
Multiphase-Linear Ranking Functions
and Their Relation to Recurrent Sets

Amir M. Ben-Amram1, Jesús J. Doménech2, and Samir Genaim2(B)

1 School of Computer Science, The Tel-Aviv Academic College, Tel Aviv, Israel
2 DSIC, Complutense University of Madrid (UCM), Madrid, Spain

genaim@gmail.com

Abstract. Multiphase ranking functions (MΦRFs) are used to prove
termination of loops in which the computation progresses through a
number of phases. They consist of linear functions 〈f1, . . . , fd〉 where fi
decreases during the ith phase. This work provides new insights regard-
ing MΦRFs for loops described by a conjunction of linear constraints
(SLC loops). In particular, we consider the existence problem (does a
given SLC loop admit a MΦRF). The decidability and complexity of
the problem, in the case that d is restricted by an input parameter,
have been settled in recent work, while in this paper we make progress
regarding the existence problem without a given depth bound. Our new
approach, while falling short of a decision procedure for the general case,
reveals some important insights into the structure of these functions.
Interestingly, it relates the problem of seeking MΦRFs to that of seeking
recurrent sets (used to prove nontermination). It also helps in identify-
ing classes of loops for which MΦRFs are sufficient, and thus have linear
runtime bounds. For the depth-bounded existence problem, we obtain a
new polynomial-time procedure that can provide witnesses for negative
answers as well. To obtain this procedure we introduce a new represen-
tation for SLC loops, the difference polyhedron replacing the customary
transition polyhedron. We find that this representation yields new insights
on MΦRFs and SLC loops in general, and some results on termination
and nontermination of bounded SLC loops become straightforward.

1 Introduction

Proving that a program will not go into an infinite loop is one of the most fun-
damental tasks of program verification, and has been the subject of voluminous
research. Perhaps the best known, and often used, technique for proving ter-
mination is that of ranking functions. This consists of finding a function that
maps program states into the elements of a well-founded ordered set, such that
its value decreases when applied to consecutive states. This implies termination
since infinite descent is impossible in a well-founded order.

This work was funded partially by the Spanish MICINN/FEDER, UE project
RTI2018-094403-B-C31, the MINECO project TIN2015-69175-C4-2-R, the CM project
S2018/TCS-4314 and by the pre-doctoral UCM grant CT27/16-CT28/16.

c© Springer Nature Switzerland AG 2019
B.-Y. E. Chang (Ed.): SAS 2019, LNCS 11822, pp. 459–480, 2019.
https://doi.org/10.1007/978-3-030-32304-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32304-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-32304-2_22

460 A. M. Ben-Amram et al.

Unlike termination of programs in general, which is undecidable, the algorith-
mic problems of detection (deciding the existence) or generation (synthesis) of a
ranking function can well be solvable, given certain choices of the program rep-
resentation, and the class of ranking function. There is a considerable amount
of research in this direction, in which different kinds of ranking functions for
different kinds of program representations were considered. In some cases the
algorithmic problems have been completely settled, and efficient algorithms pro-
vided, while other cases remain open.

The program representation we study is single-path linear-constraint loops
(SLC loops), where a state is described by the values of numerical variables, and
the effect of a transition (one iteration) is described by a conjunction of linear
constraints. We consider the settings of integer-valued variables and rational-
valued (or real-valued) variables. Here is an example of this loop representation;
primed variables x′

1, x
′
2, . . . refer to the state following the transition.

while (x1 ≥ −x3) do x′
1 = x1 + x2, x′

2 = x2 + x3, x′
3 = x3 − 1 (1)

Note that x′
1 = x1 + x2 is an equation, not an assignment. The description of

a loop may involve linear inequalities rather than equations, and consequently
be nondeterministic. It is a standard procedure to compile sequential code (or
approximate it) into such representation using various techniques. We assume the
“constraint loop” to be given, and do not concern ourselves with the orthogonal
topic of extracting such loops from general programs. The loop is called simple
since branching in the loop body is not represented. Despite this restriction, SLC
loops are important, e.g., in approaches that reduce a question about a whole
program to questions about simple loops [14–16,21,27]; see [29] for references
that show the importance of such loops in other fields.

Several types of ranking functions have been suggested for SLC loops; linear
ranking functions (LRFs) are probably the most known. In this case, we seek a
function ρ(x1, . . . , xn) = a1x1 + · · · + anxn + a0 such that (i) ρ(x) ≥ 0 for any
valuation x = 〈x1, . . . , xn〉 that satisfies the loop constraints (i.e., an enabled
state); and (ii) ρ(x) − ρ(x′) ≥ 1 for any transition leading from x to x′ =
〈x′

1, . . . , x
′
n〉. The algorithmic problems of existence and synthesis of LRFs have

been completely settled [5,12,18,31,33], for both integer-valued and rational-
valued variables, not only for SLC loops but rather for control-flow graphs.

LRFs do not suffice for all terminating SLC loops, e.g., Loop (1) does not
have a LRF , and in such case, one may resort to an argument that combines
several linear functions to capture a more complex behavior. A common such
argument is one that uses lexicographic ranking functions, where a tuple of linear
functions is required to decrease lexicographically when moving from one state
to another. In this paper we are interested in a special case of the lexicographic
order argument that is called Multiphase ranking functions (MΦRF for short).
Intuitively, a MΦRF is a tuple 〈f1, . . . , fd〉 of linear functions that define phases
of the loop that are linearly ranked, as follows: f1 decreases on all transitions,
and when it becomes negative f2 decreases, and when f2 becomes negative, f3
will decrease, etc. Loop (1) has the MΦRF 〈x3 + 1, x2 + 1, x1〉. The parameter d
is called the depth of the MΦRF, intuitively the number of phases.

Multiphase-Linear Ranking Functions and Their Relation to Recurrent Sets 461

The decision problem Existence of a MΦRF asks to determine whether a
SLC loop has a MΦRF. The bounded decision problem restricts the search to
MΦRFs of depth d, where d is part of the input. The complexity and algorithmic
aspects of the bounded version of the MΦRF problem were completely settled
in [6]. The decision problem is PTIME for SLC loops with rational-valued vari-
ables, and coNP-complete for SLC loops with integer-valued variables; synthesiz-
ing MΦRFs, when they exist, can be performed in polynomial and exponential
time, respectively. In addition, [6] shows that for SLC loops MΦRFs have the
same power as general lexicographic-linear ranking functions, and that, surpris-
ingly, MΦRFs induce linear iteration bounds. The problem of deciding if a given
SLC admits a MΦRF, without a given bound on the depth, is still open.

In practice, termination analysis tools search for MΦRFs starting by depth 1
and incrementally increase the depth until they find one, or reach a predefined
limit, after which the returned answer is don’t know. Clearly, finding a theoretical
upper-bound on the depth of a MΦRF, given the loop, would also settle this
problem. As shown in [6], such bound must depend not only on the number of
constraints or variables, but also on the coefficients used in the constraints.

In this paper we make progress towards solving the problem of existence
of a MΦRF , i.e., seeking a MΦRF without a given bound on the depth. In
particular, we present an algorithm for seeking MΦRFs that reveals new insights
on the structure of these ranking functions. In a nutshell, the algorithm starts
from the set of transitions of the given SLC loop, which is a polyhedron, and
iteratively removes transitions (x,x′) such that ρ(x)−ρ(x′) > 0 for some function
ρ(x) = �a · x + b that is nonnegative on all enabled states. The process continues
iteratively, since after removing some transitions, more functions ρ may satisfy
the nonnegativity condition, and they may eliminate additional transitions in
the next iteration. When all transitions are eliminated in a finite number of
iterations, we can construct a MΦRF using the ρ functions; and when reaching
a situation in which no transition can be eliminated, we prove that we have
actually reached a recurrent set that witnesses nontermination.

The algorithm always finds a MΦRF if one exists, and in many cases it finds a
recurrent set (see experiments in Sect. 5) when the loop is nonterminating, how-
ever, it is not a decision procedure as it diverges in some cases. Nonetheless, our
algorithm provides important insights on the structure of MΦRFs. Apart from
revealing a relation between seeking MΦRFs and seeking recurrent sets, these
insights are useful for finding classes of SLC loops for which, when terminating,
there is always a MΦRF and thus have linear runtime bound.

Our research has, in addition, led to a new representation for SLC loops,
that we refer to as the displacement representation, that provides us with new
tools for studying termination of SLC loops in general, and existence of a MΦRF
in particular. In this representation a transition (x,x′) is represented as (x,y)
where y = x′ −x. Using this representation our algorithm can be formalized in a
simple way that avoids computing the ρ functions mentioned above (which might
be expensive), and reduces the existence of a MΦRF of depth d to unsatisfiability
of a certain linear constraint system. Moreover, any satisfying assignment is a

462 A. M. Ben-Amram et al.

witness that explains why the loop has no MΦRF of depth d. As an evidence on
the usefulness of this representation in general, we also show that some nontrivial
observations on termination of bounded SLC loops are made straightforward in
this representation, while they are not easy to see in the normal representation.

The article is organized as follows. Section 2 gives precise definitions and nec-
essary background. Section 3 describes our algorithm and its possible outcomes.
Section 4 discusses the displacement representation for SLC loops. Section 5 dis-
cusses some experiments. Finally, in Sect. 6 we conclude and discuss related
work.

2 Preliminaries

Polyhedra. A rational convex polyhedron P ⊆ Qn (polyhedron for short) is the
set of solutions of a set of inequalities Ax ≤ b, namely P = {x ∈ Qn | Ax ≤ b},
where A ∈ Qm×n is a rational matrix of n columns and m rows, x ∈ Qn

and b ∈ Qm are column vectors of n and m rational values respectively. We
say that P is specified by Ax ≤ b. If b = 0, then P is a cone. The set of
recession directions of a polyhedron P specified by Ax ≤ b, also known as
its recession cone, is the set rec.cone(P) = {y ∈ Qn | Ay ≤ 0}. Polyhe-
dra also have a generator representation in terms of vertices and rays, written
as P = conv.hull{x1, . . . ,xm} + cone{y1, . . . ,yt}. This means that x ∈ P iff
x =

∑m
i=1 ai · xi +

∑t
j=1 bj · yj for some rationals ai, bj ≥ 0, where

∑m
i=1 ai = 1.

Note that y1, . . . ,yt are the recession directions of P, i.e., y ∈ rec.cone(P) iff
y =

∑t
j=1 bj · yj for some rationals bj ≥ 0. For a given polyhedron P ⊆ Qn we

let I(P) be P ∩ Zn, i.e., the set of integer points of P. The integer hull of P,
commonly denoted by PI , is defined as the convex hull of I(P).

Let P ⊆ Qn+m be a polyhedron, and let
(x
y

) ∈ P be such that x ∈ Qn and
y ∈ Qm. The projection of P onto the x-space is defined as projx(P) = {x ∈
Qn | ∃y ∈ Qm such that

(x
y

) ∈ P}. We will need the following lemmas later.

Lemma 1. projx(rec.cone(P)) = rec.cone(projx(P)).

Proof. A polyhedron P whose variables are split into two sets, x and y, can
be represented in the form Ax + Gy ≤ b for matrices A, G and a vector b of
matching dimensions. Then [13, Theorem 11.11] states that projx(P) is specified
by the constraints V (b− Ax) ≥ 0 for a certain matrix V determined by G only.
From this it follows that rec.cone(projx(P)) = {x : VAx ≤ 0}. But we can
also apply the theorem to rec.cone(P), which is specified by Ax+ Gy ≤ 0, and
we get the same result projx(rec.cone(P)) = {x : VAx ≤ 0}.
�
Lemma 2 (Lemma 1 in [6]). Given a polyhedron P �= ∅, and linear functions
ρ1, . . . , ρk such that

(i) x ∈ P → ρ1(x) > 0 ∨ · · · ∨ ρk−1(x) > 0 ∨ ρk(x) ≥ 0
(ii) x ∈ P �→ ρ1(x) > 0 ∨ · · · ∨ ρk−1(x) > 0

Multiphase-Linear Ranking Functions and Their Relation to Recurrent Sets 463

There exist nonnegative constants μ1, . . . , μk−1 such that x ∈ P → μ1ρ1(x) +
· · · + μk−1ρk−1(x) + ρk(x) ≥ 0.

Single-Path Linear-Constraint Loops. A single-path linear-constraint loop (SLC
loop) over n variables x1, . . . , xn has the form

while (Bx ≤ b) do Ax + A′x′ ≤ c (2)

where x = (x1, . . . , xn)T and x′ = (x′
1, . . . , x

′
n)T are column vectors, and for some

p, q > 0, B ∈ Qp×n, A,A′ ∈ Qq×n, b ∈ Qp, c ∈ Qq. The constraint Bx ≤ b is
called the loop guard and the other constraint is called the update. The update
is deterministic if, for any given x (satisfying the guard) there is at most one x′

satisfying the update, and is affine linear if it can be rewritten as x′ = Ux+c. We
say that there is a transition from a state x ∈ Qn to a state x′ ∈ Qn, if x satisfies
the loop condition and x and x′ satisfy the update constraint. A transition can
be seen as a point

(
x
x′

) ∈ Q2n, where its first n components correspond to x and
its last n components to x′. For ease of notation, we denote

(
x
x′

)
by x′′. The set

of all transitions x′′ ∈ Q2n, of a given SLC loop, will be denoted by Q and is
specified by the set of inequalities A′′x′′ ≤ c′′ where

A′′ =
(

B 0
A A′

)

c′′ =
(
b
c

)

and B, A, A′, c and b are those of (2). We call Q the transition polyhedron. An
integer loop is a SLC loop restricted to integer values, i.e., the set of transitions
is I(Q).

Multi-Phase Ranking Functions. An affine linear function ρ : Qn → Q is a func-
tion of the form ρ(x) = �a · x + b where �a ∈ Qn is a row vector and b ∈ Q. For a
given function ρ, we define the function Δρ : Q2n �→ Q as Δρ(x′′) = ρ(x)−ρ(x′).

Definition 1. Given a set of transitions T ⊆ Q2n, we say that τ = 〈ρ1, . . . , ρd〉
is a MΦRF (of depth d) for T if for every x′′ ∈ T there is index i such that:

∀j ≤ i. Δρj(x′′) ≥ 1, (3)
ρi(x) ≥ 0, (4)

∀j < i. ρj(x) ≤ 0. (5)

We say that x′′ is ranked by ρi (for the minimal such i).

It is not hard to see that a MΦRF 〈ρ1〉 of depth d = 1 is a linear ranking
function (LRF). If the MΦRF is of depth d > 1, it implies that if ρ1(x) ≥ 0,
transition x′′ is ranked by ρ1, while if ρ1(x) < 0, 〈ρ2, . . . , ρd〉 becomes a MΦRF.
This agrees with the intuitive notion of “phases.” We say that τ is irredundant
if removing any component invalidates the MΦRF. Finally, it is convenient to
allow an empty tuple as a MΦRF, of depth 0, for the empty set.

The decision problem Existence of a MΦRF asks to determine whether a
given SLC loop admits a MΦRF. The bounded decision problem restricts the
search to MΦRFs of depth at most d, where d is part of the input.

464 A. M. Ben-Amram et al.

Recurrent Sets. A recurrent set is a set of states that witnesses nontermination
of a given SLC loop Q. It is commonly defined as a set of states S ⊆ projx(Q)
where for any x ∈ S there is x′ ∈ S such that (x,x′) ∈ Q. This clearly proves
the existence of an infinite run. In this article we use a slightly different notion.

Definition 2. Give a SLC loop Q, we say that S ⊆ Q is a recurrent set of
transitions if projx′(S) ⊆ projx(S).

Clearly, both notions are equivalent: if S is a recurrent set of transitions
then projx(S) is a recurrent set of states, and if S is a recurrent set of states
then Q ∩ (S × S) is a recurrent set of transitions. Note that both notions cor-
respond to what is known as existential recurrent sets, i.e., they guarantee the
existence of nonterminating runs starting in some initial states, however, due to
nondeterminism, these initial states might have terminating runs as well.

3 An Algorithm for Inferring MΦRFs

In this section we describe our algorithm for deciding the existence of (and
constructing) MΦRFs, which is also able to find recurrent sets for certain non-
terminating SLC loops. In what follows we assume a given SLC loop Q where
variables range over the rationals (or reals), the case of integer variables is dis-
cussed after considering the rational case.

Let us start with an intuitive description of the algorithm and its possible
outcomes. Our work started with the following crucial observation: given linear
functions ρ1, . . . , ρl such that

– ρ1, . . . , ρl are nonnegative over projx(Q), i.e., over all enabled states;
– for some ρi, we have Δρi(x′′) > 0 for at least one transition x′′ ∈ Q; and
– Q′ = Q ∧ Δρ1(x′′) ≤ 0 ∧ · · · ∧ Δρl(x′′) ≤ 0 has a MΦRF of depth d

then Q has a MΦRF of depth at most d + 1. The proof of this observation is
constructive, i.e., given a MΦRF τ ′ for Q′, we can construct a MΦRF τ for Q
using conic combinations of the components of τ ′ and ρ1, . . . , ρl.

Let us assume that we have a procedure F (Q) that picks some candidate
functions ρ1, . . . , ρl, i.e., nonnegative over projx(Q), and computes F (Q) =
Q ∧ Δρ1(x′′) ≤ 0 ∧ · · · ∧ Δρl(x′′) ≤ 0. Clearly, if F d(Q) = ∅, for some d > 0,
then using the above observation we can conclude that Q has a MΦRF of depth
at most d. Obviously, the difficult part in defining F is how to pick functions
ρ1, . . . , ρl, and, moreover, how to ensure that if Q has a MΦRF of optimal depth
d then F d(Q) = ∅, i.e., to find the optimal depth. For this, we observe that the
set of all nonnegative functions over projx(Q) is a polyhedral cone, and thus it
has generators ρ1, . . . , ρl that can be effectively computed. These ρ1, . . . , ρl turn
out to be the right candidates to use. In addition, when using these candidates,
we prove that if we cannot make progress, i.e., we get F i−1(Q) = F i(Q), then
we have actually reached a recurrent set that witnesses nontermination.

In Sect. 3.1 we present the algorithm and discuss how it is used to decide
existence of MΦRFs; in Sect. 3.2 we discuss how the algorithm can infer recurrent
sets; and in Sect. 3.3 we discuss cases where the algorithm does not terminate
and raise some questions on what happens in the limit.

Multiphase-Linear Ranking Functions and Their Relation to Recurrent Sets 465

3.1 Deciding Existence of MΦRFs

Definition 3. The set of all nonnegative functions over a polyhedron S ⊆ Qn,
is defined as S# = {(�a, b) ∈ Qn+1 | ∀x ∈ S. �a · x + b ≥ 0}.

It is known that S# is a polyhedral cone [32, p. 112]. Equivalently, it is gener-
ated by a finite set of rays (�a1, b1), . . . , (�al, bl). The cone generated by �a1, . . . ,�al

is known as the dual of the cone rec.cone(S) – we make use of this in Sect. 4.
These rays are actually the ones that are important for the algorithm, as can
be seen in the definition below, however, in the definition of S# we included the
bi’s as they makes some statements smoother. Since S is a closed convex set,
it is known that it is equal to the intersection of all half-spaces defined by the
elements of S#, i.e., S = ∧{�a · x + b ≥ 0 | (�a, b) ∈ S#}.

Definition 4. Let Q be a SLC loop, and define

F (Q) = Q ∧ �a1 · x − �a1 · x′ ≤ 0 ∧ · · · ∧ �al · x − �al · x′ ≤ 0

where (�a1, b1), . . . , (�al, bl) are the generators of projx(Q)#.

It is easy to see that each �ai · x − �ai · x′ ≤ 0 above is actually Δρi(x′′) ≤ 0
where ρi = �ai ·x+bi ≤ 0. Intuitively, F (Q) removes from Q all transitions x′′ for
which there is (�a, b) ∈ projx(Q)# such that �a ·x−�a ·x′ > 0. This is because any
(�a, b) ∈ projx(Q)# is a conic combination of (�a1, b1), . . . , (�al, bl), and thus for
some i we must have �ai ·x−�ai ·x′ > 0, otherwise we would have �a ·x−�a ·x′ = 0.

Example 1. Consider Loop (1), whose transition polyhedron is defined by Q =
{x1 ≥ −x3, x

′
1 = x1 + x2, x′

2 = x2 + x3, x′
3 = x3 − 1}. The generators of

projx(Q)# are {(1, 0, 1, 0), (0, 0, 0, 1)}—the last component of each generator is
the free constant b, and the rest is �a. The corresponding nonnegative functions
are ρ1(x1, x2, x3) = x1 + x3 and ρ2(x1, x2, x3) = 1. Computing F (Q) results in:

Q′ = Q ∧ Δρ1(x′′) ≤ 0 ∧ Δρ2(x′′) ≤ 0 = Q ∧ (x1 + x3) − (x′
1 + x′

3) ≤ 0 (6)

This eliminates any transition for which the quantity x1 + x3 decreases.
�
In what follows we aim at showing that Q has a MΦRF of optimal depth d

iff F d(Q) = ∅. We first state some auxiliary lemmas.

Lemma 3. If Q′ = F (Q) has a MΦRF of depth at most d, then Q has a MΦRF
of depth at most d + 1.

Proof. Consider the generators (�a1, b1), . . . , (�al, bl) used in Definition 4, and let
ρi(x) = �ai · x + bi. We have Q′ = Q ∧ Δρ1(x′′) ≤ 0 ∧ · · · ∧ Δρl(x′′) ≤ 0. Let
τ = 〈g1, . . . , gd〉 be a MΦRF for Q′, and w.l.o.g. assume that it is of optimal
depth. Next, we show how to construct a MΦRF 〈g′

1 +1, . . . , g′
d +1, gd+1〉 for Q.

Note that simply appending ρ1, . . . , ρl to τ does not always produce a MΦRF
for Q, since the components of τ are not guaranteed to decrease over Q \ Q′.

466 A. M. Ben-Amram et al.

If g1 is decreasing over Q, we define g′
1(x) = g1(x), otherwise we have

x′′ ∈ Q →Δρ1(x′′) > 0 ∨ · · · ∨ Δρl(x′′) > 0 ∨ Δg1(x′′) − 1 ≥ 0 (7)
x′′ ∈ Q �→Δρ1(x′′) > 0 ∨ · · · ∨ Δρl(x′′) > 0 (8)

and by Lemma 2 there are nonnegative constants μ1, . . . , μl such that

x′′ ∈ Q → Δg1(x′′) − 1 +
l∑

i=1

μiΔρi(x′′) ≥ 0. (9)

Define g′
1(x) = g1(x)+

∑l
i=1 μiρi(x). Clearly, x′′ ∈ Q → Δg′

1(x
′′) ≥ 1. Moreover,

since ρ1, . . . , ρl are nonnegative on all enabled states, g′
1 is nonnegative on the

states on which g1 is nonnegative. If d > 1, we proceed with

Q(1) = Q ∩ {x′′ | g′
1(x) ≤ (−1)}. (10)

If g2 is decreasing over Q(1), let g′
2 = g2, otherwise, since transitions in Q′ ∩Q(1)

are ranked by 〈g2, . . . , gd〉 we have

x′′ ∈ Q(1) → Δρ1(x′′) > 0 ∨ · · · ∨ Δρl(x′′) > 0 ∨ Δg2(x′′) − 1 ≥ 0 (11)

x′′ ∈ Q(1) �→ Δρ1(x′′) > 0 ∨ · · · ∨ Δρl(x′′) > 0 (12)

and again by Lemma 2 we can construct the desired g′
2 as we did for g′

1. In
general, for any j ≤ d we construct g′

j+1 such that Δg′
j+1(x

′′) ≥ 1 over

Q(j) = Q ∩ {x′′ ∈ Q2n | g′
1(x) ≤ (−1) ∧ · · · ∧ g′

j(x) ≤ (−1)} (13)

and x′′ ∈ Q ∧ gj(x) ≥ 0 → g′
j(x) ≥ 0. Finally we define

Q(d) = Q ∩ {x′′ ∈ Q2n | g′
1(x) ≤ (−1) ∧ · · · ∧ g′

d(x) ≤ (−1)} (14)

and note that

x′′ ∈ Q(d) → Δρ1(x′′) > 0 ∨ · · · ∨ Δρl(x′′) > 0 (15)

We assume that no ρi is redundant in (15), otherwise we take an irredundant
subset. Now from (15) we get

x′′ ∈ (Q(d) ∧ Δρ1(x′′) ≤ 0 ∧ · · · ∧ Δρl−1(x′′) ≤ 0) → Δρl(x′′) > 0 (16)

and since the left-hand side is a polyhedron, there is a constant c > 0 such that

x′′ ∈ (Q(d) ∧ Δρ1(x′′) ≤ 0 ∧ · · · ∧ Δρl−1(x′′) ≤ 0) → Δρl(x′′) ≥ c. (17)

W.l.o.g. we may assume that c ≥ 1, otherwise we divide ρl by c. Then we have

x′′ ∈ Q(d) →Δρ1(x′′) > 0 ∨ · · · ∨ Δρl−1(x′′) > 0 ∨ Δρl(x′′) − 1 ≥ 0 (18)

x′′ ∈ Q(d) �→Δρ1(x′′) > 0 ∨ · · · ∨ Δρl−1(x′′) > 0 (19)

By Lemma 2 we can construct gd+1 = ρl +
∑l−1

i=1 μiρi such that x′′ ∈ Q(d) →
Δgd+1(x′′) ≥ 1. Moreover, gd+1 is nonnegative over Q(d) and thus it ranks all
Q(d). Now, by construction, τ ′ = 〈g′

1 + 1, . . . , g′
d + 1, gd+1〉 is a MΦRF for Q.
�

Multiphase-Linear Ranking Functions and Their Relation to Recurrent Sets 467

Algorithm 1. Deciding existence of MΦRFs and inferring recurrent sets

FindMLRF(Q)

begin
1 if (Q is empty) then return ∅
2 else

3 Compute the generators (�a1, b1), . . . , (�al, bl) of projx(Q)#

4 Let Q′ = Q ∧ �a1 · x − �a1 · x′ ≤ 0 ∧ · · · ∧ �al · x − �al · x′ ≤ 0
5 if (Q′ == Q) then return Q
6 else return FindMLRF (Q′)

Lemma 4. If Q has a MΦRF of depth d then Q′ = F (Q) has a MΦRF of depth
at most d − 1.

Proof. Let τ = 〈ρ1, . . . , ρk〉 be an MΦRF for Q, of optimal depth k ≤ d. As shown
in [6], there is no loss of generality in assuming a special form of MΦRF (nested
MΦRF [25]) in which the last component is nonnegative; so we assume ρk(x) ≥ 0
over projx(Q). Clearly τ ′ = 〈ρ1, . . . , ρk−1〉 is a MΦRF for Q ∧ Δρk(x′′) ≤ 0.
Now since ρk is a conic combination of the generators of projx(Q)# we have
Q′ = F (Q) ⊆ Q ∧ Δρk(x′′) ≤ 0 and thus τ ′ is a MΦRF for Q′ as well.
�
Lemma 5. Q has a MΦRF of depth d iff F d(Q) = ∅.
Proof. For the first direction, suppose that Q has a MΦRF of depth at most d,
then applying Lemma 4 iteratively we must reach F k(Q) = ∅ for some k ≤ d, thus
F d(Q) = ∅. For the other direction, suppose F d(Q) = ∅, then using Lemma 3
we can construct a MΦRF of depth d.
�

Procedure FindMLRF(Q) of Algorithm 1 implements the above idea, it basi-
cally applies F (lines 3–4) iteratively until it either reaches an empty set (Line 1)
or stabilizes (Line 5). If it returns ∅ then Q has a MΦRF and we can construct
one simply by invoking the polynomial-time procedure for synthesizing nested
MΦRFs as described in [6], or construct one as in the proof of Lemma3. Note
that, by Lemma 5, if we bound the recursion depth by a parameter d, then the
algorithm is actually a decision procedure for the existence of MΦRFs of depth
at most d. The case in which it returns a nonempty set is discussed in Sect. 3.2.

The complexity of Algorithm 1 is exponential since computing the generators
at Line 3 might take exponential time. In Sect. 4 we provide a polynomial-time
implementation that avoids computing the generators.

Example 2. Let us apply Algorithm 1 to Loop (1). We start by calling FindMLRF
with Q = {x1 ≥ −x3, x

′
1 = x1 + x2, x

′
2 = x2 + x3, x

′
3 = x3 − 1} and proceed as

follows (Qi represents the polyhedron passed in the i-th call to FindMLRF):

468 A. M. Ben-Amram et al.

Qi Generators of projx(Qi)
#

Q0 = Q {(1,0,1,0), (0,0,0,1)}
Q1 = Q0 ∧ (x1 + x3) − (x′

1 + x′
3) ≤ 0 {(0,1,0, −1), (1, 0, 1, 0), (0, 0, 0, 1)}

Q2 = Q1 ∧ x2 − x′
2 ≤ 0 {(0,0,1,0), (0, 1, 0, −1), (1, 0, 1, 0), (0, 0, 0, 1)}

Q3 = Q2 ∧ x3 − x′
3 ≤ 0 = ∅

Explanation:

– Q0 is not empty. We compute the generators of projx(Q0)
#, which define

the nonnegative functions ρ1(x1, x2, x3) = x1 +x3 and ρ2(x1, x2, x3) = 1, and
then compute Q1 = Q0 ∧ Δρ1(x′′) ≤ 0 ∧ Δρ2(x′′) ≤ 0; and since it differs
from Q0 we recursively call FindMLRF(Q1).

– Q1 is not empty. We compute the generators of projx(Q1)
#, which define the

nonnegative function ρ3(x1, x2, x3) = x2 − 1, and then compute Q2 = Q1 ∧
Δρ3(x′′) ≤ 0; and since it differs from Q1 we recursively call FindMLRF(Q2).
Note that the only new generator wrt. the previous iteration is the one in
bold font, the others are ignored as they have been used for computing Q1.

– Q2 is not empty. We compute the generators of projx(Q2)
#, which define

the nonnegative function ρ4(x1, x2, x3) = x3, and then compute Q3 = Q2 ∧
Δρ4(x′′) ≤ 0; and since it differs from Q2 we recursively call FindMLRF(Q3).

– Q3 is empty, so we return ∅.

Since we have reached an empty set in 3 iterations, we conclude that Loop (1)
has a MΦRF of optimal depth 3, e.g., 〈x3 + 1, x2 + 1, x1 + x3 + 1〉.
�

For the case of integer-valued variables, i.e., when considering I(Q), it is
know that I(Q) has a MΦRF iff the integer hull QI of Q has a MΦRF (over the
rationals) [6, Sect. 5]. Thus, I(Q) has a MΦRF of depth d iff F d(QI) = ∅.

3.2 Inference of Recurrent Sets

Next we discuss the case in which FindMLRF(Q) returns a nonempty set of tran-
sition S ⊆ Q (Line 5), and show that S is always a recurrent set, implying that
Q is nonterminating. In Sect. 5 we discuss an experimental evaluation regarding
the use of Algorithm 1 for proving nontermination of control-flow graphs.

Lemma 6. Let S ⊆ Q2n be a polyhedron, if S = F (S) then S is a recurrent set.

Proof. According Definition 2, we need to show that projx′(S) ⊆ projx(S).
Since projx(S) and projx′(S) are closed convex sets, each is an intersec-
tion of half-spaces that are defined by the corresponding sets projx(S)# and
projx′(S)#, e.g., projx(S) = ∧{�a · x + b ≥ 0 | (�a, b) ∈ projx(S)#}. Thus, it is
enough to show that projx(S)# ⊆ projx′(S)#.

Let (�a, b) ∈ projx(S)#, we show that (�a, b) ∈ projx′(S)# as well. Define
ρ(x) = �a · x + b. Since S = F (S), by definition of F we have

x′′ = (x,x′) ∈ S |= ρ(x) − ρ(x′) ≤ 0 (20)

Multiphase-Linear Ranking Functions and Their Relation to Recurrent Sets 469

which together with the fact that ρ is nonnegative over projx(S) implies that
ρ(x′) ≥ 0 holds for any x′ ∈ projx′(S), and thus (�a, b) ∈ projx′(S).
�
Corollary 1. If FindMLRF(Q) returns S �= ∅ then S is a recurrent set, and thus
Q is nonterminating.

Proof. This follows from Lemma 6, since the algorithm returns a nonempty set
S ⊆ Q iff it finds one such that S = F (S) (Line 5 of FindMLRF).
�
Example 3. Let us apply Algorithm 1 to the following loop, from [34]:

while (x1 − x2 ≥ 1) do x′
1 = −x1 + x2, x′

2 = x2 (21)

This loop does not terminate, e.g., for x1 = −1, x2 = −2. We call FindMLRF with
Q = {x1 − x2 ≥ 1, x′

1 = −x1 + x2, x
′
2 = x2}, and proceed as in Example 2:

Qi Generators of projx(Qi)
#

Q0 =Q {(1,−1,−1), (0,0,1)}
Q1 =Q0 ∧ (x1 − x2) − (x′

1 − x′
2) ≤ 0 {(−2,1,0), (1,−1,−1), (0, 0, 1)}

Q2 =Q1 ∧ (−2x1 + x2) − (−2x′
1 + x′

2) ≤ 0 {(2,−1,0), (−1,0,−1), (−2, 1, 0), (0, 0, 1)}
Q3 =Q2 ∧ (2x1 − x2) − (2x′

1 − x′
2) ≤ 0∧

(−x1) − (−x′
1) ≤ 0

Explanation:

– Q0 is not empty. We compute the generators of projx(Q0)
#, which define

the nonnegative functions ρ1(x1, x2, x3) = x1 − x2 − 1 and ρ2(x1, x2, x3) = 1,
and then compute Q1 = Q0 ∧Δρ1(x′′) ≤ 0∧Δρ2(x′′) ≤ 0; and since it differs
from Q0 we recursively call FindMLRF(Q1).

– Q1 is not empty. We compute the generators of projx(Q1)
#, which define

the nonnegative function ρ3(x1, x2, x3) = −2x1 +x2, and then compute Q2 =
Q1 ∧ Δρ3(x′′) ≤ 0; and since it differs from Q1 we invoke FindMLRF(Q2).

– Q2 is not empty. We compute the generators of projx(Q2)
#, which define the

nonnegative functions ρ4(x1, x2, x3) = 2x1 −x2 and ρ5(x1, x2, x3) = −x1 − 1,
and then compute Q3 = Q2 ∧ Δρ4(x′′) ≤ 0 ∧ Δρ5(x′′) ≤ 0; and since it is
equal to Q2 (Δρ4(x′′)≤ 0 and Δρ5(x′′)≤ 0 are implied by Q2) we return Q2.

Thus, Q2 is a recurrent set of transitions and we conclude that Loop (21) is
nonterminating. Projecting Q2 on x1 and x2 we get {x1 ≤ −1, 2x1 − x2 = 0},
which is the corresponding recurrent set of states.

We remark that Loop (21) has a fixed point (−1,−2), i.e., from state x1 =
−1, x2 = −2 we have a transition to x1 = −1, x2 = −2. The algorithm also
detects nontermination of loops that do not have fixed points. For example, if
we change x′

2 = x2 in Loop (21) by x′
2 = x2 − 1, we obtain a recurrent set of

transitions S such that projx(S) = {−2x2 ≥ 3, 4x1 − 2x2 = 1}.
�
Now that we have seen the possible outcomes of the algorithm (in case it

terminates), we see that this approach reveals an interesting relation between
seeking MΦRFs and seeking recurrent sets. A possible view is that the algorithm

470 A. M. Ben-Amram et al.

seeks a recurrent set (of a particular form) and when it concludes that no such
set exists, i.e., reaching ∅, we can construct a MΦRF.

The recurrent sets inferred by Algorithm 1 belong to a narrower class than
that of Definition 2. In fact, the condition in Definition 2 is equivalent to requiring
that if ρ(x) ≥ 0 over projx(S) then ρ(x) ≥ 0 over projx′(S). In our recurrent
sets, we further have ρ(x′) ≥ ρ(x) for any (x,x′) ∈ S. We call a recurrent set
satisfying this stronger condition monotonic.

Example 4. Consider the following SLC loop:

while (x ≥ 0) do x′ = 1 − x (22)

The largest recurrent set of transitions for this loop is {x ≥ 0, x ≤ 1, x′ = 1−x},
and it is not monotonic. Algorithm1 infers the largest monotonic recurrent set
{x = 1

2 , x′ = 1
2}, where it first eliminates all transitions for which x − x′ > 0,

i.e., x ∈ (12 ,∞), and then those for which (−x) − (−x′) > 0, i.e., x ∈ [0, 1
2).
�

At this point, it is natural to explore the difference between the two kinds
recurrent sets. The most intriguing question is if nonterminating SLC loops
always have monotonic recurrent sets. This is true for loops that have a fixed
point, i.e., there is x such that (x,x) ∈ Q, however, this question is left open for
the general case. We note that the geometric nontermination argument intro-
duced in [26] is also related to monotonic recurrent sets. Specifically, it is easy to
show that in some cases (when the nonnegative coefficients μi and λi, in Def. 5
of [26], are either 0 or at least 1), we can construct a monotonic recurrent set.

Let us discuss now the case of integer loops. First, the difference between the
two kinds of recurrent sets is clear in the integer case: Loop (22) of Example 4 has
a recurrent set of integers {(0, 1), (1, 0)}, but does not have a monotonic recur-
rent set of integers. Apart from this difference, a natural question is whether the
recurrent set S returned by FindMLRF(QI), or more precisely I(S), witnesses
nontermination of I(Q). This is not true in general (see Example 5 below), how-
ever, there are practical cases for which it is true.

Lemma 7. Let Q be a SLC loop with affine update x′ = Ux + c, and assume
the coefficients of U and c are integer. If S is a recurrent set for Q, and I(S) is
not empty, then I(S) is recurrent for I(Q).

Proof. Since the update is affine with integer coefficients, it follows that any
state in projx(I(S)) has a successor in projx′(I(S)) ⊆ projx(I(S)), which is
the definition of a recurrent set.
�

In the context of the above lemma, assuming that S = FindMLRF(QI), if
S �= ∅ and I(S) = ∅ all we can conclude (when the algorithm is applied to
QI) is that I(Q) does not have a MΦRF, we cannot conclude anything about
nontermination as in the rational case. For example, for the loop QI = Q =
{x ≥ 0, x′ = 10 − 2x} we have S = {(3 1

3 , 3 1
3)} and I(S) = ∅ and the loop is

terminating over the integers, and for the loop QI = Q = {x ≥ 0, x′ = 1 − x}

Multiphase-Linear Ranking Functions and Their Relation to Recurrent Sets 471

we have S = {(12 , 1
2)} and I(S) = ∅ and the loop is nonterminating over the

integers.
The next example demonstrates that the above lemma does not extend to

SLC loops in general, even when the algorithm is applied to the integer hull QI .
This is because it is not guaranteed that any integer state x ∈ I(projx(S)) has
an integer successor x′ ∈ I(projx′(S)).

Example 5. Consider the following loop

while (x ≥ 2) do x′ =
3
2
x (23)

which is nonterminating over the rationals, for any x ≥ 2, and is terminating over
the integers. For the integer case, the loop stops (or blocks) if for some integer
x, there is no integer x′ such that that equality x′ = 3

2x holds. The algorithm
returns Q as a recurrent set, but I(Q), which is not empty, is not a recurrent set
as the loop is terminating over the integers. Note that the transition polyhedron
is integral, i.e., Q = QI .
�

3.3 Cases in Which Algorithm1 Does Not Terminate

When Algorithm 1 terminates, it either finds a MΦRF or proves nontermination
of the given loop. This means that if applied to a terminating loop that has no
MΦRF, Algorithm 1 will not terminate, e.g., for the loop Qt = {x1 ≥ x2, x2 ≥
1, x′

1 = 2x1, x
′
2 = 3x2}, which is terminating [25]. Algorithm 1 might also fail to

terminate when applied to some nonterminating loops, e.g., the nonterminating
loop [26] Qnt = {x1 + x2 ≥ 3, x′

1 = 3x1 − 2, x′
2 = 2x2}.

When the algorithm does not terminate, the iterates F i(Q) converge to Qω =
∩i≥0F

i(Q). For example, for the terminating loop Qt above, we have Qω = ∅,
and for the nonterminating loop Qnt above, we have Qω = {x1 ≥ 1, x′

2 =
2x2, x′

1 = 3x1−2} which is a monotonic recurrent set. Given these examples, we
ask: (i) is it true that Qω = ∅ iff Q is terminating? (ii) is it true that if Qω �= ∅
then it is a (monotonic) recurrent set? For deterministic loops, it is easy to show
that termination implies Qω = ∅, and that if Qω �= ∅ then Qω is a monotonic
recurrent set. The general questions are left open.

4 MΦRFs and the Displacement Polyhedron

In this section we introduce an alternative representation for SLC loops, that
we refer to as the displacement polyhedron, and show that Algorithm 1, or more
precisely the check F k(Q) = ∅, has a simple encoding in this representation that
can be preformed in polynomial time, specifically, we show that it is equivalent
to checking for unsatisfiability of a particular linear constraint system. Note that
we already know that deciding the existence of a MΦRF of depth d can be done in
polynomial time [6], so in this sense we do not provide new knowledge. However,
apart from the efficient encoding of the check F k(Q) = ∅, the new formulation
has some importance advantages:

472 A. M. Ben-Amram et al.

– Unlike existing algorithms for inferring MΦRFs [6,26], it allows synthesizing
witnesses for the nonexistence of a MΦRF of a given depth, see Sect. 4.1.

– It provides a new tool for addressing the general MΦRF problem, i.e., without
a depth bound, that is still open, see Sect. 4.2.

– Some nontrivial observations about termination and nontermination SLC
loops are made straightforward through this representation, see Sect. 4.3.

Next, we define the notion of the displacement polyhedron, show how the check
F d(Q) = ∅ can be encoded in this representation, and then discuss each of the
above points.

Definition 5. Given a SLC loop Q ⊆ Q2n, we define its displacement polyhe-
dron as R = projx,y(Q ∧ x′ = x + y) ⊆ Q2n.

Note that the projection drops x′. Intuitively, an execution step using Q
starts from a state x, and chooses a state x′ such that

(
x
x′

) ∈ Q. To perform
the step using R, select y such that

(x
y

) ∈ R and let the new state be x + y.
By definition, we obtain the same transitions. The constraint representation of
R can be derived from that of Q as follows. Let Q ≡ [A′′(x

x′
) ≤ c′′] where A′′

is the matrix below on the left (see Sect. 2), then R ≡ [R
(x
y

) ≤ c′′] where R is
the matrix below on the right:

A′′ =
(

B 0
A A′

)

R =
(

B 0
A + A′ A′

)

(24)

Example 6. Consider Loop (1) which is defined by Q = {x1 ≥ −x3, x
′
1 = x1 +

x2, x
′
2 = x2 + x3, x

′
3 = x3 − 1}. The corresponding displacement polyhedron is

R = {x1 ≥ −x3, y1 = x2, y2 = x3, y3 = −1}.
�
We will show that the displacement polyhedron Rk of Qk = F k(Q) is equiv-

alent to the following polyhedron projected onto x and y0

R̂k ≡ R
(x
y0

) ≤ c′′ ∧ R
(y0
y1

) ≤ 0 ∧ R
(y1
y2

) ≤ 0 ∧ . . . ∧ R
(yk−1
yk

) ≤ 0 (25)

Now since, by Definition 5, Qk is empty iff Rk is empty, the check F k(Q) = ∅ is
reduced to checking that (25) is empty, which can be done in polynomial time
in the bit-size of the constraint representation of Q and the parameter k. It is
important to observe that the first conjunct R

(x
y0

) ≤ c′′ of (25) is actually
R, and that each R

(yi
yi+1

) ≤ 0 is actually rec.cone(R). Observe also how the
conjuncts of (25) are connected, i.e., that the lower part of the variables vector
of each conjunct is equal to the upper part of the next one.

We first show how Rk+1 can be obtained from Rk similarly to Qk+1 = F (Qk).

Lemma 8. Let (�a1, b1), . . . , (�al, bl) generate the cone projx(R)#. Then Rk+1 =
Rk ∧ −�a1 · y ≤ 0 ∧ · · · ∧ −�al · y ≤ 0.

Proof. Follows from the fact that projx(Qk) = projx(Rk), and thus
projx(Qk)# and projx(Rk)# are the same, and that for ρ(x) = �a · x + b
we have Δρ(x′′) = ρ(x) − ρ(x′) = −�a · y, by definition of the displacement
polyhedron.
�

Multiphase-Linear Ranking Functions and Their Relation to Recurrent Sets 473

Lemma 9. Let (�a1, b1), . . . , (�al, bl) generate the cone projx(R)#. Then the con-
dition −�a1 ·y ≤ 0 ∧ · · · ∧ −�al ·y ≤ 0 of Lemma 8 is equivalent to My ≤ 0, where
M is such that projx(R) ≡ [Mx ≤ b].

Proof. Consider (�a, b) ∈ projx(Q)# = projx(R)#. By Farkas’ lemma, a func-
tion f(x) = �a · x + b is nonnegative over projx(R) iff there are nonnegative
�λ = (λ1, . . . , λm) such that �λ ·M = −�a ∧ �λ ·b ≤ b. Note that any (nonnegative)
values for �λ define corresponding values for �a and b. Thus the valid values for �a
are all conic combinations of the rows of −M , i.e., this cone is generated by the
rows of −M . Hence −�a1 · y ≤ 0 ∧ · · · ∧ −�al · y ≤ 0 is equivalent to My ≤ 0.
�

We use the above lemma to show that Rk can be represented as in (25), with-
out the need to compute M explicitly. We first note that using Lemmas 8 and 9,
we have Rk+1 = Rk ∩ Dk, where

Dk = {(x
y

) ∈ Q2n | My ≤ 0} (M as in Lemma 9)

= {(x
y

) ∈ Q2n | y ∈ rec.cone(projx(Rk))}.

Lemma 10. Rk = projx,y0
(R̂k) where R̂k is defined by (25).

Proof. We use induction on k. For k = 0 the lemma states that R0 is specified
by R

(x
y0

) ≤ c′′, which is correct since by definition R0 = R. Assume the lemma
holds for Rk, we prove it for Rk+1 = Rk ∩ Dk. By the induction hypothesis,

Rk = { (x
y0

) ∈ Q2n | R
(x
y0

) ≤ c′′ ∧ R
(y0
y1

) ≤ 0 ∧ . . . ∧ R
(yk−1
yk

) ≤ 0 } (26)

and

Dk = {(x
y0

) ∈ Q2n | y0 ∈ rec.cone(projx(Rk))} by definition

= {(x
y0

) ∈ Q2n | y0 ∈ rec.cone(projx(projx,y0
(R̂k)))} by IH

= {(x
y0

) ∈ Q2n | y0 ∈ rec.cone(projx(R̂k))}
= {(x

y0

) ∈ Q2n | y0 ∈ projx(rec.cone(R̂k))} by Lemma 1

= {(x
y0

) ∈ Q2n | R
(y0
y1

) ≤ 0 ∧ R
(y1
y2

) ≤ 0 ∧ · · · ∧ R
(yk
yk+1

) ≤ 0}

Note that in the last step, we incorporated the recession cone of R̂k as in (25),
after renaming yi to yi+1, and x to y0 just to make it easier to read in the next
step. Now, let us compute Rk+1 = Rk ∩ Dk. Note that any

(x
y0

) ∈ Rk+1 must
satisfy the constraint R

(x
y0

) ≤ c′′ that comes form Rk. Adding this constraint
to Dk above we clearly obtain a subset of Rk, and thus

Rk+1 = {(x
y0

) | R
(x
y0

) ≤ c′′ ∧ R
(y0
y1

) ≤ 0 ∧ · · · ∧ R
(yk
yk+1

) ≤ 0}

which is exactly projx,y0
(R̂k+1), justifying the lemma’s statement for k + 1.
�

474 A. M. Ben-Amram et al.

Lemma 11. Q has a MΦRF of depth d iff R̂d is empty.

Proof. By Lemma 5, Q has a MΦRF of depth d iff Qd = F d(Q) is empty, and
by Definition 5, Qd is empty iff Rd is empty. Since Rd is empty iff R̂d is empty
the lemma follows.
�
Example 7. Consider Loop (1) and the corresponding displacement polyhedron
as in Example 6. As notation, let x0 = (x1, x2, x3), y0 = (y1, y2, y3), y1 =
(w1, w2, w3), y2 = (z1, z2, z3), and y3 = (v1, v2, v3). Then R̂2 = {x1 ≥ −x3, y1 =
x2, y2 = x3, y3 = −1}∧{y1 ≥ −y3, w1 = y2, w2 = y3, w3 = 0}∧{w1 ≥ −w3, z1 =
w2, z2 = w3, z3 = 0} is satisfiable, e.g., for x0 = (0, 1, 0), y0 = (1, 0,−1), y1 =
(0,−1, 0) and y2 = (−1, 0, 0), and thus, as expected, the loop does not have a
MΦRF of depth 2. On the other hand, R̂3 = R̂2 ∧ {z1 ≥ −z3, v1 = z2, v2 =
z3, v3 = 0} is not satisfiable, and thus the loop has a MΦRF of depth 3.
�

4.1 Witnesses for the Nonexistence of MΦRFs of a Given Depth

Existing algorithm for deciding whether a given loop has a MΦRF of depth
d [6,26] synthesize a MΦRF in the case of success, but in the case of failure
they do not provide any further knowledge on why the loop does not have such
a MΦRF. In this section we show that any satisfying assignment for R̂k (as
defined in (25)) witnesses the nonexistence of MΦRF of depth k, i.e., it can be
used to explains the reason why the loop does not have such MΦRF.

To gain intuition into the next idea let us start with the case k = 1, i.e., the
case of LRFs. If x0,y0,y1 is a satisfying assignment for R̂1, then by construction

(x0
y0

) ∈ R (y0
y1

) ∈ rec.cone(R) (27)

Observe that for b ≥ 0,
(x0
y0

)
+ b · (y0

y1

) ∈ R. If R has a LRF ρ, then ρ ranks(x0
y0

)
and

(x0
y0

)
+ b · (y0

y1

) ∈ R for any b > 0. This requires ρ(y0) ≤ −1 and
ρ(x0)+b·ρ(y0) ≥ 0, which contradict for b large enough. Thus the point

(x0
y0

)
and

ray
(y0
y1

)
form a witness that explains why the loop does not have a LRF . More

precisely, the loop generated by the point and ray of (27), i.e., conv.hull{(x0
y0

)}+
cone{(y0

y1

)} ⊆ R, cannot have a LRF .
Let us generalize the above intuition for MΦRFs. Assume the loop has a

MΦRF 〈ρ1, . . . , ρk〉, and let x0,y0, . . . ,yk be an assignment satisfying R̂k, then
(x0
y0

) ∈ R (y0
y1

) ∈ rec.cone(R) · · · (yk−1
yk

) ∈ rec.cone(R) (28)

We may assume that
(x0
y0

)
is ranked by ρ1.

Let R′ = R∧ρ1(x) ≤ −1. Note that none of the transitions of R′ are ranked
by ρ1. Since ρ1 is decreasing on all transitions of R, we must have ρ1(y0) ≤ −1
and ρ1(yi) ≤ 0 for 1 ≤ i ≤ k. This means that the rays

(y0
y1

) · · · (yk−1
yk

)
are in

rec.cone(R′) too. Moreover, for some b > 0 large enough, the point
(x0+b·y0
y0+b·y1

)

is in R′ since ρ1 can be made arbitrarily negative by increasing b. Now we have
(x0+b·y0
y0+b·y1

) ∈ R′ (y0+b·y1
y1+b·y2

) ∈ rec.cone(R′) · · · (yk−2+b·yk−1
yk−1+b·yk

) ∈ rec.cone(R′)

Multiphase-Linear Ranking Functions and Their Relation to Recurrent Sets 475

It has the same form as in (28), i.e., the lower part of each point/ray is equal
to the upper part of the next one, but the number of rays is reduced by 1, and
since 〈ρ2, . . . , ρk〉 is a MΦRF for R′ we can apply the same reasoning again and
reduce the number of rays to k − 2. Repeating this, we arrive to a point and ray
as in (27) that are supposed to be ranked by ρk, but we know that they cannot
have a LRF so we need at least one more component in the MΦRF. Thus, we
conclude that the solution of (28) is a witness that suffices to prohibit a MΦRF
of depth k. In fact, the loop generated by this witness, i.e., conv.hull{(x0

y0

)} +
cone{(y0

y1

)
, . . . ,

(yk−1
yk

)} ⊆ R, cannot have a MΦRF of depth k.

Example 8. The satisfying assignment for R̂2 in Example 7 is a witness for the
nonexistence of MΦRF of depth 2 for Loop (1). The transition polyhedron
corresponding to this witness is {x1 = −x3, x2 ≤ 1, x3 ≤ 0, x′

1 = x1 + x2, x
′
2 =

x2 + x3, x
′
3 = x3 − 1}. Note how the guard is strengthened wrt. x1 ≥ −x3 of

Loop (1).
�
Finally, observe that any polyhedral subset of R that is disjoint from Rk has

a MΦRF of depth at most k.

Example 9. Consider Loop (1), for which R̂2 is satisfiable as we have seen in
Example 7. Computing R2 = projx0,y0

(R̂2) results in {x3 ≥ 0, x2 ≥ 1, x1 +y2 ≥
0, y1 = x2, y2 = x3, y3 = −1}. For ε > 0, any subset of R that includes x3 ≤ −ε
or x2 ≤ 1 − ε is disjoint from R2. Adding either constraint to Loop (1) results
in loops that have MΦRFs of optimal depth 1 and 2 respectively.
�

4.2 New Directions for Addressing the General MΦRF Problem

We believe that the displacement polyhedra representation, in particular the
check induced by Lemma 10, provides us with new tools that can be used for
addressing the problem of deciding whether a given SLC loop has a MΦRF of
any depth, which is still an open problem. Next we discuss some directions.

One direction is to come up with conditions on the matrices A′′ (or equiva-
lently R) and c′′, that define the loop, under which it is guaranteed that if R̂k is
empty then k must be smaller than some d, i.e., bounding the depth of MΦRFs
for classes of loops that satisfy these conditions.

Let C ≡ [R
(y
y′

) ≤ 0] and Ci be the i-fold composition of C. Consider the
problem of seeking N , such that CN = CN+1. This is a sufficient condition for
Algorithm 1 to terminate in at most N iterations (either with a recurrent set or
with a MΦRF), since then RN = RN+1. This is particularly interesting if the
loop has an affine update x′ = Ux+c. In such case C ≡ [By ≤ 0∧y′ = (U −I)y],
where I ∈ Qn×n is the identity matrix, and thus if the matrix (U−I) is nilpotent,
for example, then there is N such that CN = CN+1. This also holds when matrix
(U − I) satisfies the finite-monoid property [8].

Another tantalizing observation reduces the existence of d such that R̂d is
empty to the question whether a related SLC loop terminates, for a given poly-
hedron of initial states, in a bounded number of steps. Specifically, the loop:

while (By ≤ 0) do (A + A′)y + A′y′ ≤ 0.

476 A. M. Ben-Amram et al.

where B, A and A′ are those used in the definition of R in (24), and the question
whether it terminates in at most d steps for all y ∈ {y ∈ Qn | R

(x
y

) ≤ c′′}.
This is because R̂d as in (25) is equivalent to unrolling the above loop d times.
If the update is affine, i.e., x′ = Ux+ c, then the above loop is equivalent to the
following loop: while (By ≤ 0) do y′ = (U − I)y.

4.3 Termination and Nontermination of Bounded SLC Loops

To further demonstrate the usefulness of the displacement polyhedra, in this
section we provide some observations, regarding SLC loops whose set of enabled
states are defined by bounded polyhedra, that are easy to see using the displace-
ment polyhedron and are much less obvious using the transition polyhedron. A
polyhedron is bounded if its recession cone consists of a single point 0.

Lemma 12. Let Q be a SLC loop such that the set of enabled states projx(Q)
is a bounded polyhedron, then Q is nonterminating iff it has a fixpoint

(
x
x

) ∈ Q,
and it is terminating iff it has a LRF.

Proof. Let R be the displacement polyhedron of Q. Since projx(Q) is bounded,
projx(R) is bounded. This means that its recession cone R

(x
y

) ≤ 0 consists of
points of the form

(
0
y

)
. From the form of R̂k, which is a conjunction of instances

of R
(yi
yi+1

) ≤ 0, it is easy to see that R2 = R1. This means that the algorithm
will terminate in at most two iterations with one of the following outcomes:
(i) R0 = R1; (ii) R2 = R1; or (iii) R1 is empty. In the first two cases all
transitions of R1 or R2 are of the form

(
x
0

)
, and thus

(
x
x

) ∈ Q; in the third case
we have found a MΦRF of depth 1, i.e., LRF . Note that the part that relates
nontermination to the existence of a fixpoint follows also from [26].
�

5 Implementation and Experimental Evaluation

For experimentally evaluating Algorithm1 for nontermination, we have inte-
grated it in a version of iRankFinder which is available at http://irankfinder.
loopkiller.com. It takes as input a control-flow graph, and proves nontermina-
tion as follows: when it fails to prove termination, it enumerates closed walks
(which are basically SLC loops) using only transitions whose termination was
not proven, and then applies Algorithm1 to seek recurrent sets. For now it does
not check that the recurrent set is reachable, which is an orthogonal problem.

We have analyzed 436 benchmarks that we have taken from TPDB [35] and
for which iRankFinder fails to prove termination, and for 412 it finds recur-
rent sets. These recurrent sets are valid over the rationals, however, at least for
223 benchmarks that satisfy the condition of Lemma7, they are also valid over
the integers. The raw data of the experiments is available at http://irankfinder.
loopkiller.com/papers/extra/sas19. Since we do not check reachability, we can-
not compare numbers to the other tools, however, in the link above we also
provide the results for some other tools when applied to these examples.

http://irankfinder.loopkiller.com
http://irankfinder.loopkiller.com
http://irankfinder.loopkiller.com/papers/extra/sas19
http://irankfinder.loopkiller.com/papers/extra/sas19

Multiphase-Linear Ranking Functions and Their Relation to Recurrent Sets 477

We also provide an implementation of Algorithm1 in a light version of
iRankFinder that accepts SLC loops as input, which is adequate for exper-
imenting with the algorithm both for finding MΦRFs and recurrent sets –
it is available at http://www.loopkiller.com/irankfinder by selecting options
MΦRF (Q) or MΦRF (Z).

6 Conclusion

The purpose of this work has been to improve our understanding of MΦRFs, in
particular of the problem of deciding whether a given SLC loop has a MΦRF
without a given bound on the depth. The outcomes are important insights that
shed light on the structure of these ranking functions.

At the heart of our work is an algorithm that seeks MΦRFs, which is based
on iteratively eliminating transitions, until eliminating them all or stabilizing
on a set of transitions that cannot be reduced anymore. In the first case, a
MΦRF can be constructed, and, surprisingly, in the second case the stable set
of transitions turns to be a recurrent set that witnesses nontermination. This
reveals an equivalence between the problems of seeking MΦRFs and seeking
recurrent sets of a particular form.

Apart from the relation to seeking recurrent sets, the insights of our work are
helpful for characterizing classes of loops for which there is always a MΦRF, when
terminating. In addition, our insights led to a new representation for SLC loops
in which our algorithm has a very simple formalization that, unlike previous
algorithms, yields witnesses for the nonexistence of MΦRFs of a given depth.
Moreover, this new representation makes some nontrivial observations regarding
(bounded) SLC loop straightforward. We believe that this representation can
be useful for other related problems. Our research leaves a number of new open
questions, which we hope will trigger the interest of the community.

The problem of seeking MΦRFs with a given bound on the depth has been
considered in several works. The complexity of the problem for SLC loops was
settled in [6]. MΦRFs for general loops are considered in [25,28], both using non-
linear constraint solving. In [2] the notion of “eventual linear ranking functions,”
which are MΦRFs of depth 2, was studied. The method in [7] can infer MΦRFs
for general loops incrementally, by solving safety problems using Max-SMT.
Lexicographic ranking function are closely related. Their algorithmic aspects
are considered in [1,5,9,19,23]. There are other works [17,36,37] that address
the problem of prove termination by ranking functions, in particular [37] that
combines piecewise-linear functions with lexicographic orders. None considers
recurrent sets together with ranking-function termination proofs. The combina-
tion of piecewise-linear functions with lexicographic orders as in [37] subsumes
multiphase ranking functions, however, being more general, and using an app-
roach which is more generic, [37] does not offer any particular insights about
multiphase ranking functions and makes no claims of completeness.

Nontermination provers are described in several works. Some techniques are
based on finding recurrent sets in one form or another [3,4,8,10,20,22,26,30];

http://www.loopkiller.com/irankfinder

478 A. M. Ben-Amram et al.

while others are based on reducing the problem to proving non-reachability of
terminating states [11,24,38]. The idea of shrinking a set of states until finding
a recurrent set can be found in several of these works, the main difference is that
they typically remove states that ensure termination while our procedure might
remove nonterminating states (so that, when it finds a recurrent set, it is not
necessarily the largest one).

References

1. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1 8

2. Bagnara, R., Mesnard, F.: Eventual linear ranking functions. In: Proceedings of
the 15th International Symposium on Principles and Practice of Declarative Pro-
gramming, PPDP 2013, pp. 229–238. ACM Press (2013)

3. Bakhirkin, A., Berdine, J., Piterman, N.: A forward analysis for recurrent sets.
In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 293–311. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9 17

4. Bakhirkin, A., Piterman, N.: Finding recurrent sets with backward analysis and
trace partitioning. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 17–35. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49674-9 2

5. Ben-Amram, A.M., Genaim, S.: Ranking functions for linear-constraint loops. J.
ACM 61(4), 26:1–26:55 (2014)

6. Ben-Amram, A.M., Genaim, S.: On multiphase-linear ranking functions. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 601–620.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 32

7. Borralleras, C., Brockschmidt, M., Larraz, D., Oliveras, A., Rodŕıguez-Carbonell,
E., Rubio, A.: Proving termination through conditional termination. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 99–117. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 6

8. Bozga, M., Iosif, R., Konečný, F.: Deciding conditional termination. In: Flana-
gan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 252–266. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 18

9. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988 48

10. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-
termination and NullPointerExceptions for Java bytecode. In: Beckert, B., Dami-
ani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 123–141. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31762-0 9

11. Chen, H.-Y., Cook, B., Fuhs, C., Nimkar, K., O’Hearn, P.: Proving nontermination
via safety. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
156–171. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-
8 11

12. Colón, M.A., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria,
T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45319-9 6

https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1007/978-3-662-48288-9_17
https://doi.org/10.1007/978-3-662-49674-9_2
https://doi.org/10.1007/978-3-662-49674-9_2
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/978-3-642-28756-5_18
https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/978-3-642-31762-0_9
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/3-540-45319-9_6

Multiphase-Linear Ranking Functions and Their Relation to Recurrent Sets 479

13. Conforti, M., Cornuéjols, G., Zambelli, G.: Polyhedral approaches to mixed integer
linear programming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming
1958–2008, pp. 343–386. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-540-68279-0 11

14. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving
that programs eventually do something good. In: Proceedings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2007, Nice, France, 17–19 January 2007, pp. 265–276 (2007)

15. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving condi-
tional termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
328–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-
1 32

16. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
Schwartzbach, M.I., Ball, T. (eds.) Programming Language Design and Implemen-
tation, PLDI 2006, pp. 415–426. ACM (2006)

17. Cousot, P., Cousot, R.: An abstract interpretation framework for termination. In:
Field, J., Hicks, M. (eds.) Symposium on Principles of Programming Languages,
POPL 2012, pp. 245–258. ACM (2012)

18. Feautrier, P.: Some efficient solutions to the affine scheduling problem. I. One-
dimensional time. Int. J. Parallel Program. 21(5), 313–347 (1992)

19. Gonnord, L., Monniaux, D., Radanne, G.: Synthesis of ranking functions using
extremal counterexamples. In: Grove, D., Blackburn, S. (eds.) Programming Lan-
guage Design and Implementation, PLDI 2015, pp. 608–618. ACM (2015)

20. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving
non-termination. In: Necula, G.C., Wadler, P. (eds.) Symposium on Principles of
Programming Languages, POPL 2008, pp. 147–158 (2008)

21. Harrison, M.: Lectures on Sequential Machines. Academic Press, New York (1969)
22. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving

non-termination using Max-SMT. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 779–796. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9 52

23. Larraz, D., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving termination
of imperative programs using Max-SMT. In: Formal Methods in Computer-Aided
Design, FMCAD 2013, pp. 218–225. IEEE (2013)

24. Le, T.C., Qin, S., Chin, W.-N.: Termination and non-termination specification
inference. In: Grove, D., Blackburn, S. (eds.) Programming Language Design and
Implementation, PLDI 2015, pp. 489–498. ACM (2015)

25. Leike, J., Heizmann, M.: Ranking templates for linear loops. Log. Methods Com-
put. Sci. 11(1), 1–27 (2015)

26. Leike, J., Heizmann, M.: Geometric nontermination arguments. In: Beyer, D., Huis-
man, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 266–283. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89963-3 16

27. Leroux, J., Sutre, G.: Flat counter automata almost everywhere!. In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005). https://doi.org/10.1007/11562948 36

28. Li, Y., Zhu, G., Feng, Y.: The L-depth eventual linear ranking functions for single-
path linear constraint loops. In: 10th International Symposium on Theoretical
Aspects of Software Engineering (TASE 2016), pp. 30–37. IEEE (2016)

29. Ouaknine, J., Worrell, J.: On linear recurrence sequences and loop termination.
ACM SIGLOG News 2(2), 4–13 (2015)

https://doi.org/10.1007/978-3-540-68279-0_11
https://doi.org/10.1007/978-3-540-68279-0_11
https://doi.org/10.1007/978-3-540-70545-1_32
https://doi.org/10.1007/978-3-540-70545-1_32
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-89963-3_16
https://doi.org/10.1007/11562948_36

480 A. M. Ben-Amram et al.

30. Payet, É., Mesnard, F., Spoto, F.: Non-termination analysis of Java bytecode.
CoRR, abs/1401.5292 (2014)

31. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0 20

32. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)
33. Sohn, K., Van Gelder, A.: Termination detection in logic programs using argument

sizes. In: Rosenkrantz, D.J. (ed.) Symposium on Principles of Database Systems,
pp. 216–226. ACM Press (1991)

34. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27813-9 6

35. The Termination Problems Data Base. http://termination-portal.org/wiki/TPDB
36. Urban, C.: The abstract domain of segmented ranking functions. In: Logozzo, F.,

Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 43–62. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38856-9 5

37. Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions.
In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 412–431. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54833-8 22

38. Velroyen, H., Rümmer, P.: Non-termination checking for imperative programs. In:
Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 154–170. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79124-9 11

https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
http://termination-portal.org/wiki/TPDB
https://doi.org/10.1007/978-3-642-38856-9_5
https://doi.org/10.1007/978-3-642-54833-8_22
https://doi.org/10.1007/978-3-540-79124-9_11

	Multiphase-Linear Ranking Functions and Their Relation to Recurrent Sets
	1 Introduction
	2 Preliminaries
	3 An Algorithm for Inferring MRFs
	3.1 Deciding Existence of MRFs
	3.2 Inference of Recurrent Sets
	3.3 Cases in Which Algorithm1 Does Not Terminate

	4 MRFs and the Displacement Polyhedron
	4.1 Witnesses for the Nonexistence of MRFs of a Given Depth
	4.2 New Directions for Addressing the General MRF Problem
	4.3 Termination and Nontermination of Bounded SLC Loops

	5 Implementation and Experimental Evaluation
	6 Conclusion
	References

