precision of the in-flight spectroscopy
of light hypernuclei are on-going with the planned experiment WASA@FRS at GSI
facility. As well, at the future accelerator HIAF novel experimental program on
hypernuclear physics is currently under development.
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Chapter 143
Baryon-Baryon Interaction in Chiral
Effective Field Theory

Johann Haidenbauer

Abstract The Jülich-Bonn-Munich Group has performed extensive studies of
baryon-baryon interactions involving strange baryons (Λ,Σ ,Ξ ) within chiral effec-
tive field theory (EFT). A selection of the achieved results is presented. In particular,
a calculation of the in-medium properties of a hyperon-nucleon interaction derived
within chiral EFT and fitted toΛN andΣN scattering data is reviewed. Implications
on the properties of neutron stars and, specifically, on the so-called hyperon-puzzle
are addressed. In addition, results for baryon-baryon scattering in the strangeness
S = −2 sector, obtained at next-to-leading order in the chiral expansion, are pre-
sented.

143.1 Introduction

The interaction between hyperons (Λ,Σ ,Ξ ) and nucleons is an important ingredient
for microscopic calculations of few- and many body systems involving strangeness.
This concerns light and heavy hypernuclei [1, 2] but also more exotic systems like
neutron stars where the possible appearance of hyperons plays a crucial role for their
properties and, specifically, their mass and size [3–5]. Motivated by these aspects,
recently we examined the in-medium properties of a hyperon-nucleon (YN ) interac-
tion that has been derived within the modern approach of chiral effective field theory
(EFT) [6–8]. In particular, we evaluated the single-particle potentials for the Λ, Σ
and Ξ hyperons in nuclear matter in a conventional G-matrix calculation [9–11].
One issue of special interest is the Σ-nucleus potential. There is strong phenomeno-
logical evidence that it is repulsive [2]. However, conventional models of the YN
interaction, fitted to ΛN and ΣN scattering data, often fail to produce a repulsive
Σ-nuclear potential. Specifically, for models based on meson-exchange dynamics it
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is rather difficult to obtain such a repulsion [12–14]. Another interesting question is
the behavior of these effective interactions at high baryon density as realized in the
core of neutron stars.

TheYN interaction employed is the one derived up to next-to-leading order (NLO)
in the chiral expansion by the Jülich-Bonn-Munich group [7, 8].With that interaction
an excellent description of available ΛN and ΣN scattering data could be achieved
at NLO [7]. Also the S = −2 sector is well accounted for [8, 11]. Note, however,
that in this case there are only a few data points and upper bounds for the ΞN elastic
and inelastic cross sections that put constraints on the corresponding interactions.

The paper is structured in the following way: First we provide a brief review
of the construction of the YN interaction within chiral EFT. We show also some
selective results for the strangeness S = −1 (ΛN , ΣN ) and S = −2 (ΞN ) sectors.
In Sect. 143.3 we discuss in-medium results for those interactions. Specifically, we
present predictions for the single-particle potential for theΛ andΣ at nuclear matter
saturation density and we examine the behavior of the interactions for higher density
in respect of the properties of neutron stars. The paper ends with a short summary.

143.2 The YN Interaction in Chiral EFT

The derivation of the chiral baryon-baryon potentials for the strangeness sector using
the Weinberg power counting is outlined in [7, 8, 15]. The LO potential consists
of four-baryon contact terms without derivatives and of one-pseudoscalar-meson
exchanges while at NLO contact terms with two derivatives arise, together with con-
tributions from (irreducible) two-pseudoscalar-meson exchanges. The contributions
from pseudoscalar-meson exchanges (π, η, K) are completely fixed by the assumed
SU(3) flavor symmetry. On the other hand, the strength parameters associated with
the contact terms, the low-energy constants (LECs), need to be determined in a fit
to data. How this is done is described in detail in [7] for the ΛN and ΣN interac-
tions and in [8] for the S = −2 sector. Note that, in general, SU(3) symmetry is also
imposed for those contact terms which reduces the number of independent LECs
that can contribute.

The reaction amplitudes are obtained from the solution of a coupled-channels
Lippmann-Schwinger (LS) equation for the derived interaction potentials:

T �′′�′,J
ν ′′ν ′ (p′′, p′;√

s) = V �′′�′,J
ν ′′ν ′ (p′′, p′)

+
∑

�,ν

∫ ∞
0

dpp2

(2π)3
V �′′�,J

ν ′′ν (p′′, p) 2μν

q2ν − p2 + iη
T ��′,J
νν ′,J (p, p′; √

s) .

The label ν indicates the particle channels and the label � the partial wave. μν is
the pertinent reduced mass. The on-shell momentum in the intermediate state, qν ,
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is defined by
√
s =

√
m2

B1,ν
+ q2ν +

√
m2

B2,ν
+ q2ν . Relativistic kinematics is used for

relating the laboratory energy Tlab of the hyperons to the c.m. momentum.
We solve the LS equation in the particle basis, in order to incorporate the correct

physical thresholds. The Coulomb interaction is taken into account appropriately
via the Vincent-Phatak method. The potentials in the LS equation are cut off with a
regulator function, fR(Λ) = exp

[− (
p′4 + p4

)
/Λ4

]
, in order to remove high-energy

components [16]. We consider cutoff values in the range Λ = 550 – 700 MeV (LO)
and Λ = 500 – 650 MeV (NLO), similar to what was used for chiral NN poten-
tials [16].

143.3 Results

143.3.1 ΛN, ΣN, and ΞN Scattering

Our results for ΛN and ΣN scattering are presented in Figs. 143.1 and 143.2. The
bands (red for NLO, green for LO) represent the variation of the cross sections based
on chiral EFT within the considered cutoff region stated above. For comparison
also results for the Jülich ’04 [14] meson-exchange model are shown (dashed line).
Obviously, the available ΛN and ΣN scattering data are very well described by our
NLOEFT interaction. In particular, and as expected, the energy dependence exhibited
by the data is visibly better reproduced at NLO than at LO. This concerns especially
the Σ+p channel. But also for Λp the NLO results are well in line with the data
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Fig. 143.1 Total cross sections forΛN andΣN scattering as a function of the laboratorymomentum
plab. The green (grey) band shows the chiral EFT results to LO for variations of the cut-off in the
range Λ = 550–700 MeV, while the red (black) band are results to NLO for Λ = 500–650 MeV
[7]. The dashed curve is the result of the Jülich ’04 [14] meson-exchange potential
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Fig. 143.2 Total cross sections for ΣN scattering as a function of the laboratory momentum plab.
Same description of curves as in Fig. 143.1
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Fig. 143.3 Total cross sections for Ξ−p elastic and charge-exchange scattering as a function of
the laboratory momentum plab. Same description of curves as in Fig. 143.1

even up to the ΣN threshold. Furthermore, one can see that the dependence on the
cutoff mass is strongly reduced in the NLO case. Additional results, for differential
cross sections and for phase shifts, can be found in [7]. Exemplary results for the
ΞN interaction are show in Fig. 143.3, see also [8].

Besides an excellent description of the YN data the chiral EFT interaction yields
a satisfactory value for the hypertriton binding energy, see [7]. Calculations for the
four-body hypernuclei 4

ΛH and 4
ΛHe based on the EFT interactions can be found

in [17].
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143.3.2 Λ and Σ in Nuclear Matter

In order to investigate the properties of our YN interactions in nuclear matter, we per-
formed conventional first-order Brueckner calculations based on the standard (gap)
choice of the single-particle (s.p.) potentials [9, 11] as well as with the continuous
choice [10]. In the present workwe focus on the results of [9], where one can also find
details about how the Bethe-Goldstone equation is solved and how the s.p. potentials
UΛ, UΣ , are determined self-consistently for a specific nuclear matter density ρ or
Fermi momentum kF . The latter are related by ρ = (2/3π2) k3F for symmetric nuclear
matter.

Table 143.1 summarizes the predictions for the Λ and Σ potential depths,
UΛ(pΛ = 0) andUΣ(pΣ = 0), evaluated at the saturation point of nuclear matter, i.e.
for ρ = ρ0 = 0.17 fm−3 (kF = 1.35 fm−1). Corresponding results obtained for the
Jülich meson-exchange potentials from 2004 [14] and 1994 [12] are also included.
In case of the EFT interactions we show the variation with the cutoff. These are
comparable for UΛ at LO and NLO, but noticeably reduced for UΣ at NLO.

The predictions forUΛ(0) at NLO, for nuclear matter saturation density, are well
in line with the ’empirical’ value for the Λ binding energy in nuclear matter of about
−27 to −30 MeV, deduced from the binding energies of finite Λ hypernuclei [18].
The predictedΣ s.p. potential is repulsive at NLO and also at LO. This property is in
agreementwith evidence from the analysis of level shifts andwidths ofΣ− atoms and
from measurements of (π−,K+) inclusive spectra related to Σ−-formation in heavy
nuclei [2]. We could achieve a repulsive Σ s. p. potential because the interaction in
the 3S1 partial wave of the Σ+p channel (which provides the dominant contribution,
cf. Table 4 in [9]) is repulsive, for the LO potential but also for the NLO interaction.
Note that a repulsive 3S1 interaction is also in accordance with results from a recent
lattice QCD calculation [19]. As exemplified by the predictions of the Jülich meson-
exchange models, typically phenomenological potentials fail to produce a repulsive
Σ-nuclear potential. Results for UΞ(0) can be found in [11].

The dependence of the Λ potential depths on the Fermi momentum is displayed
in Fig. 143.4, for symmetric nuclear matter (left) and for neutron matter (right).
One can see that the density dependence predicted by the chiral EFT interaction is
rather different from those of phenomenological models [13, 14]. Specifically, for the
former the resultingΛ s.p. potential becomes already strongly repulsive for densities
ρ � 2ρ0, whereas the one of the two models remains attractive or even becomes

Table 143.1 Results for the s.p. potentialsUΛ(0) andUΣ(0) (inMeV) based on our EFT potentials
and the Jülich meson-exchange interactions

EFT LO EFT NLO Jülich ’04 [14] Jülich ’94 [12]

Λ [MeV] 550 · · · 700 500 · · · 650
UΛ(0) −38.0 · · · −34.4 −28.2 · · · −22.4 −51.2 −29.8

UΣ(0) 28.0 · · · 11.1 17.3 · · · 11.9 −22.2 −71.4
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Fig. 143.4 TheΛ single-particle potentialUΛ(pΛ = 0) as a function of ρ/ρ0 in symmetric nuclear
matter (a) and in neutron matter (b). The filled band is the chiral EFT results at NLO for the
cutoffs Λ = 450 MeV (lower limiting line) and 500 MeV (upper limiting line), respectively. The
dash-dotted lines include an effective density-dependent ΛN -interaction derived from the ΛNN
three-body force [20]. The dashed curve is the result of the Jülich ’04 meson-exchange model [14],
the dotted curve that of the Nijmegen NSC97f potential [13, 22]

more attractive. Adding a density-dependent effective ΛN interaction constructed
from consistently derived chiralΛNN three-body forces [20] increases the repulsion
further, cf. the hatched band in Fig. 143.4.

This feature should have consequences for neutron stars, as discussed in [21]: For
hyperon-nuclear interactions with properties such as those deduced from the SU(3)
EFT potentials, the onset for hyperon formation in the core of neutron stars could be
shifted to much higher density which, in turn, could pave the way for resolving the
so-called hyperon puzzle [4]. In standard calculations, based on YN interactions with
properties similar to those of the Jülich ’04 [14] or Nijmegen [13] models, hyperons
appear in the core of neutron stars typically at densities around (2 − 3)ρ0 [3–5]. This
leads to a strong softening of the equation-of-state and, consequently, to a maximal
mass of a neutron star that is far below the experimentally observerved values of
2M� [4].
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143.4 Summary

We have presented results for the in-medium properties of a hyperon-nucleon inter-
action derived within chiral effective field theory and fitted toΛN andΣN scattering
data. The single-particle potentials for the Λ and Σ hyperons in nuclear matter were
evaluated in a conventional G-matrix calculation.

The predictions for the Λ single-particle potential are found to be in good quali-
tative agreement with the empirical values inferred from hypernuclear data. A depth
of about −25 MeV is predicted by the NLO interaction and of about −36 MeV by
the LO potential. The Σ-nuclear potential turns out to be repulsive, in agreement
with phenomenological information, with values around 15–20 MeV.

The density dependence of the s.p. potentialUΛ predicted by the NLO interaction
[7] turned out to be remarkably different from the one of phenomenological poten-
tials. For such an interaction the onset for hyperon formation in the core of neutron
stars can be expected to be shifted to higher baryon density, which could potentially
help to resolve the so-called hyperon puzzle.
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Chapter 144
Hyperon and Hypernuclear Physics
with PANDA at FAIR

Karin Schönning

Abstract Hyperons and hypernuclei are fruitful tools to shed light on the strong
interaction. The PANDA experiment at FAIR in Germany will be a “strangeness
factory” offering unique opportunities to study the largely unexplored multi-strange
sector. In these proceedings, we will give an overview of the broad hyperon- and
hypernuclear physics programme at PANDA, with focus on the first few phase of
operation.

144.1 Introduction

Strangeness offers a new perspective of some of the most challenging problems in
contemporary physics:

(1) Non-perturbative phenomena in QCD, manifested in the nucleon puzzles (mass
[1], spin [2], radius [3] and structure [4]).

(2) The matter-antimatter asymmetry of the Universe. Baryogenesis is suggested
as explanation but requires for instance CP violating particle decays [5].

(3) Quark-Gluon Plasma. Enhancement of strangeness in relativistic heavy-ion
collisions was one of the first expected signals [6].

(4) Equation-of-state of neutron stars and the role of hypernuclei [7].

The Proton antiproton Annihilations at Darmstadt (PANDA) detector, under design
for installation at the Facility for Antiproton and Ion Research (FAIR) in Germany,
will provide a unique opportunity to study the strong interaction. During the first
years of operation, focus will be on strangeness physics. The PANDA detector, a
4π spectrometer providing particle tracking and identification, vertex detection and
calorimetry, will be an integrated part of the High Energy Storage Ring (HESR)
antiproton ring. It is designed for a broad physics program, with focus on the strong
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interaction [8]. The first few years, the HESR will provide a luminosity of 1031

cm−2s−1 until the design luminosity of 1.5 × 1032 cm−2s−1 is achieved.

144.2 Hyperon Production and Decay

The strong interaction can be probed at several energy scales by studying systems
with different quark content. The scale of strangeness production is governed by the
strange quark mass, ms ≈ 100 MeV/c2 which is rather close to the hadronization
scale �QCD ≈ 200 MeV/c2. As a consequence, the relevant degrees of freedom are
unclear: quarks and gluons, or hadrons? Hence, strange hadrons are important probes
of the confinement domain.

Past experiments focused mainly on single-strange hyperon production at low
energies (see Fig. 144.1 and [9]). The cross sections of the single-strange production
had been studied extensively by the PS185 collaboration at LEAR decomposing the
complete spin structure of the p p̄ → ��̄ reaction. This triggered theoretical activity,
mainly following three approaches to describe the p̄ p → Ȳ Y reaction: (i) meson
exchange models [10], (ii) quark-gluon models [11] and (iii) models combining the
two approaches [12]. The insights on the ΛΛ̄ interaction [13] help understanding
e.g. hyperon structure, measured in e+e− → ΛΛ̄ [14]. The next step towards a more
coherent description of the strangeness onset is to map the multi-strange sector.
However, no data beyond single-strangeness exist so far.

Simulation studies [15] show that large, clean samples of strange hyperons can
be collected with PANDA already in the start-up phase of operation.

The expected copious production rates at the design luminosity will enable pre-
cision studies of weak and electromagnetic hyperon decays. The weak decays of
hyperons are self-analyzing, i.e. the decay amplitude has a parity violating part that
causes the daughter particles to be emitted according to the spin direction of the
mother. In case of CP symmetry, the decay patterns of hyperons and anti-hyperons

Fig. 144.1 The present data bank on hyperon production in p̄ p annihilations. adapted from [9].
Thresholds of various reactions are marked
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are identical. Precision measurements of decay asymmetries hence provide tests of
CP violation, one of the requirements for baryogenesis [5]. The most precise mea-
surement of CP violation in the � decay was provided by the BESIII collaboration
and found to be consistent with zero [16]. The PANDA data samples will exceed
those collected by BESIII by several orders of magnitude.

The electromagnetic Dalitz decay, i.e. Y ∗
1 → Y2e+e−, provide information of the

hyperon structure in the low-energy region, parameterized by transition form factors
[17]. The high production rates of e.g. Σ0 hyperons in PANDA [15] imply excellent
prospects for such measurements. Before the start-up of the full PANDA experiment,
hyperon Dalitz decays can be studied with the predecessor PANDA@HADES [18].

144.3 Hyperon Spectroscopy

Instead of as in the previous section study the production and decay mechanisms of
already established states, hyperon spectroscopy aims to search for and determine the
properties of the less known or completely unknown states. We consider questions
like (i) what is the role of SU(3) flavour symmetry in excited baryon spectra? (ii)
what are the relevant degrees of freedom? (iii) what is the interaction dynamics inside
baryons? (iv) are there exotic baryon states, e.g. penta-quarks or di-baryons?

So far, worldwide efforts in baryon spectroscopy have focused on N* and �

resonances, mainly discovered in πN scattering experiments and in recent years
also in photon induced reactions [19]. These efforts have resulted in an impressive
data bank for excited nucleon and � resonances. Nevertheless, several questions
remain unsolved:

(1) Missing resonances: Predicted but yet unobserved baryonic states. Are they
missing because they do not exist or because their coupling to γ and π is too
weak? Different probes, e.g. anti-protons, could shed light on this puzzle.

(2) Parity doublets: The second lightest state after the positive parity nucleon is
predicted to have negative parity. However, experiments found the contrary: the
positive parity Roper resonance N*(1440), has a much smaller mass than the
lightest negative parity state, the N*(1535).

In the single-strange sector, the puzzle of missing resonances remains. On the other
hand, the situation for parity doublets is different: the parity partner of theΛ hyperon,
the Λ(1405), is indeed the next-to-lightest iso-singlet hyperon [20]. However, it is
very light, even lighter than theN*(1440). Themulti-strange data bank is very scarce:
only one excited double-strange �* state and no �* are well established [21]. A
more complete picture of the multi-strange hyperon spectra would be very helpful
in understanding to which extent SU(3) flavour symmetry is still valid, what the
relevant degrees of freedom are and the possible role of di-quarks [22].

In PANDA, multi-strange hyperons Y* can be produced in the two-body reaction
p̄ p → Ȳ ∗Y + c.c. In such processes it is easier to pin down the possible partial waves
compared to in the case of e.g. photon- or kaon induced reactionwhere hyperonsmust
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be produced with two or three associated kaons. Furthermore, in p̄ p annihilations,
the production cross sections are expected to be large. Recent simulation studies
of excited double-strange �* production in PANDA show that already during the
start-up phase, large and clean exclusive data samples can be achieved [23].

144.4 Hyperons and Nuclei

The evolution of neutron stars is governed by the Equation-of-State (EoS) which
results from an interplay of all four forces of Nature. However, the major roles are
played by the strong interaction and gravity [24]. At the high densities of neutron
stars, bound nuclear systems with strangeness—hypernuclei—should be formed.
Their effect on the stiffness of EoS is however not yet understood [7]. A better
understanding of the hyperon-hyperon and hyperon-nucleon interaction is required
to solve this puzzle. The foreseenhighproduction rates of hyperons and anti-hyperons
in PANDA will provide an excellent environment for the formation of hyperatoms
and hypernuclei. For this purpose, the PANDA hypernuclear setup comprises a high-
precision germanium detector for γ-spectroscopy which is necessary to study the de-
excitations of hyperatoms and hypernuclei [25]. Hyperatoms, as well as antihyperons
in nuclei, will be studied already in the start-up phase of PANDA.

144.5 Summary

The future PANDA experiment at FAIR offers unique opportunities for various
aspects of strangeness physics. During the start-up phase, focus will be on hyperon
production and spectroscopy. Later phases includes hyperon decays and hypernuclear
physics.

The author is grateful to theKnut andAliceWallenbergFoundation for the support.
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Chapter 145
Low-Energy K− Nucleon/Multi-nucleon
Interaction Studies by AMADEUS

Magdalena Skurzok, Massimiliano Bazzi, Gabriele Belotti,
Alexandru Bragadireanu, Damir Bosnar, Arslan Butt, Michael Cargnelli,
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Àngels Ramos, Alessandro Scordo, Hexi Shi, Michał Silarski,
Diana Laura Sirghi, Florin Sirghi, Antonio Spallone, Oton Vazquez Doce,
Eberhard Widmann, Sławomir Wycech and Johann Zmeskal

Abstract The AMADEUS collaboration aims to provide new experimental con-
straints to the K−Nstrong interaction in the regimeof non-perturbativeQCD, exploit-
ing low-energy K− hadronic interactions with light nuclei (e.g. H, 4He, 9Be and 12C).
The low-momentum kaons (pK ∼ 127 MeV/c) produced at the DA�NE collider are
ideal to explore both stopped and in-flight K− nuclear captures. The KLOE detector
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is used as an active target, allowing to achieve excellent acceptance and resolutions
for the data. In thiswork the results obtained from the study ofΛπ− andΛp correlated
production in the final state are presented.

145.1 Introduction

The theoretical investigation of the low-energy K−N interaction predicts, in the
energy region below the K−N threshold, a sufficiently attractive interaction to form
a bound state in the isospin I = 0 channel [1, 2].

In [3–7] the I = 0Λ(1405) is interpreted as a pure K̄ N bound state, this leads to the
prediction of deeply bound kaonic nuclear states. According to Chiral models [8–12]
the Λ(1405) emerges as a superposition of two states, as a consequence the K−N
interaction ismuch less attractive, which implies the prediction of only slightly bound
kaonic nuclear states.

The experimental investigation of the K−pp bound state properties in K− induced
reactions is strongly biased by the competing K−-multi-nucleon absorption pro-
cesses, leading to the same final states (see e. g. [13, 14]). In [15, 16] a complete
characterisation of the K− two-, three- and four-nucleon absorptions (2NA, 3NA
and 4NA) was performed for the first time in the Λp and Σ0 p final states exploiting
low-energy K− captures on a solid 12C target. In particular, in [15] the corresponding
low-energy cross sections are measured, these represent a crucial ingredient for the
determination of the in-medium K− optical potential [17, 18]. In Sect. 145.2 a brief
summary of the analysis [15] is given.
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The experimental investigation of the Λ(1405) properties is also challenging.
The resonance line-shape is found to depend on both the production mechanism and
the observed decay channel. Moreover in K− induced reactions the non-resonant
contribution to the final state Σπ production has to be also taken into account. In
Sect. 145.3 a brief summary of the results obtained in [19] is given, which could give
important informations on the underlying K̄ N interaction models.

The described analyses refer to a sample of 1.74 f b−1 integrated luminosity,
collected by the KLOE collaboration [20] during the 2004/2005 data campaign.
Low-energy K−s are produced at the DA�NE collider [21], from the phi-meson
decay nearly at-rest, with a momentum of about 127 MeV/c. The K− captures, at-
rest and in-flight, on the materials of the KLOE detector, used as an active target, are
investigated.

145.2 K− Multi-nucleon Absorption Cross Sections and
Branching Ratios in Λp and Σ0 p Final States

The possible existence of the K−pp bound state can be investigated in low-energy
K− induced reactions by reconstructing the decays to Λ(Σ0)p.

Recently, Λ(Σ0)p decay modes were investigated by the AMADEUS collabora-
tion in K−12C absorption [15]. These studies allowed to perform the first compre-
hensive measurements of two, three and four nucleon absorption branching ratios
(BRs) and cross sections for low-momentum kaons inΛp andΣ0p channels. The BR
of the Σ0p direct production in K− 2NA quasi free interaction is found to be greater
than the corresponding Λp production, contrary to what is expected by comparing
the pure phase spaces. This gives important indications on the underlying three-body
interaction. The Λp spectra are entirely interpreted in terms of K− multi-nucleon
absorption processes, an eventual contribution due to the intermediate formation of
a K−pp bound state completely overlaps with the K− 2NA in this channel, hence
the corresponding yield is not extracted.

145.3 Resonant and Non-resonant Yπ Transition
Amplitudes Below the K̄ N Threshold

In the investigationof theΛ(1405)properties, produced through the K− pmechanism
in light nuclear targets, two biases have to be taken into account. The first bias is
the energy threshold imposed by the absorbing nucleon binding energy (for K−
capture at rest on 4He the Σπ invariant mass threshold is about 1412 MeV, while
for 12C it is about 1416 MeV). In order to access to the K̄ N sub-threshold region
corresponding to the Λ(1405) high-mass predicted pole (about 1420 MeV), K−N
absorption in-flight has to be exploited. For a mean kaon momentum of 100 MeV/c,
the Σπ invariant mass threshold is shifted upwards by about 10 MeV.
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Fig. 145.1 Modulus of the
measured non resonant
K−n → Λπ− transition
amplitude compared with
theoretical calculations, see
details in the text. Figure is
adapted from [19]

The second bias is related to the non-resonant K−N → Yπ reaction, which was
experimentally investigated for the first time in the K−n → Λπ− process, consid-
ering K−n single nucleon absorptions in 4He [19]. In this work the experimentally
extractedΛπ− invariant mass, momentum and angular distributions were simultane-
ously fitted in by means of dedicated MC simulations. All the contributing reactions
were taken into account: non-resonant processes, resonant processes and the primary
production of aΣ followed by theΣN → ΛN ′ conversion process. The simulations
for non-resonant/resonant processes were based on the results of [22]. The analysis
allowed the extraction of the non-resonant transition amplitudemodulus |AK−n→Λπ−|
(33 ± 6) MeV below the K̄ N threshold which is found to be 0.334 ± 0.018 stat
+0.034
−0.058 syst fm. The result of this analysis (with combined statistical and systematic
errors) is shown in Fig. 145.1 and compared with the theoretical predictions (see [23]
(P), [24] (KM), [25] (M1,M2), [26] (B2,B4)) rescaled for the K−n → Σπ transi-
tion probabilities. This measurement can be used to test and constrain the S-wave
K−n → Λπ− transition amplitude calculations.

145.4 Conclusion

In this work the low energy interaction between K− and nucleons/nuclei in light
nuclear targets are investigated with the aim to better understand the non-perturbative
quantum chromodynamics QCD in the strangeness sector. Studies of low-energy K−
captures on a solid carbon target result in a complete characterisation of the two-,
three- and four-nucleon absorptions in the Λp and Σ0 p final states (BRs and cross
sections). The characterization of the non-resonant K−N → Yπ production was
investigated for the first time for K−n single nucleon absorption in 4He. The result
is crucial for the investigation of the Λ(1405) characteristics.
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Chapter 146
Search for the η-Mesic Helium in
Proton–Deuteron and
Deuteron–Deuteron Reactions

Magdalena Skurzok

Abstract This report presents the status of the search for η-mesic Helium nuclei
with the WASA-at-COSY facility.

146.1 Introduction

The mesic nuclei are currently open issue in nuclear and hadronic physics, both
from experimental [1–15] and theoretical points of view [16–35]. The existence of
the mesic bound states has been postulated over thirty years ago [36, 37], however
till now remains unconfirmed experimentally. A wide range of ηN scattering length
values (aηN ) determined based on investigations of hadron- and photon-induced
production of the η meson does not exclude creation of η-mesic bound states even
with light nuclei like Helium [17–20, 38–40].

Some of the promising experiments related to η-mesic Helium nuclei have been
performedwith the COSY facility [41]. COSY-11 group carried out measurements to
search for 3He-η bound states in dp → pppπ− and dp → 3Heπ0 reactions. Excitation
functions determined in the vicinity of the production threshold allowed to establish
the upper limits of the total cross section to about 270 nb and 70 nb, respectively [15,
42]. The search for 4He-η and 3He-η mesic nuclei has been recently performed by
WASA-at-COSY Collaboration in dd and pd collisions, respectively. This paper
focuses on the results obtained for the search for η-mesic 4He in dd → 3Henπ0

and dd → 3Hepπ− processes [1–4]. The analysis related to 3He-η bound state is in
progress [43].

The interested reader can find recent reviews on the η mesic bound state searches
in [6, 7, 24, 26, 44–49].
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146.2 Search for the η-Mesic 4He

The WASA-at-COSY Collaboration performed two measurements dedicated to
search for η-mesic 4He nuclei, in 2008 and 2010. The measurements were carried out
using the unique ramped beam technique which allows for the beam momentum to
be changed slowly and continuously around the η production threshold in each of the
acceleration cycles [2, 3, 47, 49]. The used technique allows to reduce systematic
uncertainties with respect to separate measurements at fixed beam energies [3, 11].

The excitation functions for dd → 3Hepπ− [1–4] and dd → 3Henπ0 [1, 2, 4]
reactions were investigated near the 4Heη production threshold to search for 4He-η
bound states. A detailed description of the data analysis one can find in [2, 3]. Since
any narrow structure below the η production threshold, which could be a signature of
the bound state, has not been observed, the upper limit of the total cross section for the
η-mesic 4He formation and its decay in proper channel at the 90% confidence level
has been determined. For the dd → (4He-η)bound → 3Hepπ− reaction a sensitivity
of the cross section of about 6 nb [2] was achieved which is about four times better
in comparison with the result obtained in the previous experiment [3]. In case of the
dd → (4He-η)bound → 3Henπ0 process, the upper limit was for the first time obtained
experimentally and varies in the range from 2.5 to 3.5 nb. The data analyses were
carried out assuming that the signal from the bound state is described by a Breit-
Wigner shape with fixed binding energy and width while background is a second
order polynomial. Also isospin relation between nπ0 and pπ− pairs was taken into
account.

Recently, a theoretical description of the cross sections in the excess energy range
relevant to the η-mesic nuclear search proposed by [16] was compared with WASA-
at-COSY excitation functions for the dd → 3HeNπ reactions. The authors of [16]
used a phenomenological approachwith an optical potential for the η-4He interaction
and determine the total cross sections for a broad range of real (V0) and imaginary
(W0) parameters. Fitting the theoretical spectra convoluted with the experimental
resolution of the excess energy (left panel of Fig. 146.1) to experimental data [2]
allows to determine the upper limit of the total cross section (CL = 90%) for creation
of η-mesic nuclei via the dd → 3HeNπ process varying from about 5.2 nb to about
7.5 nb. A comparison of the determined upper limits with the cross sections obtained
in [16] allows to put a strong constraint on the η-4He optical potential parameters
(V0,W0). As it is presented in right panel of Fig. 146.1, the model allows only for
extremely narrow and loosely bound states [16]. A detailed description of performed
analysis interested reader can find in [1].

146.3 Summary and Perspectives

Experiments dedicated to the search for η-mesic 4He in dd → 3Henπ0 and dd →
3Hepπ− reactions carried out with the WASA-at-COSY detection setup did not
brought the observation of the peak structure related to the bound state. However, the
upper limits of the total cross sections for η-mesic nuclei formation and decays were
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Fig. 146.1 (Left) Cross section of the dd → (4He-η)bound → 3HeNπ reaction for the formation of
the 4He-η bound system calculated for η-4He optical potential parameters (V0,W0) =−(70,20)MeV,
plotted as a function of the excess energy Q. The red dashed line shows the theoretical spectrum
while the black solid line shows the convoluted spectrum. (Right) Contour plot of the theoretically
determined conversion cross section in V0 − W0 plane [16]. Light shaded area shows the region
excluded by our analysis, while the dark shaded area denotes systematic uncertainty of the σCL=90%

upp .
The red line extends the allowed region based on a new estimate of errors (see text for details). Dots
correspond to the optical potential parameters corresponding to the predicted η-mesic 4He states.
Figures are adapted from [1]

determined to be in the order of a few nb [2, 3]. Moreover, a comparison between
the theoretical model proposed in [16] and experimental data allowed, for the first
time, to constrain the range of the η-4He optical potential parameters [1].

Recently, a promising experiment dedicated to the search for η-mesic 3He was
performed by the WASA-at-COSY Collaboration. The bound state were searched
for in three different mechanisms: (i) absorption of the η meson by one of the
nucleons, which subsequently decays into N ∗-π pair e.g.: pd → (3He-η)bound →
pppπ−, (ii) η -meson decay while it is still “orbiting” around a nucleus e.g.: pd →
(3He-η)bound → 3He2γ reactions and (iii) η meson absorption by few nucleons e.g.:
pd → (3He-η)bound → ppn. The measurement allowed to collect the largest data
sample in the world available up to now, for 3He-η [43, 50, 51] (average luminosity
3·1030 cm−2 s−1). The data analysis is still in progress and the estimated upper limit
value for pd →3He2γ and pd →3He6γ channels is on the level of a few nanobarns.
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Chapter 147
Energy Dependence of the K̄N
Interaction and the Two-Pole Structure
of the Λ(1405)—Are They Real?

János Révai

Abstract It is shown, that the energy-dependence of the chiral based K̄N potentials,
responsible for the occurence of two poles in the I = 0 sector is the consequence of
applying the on-shell factorization approximation [1]. When the dynamical equation
is solved without this approximation, the T -matrix has only one pole in the region
of the Λ(1405) resonance.

147.1 Introduction

TheΛ(1405) is one of the basic objects of strangeness nuclear physics (SNP). Exper-
imentally it is a well pronounced bump in the πΣ missing mass spectrum in vari-
ous reactions somewhat below the K−p threshold with PDG resonance parameters
E − iΓ/2 = (1405 − 25i)MeV. Theoretically it is an I = 0 quasi-bound state in the
K̄N − πΣ system, which decays into the πΣ channel.

Constructing any multichannel K̄N interaction, the starting point of any SNP
study, one of the first questions is: “What kind of Λ(1405) it produces?” At present,
it is believed, that theoretically substantiated K̄N interactions can be derived from
the chiral perturbation expansion of the SU (3) meson-baryon Lagrangian. For these
interactions the widely accepted answer to the above question is, that the observed
Λ(1405) is the result of the interplay of two T -matrix poles. Our aim is to challenge
this opinion.
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147.2 The Full and On-Shell Factorized WT Potentials
V̂ and Û

Our starting point is the lowest order Weinberg-Tomozawa (WT) term of the chiral
Lagrangian (Eq. (7) from the basic paper [1]):

〈qi|vij|qj〉 ∼ − cij
4f 2π

(q0i + q0j ), (147.1)

where i and j denote the different meson-baryon channels (i, j = 1, 2, 3, 4, 5 =
[K̄N ]I = 0, [K̄N ]I = 1, [πΣ]I = 0, [πΣ]I = 1, [πΛ]I = 1), qi and q0i =

√
m2

i + q2i
denote the meson c.m. momentum and energy, cij are SU (3) Clebsch-Gordan coeffi-
cients and fπ is the pion decay constant, mi(Mi) are the meson (baryon) masses.
Physical quantities can be derived from this expression via a certain dynamical
framework, relativistic (BS equation, relativistic kinematics) or non-relativistic (LS
equation, non-relativistic kinematics). We shall use the second option, having in
mind applications for n > 2 systems. According to our choice and the usual practice,
(147.1) has to be supplemented: adding appropriate normalization factors, applying a
relativistic correction to meson energies and introducing two meson decay constants
instead of fπ:

〈qi|vij|qj〉 = − cij
64π3FiFj

√
mimj

(q0i
′ + q0j

′
), (147.2)

where

q0i
′ = q0i + q0i

2 − m2
i

2Mi
= q0i + q2i

2Mi
≈

nonrel
mi + q2i

2μi
(147.3)

with the reduced mass μi = miMi/(mi + Mi) and Fi, i = K̄,π are the new meson
decay constants. In order to use the potential (147.2) in LS equation a regularization
procedure has to be applied to ensure convergence of the occuring integrals. We use
the separable potential representation of the interaction, which amounts to multi-
plying the potential (147.2) by suitable cut-off factors ui(qi) and uj(qj). Finally, the
potential Vij entering the LS equation for total energy W

〈qi|Tij(W )|qj〉 = 〈qi|Vij|qj〉 +
∑
s

∫
〈qi|Vis|qs〉Gs(qs;W )〈qs|Tsj(W )|qj〉dqs

(147.4)
has the form

〈qi|Vij|qj〉 = ui(qi)〈qi|vij|qj〉uj(qj) = λij(giA(qi)gjB(qj) + giB(qi)gjA(qj))

(147.5)

which is a two-term multichannel separable potential with form factors
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giA(qi) = ui(qi); giB(qi) = giA(qi)γi(qi); γi(qi) = (mi + q2i
2μi

),

and coupling matrix

λij = − cij
64π3FiFj

√
mimj

.

The non-relativistic propagator Gs(qs;W ) has the form

Gs(qs;W ) = (W − ms − Ms − q2s
2μs

+ iε)−1 = 2μs

k2s − q2s + iε
, (147.6)

where ks = √
2μs(W − ms − Ms) is the on-shell c.m. momentum in channel s.

A commonly used procedure before solving the integral equation (147.4) is to
remove the inherent q-dependence of the potential by replacing qi in γi(qi) by its
on-shell value ki: γi(qi) → γi(ki) = W − Mi. This is the so-called on-shell factoriza-
tion approximation, introduced in [1] and never checked afterwords. The separable
potential representation of the interaction allows an exact solution of the LS equation
(147.4) for both versions of the potential: the “full” WT potential

V̂ =
∑
i,j

|giA〉λij〈gjB| + |giB〉λij〈gjA| (147.7)

and its on-shell factorized energy-dependent counterpart

Û (W ) =
∑
i,j

|giA〉λij(2W − Mi − Mj)〈gjA| (147.8)

providing thus a check of the effects of this approximations.

147.3 Numerical results

Practical solution of (147.4) starts with an appropriate choice of the form- or cut-off
factors ui(q), which ensures the convergence of all occuring integrals. In our case it
was the dipole Yamaguchi form with adjustable cut-off (or range) parameters βi:

ui(q) =
(

β2
i

q2 + β2
i

)2

The details of the formalism for the actual calculations can be found in [2]. Both
potentials V̂ and Û depend on the same set of 7 parameters FK̄ ,Fπ,β1,β2,β3,β4

and β5 which have to be fitted to the available experimental data, which are the 6
low-energy elastic and inelasticK−N cross sections, the 3 threshold branching ratios
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Table 147.1 Calculated and experimental values of the discrete data for potentials Û and V̂

V̂ Û Exp

γ 2.32 2.35 2.36 ± 0.04

Rc 0.671 0.664 0.664 ± 0.011

Rn 0.202 0.194 0.189 ± 0.015

ΔE (eV ) 350 − 279 i 302 − 294 i (283 ± 36) − (271 ±
46) i

Fig. 147.1 Elastic and inelastic K−p cross sections for the potentials U and V

Table 147.2 Parameters of the potentials V̂ and Û (all values are given in MeV

Fπ FK β1 β2 β3 β4 β5

V̂ 80.8 132 1094 960 516 537 629

Û 107 109 1247 1622 919 959 443

γ,Rn,Rc
1 and the 1 s level shift ΔE in kaonic hydrogen. The results of the fit for

the two potentials are shown in Table 147.1 and Fig. 147.1. Table 147.2 shows the
obtained parameter values.

Moreor less equal qualityfits canbeobtained for bothpotentials but for verydiffer-
ent parameter values. This means, that Û can not be considered as an approximation
to V̂—they are basically different interactions. Their most significant difference is,
that, while the full WT potential V̂ produces a single pole in the region of Λ(1405),

1For their definition see [2].
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Fig. 147.2 Fit to the first 3 γ-energy bins of CLAS M (π0Σ0) missing mass spectra in γ + p →
K+ + π0 + Σ0 photoproduction

the on-shell factorized potential Û for any reasonable combination of parameters
produces the familiar two poles. The pole positions for the two potentials are

z1 = (1425 − 21i)MeV for V̂ and

z1 = (1428 − 35i)MeV and z2 = (1384 − 62i)MeV for Û .

The position of the single V̂ pole does not confirm the strong K−p binding, which
is the main feature of the phenomenological potentials adjusted to the PDG pole
position.

Most recent and accurate information on the Λ(1405) resonance comes from
the CLAS photoproduction experiment γ + p → K+ + π0 + Σ0 [3] in which the
M (π0Σ0) missing mass spectra give the Λ(1405) line shape. For the analysis of
these spectra at present we have the semi-phenomenological final state interaction
formula of Roca and Oset [4], which contains some adjustable parameters ci and the
T -matrix elements of the K̄N − πΣ − πΛ potential. Using energy-dependent (two-
pole) K̄N potentials, with simultaneous variation of ci and the potential parameters,
acceptable fits to the CLAS data were obtained. This fact then was considered as the
ultimate proof of the two-pole structure of the Λ(1405).

Using the same formula (corrected for the repeated use of on-shell factorization),
we have made a preliminary fit to the few lowest γ-energy bin CLAS data varying
only the ci-s with our unchanged single-pole potential V̂ . The results are shown in
Fig. 147.2.

It does not seem, that another pole is necessarily needed to improve these fits. A
complete analysis of the CLAS data, including the charged channels is the subject
of a forthcoming work.

147.4 Conclusions

• It was shown, that the energy-dependence of the WT term of the K̄N interaction,
derived from the chiral SU (3) Lagrangian and responsible for the appearance of
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a second pole in the Λ(1405) region, follows from the unjustified application of
the on-shell factorization approximation.

• Without this approximation a new, chiral based, energy-independent K̄N inter-
action was derived, which supports only one pole in the region of the Λ(1405)
resonance.

• The widely accepted “two-pole structure” of the Λ(1405) state thus becomes
questionable.

• In coordinate space calculations for n > 2 systems the use of the new potential
avoids the not easily (and not uniquely) surmountable difficulties arising from the
energy dependence of the two-body interaction.
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Chapter 148
Four-Body Faddeev-Type Equations for
K̄NNN Quasi-bound State Calculations

Nina Shevchenko

Abstract The paper is devoted to the K̄NNN system, which is an exotic system con-
sisting of an antikaon and three nucleons. Four-body Faddeev-type AGS equations,
which are being used for evaluation of the possible quasi-bound state in the system
are described.

148.1 Introduction

The attractive nature of K̄N interaction has stimulated theoretical and experimental
searches for bound states of K− with different number of nucleons. The interest in
few-body antikaonic systems was stimulated by calculations, which predicted deep
and relatively narrow quasi-bound K− -nuclear states. Many theoretical calculations
devoted to the lightest possible system K̄NN have been performed since then using
different methods, see e.g. a review [1]. All of them agree that a quasi-bound state
in the K−pp system exists, but they yield quite diverse binding energies and widths.

Some theoretical works were devoted to the question of the quasi-bound state in
the four-body K̄NNN system, but more accurate calculations within Faddeev-type
equations are needed. Indeed, only these dynamically exact equations in momen-
tum representation can treat energy dependent K̄N potentials, necessary for the this
system, exactly.

The paper contains description of the four-body Faddeev-type AGS equations [2],
written down for the K̄NNN system. We will solve the equations using our programs
written for the three-body AGS calculations of the K̄NN system, described in [1],
and our two-body potentials constructed for them.
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148.2 Four-Body Faddeev-Type AGS Equations

The four-body AGS equations contain three-body transition operatos, obtained from
the three-body AGS equations. The three-body Faddeev-type equations in AGS
form [3] written for separable potentials Vα = λα|gα〉〈gα| have a form

Xαβ(z) = Zαβ(z) +
3∑

γ=1

Zαγ(z)τγ(z)Xγβ(z) (148.1)

with transition Xαβ and kernel Zαβ operators

Xαβ(z) = 〈gα|G0(z)Uαβ(z)G0(z)|gβ〉, (148.2)

Zαβ(z) = (1 − δαβ)〈gα|G0(z)|gβ〉. (148.3)

Here Uαβ(z) is the three-body transition operator, which describes process β +
(αγ) → α + (βγ), while G0(z) is the three-body Green function. Faddeev parti-
tion indices α,β = 1, 2, 3 simultaneously define a particle (α) and the remained
pair (βγ). The operator τα(z) in (148.1) is an energy-dependent part of a separable
two-body T -matrix Tα(z) = |gα〉τα(z)〈gα|, describing interaction in the (βγ) pair;
|gα〉 is a form-factor.

The four-body Faddeev-type AGS equations [2], written for separable potentials,
have a form

Ūσρ
αβ(z) = (1 − δσρ)(Ḡ0

−1
)αβ(z) +

∑

τ ,γ,δ

(1 − δστ )T̄
τ
αγ(z)(Ḡ0)γδ(z)Ū

τρ
δβ (z),

(148.4)

Ūσρ
αβ(z) = 〈gα|G0(z)U

σρ
αβ(z)G0(z)|gβ〉, (148.5)

T̄ τ
αβ(z) = 〈gα|G0(z)U

τ
αβ(z)G0(z)|gβ〉, (Ḡ0)αβ(z) = δαβτα(z).

(148.6)

The operators Ūσρ
αβ and T̄ τ

αβ contain four-body Uσρ
αβ(z) and three-body U τ

αβ(z) tran-
sition operators, correspondingly. The last one (U τ

αβ(z)) differs from the three-body
operator in (148.2) by additional upper index τ (σ, ρ), which defines a three-body
subsystem of the four-body system. The free Green function G0(z) now acts in four-
body space. If, in addition, the “effective three-body potentials” T̄ τ

αβ(z) in (148.4)

are presented in a separable form: T̄ τ
αβ(z) = |ḡτ

α〉τ̄ τ
αβ(z)〈ḡτ

α|, the four-body equations
can be written as [4].

X̄ σρ
αβ (z) = Z̄σρ

αβ(z) +
∑

τ ,γ,δ

Z̄στ
αγ (z)τ̄ τ

γδ(z)X̄
τρ
δβ (z) (148.7)

with new transition X̄ σρ and kernel Z̄σρ operators defined by
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X̄ σρ
αβ (z) = 〈ḡσ

α|Ḡ0(z)ααŪ
σρ
αβ(z)Ḡ0(z)ββ|ḡρ

β〉, (148.8)

Z̄σρ
αβ(z) = (1 − δσρ)〈ḡσ

α|Ḡ0(z)αβ|ḡρ
β〉. (148.9)

The separabelization of the “effective three-bodypotentials” T̄ τ
αβ(z) can be performed

using e.g. the Hilbert-Schmidt expansion of the three-body AGS equations with
separable potentials (148.1).

148.3 Four-Body Equations for the K̄NNN System

There are two types of partitions for a four-body system: 3 + 1 and 2 + 2. For the
K̄NNN system they are: |K̄ + (NNN )〉, |N + (K̄NN )〉 and |(K̄N ) + (NN )〉. At the
begin we considered all three nucleons as different particles, so we started by writing
down the four-body system of equations (148.7) for the following 18 channels σα

(with α = NN or K̄N ):

1NN : |K̄ + (N1 + N2N3)〉, |K̄ + (N2 + N3N1)〉, |K̄ + (N3 + N1N2)〉,
2NN : |N1 + (K̄ + N2N3)〉, |N2 + (K̄ + N3N1)〉, |N3 + (K̄ + N1N2)〉,
2K̄N : |N1 + (N2 + K̄N3)〉, |N2 + (N3 + K̄N1)〉, |N3 + (N1 + K̄N2)〉, (148.10)

|N1 + (N3 + K̄N2)〉, |N2 + (N1 + K̄N3)〉, |N3 + (N2 + K̄N1)〉,
3NN : |(N2N3) + (K̄ + N1)〉, |(N3N1) + (K̄ + N2)〉, |(N1N2) + (K̄ + N3)〉,
3K̄N : |(K̄N1) + (N2 + N3)〉, |(K̄N2) + (N3 + N1)〉, |(K̄N3) + (N1 + N2)〉

After this the operators and equations were antisymmetrized, and the system of
operator equations was written in a form:

X̂ = Ẑ τ̂ X̂ , (148.11)

were Ẑ and τ̂ are the 5 × 5 matrices containing the kernel operators Z̄σρ
α and τ̄

ρ
αβ ,

correspondingly. Since the initial state is assumed to be fixed, only one column of
the 5 × 5 matrix X̂ , containing transition operators X̄ σρ

αβ , is necessary:

X̄ ρ
α =

⎛

⎜⎜⎜⎜⎝

X̄ 1
NN

X̄ 2
NN

X̄ 2
K̄N

X̄ 3
NN

X̄ 3
K̄N

⎞

⎟⎟⎟⎟⎠
, Z̄σρ

α =

⎛

⎜⎜⎜⎜⎝

0 Z̄12
NN 0 Z̄13

NN 0
Z̄21
NN 0 0 Z̄23

NN 0
0 0 Z̄22

K̄N
0 Z̄23

K̄N
Z̄31
NN Z̄32

NN 0 0 0
0 0 Z̄32

K̄N
0 0

⎞

⎟⎟⎟⎟⎠
, (148.12)
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τ̄
ρ
αβ =

⎛

⎜⎜⎜⎜⎜⎝

τ̄ 1
NN ,NN 0 0 0 0
0 τ̄ 2

NN ,NN τ̄ 2
NN ,K̄N

0 0
0 τ̄ 2

K̄N ,NN
τ̄ 2
K̄N ,K̄N

0 0
0 0 0 τ̄ 3

NN ,NN τ̄ 3
NN ,K̄N

0 0 0 τ̄ 3
K̄N ,NN

τ̄ 3
K̄N ,K̄N

⎞

⎟⎟⎟⎟⎟⎠
. (148.13)

148.4 Three-Body Subsystems and Two-Body Input

We are studying the K̄NNN system with the lowest value of the four-body isospin
I (4) = 0, which can be denoted as K−ppn. Its total spin S(4) is equal to one half,
while the orbital momentum is zero, since all two-body interactions are chosen to be
zero. For the K̄NNN system with these quantum numbers the following three-body
subsystems contribute:

• K̄NN with I (3) = 1/2, S(3) = 0 (K−pp) or S(3) = 1 (K−d ).
• NNN with I (3) = 1/2, S(3) = 1/2 (3H or 3He),

were I (3) and S(3) are the three-body isospin and spin.
The three-body antikaon-nucleon system K̄NN with different quantum numbers

was studied in our previous works, see [1]. In particular, quasi-bound state pole posi-
tions in the K−pp system (K̄NN with I (3) = 1/2, S(3) = 0) and near-threshold K−d
scattering amplitudes (K̄NN with I (3) = 1/2, S(3) = 1) were calculated (no quasi-
bound states were found in the K−d system). It was done using the three-body AGS
equations with separable potentials (148.1) with three models of the K̄N interaction:
two phenomenological potentials having one- or two-pole structure of the Λ(1405)
resonance and a chirally motivated model. All three potentials describe low-energy
K−p scattering and 1s level shift of kaonic hydrogen with equally high accuracy. We
also used a two-term separable NN potential, which reproduces Argonne v18 NN
phase shifts and scattering lengths. The same potentials are used in our four-body
calculations.

The programs of numerical solution of the three-bodyAGS equations for the K̄NN
systems can be used for separabelization of the “effective three-body potentials”
(after somemodifications). However, it is far not enough since the three-body system
(148.1) was solved with the initial channel fixed by β = 1, which corresponds to
the K̄ + NN partition. It allows to calculate the three-body transition amplitudes,
which in the four-body formalism are denoted as T̄ 2i

NN ,NN and T̄ 2i
K̄N ,NN

. The other

two three-body amplitudes, necessary for the four-body calculations: T̄ 2i
NN ,K̄N

and

T̄ 2i
K̄N ,K̄N

—were calculated additionally by solving the AGS equations (148.1) with

other two initial channels β = 2, 3, corresponding to theN + K̄N initial state (which
were properly antisymmetrized).

The three-nucleon system NNN was treated by solving the system of AGS equa-
tions (148.1) with our separable two-term NN potential. The calculated binding
energy was found to be 9.95 MeV for both 3H and 3He nuclei since Coulomb inter-
action was not taken into account.
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148.5 Summary

The four-body Faddeev-type calculations of the K̄NNN system is very complicated
and time-consuming task. Up to now the four-body AGS equations were written
down for the K̄NNN system and antisymmetrized. All necessary calculations of the
three-body (sub)systems were performed, their separable forms were numerically
evaluated. The spin-isospin re-coupling parts of the four-body kernel functions Z̄σρ

α

were also calculated. The work is in progress.
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Chapter 149
Production of Hypernuclei and Strange
Particles in Spallation Reactions at a Few
GeV Using an Intranuclear Cascade
Approach

Jean-Christophe David, Jason Hirtz, Jose Luis Rodríguez-Sánchez,
Alain Boudard, Joseph Cugnon, Sylvie Leray, Ingo Leya, Davide Mancusi
and Georg Schnabel

Abstract Motivated by a renewed interest in studies of hypernuclei, the strangeness
degree of freedom was implemented in the intranuclear cascade model INCL. This
model takes care of the first stage of reactions between a nucleon (or a light cluster)
and a nucleus at energies from a few tens of MeV up to a few GeV. After emission
of fast particles, a hot remnant nucleus is produced and another model, combined
to INCL, handles the de-excitation (Abla in our case). The main ingredients are
discussed and we compare the results to experimental data.
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149.1 Introduction

The hypernucleus is a suitable laboratory to study YN and YY interactions and new
experiments, either in progress or planned, in several facilities (JPARC,MAMI, JLab,
GSI, FAIR, …), makes the topic more and more attractive. While light hypernuclei
have been studied extensively, the heaviest ones are also interesting objects, for
example to study the behavior of hyperons in nuclear matter (role of theΛ in neutron
stars). Our nuclear reaction code, called INCL (Liège IntraNuclear Cascade), treats
reactions between light particles and nuclei with incident energies from ∼100 MeV
up to ∼15 GeV [1]. The renewed interest in hypernucleus studies and the sound
bases of the model implemented in INCL were the motivations to add K’s, Λ and
Σ’s as participant particles in INCL. The de-excitation code Abla was also upgraded.
Below we give first the ingredients required to perform the calculations and, second,
we compare the obtained results to experimental data and to predictions from other
model codes.

149.2 Ingredients

An intranuclear cascade is a series of collisions between hadrons. The main ingre-
dients to simulate such collisions are the elementary cross sections, the particle
momenta and charges in the output channels and the nuclear potential felt by all
particles. It must be stressed that in INCL the resonances are not considered as
participant particles (except the Δ(1232)); Only their decay products play a role.

Adding the four Kaons (K+,K−,K0, K̄
0
), the Λ and the three Σ (Σ−, Σ0, Σ+),

implies more than 400 new channels, when isospin is considered. All details are
described in a recent published paper [2]. Here we only draw the attention to the
difficulties to obtain all necessary information. As an example, if one excepts the
Δ-induced and inclusive reactions, 382 isospin channels are involved and therefore
382 cross section parametrizations. Only 17% of them can be obtained by using
experimental data. Considering isospin symmetry at the initial and final states of
some binary collisions, an extra 18% is obtained from relations between known and
unknown cross sections. Still relying on isospin symmetry, but, this time, at each
vertex of tree Feynman diagrams used within a hadron exchange model, 37% of the
cross sections is determined by ratios between known and unknown cross sections.
The remaining cross sections are based on models or hypotheses.

Once a reaction between two hadrons in the nucleus is chosen, charges and
momenta of the particles in the final state must be defined. Concerning the charges,
Clebsch Gordan coefficients are used as far as possible if two or more particles are
involved. When the number of particles increases, additional models are sometimes
needed to remove ambiguities. Otherwise, as in the case of the inclusive reactions,
results of other codes are used to determine the number and type of particles emitted.
Momenta are taken from measurements or by assuming isotropy or considering a
phase-space distribution. Here again, the reliability of our approach may differ from
channel to channel.
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For the potential, the values used in this study are:VΛ = −28MeV,VΣ =16MeV,
VK+ =25MeV,VK− = −60MeV,VK0 =25MeV,VK̄0 = −50MeV.The latest value
implemented in INCL for VΛ is actually mass dependent and will be discussed.
However, the results presented here were performed with the value of −28 MeV,
which is very close to the new VΛ(A) for the light and medium mass nuclei.

149.3 Results

Comparisons to experimental data and other models are the only way to test the
reliability of a model and to try to understand remaining deficiencies. Most of the
measured data in this domain are related to the K+ production. However, some
other data exist and were used to benchmark this first version of INCL considering
strangeness.

149.3.1 Particle Production

The production of K+ is well described by INCL. This is illustrated with Fig. 149.1,
where we can see also the important role played by the Δ-induced reactions, espe-
cially at low energies. While at highest energies the parametrization used for those

Fig. 149.1 Invariant production cross sections of K+ emitted with a momentum of 1.28 ± 0.014
GeV/c at an angle of 10.5◦ for four targets as a function of proton projectile energy. Experimental
data are from [4] (circles) and are compared to INCL with (up-oriented triangles) and without
(down-oriented triangles) Δ-induced Kaon production
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reactions [3] could be improved, benchmarks (not shown here) above 10 GeV still
exhibit very goodbehaviors of INCL. In the forward directionmore experimental data
are needed to really know the situation. The conclusions for theK− are different. The
spectra are well reproduced except for low momenta. This seems to indicate that in
INCL some production channels are missing, especially YN → K̄NN . Regarding the
Λ, we compared the INCL results to the HADES rapidity spectrum for the reaction
p(3.5 GeV) + Nb. INCL matches rather well the HADES data [5], except for rapidi-

Fig. 149.2 Hypernucleus production cross section in function of themass target for AX(π+,K+)AΛX
reactions, with incident energies of 1.06 and 1.048 GeV/c (upper part). Experimental data are
from [6] (circles) and [7] (squares). Are plotted INCL hyperremnant production (green stars) and
INCL-Abla result (solid red line surrounded by a red band for the uncertainties). Is plotted also
Λ-Nucleus potential fitted with the above experimental data in function of the mass target (lower
part)
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ties larger than 0.8. This discrepancy, possibly due to the low transverse momenta,
must be now carefully studied to understand the differences between experimental
data and model predictions.

149.3.2 Hypernucleus Production

Fig. 149.2 shows the production of hypernuclei as a function of the mass target
for cases in which one, and only one, K+ is emitted by π+-induced reactions
(AX(π+,K+)AΛX). INCL fits very well the KEK experimental data, except an under-
estimate of the heaviest nuclei. This deviation has been used to redefine the potential,
assuming a dependence on the mass of the nucleus. The thus updated INCL model
produces a perfect fit of the measurements (not shown here). This increase of the
potential with the mass, i.e., with the nucleon-isospin asymmetry, could indicate a
role of the Λnn interaction. All details are in [8].

149.4 Conclusion

The strange particles K+,K−,K0, K̄
0
, Λ, Σ−, Σ0 and Σ+ are implemented into

the intranuclear cascade code INCL. Since the de-excitation code Abla is usually
combined to INCL for a full simulation of spallation reactions, Abla has been also
upgraded by adding Λ evaporation and hyperfission. The results obtained by the
codes, and especially INCL, are very encouraging. The main mechanisms are incor-
porated and now it is time for improvements. TheΔ-induced strangeness production
is probably overestimatedwhen energy goes up and some strangeness exchange reac-
tions must be added, like ΛN → K̄NN , to better reproduce K− production. Other
aspects must also be studied, like the momentum distribution of the emitted particles.
However, the lack of experimental data to get better elementary ingredients and to
benchmark carefully our model makes the task difficult.
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Chapter 150
Kaonic Deuterium Precision
Measurement at DAΦNE: The
SIDDHARTA-2 Experiment

M. Miliucci, A. Amirkhani, A. Baniahmad, M. Bazzi, G. Bellotti, C. Berucci,
D. Bosnar, M. Bragadireanu, M. Cargnelli, C. Curceanu, A. Dawood Butt,
L. De Paolis, R. Del Grande, L. Fabbietti, C. Fiorini, F. Ghio, C. Guaraldo,
M. Iliescu, M. Iwasaki, P. Levi Sandri, J. Marton, P. Moskal, S. Niedźwiecki,
S. Okada, D. Pietreanu, K. Piscicchia, A. Scordo, H. Shi, M. Silarski,
D. Sirghi, F. Sirghi, M. Skurzok, A. Spallone, H. Tatsuno, O. Vazquez Doce,
E. Widmann and J. Zmeskal

Abstract Light kaonic atoms spectroscopy offers the unique opportunity to perform
experiments equivalent to scattering at vanishing relative energies. This allows the
determination of the antikaon-nucleus interaction at threshold, without the need of
extrapolation to zero energy, as in the case of scattering experiments. In this frame-
work, the SIDDHARTA-2 collaboration aims to perform the first measurement of
kaonic deuterium transition to the fundamental level, which is mandatory to extract
the isospin dependent antikaon—nucleon scattering lengths. The experiment will be
carried out at the DAΦNE collider of LNF-INFN in 2019–2020.
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150.1 The Scientific Case

When a negatively charged kaon enters a target, it is slowed down and loses its kinetic
energy through the interaction with the medium.

The kaon is then captured by an atom replacing an electron and forms a kaonic
atom in a highly excited state. The kaonic atom cascades down to the low n-states
where the strong interaction between the antikaon and the nucleus adds up to the
electromagnetic one. The observables of interest are the shift (ε) and the width (Γ ) of
the atomic levels caused by the strong interaction. The SIDDHARTA collaboration
measured, in 2009, the shift and the width of the kaonic hydrogen 1 s level [1],
while SIDDHARTA-2, a major upgrade of SIDDHARTA, aims to perform the first
measurement of the kaonic deuterium transition to the 1 s level. From the X-rays
emitted by kaonic hydrogen and kaonic deuterium, is possible to extract the K− p
(and K−d) scattering lengths using the Deser–Treumann type formulae with isospin-
breaking corrections [2, 3]:

ε1s + i

2
Γ1s = 2α3μ2aK− p[1 − 2αμ(lnα − 1)aK− p + . . . ] (150.1)

where:
μ: the reduced mass of the K− p (K−d) system;
α: the fine-structure constant.
These twoquantities allow to determine the antikaon-nucleon isoscalara0 and isovec-
tor a1 scattering lengths, trough the equations:

aK− p = 1

2
[a0 + a1] ; aK−n = a1 (150.2)

aK−d = 4[mN + mK ]
[2mN + mK ]Q + C (150.3)

Q = 1

2
[aK−n + aK− p] = 1

4
[a0 + 3a1] (150.4)
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Q: K− scattering from each (free) nucleon of deuterium;
C: includes the K−d three-body interaction, which can be studied by solving

Faddeev-type equations.
The antikaon-nucleon scattering lengths are fundamental quantities to understand
the QCD in the non-perturbative regime in the strangeness sector, with implications
from particle and nuclear physics to astrophysics.

150.2 The SIDDHARTA-2 Experimental Setup

DAΦNE [4, 5] (Double Annular Φ Factory for Nice Experiments), a world-class
electron-positron collider at LNF-INFN, Italy, is a unique low-energy kaon source
via the decay of φ-mesons, produced with a momentum of 127MeVc−1 and a spread
δp/p below 0.1%. Due to the extremely low yield (�0.1%) of the K−d transition to
1 s level, an improved setup with respect to SIDDHARTA [6], has been developed,
in order to perform the kaonic deuterium measurement with a precision similar to
the kaonic hydrogen one. The new apparatus (Fig. 150.1a) increases drastically the
signal-to-background ratio, by gaining in solid angle, taking advantage of the new
SDDs geometry, and reducing the background thanks to the faster SDDs response
and to the additional veto systems [7].

A cryogenic target cell, made by Kapton walls and reinforced with aluminium
supports, operates below 30K at a pressure of 0.4 MPa (3% LHD), optimizing the
kaon stopping efficiency. A dedicated cooling system consisting in 4 CryoTigers
reduces the temperature of the detectors down to 120 K, improving both the energy
resolution (140 eV at 6KeV) and the timing response (below400 ns). Each element of
the setup has been optimized using GEANT4 simulations and already tested during
the SIDDHARTA run. Figure150.1b shows the K−d simulated spectrum, for an
expected ε1s = −800 eV and Γ1s = 750 eV and assuming an yield of 0.1% for the
Kα transition, for an acquired luminosity of 800 pb−1. The fit indicates that both
ε1s and Γ1s are evaluated with a precision comparable with the kaonic hydrogen one
measured by SIDDHARTA.

150.3 Conclusions

Light kaonic atoms spectroscopy allows to obtain fundamental informations for
understanding the non-perturbative QCD with strangeness. The SIDDHARTA-2
experiment will perform the first measurement of the kaonic deuterium transitions,
which allow to extract the isospin dependent antikaon-nucleon scattering lengths.
Presently the SIDDHARTA-2 setup is under tests and debug, with the aim to be
installed at DAΦNE and take data in 2019–2020.
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Fig. 150.1 a Cross section layout of SIDDHARTA-2 setup (adapted from [8]); b Simulated K−d
Monte Carlo spectrum corresponding to an integrated luminosity of 800 pb−1, assuming ε1s =
−800 eV and Γ1s = 750 eV, and an yield of 0.1%. Dot line at 7834 eV corresponds to the pure
QED Kα value (adapted from [8])
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Chapter 151
In-Medium Properties of SU(3) Baryons

Ki-Hoon Hong, Ulugbek Yakhshiev and Hyun-Chul Kim

Abstract Changes of baryon properties in nuclear matter are investigated within the
framework of an in-mediummodified SU(3) Skyrmemodel. Introducing themedium
functionals in the SU(2) sector and considering the alteration of kaon properties in
nuclear medium, we are able to examine the medium modification of the nucleon
and hyperons. The functionals introduced in the SU(2) sector are related to ordi-
nary nuclear matter properties near the saturation point. The results indicate that the
changes of the baryon properties in the strange sector are strongly correlated with
the in-medium properties of kaons.

151.1 Introduction

Understanding how the hyperons undergo changes in nuclear matter is a very impor-
tant issue in contemporary nuclear physics. In particular, it is of great interest to
see how the hyperons are related to in-medium kaon properties at low densities and
how they can be changed in higher densities that can be found in the interior of
neutron stars [1, 2]. In the present contribution, we will discuss a recent work on the
hyperon properties in nuclear matter, which was carried out in a simple but plausible
framework of a chiral soliton approach to nonzero density phenomena in the SU(3)
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sector [3]. Previously, a similar approach was developed in the non-strangeness sec-
tor to study various phenomena in medium (for example, see [4] and references
therein) and the results were in qualitative agreement with those from other different
approaches. In [3], we extended the work of [4] to the SU(3) including the hyperons.
We discuss the main results and significance of the work.

151.2 The Model

The Lagrangian of the present model written by the following form [3]

L = − F2
π

16 αt
2(ρ)TrL0L0 + F2

π

16 αs
2(ρ)TrLi Li − αt

4(ρ)

16e2 Tr[L0, Li ]2 + αs
4(ρ)

32e2 Tr[Li , L j ]2
+ F2

π

16 αχSB(ρ)TrM(U +U † − 2) + LWZ , (151.1)

where Lμ = U †∂μU andU (x, t) is a chiral field in SU(3). TheWess-Zumino term [5]
LWZ in the Lagrangian constrains the soliton to be identified as a baryon and is
expressed by a five-dimensional integral over a disk D

SWZ = − i Nc

240π2

∫
D
d5x εμναβγTr(LμLνLαLβLγ). (151.2)

Here εμναβγ is the totally antisymmetric tensor defined as ε01234 = 1 and Nc = 3 is
the number of colors. The values of input parameters are defined in free space:
Fπ = 108.783MeV denotes the pion decay constant, e = 4.854 represents the
Skyrme parameter, the masses of the π and K mesons are given respectively
as mπ = 134.976MeV and mK = 495MeV, and the mass matrix of the pseudo-
Nambu-Goldstone bosons M has the diagonal form M = (m2

π,m
2
π, 2m2

K − m2
π).

The density-dependent functions αt
2(ρ), αs

2(ρ), αt
4(ρ), αs

4(ρ) and αχSB(ρ) reflect
the changes of the meson properties in nuclear medium. In an approximation of
homogeneous infinite nuclear matter they are expressed in terms of the three linear
density-dependent functions fi (ρ) = 1 + Ciρ, (i = 1, 2, 3). The numerical values
of Ci are fixed to be C1 = −0.279, C2 = 0.737 and C3 = 1.782, respectively. They
reproduce very well the equations of state (EoS) for symmetric nuclear matter near
the normal nuclear matter density ρ0 and at higher densities that may exist in the
interior of a neutron star. Themediummodification of the kaon properties is achieved
by considering the following scheme

FπmK → F∗
Km

∗
K = FπmK (1 − Cρ/ρ0) (151.3)

and can be explained in terms of the alteration of the kaon decay constant and/or of
the kaon mass in nuclear environment.

The quantization of the model is performed by considering the time-dependent
rigid rotation of a static soliton
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U (r, t) = A(t)U0(r)A(t)†, (151.4)

where U0(r) denotes the static SU(3) chiral soliton with trivial embedding. The
time-dependent rotational matrix A(t) is decomposed

A(t) =
(
A(t) 0
0† 1

)
S(t), (151.5)

in terms of the SU(2) isospin rotation A(t) = k0(t)1 + i
∑3

a=1 τaka(t) and fluctu-

ations into the strangeness sector given by the matrix S(t) = exp
{
i
∑7

p=4 kpλp

}
.

Here τ1,2,3 denote the Pauli matrices, whereas λp stand for the strange part of the
SU(3) Gell-Mann matrices. The time-dependent functions ka(t) (a = 0, 1, 2, . . . , 7)
represent arbitrary collective coordinates. The more details of the approach can be
found in [3].

151.3 Results and Discussions

All model parameters in free space and in nuclear matter, except for the parameter C
in (151.3), are fixed in the SU(2) sector. The only remaining parameter C could be
fixed by data on kaon-nucleus scattering and kaonic atoms. However, in the present
work we carry out a qualitative analysis of the effects in the baryonic sector due to
the modification of the kaon properties in nuclear medium. Consequently, we discuss
the density dependence of the mass splittings among the various baryon multiplet
members. In our calculation, the parameter value C = 0 corresponds to the case
when the properties of kaon will not change in nuclear matter whereas a nonzero
value of the parameter C �= 0 indicates that the mass and/or kaon dynamics is alters
in a dense nuclear environment.

The results show that in general the masses of the baryon octet tend to decrease in
nuclear matter. Only Σ showed a different tendency if the parameter value is set to
beC = 0. In the case ofC = 0.2,mΣ also tends to decrease as the density of nuclear
matter increases [3]. In comparison, the results from SU(3) chiral effective field
theory [6] show thatm∗

Λ is decreased by about 17% at normal nuclear matter density
ρ0. The Ξ hyperon is behaved in a similar manner. At ρ0 the change in the mass of
Ξ was about 6 and 16% for the corresponding parameter valuesC = 0 andC = 0.2,
respectively. The masses of the baryon decuplet increase in general as ρ increases.
Changes are dramatic for C = 0 while for C = 0.2 they are less changeable.

We present the density dependence of the mass splittings among the multiplet
members in Figs. 151.1 and 151.2. Figure151.1 shows the density dependence of
the mass splittings among the baryon octet members while Fig. 151.2 depicts the
results corresponding to the mass splittings among the decuplet members. All the
mass splittings in nuclear matter are normalized to the vaues of the corresponding
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Fig. 151.1 Density dependence of the mass splittings among the baryon octet members. The mass
splittings in nuclear matter are normalized to the corresponding free space mass splittings. The left
and right panels in the figure corresponds to the results with C = 0 and C = 0.2, respectively

Fig. 151.2 Density dependence of the mass splittings among the baryon decuplet members. Nota-
tions are the same as in Fig. 151.1

ones in free space. The left and right panels in the figures illustrate the results with
two different values of parameter C , respectively.

It is interesting to see that exceptm∗
Σ − m∗

Λ all the mass splittings tend to decrease
up to (1.5 − 2)ρ0. This behavior can be explained in terms of the density-dependent
functionals ω∗− and c∗ entering into the mass formula (see (36) in [3]). The first
functional describes the fluctuations in the strangeness direction and comes into play
for the mass splitting formula between the same strangeness members while all other
mass splittings presented in the figures depend linearly on ω∗−. This indicates that at
large densities the fluctuations in strangeness direction gets weaker. From the figures
one concludes also that at large densities SU(3) flavor symmetry tends to be restored.

The work is supported by Basic Science Research Program through the National
Research Foundation (NRF) of Korea funded by the Korean government (Ministry
of Education, Science and Technology,MEST), Grant No. 2016R1D1A1B03935053
(UY) and Grant No. NRF-2018R1A2B2001752 (HChK).
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Chapter 152
On the Bosonic Atoms—Structure
and Processes

Miron Ya Amusia and Larissa V. Chernysheva

Abstract We study properties of atoms, in which substitute fermions–electrons
by bosons, namely π−-mesons. We perform calculations in the frame of modified
Hartree-Fock (HF) equation. The modification takes into account symmetry of the
pair of identical bosons wave function, doubling instead of eliminating self-action
as in the Fermion case. As examples of simple process with pion atoms, we consider
their photoionization and collisions with other pions.

152.1 Introduction

Heavy ion colliders create very big numbers of π∓-mesons, or pions in each ion
collision. In nuclear scale, the lifetime of π∓(2.6 × 10−8s) is rather big. So, an ion
can capture negative pions during the nuclear interaction process and form so-called
pion atoms. Each ion can capture several pions so the interaction between them can
be essential and has to be considered. The structure of such an object is interesting.

Currently, the starting point in investigating ground state properties and processes
in electronic atoms are Hartree-Fock (HF) equations. So, it is natural to apply to pion
atoms the properly adjusted HF equations. However, for bosonic atoms they acquire
unexpected features that we will consider below.
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152.2 Main Formulas

The HF equation for multi-pion atoms looks like (see e.g. [1]1)

−�

2
φ j (x) − Z

r
φ j (x) +

Nπ∑

k=1

∫
φ∗
k (x ′) dx ′

|r − r′|
[
φk(x

′)φ j (x) + φ j (x
′)φk(x)

] = E jφ j (x)

(152.1)

Here Z is the nuclear charge, φ j (x) is the one-pion wave function, x ≡ �r , �σ are the
combination of pion coordinate and spin variables, E j—is the one-pion so-called HF
energy; the summation is performed over all occupied pion states Nπ . Sign plus in the
square bracket takes into account that identical bosons wave function is symmetric
against permutation of the coordinate/spin variables. As a result, this equation for
bosons does not eliminate self-action as in Fermion atom case, but instead doubles
it.

Indeed. if the interparticle interaction is not Coulombic, but short-range u0δ(|r−
r′|), and the interaction that holds the system together is some U (r) that is more
general than nuclear Coulomb potential, (152.1) reduces to the following

−�

2
φ j (r) +U (r)φ j (r) + 2u0

Nπ∑

k=1

|φk(r)|2φ j (r) = E jφ j (r). (152.2)

We see that in HF for bosonic atoms the account of wave-function symmetrization
leads to non-physical enhancement of the self-consistent field by a factor of 2.

Since all atomic pions can be in one lowest energy state, we obtain from (152.1),
after eliminating the unphysical self-action “by hand”, the following equation

−�

2
φk(r) − Z

r
φk(r) + 2(Nk

π − 1)
∫

|φk(r)|2 dr ′

|r − r′|φk(r) = Ekφk(r). (152.3)

152.3 The Results Obtained

After solving (152.3) numerically, we obtained HF energies of the 1s level, total
energies and mean square radiuses for pionic atoms and negative pionic ions with
Z from 2 to 80. It appeared that the total binding energy of a pion atom is much
bigger than that for an ordinary atom, and the size of the pion atom is several times
bigger than the size of a normal atom. We assume these quantities being in pionic
and normal atomic units, respectively.

1We employ the system of units that defines m = e = � = 1. Here m is the mass, in electron case
m = me, in pion case m = mπ ; mπ/me ≈ 273.13.
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A pion atom is able to form negative ions. For He, Ne and Ar formation of single
negative ions He−

π , Ne−
π , Ar

−
π is possible, while for Zn formation of Zn−

π and Zn−2
π

is allowed.Kr forms up to Kr−3
π , while Xe binds up to 4 pions that leads to Xe−4

π . We
have extended calculations up to Z = 137. Note that at high Z values the Coulomb
non-relativistic binding energy is close to the rest mass of a pion, and relativistic
approach is required, along with accounting for the finite size of the nucleus.

For pion atoms notion “noble gases” has no sense, since pion shells do not exist.
Figure 152.1 presents the Z dependence of the number of extra bound pions.
As an example of pion atom process, consider photoionization. Figure 152.2

presents the results of calculations using for σk(ω) the computing codes [1]. For ordi-
nary atoms, the cross-section monotonically decreases with photon energy growth
from the maximum value at threshold. For pion atom the cross-section reaches its
maximum value above ionization threshold, forming pronouncedmaxima, the height
of which decreases while the width increases with Z growth [2].

Fig. 152.1 Number of
additional pions
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We were unable to find discrete excitations in pion negative ions, contrary to the
case of neutrals.

The elastic π− scattering cross-section monotonically decreases with energy
growth. Up to 100 Ry all but s scattering phases are negligibly small. Inπ+ scattering
upon pion atom the interaction of π+ and π− with formation of a bound pionium
could be very important. Electron scattering cross-section upon pion atom is by a
factor β2 ≡ (me/mπ )2 � 1.3 × 10−5 smaller than the pion one (see [3]).

152.4 Conclusion

The results obtained for pion atoms are essentially different from that for ordinary
atoms. In the consideration presented above, we neglected the nuclear forces between
pions and nucleons. They can lead to sticking of extra pions to a nucleus but become
decisively important only at Z ≈ 100, when the pion’s Bohr radius is about the range
of nuclear forces action 10−13 cm. It would be of interest to look for data in multi-
pion atoms formed in heavy atom collisions. In studies of a boson atom it would be
meaningful also to go beyond the frame of self-consistent field approximation.
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Chapter 153
Local Meson-Baryon Coupled-Channels
Potential for the Λ(1405)

Kenta Miyahara, Tetsuo Hyodo and Wolfram Weise

Abstract A local coupled-channels K̄ N -πΣ-πΛ potential is constructed,
equivalently reproducing the scattering amplitude in chiral SU(3) dynamics. By ana-
lyzing the wave function of the Λ(1405), we show the K̄ N dominance of the upper
pole within the two-pole structure of the Λ(1405). The resulting potential will be
useful for investigating K̄ few-nucleon systems including their coupled channels.

153.1 Introduction

Systems of an antikaon and few nucleons are of considerable interest in few-body
physics because the low-energy K̄ N interaction is considered to be sufficiently attrac-
tive to generate a quasibound state, the Λ(1405), below K̄ N threshold [1–3]. One of
the recent theoretical achievements is the determination of the precise meson-baryon
scattering amplitude, including the pole position of the Λ(1405) [4]. Currently, a
whole set of experimental data near the K̄ N threshold is successfully described in
the framework of chiral SU(3) coupled-channels dynamics [5, 6].

In order to study the K̄ few-nucleon systems with established techniques for
rigorous few-body calculations, it is desirable to construct a local meson-baryon
potential. A detailed strategy for constructing such a local potential equivalent to
chiral SU(3) dynamics has been developed in [7]. It is also shown that one can
renormalize the effects of πY (≡ πΣ,πΛ) channels to obtain a single-channel K̄ N
potential. By applying this strategy to the scattering amplitude in [5, 6], an elaborate
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single-channel K̄ N potential has been derived in [8]. This potential is applied to the
investigations of few-body kaonic nuclei [9] and kaonic deuterium [10].

While the single-channel K̄ N potential exactly reproduces the two-body scatter-
ing amplitude, in the application to the few-body systems, dynamical effects of the
coupled-channels (such as πY plus nucleons) are not properly included. For states
near the K̄ N threshold, the neglect of such components does not affect observables
very much. However, the results in [9] suggest that the quasibound state of K̄ and
six nucleons appears near the threshold of πΣ plus five nucleons. In such cases, the
explicit treatment of coupled-channels dynamics is expected to give sizable contri-
butions.

Here we construct the coupled-channels K̄ N -πΣ-πΛ potential [11] equivalent
to the scattering amplitude in [5, 6]. As an application within the two-body sector,
we study the meson-baryon fractions in theΛ(1405) by analyzing the wave function
of the quasibound state.

153.2 Coupled-Channels Meson-Baryon Potential

We start from the coupled-channels Schrödinger equation for a nonrelativistic energy
E ,

[
− ∇2

2μi
δi j + ΔMi δi j + V equiv

i j (r, E)

]
ψ j (r) = Eψi (r) , (153.1)

whereμi ,ΔMi , andψi are the reducedmass, the energy difference from the reference
threshold, and the wave function in channel i , respectively. The coupled-channels
potential V equiv

i j has a matrix form in channel basis with i = K̄ N , πΣ , and πΛ. In

contrast to the single-channel K̄ N potential which has a complex strength due to the
absorption into the πY channels, the strengths of V equiv

i j are real valued. In addition,

V equiv
i j has an energy dependence, which originates from the energy dependence of

the chiral interaction and from the renormalization of higher energy channels such
as ηΛ and KΞ .

Our task is to determine V equiv
i j such that the scattering amplitude from (153.1)

reproduces the one in [5, 6]. The potential V equiv
i j should be related to the interaction

kernel in chiral SU(3) dynamics, but there is no direct way of converting the inter-
action kernel, given that the framework is different. We therefore introduce several
matching conditions of V equiv

i j and the interaction kernel, not only on the real energy

axis but also in the complex energy plane, in order to systematically determine V equiv
i j .

For the details of the potential construction procedure, see [11].
For practical applications, it is useful to represent V equiv

i j in a conveniently
parametrized form. We use the following parametrization:
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V equiv
i j (r, E) = e−r2(1/2b2i +1/2b2j )

αmax∑
α=0

Kα,i j

(
E

100 MeV

)α

. (153.2)

The spatial distribution is assumed to be aGaussian formwith the range parameter
bi . The energy dependence is parametrized by a polynomial of order αmax with
real coefficients Kα,i j . These parameters are determined by the matching conditions
mentioned above, and the results are tabulated in [11]. One remarkable fact is that
the energy dependence of V equiv

i j can be accurately parametrized by a second-order
polynomial (αmax = 2). This is in sharp contrast to the single-channel version in
[11] where one needs αmax as large as 10 for sufficient accuracy. In other words,
the explicit inclusion of the πY channels permits a parametrization of the potential
strength with a more natural, much weaker energy dependence.

153.3 Compositeness of the Λ(1405)

In general, a resonance eigenstate is expressed by a pole of the scattering amplitude
in the complex energy plane. In the case of the Λ(1405), the resonance is expressed
by two poles [4, 12]. From the coupled-channels potential, we find poles at

√
s =

1424 − 27i MeV and
√
s = 1380 − 81i with

√
s = E + MN + mK , consistently

with the original scattering amplitude [5, 6]. The wave function of the Λ(1405) can
be obtained by evaluating (153.1) at these pole energies. Starting from the wave
function it is possible to extract the properties of the resonance. It should be kept in
mind that due to the unstable nature of resonances, the expectation value of operators
(such as norm of the state) becomes complex.

Here we discuss the compositeness Xi and the “elementarity” Z [13] which are
related to the norm of the wave function in channel i :

Xi = 〈ψ
†
i | ψi 〉, Z = 1 −

∑
i

Xi , (153.3)

where 〈ψ
†
i | is a left eigenstate 〈ψ

†
i |H = 〈ψ

†
i |E . When we deal with resonances,

〈ψ
†
i | is different from 〈ψi |. The compositeness Xi represents the fraction of the

channel i component in the total wave function. When the potential is energy depen-
dent, the sum of Xi s does not become unity, and the elementarity Z is introduced.
Using the Feshbach projection method, Z can be expressed by the expectation value
of the energy derivative of the potential [11]. Originally, Z has been introduced as
a field renormalization constant of the bare state representing the elementary com-
ponent of the composite system [14]. In the present context, it is understood as the
contributions not explicitly included in the model space.

We show the results of XπΣ , XK̄ N , and Z for high-mass pole at 1424 − 27i MeV
in Table153.1. The results are consistent with those obtained by the single-channel
potential [8], as well as with the evaluation by the residue of the pole [15]. In all
cases, XK̄ N is close to unity and the others are almost zero. Hence, we conclude the
K̄ N dominance of the high-mass pole of the Λ(1405).
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Table 153.1 Compositeness Xi and elementarity Z for high-mass pole of the Λ(1405) coupled-
channels system.

Method XπΣ XK̄ N Z

Coupled-channels potential −0.02 − 0.25i 1.01 − 0.13i 0.01 + 0.37i

Single-channel potential [8] 1.01 − 0.07i

Residue of the pole [15] −0.19 − 0.22i 1.14 + 0.01i 0.05 + 0.21i

153.4 Summary

Wehave constructed a coupled-channelsmeson-baryon (K̄ N ↔ πY ) potential based
on chiral SU(3) dynamics. The evaluation of the compositeness tells us that the
high-mass pole of the Λ(1405) is dominated by the K̄ N component. This potential
will be useful in order to shed new light on meson-baryon few-body systems with
strangeness.
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Chapter 154
Studies of Hyperon Production
in HADES—Cascade Production

Joanna Kuboś

Abstract Production of the doubly strange Ξ− hyperon, known as a cascade par-
ticle, has been investigated in nuclear reactions in a wide energy range. However,
only the results for the energies above the threshold for cascade production in ele-
mentary collisions were known for a long time. The first measurement of the sub-
thresholdΞ− production was performed in heavy ion and nucleon-nucleus collisions
by the HADES Collaboration. Because of the discrepancy between data and various
model predictions deeper studies of the strangeness production, especially in elemen-
tary collisions near the threshold, are needed. In this paper simulations of the cas-
cade production in proton-proton reaction at the beam kinetic energy of 4.5GeV
are presented. The results are relevant for the experiment planned by HADES with
the upgraded setup during the FAIR-Phase 0 project.

154.1 Introduction

Processes of the strangeness production have been the subject of interest of nuclear
physicists for a long time. Such studies are important for the investigations of
the nuclear equation-of-state (EoS), neutron stars compositions or scattering pro-
cesses in hot and densematter. Especially themultistrange particles production yield,
enhanced in nucleon-nucleus reactions in respect to the nucleon-nucleon, is a sign of
the phase transition of the hadronic matter to the quark-gluon plasma state (QGP).

Production of cascade—a doublystrange Ξ− hyperon—was measured by differ-
ent experiments: in heavy ion collisions at LHC [2, 3], RHIC [4, 5], SPS [6, 7] and
AGS [8], in nucleon-nucleon collisions at LHC [9], in nucleon-nucleus reactions at
DESY [10] and SPS [11] and also at lowest energy in HADES: Ar+KCl@1.76AGeV
[12] and p+Nb@3.5GeV [1] (experimental data shown in the Fig. 154.1). The latter
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Fig. 154.1 The yield ratio
Ξ−/(Λ + Σ0) as a function
of

√
sNN or

√
sNN − √

sthr
(inset). Full dots—data
measured by HADES.
(figure from [1])

measurements have shown the enhanced Ξ− production with respect to the the-
oretical predictions, obtained using various transport models [13–17]. The cas-
cade production in the HADES energy range was initially modeled as processes of
strangeness-exchange: K̄ Y → πΞ , where Y = Λ,Σ [18]. However, the observed
production of cascade in p+Nb reactions questions this hypothesis.

The unexpected high production rate of cascade in the Ar+KCl experiment [12]
seems to be partially explained by adding an additional process to the UrQMD
model—a hyperon-hyperon scattering YY → NΞ [19, 20], but the theoretical Ξ−
abundance is still significantly lower than the experimental data. In the case of the p-
Nb reaction differences betweenmodel predictions with andwithout YY scattering is
negligible [1]. Therefore, a newmechanism of the cascade production in the nucleon-
nucleus interaction was proposed—a subthreshold cascade production via high-mass
baryon resonances [21].

To resolve this so called “HADES puzzle”, i.e. the cascade overproduction near
the threshold, and improveour knowledge about elementary processes responsible for
the strangeness creation, it is necessary to measure the Ξ− production in a nucleon-
nucleon collision at the near-threshold energies.

In this proceedings result of simulations of the Ξ− production in elementary
collisions pp → ΞK+K+ p at E = 4.5GeV will be presented.
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154.2 HADES Detector

HADES (High Acceptance DiElectron Spectrometer) is a versatile magnetic spec-
trometer [22]. Itsmain purpose is to detect dielectrons and hadrons in pion, proton and
heavy-ion induced reactions. Geometrically the detector is divided into six sectors
placed symmetrically around the beam axis. HADES consists of a Ring Imaging gas
Cherenkov detector (RICH) for electron-hadron discrimination, a set of six super-
conducting coils producing a toroidal field, four sets of multiwire drift chambers
(MDC)—two before and two after the magnetic field serving as a tracking system,
and amultiplicity and electron trigger array consisting of: a time-of-flight wall (TOF)
and a RPC wall and the new Electromagnetic Calorimeter (ECAL). Identification
of the charged particles—pions, kaons and protons is achieved by combining time-
of-flight and energy loss measurements over a large momentum range. The detector
system covers 85%of the polar angle in the range from18◦ to 85◦ with themomentum
resolution Δp

p ≈ 2 − 4%.
The physics program of HADES is mostly focused on studies of the QCD matter

phase diagramme in the region of the high baryonic potential, the investigation of
hadron properties in nuclei and in the hot and dense hadronic matter.

154.2.1 Forward Detector

Currently the HADES detector is upgraded by the new and faster readout electronics
(DAQ) and the Forward Detector for tracking in very forward angles, which extends
the angular coverage of the detection setup to the forward angles θ ∈ [0.5◦; 6.5◦].
A schematic picture of the upgraded HADES is shown in Fig. 154.2.

The cascade inHADES is reconstructed from a two step decay process: (1)Ξ− →
Λπ−, (2)Λ → pπ−. From the kinematic at E = 4.5GeV, protons produced in theΛ

decay are emitted in very forward angles (see Fig. 154.3). Therefore with the use of
the currently operating HADES setup one is able to reconstruct only about 9% of all
possible protons and, in consequence, only very small fraction of all cascade decays.
To improve the count rate of the Ξ− it is necessary to detect also the protons with
scattering angles below θ < 18◦.

The Forward Detector consists of two stations of Straw Tube Trackers (STS1 and
STS2) for a precise particles tracking [23] and a set of Resistive Plate Chambers
(RPC) for the time-of-flight measurement. Due to the fact that the Forward Detector
is placed in the region with no magnetic field full PID is not possible. Owing to this
in the simulation scheme all charged particles detected in the Forward Detector are
treated as protons (the mass of such particles is fixed at a proton mass).
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Fig. 154.2 Scheme of the upgraded HADES setup together with the Forward Detector

Fig. 154.3 Angular distribution of protons produced in the Λ decay, which is the second step of
the cascadedecay.The angular acceptance of theHADESdetector before upgrade andof theForward
Detector is marked
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Table 154.1 List of the simulated reaction channels together with the cross-sections.

No. Reaction Cross-section [μb]

0. K+K+ pΞ− 4.8

1. pp2π−2π+ 600

2. pΛK 0
s π+ 100

3. pΛK+π+π− 30

4. nΛK 0
s 2π

+ 30

5. pΣ0K 0
s π+ 20

6. pp2K 0
s 20

154.3 Simulations and Signal Reconstruction

The cascade production channel: pp → Ξ−K+K+ p aswell as themost contributing
background channels have been simulated with the use of the PLUTO Monte-Carlo
event generator [24]. The simulated channels are listed in Table154.1. The geometry
and detector response have been simulatedwith the use of aGEANT3-based software
considering the upgraded HADES setup.

154.3.1 Steps of the Analysis

The cascade is produced in a pp reaction accompanied by two positive kaons and one
proton. Ξ− decays to the negative pion and the Λ ground state, which subsequently
decays into proton and π−. Detection of two negative pions in HADES and one
charged particle in the Forward Detector (treated as a proton) is considered as a can-
didate for the Ξ− decay. In the first step the four-momentum and the decay vertex
of the Λ hyperon (Λ → pπ−) are reconstructed by the combination of the negative
pion detected in HADES (θ > 18◦) with the proton detected in the Forward Detec-
tor (θ < 6.5◦). Next, the same observables are calculated for Ξ− (Ξ− → Λπ−)
obtained from the momentum vectors ofΛ reconstructed in the first step and another
π− detected in HADES (not used in the Λ reconstruction).

154.3.2 Topological Cuts

During the analysis following topological cuts have been applied to reduce back-
ground: (1) Minimum Tracks Distance for Λ decay vertex (MT D_L < 25mm)—
avalue of the shortest distance between p andπ− tracks; (2) the z coordinate of theΛ

decay vertex (VERTz_L ∈ [-20;300] mm)—Λ decay vertex is the middle point of
the shortest section drawn between p and π− tracks; (3) Minimum Tracks Distance
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Fig. 154.4 The topological cuts applied to the cascade reconstruction

for Ξ− decay vertex (MTD_X < 20mm)—a value of the shortest distance between
reconstructed Λ and π− tracks. The applied cuts are presented in Fig. 154.4 together
with the optimized values.

154.3.3 Results

The results of the analysis are presented in Fig. 154.5 with the reconstruction of
the invariant mass of pπ− in the top panel and Λπ− (after a cut on Λ peak in
pπ− invariant mass) in the bottom panel. The reconstructed candidates in the range
of ±3σ from the peak position have been accepted as a Λ(1115) and Ξ− signal
candidates, respectively. Red dotted lines represent a combinatorial background—
an appropriately normalized sum of the all miss-identified protons in the Forward
Detector and pions in HADES.

The count rate for the reaction of the cascade production in pp scattering at E =
4.5GeV considering the upgraded HADES setup (beam rate = 108 part/s, luminosity
= 1.4·1032 cm−2s−1) was estimated to 11.9·104 part/day.

154.4 Summary and Outlook

The Ξ− production reaction has been simulated together with the most probable
background sources. To reduce the background the topological cuts have been defined
and optimized. The calculated count rate expected for the upcoming experiment
shows that one can expect sufficient statistics.

Hardware and software for the HADES upgrade are currently being prepared.
The Forward Detector is under construction and the first in-beam test with full-size
prototypes are scheduled for the beginning of 2019. The experiment with a proton
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Fig. 154.5 Reconstructed signal of Λ (top panel) and cascade (bottom panel)—green solid line
and the combinatorial background—red dotted line. Vertical lines—±3σ of the invariant mass peak

beam is planned for 2020. Measurement of the proton-proton reaction, investigated
in this work, should lead us to the pioneering observation of the multistrangeness
production in the elementary collisions.
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Chapter 155
Universality of Two Neutrons and One
Flavored Meson in Low-Energy Effective
Theory

Udit Raha

Abstract We examine the universal physics associated with the s-wave system
consisting of two neutrons and a flavored meson (K − or D0 meson) using the frame-
work of low-energy effective theory. Through an extrapolation to an unphysical mass
domain between the strange and the charm limits, we present an idealized scenario
in which the system may be tuned to meson-neutron unitarity, and thereby Efimov
effect can be manifest in such three-body systems.

155.1 Introduction

Few-body systems with a flavored meson (antikaon or the D0 meson) and nucleons
are of great interest in the study of nuclear physics. In the strangeness sector, the
existence of the Λ(1405) resonance below the K̄ N threshold implies that the K̄ N
(I = 0) interaction is strongly attractive with which the antikaon could be bound in
nuclei. Among others, the K̄ N N system has been the most intensively studied three-
body kaonic bound states. Analogous arguments hold for the charm sector where the
charmed resonance Λc(2595) suggests a fairly strong DN (I = 0) interaction. Here
we focus on the K −nn and D0nn systems with J = 0 and I = 3/2. It is interesting
to apply few-body techniques to study the low-energy universal aspects of kaonic
and D meson systems, and in particular investigate whether Efimov effect [1, 2] can
be responsible leading to possible three-body bound state formation.

Generally, in low-energy hardron physics where momentum scales are much
smaller than mπ , all physics involving explicit pion degrees of freedom remain unre-
solved leading to the idea of a pionless effective theory [3–5]. Such a EFT framework
is most suitable for the study of universal features of the three-body system under the
assumption that the two-bodyphysics is determinedonly by the scattering lengths that
is finely tuned. Incorporated with a renormalization group analysis of short-distance
contact interactions, an EFT framework allows a natural mechanism of fine-tuning
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two-body parameters to probe the unitary limit of low-energy two-body interactions.
In this way, complex three-body universal dynamics are easily investigated, and in
particular, many recent EFT based analyses have used similar frameworks to predict
exotic bound states in a variety of three-body nuclear and hypernuclear cluster sys-
tems. Our primary objective of this contribution is to present a brief report of our
EFT analysis in an idealized limit to illuminate certain aspects of remnant two- and
three-body universal physics that may be associated with bound dimer and trimer
state formation in the K −nn and D0nn systems. Details of the methodology can be
found in our earlier works [6, 7], and references therein.

155.2 Two- and Three-Body Dynamics

In the two-bodymeson-neutron sectors, we have employed a contact interaction EFT
basedmodelwithflavor symmetry. In the strangeness sector, theWeinberg-Tomozawa
contact interactionmodel is known to successfully describes the chiral SU(3) dynam-
ics of the K̄ N system where the Λ(1405) resonance is generated dynamically in the
I = 0 channel. Analogously, in the charm sector, the SU(4) generalization of this
approach is used to dynamically generate the Λc(2595) resonance (I = 0). In this
work we describe both K̄ N and DN systems in the I = 1 channel within a com-
mon unified framework of a dynamical coupled-channel model. Here we introduce
a parameter 0 ≤ x ≤ 1 which controls the extrapolation from strangeness (x = 0) to
charm (x = 1) limits. The details of the model construction are given in [7].

Our model analysis reveals that, while on the one hand the K −n system has a
weakly attractive scattering length, not strong enough to form a bound state, on
the other hand the D0n system can support the quasi-bound state Σc(2800) below
the threshold. We, however, note that the model extracted meson-neutron scattering
lengths are not large enough to exhibit resonant phenomena. If we perform an extrap-
olation of the K −n interaction to the D0n interaction by changing the flavoredmeson
mass (or the quark mass) from the strange to the charm limits, we can expect the
existence of an unphysical mass region where a very shallow bound state is formed
when the magnitude of the scattering length becomes infinitely large. This yields an
universal window around the unitary limit of the meson-neutron interactions.

To elucidate a possible scenario to access the unitary limit, we consider a zero
coupling limit (ZCL) of our model in which the channel couplings are switched off
artificially. With this idealization, the coupled-channel problem reduces to a single-
channel scattering of the K −n (D0n) system. In this scenario, the K −n system is
again found to have no bound state, while the previous full-model quasi-bound
D0n state now becomes bound. Correspondingly, the full-model complex scatter-
ing lengths, namely, a0,K −n = −0.135 − i0.410 fm and a0,D0n = 0.764 − i0.615
fm, now become real and negative (positive) in the K −n (D0n) channel, namely,
aZCL
0,K −n = −0.394 fm and aZCL

0,D0n = 4.141 fm. These values of the ZCL scattering
lengths strongly suggest that the meson-neutron interactions become resonant in the
intermediate unphysical region 0 < x < 1.
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Fig. 155.1 Integral equations (strangeness sector) with the three-body contact terms omitted for
brevity. A solid (dashed) line represents the n(K −) field, and the double (zigzag) line stand for the
dressed field s(nn) (d(nK )). Figure adapted from [7]

In the three-body sector, we report our results for the meson-neutron-neutron
dynamics in the idealized ZCL limit, neglecting possible influence of decay chan-
nels. Here we use a non-relativistic leading order (LO) pionless EFT [3–5] with
the physical 1S0 nn scattering length, as(nn) = −18.63 fm, and the aforementioned
2S1/2 ZCL meson-neutron scattering lengths as the input parameters. In particular,
it is convenient to introduce the dihadron fields [2] to unitarize the two-body sector,
especially in the vicinity of a non-trivial RG fixed point of the two-body couplings
whenever the system is close to the unitary limit. For example, in our case there
is a spin-singlet nn-dibaryon s(nn), and a spin-doublet nK −-dihadron d(nK ) in the
strangeness sector. The resulting set of integral equations is diagrammatically rep-
resented in Fig. 155.1 and very similar to the so-called Skornyakov-Ter-Martirosian
(STM) equations [8].

In addition, a LO three-body interaction counter-term must be introduced for
renormalization purpose. This is because the asymptotic analysis of the integral
equations leads to a RG limit cycle associated with the breakdown of scale invari-
ance into a discrete scaling symmetry, parametrized in terms of a transcendental
number, s∞

0 = 1.03069 . . . (1.02387 . . .), for the K −nn (D0nn) system. In fact by
an extrapolation of the integral equations to the unphysical domain of the meson
mass, m(0 ≤ x ≤ 1) between the strange and the charm limits, the asymptotic limit
cycle parameter values s0∞(x) can be shown to be continuously connected.We thereby
conclude that formally Efimov effect must be manifest in the three-body system, not
only at the physical limits (x = 0, 1), but at all unphysical points in the interme-
diate quark mass domain. The explicit expressions of the non-relativistic effective
Lagrangian, integral equations and the details of the three-body asymptotic analysis
can be found in [7].

Finally, we present our non-asymptotic results obtained by numerical solving the
homogeneous part of the coupled integral equation by introducing a sharp momen-
tum cut-off Λ to regularize the otherwise ill-defined integral equations in the UV
limit (Λ → ∞). In this regimeΛ is chosen low enough where scales of the scattering
lengths and three-body binding energies become significant. Furthermore, the LO
three-body counter-term Lagrangian has a scale dependent a priori unknown cou-
pling g3 which can not be currently fixed due to the absence of a three-body datum.
Thus, Λ and g3 constitute two extra free parameters in the theory, without a knowl-
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Fig. 155.2 Left: RG Limit cycle for g3(Λ) for fixed three-body binding energy (B.E) B3 = BT =
0.1MeV in ZCL. Right: The B.E. of the ground (n = 0) and first (n = 1) excited level states in ZCL
as a function of Λ, excluding the three-body counter-term. For the K −nn system B3 is measured
with respect to the three-particle break-up threshold, and for the D0nn system BT = B3 − ED MeV
is measured with respect to the particle-dimer break-up threshold energy ED = 1.82 MeV. Figure
adapted from [7]

edge of which no definitive prediction of three-body bound state formation is possi-
ble. Instead, here we have pursued an RG analysis by studying the scale variation of
g3(Λ), as shown in Fig. 155.2 (left). Thus, we confirm an approximate RG limit cycle
behavior of g3(Λ) with a quasi-log-periodicity of the form, g3(Λ(1)) = g3(Λ

(n+1))

withΛ(n+1) ≈ Λ(1) exp (nπ/s0), where s0 is a real three-body parameter reminiscent
of the corresponding asymptotic limit cycle value of s∞

0 . In the same figure (right) we
also display our results for the cut-off scale dependence of the three-body binding
energies in the physical strange and charm limits, with the unknown coupling g3
excluded for simplicity. We find that the spectrum has a typical Efimov-like char-
acter with increasing binding energies with increasing Λ. The various level states
emerge in order from the zero energy threshold starting from a deepest (ground) state
that appears at a certain critical cut-off value, i.e Λ(0)

c � 38MeV(2.3GeV) for the
D0nn (K −nn).

155.3 Conclusion

It clearly emerges from our results that with the much smaller critical cut-offs for the
D0nn level states than K −nn, under the idealized assumptions the D0nn Efimov-
like trimer states are manifested much more easily. While for the K −nn system, no
physically realizable mechanism in the context of a low-energy EFT can generate
sufficient interaction strength to formEfimov bound states. Themuch steeper Efimov
spectrum for the K −nn system is consistentwith the fact that suchBorromean trimers
are extremely difficult to form.
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Chapter 156
Dark Matter Bound States from
Three-Body Recombination

Eric Braaten, Daekyoung Kang and Ranjan Laha

Abstract The small-scale structure problems of the universe can be solved by self-
interacting dark matter that becomes strongly interacting at low energies. A partic-
ularly predictive model is resonant short-range self-interactions, with a dark-matter
mass of about 19 GeV and a large S-wave scattering length of about 17 fm. Such a
model makes definite predictions for the few-body physics of weakly bound clusters
of the dark-matter particles. We calculate the production of two-body bound clusters
by three-body recombination in the early universe under the assumption that the dark
matter particles are identical bosons, which is the most favorable case for forming
larger clusters. The fraction of dark matter in the form of two-body bound clusters
can increase by as much as 4 orders of magnitude when the dark-matter temperature
falls below the binding energy, but its present value remains less than 10−6.

156.1 Introduction

The model with collisionless cold dark matter and a cosmological constant provides
an excellent description of the large-scale structure of the universe, but it has encoun-
tered problems at smaller scales associated with galaxies and clusters of galaxies.
The problems involve the dark-matter distribution in the cores of galaxies and the
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Fig. 156.1 Self-interaction reaction rate 〈v σelastic〉 for dark matter particles as a function of their
mean velocity 〈v〉 (adapted from [3]). The data points from [2] are for dwarf galaxies (red), low-
surface-brightness galaxies (blue), and galaxy clusters (green) [2]. The curves are the best fits to
the model of [2] (dashed) and to (156.1) (solid). The diagonal lines are energy-independent cross
sections

properties of satellite galaxies. They can all be solved by self-interacting dark matter
that is strongly interacting at low energies [1].

In [2], Kaplinghat, Tulin, and Yu deduced self-interaction reaction rates 〈vσelastic〉
and mean velocities 〈v〉 of dark matter particles for a number of dwarf galaxies,
low-surface-brightness galaxies, and clusters of galaxies. Their results are shown
in Fig. 156.1. They fit their results with a simple self-interacting dark matter model
with 3 parameters: the dark matter mass mχ, a dark mediator mass μ, and a Yukawa
coupling α′. Their best fit for the masses with fixed Yukawa coupling α′ = 1/137
was mχ = 15 GeV and μ = 17 MeV [2].

In [3], we showed that the results in Fig. 156.1 can be fit equally well by a simpler
self-interacting dark matter model with 2 parameters. The model has resonant short-
range interactions with an S-wave resonance close to the scattering threshold [4].
The parameters are the dark matter mass mχ and the scattering length a. This model
has been applied previously to the direct detection of dark matter [5, 6]. The self-
interaction reaction rate as a function of the velocity v is

v σelastic(v) = 8πa2v

1 + (amχ/2)2v2
. (156.1)

The best fit to the results in Fig. 156.1 is mχ = 19 GeV and a = ±17 fm [3].
The dark matter could all be in the form of individual dark matter particles d, but

some (or all) of it could be bound into few-body clusters dN , which we call dark
nuclei. There are two basic formation mechanisms for larger dark nuclei. If there is a
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light mediator γd for dark matter self-interactions, larger dark nuclei can be formed
by radiative reactions: d + dN−1 → dN + γd . If there is no light mediator, as in our
resonant short-range interaction model, larger dark nuclei must be formed instead by
rearrangement reactions, such as 3-body recombination: d + d + dN−1 → dN + d.
The formation of dark deuterons d2 is a bottleneck for formation of larger dark nuclei
dN .

156.2 Few-Body Physics

The low-energy two-body physics of particles with resonant short-range interactions
is very simple. It is completely determined by the large scattering length a. The cross
section for the elastic scattering reaction d + d → d + d is given in (156.1). If a is
negative, there are no 2-body bound states. If a is positive, there is a single 2-body
bound state d2 that we call the dark deuteron. Its binding energy is E2 = 1/mχa2.

If the particles are identical bosons, the 3-body physics is much more intricate
[3]. It is determined not only by the large scattering length a, but also by a 3-body
parameter. There is a sequence of 3-body bound states called Efimov states. In the
limit a → ±∞, there are infinitely many Efimov states with an accumulation point
at the 3-boson threshold and with the binding energy of each successive Efimov state
smaller by a factor of 22.72 = 515. Three-boson reaction rates also have remarkable
behavior. They depend log-periodically on a 3-body parameter a+ with discrete
scaling factor 22.7. Ifa > 0, a simple example is the rate for the 3-body recombination
reaction d + d + d → d2 + d at 0 collision energy:

R(E = 0) = 399.8 sin2[s0 log(a/a+)]
1 − 0.00717 sin2[s0 log(a/a+)] a

4/mχ, (156.2)

where s0 = 1.00624. The 3-body recombination rate at nonzero collision energy E
has been calculated in [7] and in [8].

We consider a gas consisting of dark matter particles d with number density n1
and dark deuterons d2 with number density n2 in thermal equilibrium at temperature
T . The rate of change in the number density of dark deuterons is

d

dt
n2 = +K3(T ) n

3
1 − K2(T ) n1n2, (156.3)

where K3(T ) and K2(T ) are the rate constants for 3-body recombination and for
the dark deuteron breakup reaction d + d2 → d + d + d. These rate constants were
calculated in [8]. The results for K3(T ) are shown in Fig. 156.2.
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Fig. 156.2 Rate coefficient K3(T ) for three-body recombination as a function of the temperature T
(adapted from [3]). The upper band is the envelope of K3(T ) for all possible values of the three-body
parameter a+. The dashed line is the extrapolation from the scaling behavior at high temperature.
The lower band is the envelope of the J = 0 contribution to K3(T ) for all possible values of a+.
The curves inside the lower band are for 8 values of a+

156.3 Dark Matter in the Early Universe

We calculate the formation of dark deuterons in the Hubble expansion of the early
universe, taking into account the 3-body recombination and dark deuteron breakup
reactions. We calculate the number densities n1 and n2 as functions of the redshift
z, which is a convenient time variable. The initial condition is that n2 is negligible
when dark matter decouples at a redshift of about zdc ≈ mχ/20kTcmb, where Tcmb is
the present temperature of the cosmic microwave background [9]. Formχ = 19 GeV,
this redshift is zdc ≈ 1013. The dark-matter temperature as a function of z is

T (z) = Tcmb
(1 + z)2

1 + zdc
. (156.4)

The total number density of dark matter is determined by the present mass density
ρcdm of cold dark matter:

n1(z) + 2n2(z) = ρcdm

mχ
(1 + z)3 . (156.5)

It is convenient to express our results in terms of the dark deuteron mass fraction:

f2(z) = 2 n2(z)/[n1(z) + 2n2(z)] . (156.6)
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Fig. 156.3 Dark-deuteron mass fraction f2(z) as a function of zdc/z for mχ = 19 GeV and a =
17 fm (adapted from [3]). The band is the envelope of all possible values of a+. The curves are for
8 values of a+

We assume the darkmatter particles are identical bosons withmassmχ = 19GeV,
large scattering length a = 17 fm, and unknown 3-body parameter a+. The dark
deuteron mass fraction f2(z) is shown as a function of the redshift variable zdc/z in
Fig. 156.3. The fraction increases by 3 or 4 orders of magnitude around the redshift
10−3zdc when kT is equal to the binding energy E2 = 7 keV of the dark deuteron.
At smaller 1/z, there is a plateau in f2 at about 4 × 10−11 from equilibrium between
recombination and breakup. The final fraction f2(0) depends log-periodically on a+,
ranging from 5 × 10−8 to 5 × 10−7. It can be increased by ignoring the data from
clusters of galaxies in Fig. 156.1, whichmeans keeping a = 17 fm but allowingmχ to
decrease. The final fraction f2(0) can be increased to about 10−2 for mχ = 0.4 GeV.
If mχ is smaller, f2(0) is sensitive to the range of self-interactions.

In summary, the small-scale structure problems of the universe can be solved by a
self-interacting dark matter model with resonant S-wave interactions, with parame-
tersmχ ≈ 19 GeV and a ≈ ±17 fm. Dark nuclei dN must be produced by rearrange-
ment reactions, such as 3-body recombination: d + d + dN−1 → dN + d The most
favorable case for producing dark nuclei larger than the dark deuteron is for the dark
matter particles to be identical bosons. We found that a significant fraction of dark
deuterons cannot be formed in the early universe by 3-body recombination. Since
the formation of the dark deuteron d2 is a bottleneck for the formation of larger dark
nuclei dN , they cannot be formed either.
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