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Abstract. We propose an extension of linear temporal logic that we call
Linear Temporal Logic of Calls (LTLC) for describing temporal proper-
ties of higher-order functions, such as “the function calls its first argu-
ment before any call of the second argument.” A distinguishing feature
of LTLC is a new modal operator, the call modality, that checks if the
function specified by the operator is called in the current step and, if so,
describes how the arguments are used in the subsequent computation. We
demonstrate expressiveness of the logic, by giving examples of LTLC for-
mulas describing interesting properties. Despite its high expressiveness,
the model checking problem is decidable for deterministic programs with
finite base types.

1 Introduction

Specifications of programs (or other systems) are often described by temporal or
modal logics such as linear temporal logic (LTL), computational tree logic (CTL)
and modal μ-calculus [2,8,12,16,19,22]. Formulas of these logics are built from
atomic propositions representing basic properties of run-time states, e.g. whether
the control is at a certain program point and whether the value of a certain global
variable is positive. The set of atomic propositions in these logics is static in the
sense that it remains unchanged during evaluation of programs.

We are interested in verification of higher-order functional programs, and
logics suitable for describing temporal properties of such programs. For example,
consider a function g : (unit → string) → (int → int), which takes (the reader
function of) a read-only file and creates a function on integers. The following is
a possible specification for g:

– g is allowed to access the reader function only until it returns.

The implementation

let g r =
(
letw = int of string (r ()) inλx.x + w

)

meets the specification, whereas

let g r = λx.x + (int of string (r ()))
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violates it.
Properly describing this specification is difficult because the property refers

to dynamic notions such as “the argument of the first call of g.” The program

let g r =
(
letw = int of string (r ()) inλx.x + w

)
in

let fp = open filename in
let r = λ .read line fp in
let v1 = g r in
let v2 = g r in
print (v1 1 + v2 2)

is an example that calls g twice. The sequence of call and return events of g and
r in the evaluation is written as

call g1 → call r1 → ret r1 → ret g1 → call g2 → call r2 → ret r2 → ret g2,

where g1 means the first call of g and r1 is its argument and similarly for g2 and
r2. The above program satisfies the property since there is no call ri after ret gi

for i = 1, 2. However, by ignoring the subscripts, i.e. confusing the first call of
g with the second call, the program may seem to violate the specification since
there is call r2 after ret g1. This means that references to dynamic notions like
the subscripts in the above sequence are inevitable for precise description of the
specification. For this reason, the specification does not seem to be expressible
in the standard logics listed above.

This paper proposes a new temporal logic, named Linear Temporal Logic of
Calls (LTLC for short), by which one can describe the above property. The
logic is an extension of Linear Temporal Logic (LTL) with a new operator
call f(x1, . . . , xn).ϕ, the call operator, where the occurrences of x1, . . . , xn are
binding occurrences. Intuitively this formula is true just if the function f is called
in the current step (i.e. the current expression is of the form E[f e1 . . . en]) and
ϕ[e1/x1, . . . , en/xn] holds at the next step.1 We shall see in Example 2 an LTLC
formula describing the above property.

LTLC is expressive. One can describe properties written by dependent refine-
ment types in the form of [21], relational properties [1,5] (e.g. monotonicity of a
given function) and some examples in resource usage analysis [10].

Furthermore LTLC is tractable. The LTLC model-checking problem is not
more difficult than the standard temporal verification problem, because the
LTLC model-checking problem is effectively reducible to the standard tempo-
ral verification of programs. In particular, for programs over finite types,2 the
LTLC model-checking is reducible to higher-order model checking [12,17] and
thus decidable.

1 Here is a subtlety. We should distinguish different occurrences of the same expression,
and here ei means the occurrence of ei as the i-th argument of this function call.
See Sects. 3.2 and 3.3.

2 This finiteness condition is obviously necessary, because most verification problems
are undecidable for programs with infinite types, such as integers.
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Organisation of this Paper. After defining the target language in Sect. 2, we
present the syntax and semantics of LTLC in Sect. 3. Section 4 shows examples of
properties expressible by LTLC. Section 5 proves the reducibility result. Section 6
gives a brief discussion on other topics. After discussing related work in Sect. 7,
Sect. 8 concludes the paper.

2 Target Language

This section describes the target language of this paper, which is a simply-typed
call-by-name higher-order functional programming language with recursion.

We assume a set of base types, ranged over by b, as well as a set Vb of values
for each base type b. We require that Vb ∩ Vb′ = ∅ whenever b �= b′. Examples
of base types are boolean type and (bounded or unbounded) integer type. We
assume the set of base types contains the boolean type Bool and VBool = { tt ,ff }.

We also assume a set of binary operators Op. Each binary operator op ∈ Op
is associated with their sort b1, b2 → b3, meaning that it takes two arguments of
types b1 and b2 and yields a value of type b3. Examples of binary operations are
+,−,× (of sort Int, Int → Int) and =Int (of sort Int, Int → Bool).

Most results of this paper are independent of the choice of basic types and
operators. The only exception is the decidability of model checking (Theorem 4)
for which we assume base types are finite (i.e. Vb is finite for each base type b).

The set of types is given by:

τ := � | σ → τ σ := b | τ.

A type is the unit type �, a base type b or a function type σ → τ . For a technical
convenience, the above syntax requires that the return type of a function is not a
base type. Therefore a type τ must be of the form σ1 → · · · → σn → � for some
n ≥ 0 and σi, 1 ≤ i ≤ n. This does not lose generality because this requirement
can be fulfilled by applying the CPS translation.

Assume disjoint sets V of variables and F of function names. The set of
expressions is defined by the following grammar:

e := () | c | x | f | e1 e2 | op | if

where x and f are meta-variables ranging respectively over variables and function
names. The expression () is the unit value and c ∈

⋃
b Vb is a constant of a base

type. Each binary operation op ∈ Op has the associated constructor op, which
is in CPS (see the type system below) for a technical convenience. We also have
a constructor if of conditional branching.

A function definition P is a finite set of equations of the form f x1 . . . xn = e,
where f is the name of the function, x1, . . . , xn (n ≥ 0) are formal parameters
and e is the body of the function. We assume that a function definition P contains
at most one equation for each function name f . A program is a pair (P, e) of a
function definition and an expression.

We shall consider only well-typed programs. A type environment is a finite set
of type bindings of the form x : σ or f : τ . We shall use Δ for type environments
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of function names, and Γ for variables. A type judgement is a tuple Δ | Γ 	 e : σ.
The typing rules for expressions are straightforward, e.g.,

f : τ ∈ Δ

Δ | Γ 	 f : τ Δ | Γ 	 if : Bool → � → � → �

op ∈ Op has sort b1, b2 → b3
Δ | Γ 	 op : b1 → b2 → (b3 → �) → �

.

Some notable points are (1) the then- and else-branches of an if-expression have
to be of unit type, and (2) the binary operation op e1 e2 e3 in CPS takes two
arguments e1 : b1 and e2 : b2 of base types and a continuation e3 : b3 → �.
We say that a function definition f x1 . . . xn = e defines a function of type τ
under the type environment Δ, written Δ 	 f x1 . . . xn = e : τ , if τ = σ1 →
· · · → σn → � and Δ | x1 : σ1, . . . , xn : σn 	 e : �. Note that the function body
e is required to have type � (this restriction can be fulfilled by η-expanding
the definition, which does not change the meaning of a function in the call-by-
name setting). A function definition P = { fi x̃i = ei}1≤i≤m is well-typed under
Δ = { f1 : τ1, . . . , fm : τm }, written Δ 	 P, if Δ 	 fi x̃i = ei : τi for every i. A
program (P, e) is well-typed if there exists Δ such that Δ 	 P and Δ | ∅ 	 e : �.

The operational semantics of the language is fairly straightforward. We define
the small-step reduction relation −→ by the following rules:

c1 op c2 = c

op c1 c2 e −→ e c if tt e1 e2 −→ e1 if ff e1 e2 −→ e2

(f x1 . . . xn = e) ∈ P
f e1 . . . en −→ [e1/x1, . . . , en/xn]e () −→ ()

The last rule is an artificial rule, which ensures that every well-typed expression
has an infinite reduction sequence, somewhat simplifying some definitions in the
next section. We write −→∗ for the reflexive, transitive closure of −→.

If Vb is finite and the equality =b on b is in Op, the case analysis of values of
type b is definable in the language. We write

case eof c1 → e1 | · · · | cn → en,

where e, c1, . . . , cn : b and e1, . . . , en : �, for the expression

if (=b e c1) e1(if (=b e c2) e2 (. . . (if(=b e cn) en ()) . . . )).

Example 1. Recall the example in Introduction, which was written in direct
style. By abstracting unimportant details and transforming it into CPS, we
obtain the following program:

let g r k = r (λw.k (λxh.h (x + w))) in
let r k = k 0 in
let p x = () in

g r (λv1.g r (λv2.v1 1 (λu1.v2 2 (λu2.p (u1 + u2)))))
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Here r is a function reading the value from a file (consisting of only 0 s) and
passing it to the continuation k; p is the function that prints the argument
(but formally does nothing). This program can be seen as a program in our
language,3 of which functions definitions are given by sequences of let and the
initial expression e is that in the last line. The type environment for functions
is given by

r : (Int → �) → �, p : Int → �,

g : ((Int → �) → �) → ((Int → (Int → �) → �) → �) → �

The evaluation of the program is

g r k1 −→ r (λw.k1 (λxh.h(x + w))) −→∗ k1 (λxh.h(x + 0)) −→
g r k2 −→ r (λw.k2 (λxh.h(x + w))) −→∗ k2 (λxh.h(x + 0)) −→ · · ·

where

k1 = (λv1.g r (λv2.v1 1 (λu1.v2 2 (λu2.p (u1 + u2)))))
k2 = [(λxh.h(x + 0))/v1] (λv2.v1 1 (λu1.v2 2 (λu2.p (u1 + u2)))).

Note that r is called twice: The first (resp. the second) call of r is between the
first (resp. the second) call of g and the call of the corresponding continuation
k1 (resp. k2).

3 Linear Temporal Logic of Calls

This section defines a novel temporal logic that we call Linear Temporal Logic of
Calls (LTLC for short). It is an extension of the standard linear temporal logic
(LTL) by a modal operator, called the call operator, which describes a property
on function calls. Let P be a function definitions and Δ be the type environment
for functions, fixed in the sequel.

3.1 Syntax

Assume a set L of variables that is disjoint from the sets of function names and
of variables in expressions. We use α, β and γ for variables in L. The set of
LTLC formulas is defined by the following grammar:

ϕ := true | false | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | ϕ U ϕ | ϕ R ϕ | call ξ(β̃).ϕ | p(β̃)

where ξ is either a function name f or a variable α ∈ L. It is the standard
LTL with next ©, (strong) until U and release R extended by the call operator
call ξ(β̃).ϕ and predicates p(β̃) on values of base types (such as the order <

3 Strictly speaking, we need to do lambda-lifting as the lambda abstraction is not in
the syntax.
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and equivalence = of integers). The occurrences of variables β̃ in call ξ(β̃).ϕ are
binding occurrences, and ξ is free.

The meaning of formulas should be clear except for call ξ(β̃).ϕ. Intuitively
call f(β̃).ϕ is true just if the current expression is of the form f ẽ and ϕ{ẽ/β̃}
holds in the next step ef{ẽ/x̃} (where f x̃ = ef ∈ P), although here is a subtle
point that we shall discuss in the next subsection.

Each variable β in a formula naturally has its type, and a formula should
respect the types to make sense. For example, call f(β).ϕ would be nonsense
if the function f has two arguments. We use a type system to filter out such
meaningless formulas. We write Θ for a type environment for variables in L. A
type judgement is of the form Δ | Θ 	 ϕ, meaning that ϕ is well-formed under
Δ and Θ. Here Δ and Θ declares the types for function names and variables in
L, respectively. Examples of typing rules are as follows:

Δ | Θ 	 false
Δ | Θ 	 ϕ

Δ | Θ 	 ©ϕ

Δ | Θ 	 ϕ1 Δ | Θ 	 ϕ2

Δ | Θ 	 ϕ1 U ϕ2

f : σ1 → · · · → σn → � ∈ Δ Δ | Θ ∪ {βi : σi}1≤i≤n 	 ϕ

Δ | Θ 	 call f(β1, . . . , βn).ϕ
.

We shall use the following abbreviations. As usual, the temporal operators
“future” F and “always” G are introduced as derived operators, defined by

Fϕ := true U ϕ and Gϕ := false R ϕ.

We also use a derived operator ifcall given by

ifcall ξ(β̃).ϕ := ¬Fcall ξ(β̃).(¬ϕ)

meaning that call ξ(β̃).ϕ holds for every call of ξ in the future. This operator
can alternatively be defined by

ifcall ξ(β̃).ϕ = G(call ξ(β̃).ϕ ∨ ¬call ξ(β̃).true).

We write ©nϕ for © · · · ©
︸ ︷︷ ︸

n

ϕ, meaning that ϕ holds after n steps.

Example 2. Recall the program in Example 1. The formula meaning “g does not
call its first argument after returning the value” can be written as follows:

ifcall g(α, β) . ifcall β(γ) . (¬Fcall α(δ) . true).

Since the programs are now written in CPS, “returning the value” means “calling
the continuation β.” The above formula says that, for every call of g, if it returns
the value (via the continuation β), then it will never call the first argument α.
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3.2 Näıve Semantics and a Problem

Every closed expression Δ | ∅ 	 e : �, possibly using functions in P, induces the
unique infinite reduction sequence

e = e0 −→ e1 −→ e2 −→ . . . −→ en −→ · · · .

An LTLC formula ϕ describes a property on such infinite reduction sequences.
Thus the satisfaction relation e |= ϕ is defined as a relation between an expres-
sion Δ 	 e : � and an LTLC formula Δ 	 ϕ.

The definition of the relation for logical connectives from the standard LTS
is straightforward. For example, ©ϕ means that ϕ holds in the next step, and
thus e |= ©ϕ if and only if e′ |= ϕ for the unique e′ such that e −→ e′.

The main issue is how to define the semantics of call f(β̃).ϕ. Intu-
itively e |= call f(β1, . . . , βn).ϕ holds if and only if e = f e1 . . . en and
ef [e1/x1, . . . , en/xn] |= ϕ[e1/β1, . . . , en/βn], where ef is the body of the defi-
nition of f . However this näıve definition has a problem.

Let us explain the problem by using an example. Consider the function
doTask defined by

doTask f g = f (g ()).

It would be natural to expect that “doTask does not call the second argument
unless it does not call the first argument” should be true independent of the
context in which doTask is used. Formally we expect C[doTask ] |= ϕ for every
context C, where ϕ is the formula given by

ϕ = call doTask(α, β) .
(
(¬ call β(γ).true) U (call α(δ).true)

)
.

However it is not true. Consider, for example, C = []hh where h is an arbitrary
function. Then

doTask hh |= ϕ ⇔ h (h ()) |= (¬ call h(γ).true) U (call h(δ).true)

but the right-hand-side is false because h (h ()) |= call h(γ).true and thus
h (h ()) �|= ¬ call h(γ).true.

The problem is caused by confusion between h as the first argument and h as
the second argument. In the formula ϕ, the first and second arguments of doTask
are distinguished by their names, α and β. However they become indistinct by
the substitution [h/α, h/β].

3.3 Formal Semantics

We use labels to correctly keep track of expressions. A label is just a variable α ∈
L in a formula. Labelled expressions are those obtained by extending expressions
with the labelling construct, as follows:

e ::= · · · | eα, α ∈ L.
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e, ρ |= true always holds
e, ρ |= false never holds
e, ρ |= ¬ϕ ⇐⇒ e, ρ �|= ϕ
e, ρ |= ϕ1 ∨ ϕ2 ⇐⇒ e, ρ |= ϕ1 or e, ρ |= ϕ2

e, ρ |= ϕ1 ∧ ϕ2 ⇐⇒ e, ρ |= ϕ and e, ρ |= ϕ2

e, ρ |= ©ϕ ⇐⇒ (∃e′)[e −→ e′ and e′, ρ |= ϕ]
e, ρ |= ϕ1 U ϕ2 ⇐⇒ (∃j)[e, ρ |= ©jϕ2 and (∀i < j)[e, ρ |= ©iϕ1]]
e, ρ |= ϕ1 R ϕ2 ⇐⇒ (∀j)[e, ρ |= ©jϕ2 or (∃i < j)[e, ρ |= ©iϕ1]]
e, ρ |= p(α1, . . . , αk)a ⇐⇒ p(�ρ(α1), . . . , �ρ(αk)) is true
e, ρ |= call α(β1, . . . , βk).ϕ ⇐⇒ e = (. . . (eS0

0 e1)S1 . . . ek)Sk and α ∈ S0 and
e0 eβ1

1 . . . e
βk
k −→ e′ and e′, ρ ∪ {βi → ei}1≤i≤k |= ϕ

e, ρ |= call f(β1, . . . , βk).ϕ ⇐⇒ e = (. . . (fS0 e1)S1 . . . ek)Sk and
e0 eβ1

1 . . . e
βk
k −→ e′ and e′, ρ ∪ {βi → ei}1≤i≤k |= ϕ

Fig. 1. Semantics of formulas. The operation � removes labels from a given expression.

For a possibly empty sequence S = α1 . . . αn, we write eS for ((eα1) . . . )αn .
Given a labelled expression e, we write �e for the (ordinary) expression obtained
by removing labels in e.

The labels do not affect reduction. For example,

(((fS0 e1)S1 e2)S2 . . . en)Sn −→ ef [e1/x1, . . . , en/xn]

provided that f x1 . . . xn = ef ∈ P. Therefore, if e −→ e′ as labelled expressions,
then �e −→ �e′.

Now we formally define the satisfaction relation |=. It is a ternary relation
e, ρ |= ϕ on a labelled expression e : �, a valuation map ρ from free variables in
ϕ to labelled expressions, and an LTLC formula ϕ. It is defined by induction on
the complexity4 of formulas by the rules in Fig. 1.

Remark 1. Given a judgement e, ρ |= ϕ, one can remove the following data
without changing the meaning of the judgement:

– mapping α �→ e from ρ if α is not of a base type, and
– label β in (d)β from e if d is an expression of a base type.

This is because the information on a base-type variable β is recorded in ρ, and the
information on a non-base-type variable α is tracked by labels in the expression.
We put both information to both ρ and e just to simplify the definition (by
avoiding the case split by types).

The main difference from the näıve semantics is the meaning of the call
operator. Instead of substituting βi in the formula to the actual argument ei in
the expression, we annotate the actual argument ei by βi.
4 We define the complexity of a formula ϕ as the pair of numbers (n, m) ordered by

the lexicographic ordering, where n is the sum of the numbers of occurrences of U
and R in ϕ and m is the size of ϕ.
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We see how the labelling works by using the example in the previous subsec-
tion. By the labelling semantics, we have

(doTask hh), ∅ |= ϕ ⇔ hα (hβ ()), ρ |= (¬ call β(γ).true) U (call α(δ).true)

for some ρ (whose contents are not important here). Notice that h as the first
argument of doTask can be distinguished from h as the second argument of
doTask : the former has the label α whereas the latter is annotated by β. Now
hα (hβ ()), ρ �|= call β(γ).true and hα (hβ ()), ρ |= ¬call β(γ).true as expected. It
is not difficult to see that doTask hh, ∅ |= ϕ indeed holds, whatever h is.

3.4 Negation Normal Form

The negation ¬ in a formula can be pushed inwards in many cases, without
changing the meaning of the formula. For example,

¬true = false ¬(ϕ1 U ϕ2) = (¬ϕ1) R (¬ϕ2) and ¬©ϕ = ©¬ϕ.

Unfortunately the negation of the call operator ¬call ξ(β̃).ϕ cannot be pushed
inwards in general, but we can restrict the shape of the formula to which the
negation is applied. The formula call ξ(β̃).ϕ does not hold if either (a) ξ is now
called but the following computation violates ϕ or (b) ξ is not called in the
current step. This observation can be expressed by the equation

¬call ξ(β̃).ϕ = call ξ(β̃).(¬ϕ) ∨ ¬call ξ(β̃).true.

We shall abbreviate ¬call ξ(β̃).true as ¬call ξ.
The above argument gives an effective rewriting process, yielding a formula

in the following syntax that we call the negation normal form:

ϕ := true | false | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | ϕ U ϕ | ϕ R ϕ

| call ξ(β̃).ϕ | ¬call ξ | p(β̃) | ¬p(β̃).

We shall use this normal form in the following section.

4 Expressiveness

This section briefly explains the expressiveness of LTLC.

4.1 Dependent Refinement Types

Properties described by dependent refinement types in the form of [21] are
expressible by LTLC formulas.
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Example 3. Consider the type

T0 := (x : {Int | ν ≥ 0}) → {Int | ν > x}

for call-by-value programs. This is the type for functions f on integers such that
f(x) > x for every positive x. As the target language of this paper is call-by-
name, we need to apply the CPS translation to call-by-value programs of interest
and the corresponding translation to dependent types. The resulting type is

T := (x : {Int | ν ≥ 0}) →
(
{Int | ν ≥ x} → �

)
→ �.

The LTLC formula ϕT corresponding to the judgement 	 f : T is

ϕT := ifcallf(α, β) .
(
α ≥ 0 ⇒ ifcall β(γ) . α < γ

)
.

We explain the general rule of the translation, focusing on the image of
function types by the call-by-value CPS translation. The syntax of dependent
refinement types is given by

T, S ::= (α : U) →
(
V → �

)
→ � U, V ::= {Int | ϑ(ν)} | T

where ν is a distinguished variable and ϑ(ν) is a formula of the underlying logic.
The occurrence of α is a binding occurrence and ϑ may contain variables other
than ν. The LTLC formula ΦU is defined by the following rules:

Φ{Int|ϑ(ν)}(α) := ϑ(α)

Φ(β:U)→(V →�)→�(α) := ifcall α(β, κ).
(
ΦU (β) ⇒ ifcall κ(γ) . ΦV (γ)

)
.

A judgement 	 f : T corresponds to the LTLC formula ΦT (f).

4.2 Relational Property

Some relational properties [1,5], such as the relationship between two functions
and that between two calls of a function, can be described by LTLC. An example
of relational property is monotonicity; if a given function f is not monotone, one
can find two inputs x ≤ y such that f(x) � f(y). Monotonicity can be naturally
expressed by LTLC.

Example 4 (Monotonicity). Assume a function f : Int → (Int → �) → �. This
function is monotone if n ≤ n′, f n k calls the continuation k with the value m
and f n′ k′ calls k′ with m′, then m ≤ m′. (Recall that f is in CPS and thus
“calling k with m” can be understood as “returning m”.) If f is assumed to be
non-recurrent, this property can be written as

ifcall f(α, β) . ifcall β(γ) . ifcall f(α′, β′) . ifcall β′(γ′) . ψ(α, γ, α′, γ′)

where ψ(α, γ, α′, γ′) = (α ≤ α′ ⇒ γ ≤ γ′) ∧ (α ≥ α′ ⇒ γ ≥ γ′). The meaning of
this formula can be expressed by a natural language as follows:
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Let α be the argument to the first call of f , and γ be the “return value”
of the first call. Similarly let α′ be the argument to the second call of f ,
and γ′ be the “return value” of the second call. We require that α ≤ α′

implies γ ≤ γ′, and that α ≥ α′ implies γ ≥ γ′.

A formula applicable to the case of f being recurrent is a bit complicated, since
the order of two calls and returns is not determined. The formula applicable to
the general case is

ifcall f(α, β) . ifcall f(α′, β′) . ifcall β(γ) . ifcall β′(γ′) . ψ(α, γ, α′, γ′)
∧ ifcall f(α, β) . ifcall f(α′, β′) . ifcall β′(γ′) . ifcall β(γ) . ψ(α, γ, α′, γ′)
∧ ifcall f(α, β) . ifcall β(γ) . ifcall f(α′, β′) . ifcall β′(γ′) . ψ(α, γ, α′, γ′)

The conjunction enumerates all possible orders of two calls and returns of f .

4.3 Resource Usage Verification

The final example is verification/analysis of programs using resources, known
as resource usage analysis [10]. An example of resource is read-only files. For
simplicity, we focus on the verification of usage of read-only files.

Let us first consider the simplest case in which a program generates a unique
resource only at the beginning. In this case, a target is a program with distin-
guished functions r, c : � → � for reading and closing the file. The specification
requires (1) the program does not read the file after closing it, and (2) the file
must be closed before the termination of the program. The specification can be
described by an LTLC formula:

ϕ(r, c) := G(call c ⇒ ¬Fcall r) ∧ (¬endU call c),

where end is the event meaning the termination. Indeed this is an LTL formula
when one regards call c and call r as atomic propositions.

In the general case, a program can dynamically create read-only file resources.
The target program has a distinguished type File for file resources and a dis-
tinguished function gen : (File → �) → �. Since the possible operations for
File is read and close, we identify the type File as (� → �) × (� → �), the
pair of reading and closing functions. The specification requires that, for each
call of gen, the created resource should be used in the manner following ϕ; this
specification can be written by an LTLC formula as

ifcall gen(α) . ifcall α(r, c) . ϕ(r, c).

Note that ifcall α(r, c) intuitively means that “if the function gen returns the
value (r, c)” since gen is in CPS and α is the continuation.

5 LTLC Model Checking

This section focuses on the LTLC model-checking problem, i.e. the problem to
decide, given a program P, an expression e and an LTLC formula ϕ, whether
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e, ∅ |= ϕ (where ∅ is the empty valuation). The main result of this section
is that the LTLC model-checking problem is effectively reducible to the stan-
dard temporal verification problem, which could be solved by model checkers for
higher-order programs. In particular, for programs and expressions over finite
types, this reduction yields an instance of higher-order model checking [12,17],
for which several model-checkers are available [6,20].

5.1 Preliminaries: Higher-Order Model Checking

Higher-order model checking is a problem to decide, given a higher-order tree
grammar and an ω-regular tree property, whether the (possibly infinite) tree
generated by the grammar satisfies the property. Higher-order model checking
has been proved to be decidable by Ong [17]5 and applied to many verification
problems of higher-order programs (see, e.g., [12]). We prove that LTLC model
checking is decidable by reducing it to higher-order model checking.

This subsection briefly reviews higher-order model checking, tailored to our
purpose. See [12,17] for formal definitions and general results.

Let Σ be a ranked alphabet defined by

Σ := {�,⊥ �→ 0, �,� �→ 2, U, R �→ 3 }.

This means that � is a leaf and � (resp. U) is a binary (resp. ternary) branching
tree constructor, and so on. A Σ-labelled tree is a possibly infinite tree of which
each node is labelled by a symbol in Σ. We shall consider only well-ranked trees:
we require that the number of children of a node labelled by � is 2, for example.
We shall often use the infix notation for � and �, e.g. T1 � T2 is the tree whose
root is � and its children are T1 and T2.

A nondeterministic Büchi automaton is a tuple (Q, q0, δ, F ), where Q is a
finite set of states, q0 ∈ Q is an initial state, δ :

∏
a∈dom(Σ)(Q → P(QΣ(a))) is

a transition function and F ⊆ Q is the set of accepting states. A run-tree of
A over a tree T is an association of states q ∈ Q to nodes in T that respects
the transition function in a certain sense. A run-tree is accepting if each infinite
branch contains infinitely many occurrences of an accepting state. A tree T is
accepted by A if there is an accepting run-tree over T .

A tree-generating program is a variant of programs introduced in Sect. 2, but
has different set of operators on type �. The syntax of expressions is

e := � | ⊥ | � | � | U | R | c | x | f | e1 e2 | op e1 e2 e3 | if e1 e2 e3,

obtained by replacing () with the tree constructors in Σ. Their types are

�,⊥ : � �,� : � → � → � and U, R : � → � → � → �.

5 The original definition (as in [17]) considers only programs without data types, but
the decidability result can be easily extended to programs with finite data types.
We shall consider a generalised version, in which programs may contain infinite data
types. Of cause, the decidability result fails for the generalised version.
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So � should be now regarded as the type for trees. The notion of function defini-
tion remains unchanged, except that the body of a function is now an expression
with tree constructors.

The operational semantics is basically the same as before. The only difference
is that reduction may occur under tree constructors, i.e. the following rules

e1 −→ e′
1

(e1 � e2) −→ (e′
1 � e2)

and
e2 −→ e′

2

(e1 � e2) −→ (e1 � e′
2)

are added, as well as similar rules for other constructors. A program (P, e)
generates a possibly infinite tree as a result of possibly infinite steps of reduction.

Higher-order model checking asks to decide, given a program (P, e) and a
nondeterministic Büchi automaton A, whether the tree generated by (P, e) is
accepted by A.

Theorem 1 (Ong [17]). Given a tree-generating program (P, e), of which all
basic data types are finite, and a nondeterministic Büchi automaton A, one can
effectively decide whether the tree generated by (P, e) is accepted by A.

5.2 Satisfaction Tree

Let P be a function definition, fixed in this subsection. Given an expression e : �,
a valuation ρ and an LTLC formula ϕ in negation normal form, we define a tree
T (ϕ, ρ, e), called the satisfaction tree, which represents the process evaluating
e, ρ |= ϕ. This subsection shows that the satisfaction tree correctly captures the
satisfaction relation, in the sense that e, ρ |= ϕ if and only if T (ϕ, ρ, e) belongs
to a certain ω-regular tree language.

A satisfaction tree is a Σ-labelled tree. The meaning of �,⊥,� and � should
be obvious. The trees � and ⊥ represent immediate truth and falsity. The tree
T1 � T2 means that the evaluation process invokes two subprocess, represented
by T1 and T2, and the result is true just if the results of both subprocesses are
true. The meaning of � is similar.

The constructors U and R, corresponding respectively to U and R, require
some expositions. The meaning of U is based on a classical but important obser-
vation: whether e, ρ |= ϕ1 U ϕ2 or not is completely determined by three judge-
ments, namely e, ρ |= ϕ1, e, ρ |= ϕ2 and e, ρ |= ©(ϕ1 U ϕ2). That means,
e, ρ |= ϕ1 U ϕ2 if and only if either (a) e, ρ |= ϕ1 and e, ρ |= ϕ2, or (b) e, ρ |= ϕ1

and e, ρ |= ©(ϕ1 Uϕ2). So the process of checking e, ρ |= ϕ1 Uϕ2 invokes three
subprocesses; the three subtrees of U correspond to these judgements. A similar
observation applies to R.

The definition of satisfaction trees is co-inductively defined by the rules in
Figs. 2, 3, 4 and 5. The meaning of the rules in Fig. 2 should now be clear. For
example, the rule for ϕ1 U ϕ2 says that e, ρ |= ϕ1 U ϕ2 depends on satisfaction
of e, ρ |= ©(ϕ1 U ϕ2), e, ρ |= ϕ1 and e, ρ |= ϕ2.

Figure 3 defines the rules for the call modality call α(β̃).ϕ. The first two rules
check if e is calling an expression labelled by α. If one finds the label α, then
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Fig. 2. Satisfaction tree: (1) Boolean connectives, until and release.

the arguments are recorded to ρ and labelled by β̃ as required. In this case, we
also change the target formula to ©ϕ. In the second rule, a label other than α
should be simply ignored. The last three rules deal with the case of α not being
annotated; then e, ρ |= call α(β̃).ϕ is immediately false.

Fig. 3. Satisfaction tree: (2) Call modality. We assume γ �= α. The satisfaction tree for

call f(˜β).ϕ is similar; we omit the rules here.

Figure 4 defines the rules for the negation of call. If e is calling an expression
labelled by α, then e, ρ |= ¬call α( ) is obviously false. The last three rules
describe the case of α not being found, in which case ¬call α( ) holds.

Figure 5 defines the rules for the next modality. It simply ignores labels and
reduces the expression in one step.

We omit the rules for call f(β̃).ϕ and ¬call f( ), which are basically the same
as those for call α(β̃).ϕ and ¬call α( ).

We formalise the meaning of a satisfaction tree by giving a nondeterministic
Büchi automaton. The definition of the automaton is basically straightforward,
but there is a subtlety in the meaning of U. Recall that ϕ1 U ϕ2 holds if either
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Fig. 4. Satisfaction tree: (3) Negation of call modality. We assume γ �= α. The satis-
faction tree for ¬call f( ) is similar; we omit the rules here.

Fig. 5. Satisfaction tree: (4) Next modality. It ignores labels and reduces the expression
in one step. We assume that (f x1 . . . xn = ef ) ∈ P.

1. both ϕ1 and ϕ2 hold, or
2. both ϕ1 and ©(ϕ1 U ϕ2) hold.

Similarly ϕ1 R ϕ2 holds if and only if

1. both ϕ1 and ϕ2 hold, or
2. both ϕ2 and ©(ϕ1 U ϕ2) hold.

The condition for U quite resembles that for R, but there is a crucial difference
which cannot be captured by the above descriptions. That is, ϕ1 U ϕ2 requires
that ϕ2 eventually holds, but ϕ1 R ϕ2 is true even if ϕ1 never becomes true.
This difference should be captured by the acceptance condition of the Büchi
automaton.

The Büchi automaton A has three states, q0, q1 and ∗. The states q0 and
q1 have the same behaviour except that q0 is accepting and q1 is not accepting.
The state ∗ accepts every tree; this state is used to describe a rule which ignores
some of children. The set of accepting states is {q0, ∗} and the initial state is q0.
The transition rules are given by:

δ�(q) := {()} δ⊥(q) := {()}
δ
(q) := {(q0, q0)} δ�(q) := {(q0, ∗), (∗, q0)}
δU(q) := {(q1, q0, ∗), (∗, q0, q0)} δR(q) := {(q0, ∗, q0), (∗, q0, q0)},

where q = q0 or q1. We omit the rules for the state ∗, which accepts every tree.
The tree U(T1, T2, T3) is accepted from q0 if T1 is accepted from q1 and T3 is
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accepted from q0; note that we assign q1 to T1, instead of q0, because the until
formula ϕ1 U ϕ2 expects ϕ2 eventually holds.

The following theorem is the first half of the reduction.

Theorem 2. e, ρ |= ϕ if and only if T [e, ρ |= ϕ] is accepted by A.

5.3 A Tree-Generating Program Generating the Satisfaction Tree

The previous subsection introduced satisfaction trees, which concern only about
LTL features of LTLC, i.e. the tree does not have any information on the call
nor next modality, which are related to reduction of programs.

This subsection discusses a way to deal with these features missing in sat-
isfaction trees. Technically, given a program (P, e) and a formula ϕ, we con-
struct a tree-generating program (P#, e′) that generates the satisfaction tree
T [e, ∅ |= ϕ]. The construction of (P#, e′) is effective, and if the original program
and the formula use only finite base types, then so does (P#, e′). Therefore this
construction, together with the result of the previous subsection, shows that the
LTLC model checking is decidable for programs and formulas over finite data
types.

We first give the formal statement of the theorem, which shall be proved in
the rest of this subsection.

Theorem 3. Given a program (P, e0) and an LTLC formula ϕ, one can effec-
tively construct a tree-generating program (P#, e′

0) that generates the satisfac-
tion tree T [e, ∅ |= ϕ]. Furthermore, if both the program (P, e) and the formula ϕ
contain only finite base types, then so does (P#, e′

0).

Let ϕ0 be a formula of interest, fixed in the sequel. By renaming bound
variables if necessary, we can assume without loss of generality that different
variables in ϕ0 have different names. Let L0 ⊆ L be the finite set of bound
variables in ϕ0. Note that each α ∈ L0 is associated to its type in ϕ0.

The idea of the translation, written #, is as follows. Recall that the satis-
faction tree T [e, ρ |= ϕ] is determined by the three data, namely an expression
e : �, a valuation ρ and a formula ϕ. Hence the translation e# of the expression
e should take two extra arguments ρ and ϕ to compute T [e, ρ |= ϕ].

Let us first consider the translation of types. Because the translation of an
expression e of unit type � takes two additional arguments, namely a formula
and a valuation, the translation of the unit type should be given by

�
#�−→ (valuation → formula → �),

where valuation and formula are the “types” for valuations and formulas, which
shall be described below. The translation can be naturally extended to base
types and function types by

b# := b and (σ → τ)# := σ# → τ#.
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The “type” formula can be defined as an additional finite base type. An
important observation is that only finitely various formulas are reachable by
unfolding the definition of T [e, ∅ |= ϕ0]. It is easy to see that the following set

{ψ,©ψ | ψ is a subformula of ϕ0 }

is an overapproximation. So we define the values in Vformula as this set. We shall
write �ψ� for the formula ψ seen as a value in Vformula . We assume an operation
=formula to compare formulas. Since formula is now a finite base type, one can
define a function by using pattern matching of formulas.

The “type” valuation can be implemented as a tuple. Note that valuations
ρ reachable from T [e, ∅ |= ϕ0] have subsets of L0 as their domains. So a reach-
able valuation ρ can be represented as a tuple of length |L0|, where |L0| is the
number of elements in L0. If ρ(α) is undefined for some α ∈ L0, one can fill the
corresponding place in a tuple by an arbitrary expression.

Summarising the above argument, the translation of the unit type is

�
#�−→ (σ1 → σ2 → · · · → σn → formula → �)

if the set of variables L0 in ϕ0 is {α1, . . . , αn } and σi is the type for αi, 1 ≤ i ≤ n.
We shall fix the enumeration α1, . . . , αn of L0 in the sequel.

We give the translation of expressions. The function definition P# after trans-
lation defines the following functions:

– f# : τ# for each function f defined in P,
– α# : τ# → τ# for each variable α ∈ L0 of type τ ,
– op# : b1 → b2 → (b3 → �#) → �# for each operation op ∈ Op,
– if# : Bool → �# → �# → �#, the translation of if , and
– ()# : �#, the translation of the unit value.

Note that α ∈ L0 does not have the translation if α has a base type; the label
(−)α is simply ignored by the translation (see Remark 1). Using these functions,
the translation of expressions is given as follows:

c# := c x# := x (e1 e2)
# := e#1 e#2 (eα)# := α# e# and (eβ)# := e#

where α (resp. β) is a variable in L0 of a non-base type (resp. a base type).

Other cases have already given by P#: for example, ()
#�→ ()# and f

#�→ f#. A
notable point is that the label annotation eα is translated to application to α#.

The translation of valuations should now be clear. A valuation is translated
to a sequence of expressions, defined by

ρ
#�−→ ρ(α1)# . . . ρ(αn)#.

If ρ(αi) is undefined, then ρ(αi)# can be arbitrary (but fixed a priori) expression
of the required type. We use � for sequences of this kind. We write �[αi �→ e] for
the sequence obtained by replacing the ith element in � with e.
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What remains is to give definitions of functions P# so that the value tree
of e# ρ# �ϕ� will coincide with the satisfaction tree T [e, ρ |= ϕ]. Each function
definition is of the form h x̃ � �ϕ� = e, where x̃ is a sequence of arguments in the
original definition, � is a sequence representation of a tuple of type valuation,
and �ϕ� ∈ Vformula is the value of type formula. All functions in P# are defined
by pattern matching on the final argument �ϕ�. For example, consider the case
of the final argument being �ψ1 ∧ ψ2�. Because

T [h ẽ, ρ |= ψ1 ∧ ψ2] = T [h ẽ, ρ |= ψ1] � T [h ẽ, ρ |= ψ2],

the definition6 of h for this case has to be

h x̃ � �ψ1 ∧ ψ2� = (h x̃ � �ψ1�) � (h x̃ � �ψ2�).

As an example of more complicated case, let us consider the rule

T [eα e1 . . . en, ρ |= call α(β1, . . . , βn).ϕ] = T [e eβ1
1 . . . eβn

n , ρ′ |= ©ϕ]

where ρ′ = ρ ∪ {βi �→ ei}1≤i≤n. Because

(eα e1 . . . en)# = α# e# e#1 . . . e#n ,

the above rule can be seen as (a part of) the definition of α#:

α# g x̃ � �call α(β1, . . . , βn).ϕ� = g (β#
1 x1) . . . (β#

n xn) �′ �©ϕ�

where �′ = �[β1 �→ x1] . . . [βn �→ xn]. It is easy to check that

(eα e1 . . . en)# ρ# �call α(β1, . . . , βn).ϕ� −→∗ (e eβ1
1 . . . eβn

n )# ρ′# �©ϕ�

as expected. All other cases are given in the same way.
Now the definition of the translation has been given in sufficient detail, we

believe. It is not difficult to establish the following lemma.

Lemma 1. The value tree of e# ρ# �ϕ� is equivalent to T [e, ρ |= ϕ], provided
that ρ and ϕ are reachable from the definition of T [e1, ∅ |= ϕ0] for some expres-
sion e1 of type �.

Theorem 3 is a consequence of this lemma: e′
0 can be defined as e#0 ∅# �ϕ0�.

The decidablity result is a corollary of Theorems 2 and 3.

Theorem 4. Let (P, e) is a program and ϕ is an LTLC formula. If (P, e) and
ϕ contain only finite base types, then one can effectively decide whether e, ∅ |= ϕ.

6 Strictly speaking, the “function definition” here does not precisely follow the syntax
of function definition in our language, as we do not allow pattern matching on the
left-hand-side of a definition, but we expect that the reader can fill the gap.
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Remark 2. Let us briefly discuss the time complexity of the algorithm. The cost
of the translation is negligible; we estimate the running time of the higher-
order model checking. If we fix the property automaton to A in Theorem 2, the
higher-order model checking be solved in time O(P 2 expN (poly(AD))) for some
polynomial poly ([13, Section 5] adopted to our setting), where P , N , A and D
are parameters determined by the program after translation; P is the size, N is
the order, A is the maximum arity of types and D is the maximum number of
values in base types. Easy calculation shows that

P = O(|(P, e)| × |ϕ|) N ≤ order(P, e) + 2 N = O(|ϕ|) A = O(|ϕ|)

where |(P, e)| and |ϕ| are the sizes of the program and of the formula.

6 Discussions

Compositional Reasoning. LTLC model checking is a kind of whole-program
verification. Actually C[f ], ρ |= ΦT (f), where ΦT is the LTLC formula corre-
sponding to a dependent type T (see Sect. 4.1), only means that the behaviour
of f in the context C does not violate the specification T ; it does not ensure
that f meets T in other contexts as well.

This is in contrast to a compositional approach such as a type-based one, in
which 	 t : T means that t satisfies the specification T in whatever the context
t is used. In this sense ΦT (f) is not like a type judgement but like dynamic
monitoring of a contract [9].

A way to fill the gap is to consider all possible contexts. That means, we
define |= f : T to mean that C[f ], ∅ |= ΦT (f) for every context C. In a suffi-
ciently expressive programming language, ∀C.

(
C[f ], ∅ |= ΦT (f)

)
is equivalent

to C0[f ], ∅ |= ΦT (f) for a certain “worst” context C0; this observation gives us a
way to reduce compositional reasoning to whole-program analysis. This strategy
is actually used in [23], for example.

A typical way to construct the “worst” context C0 is to use nondetermin-
ism [23]; intuitively C0 is a “maximally” nondeterministic context, which may
do anything allowed. Unfortunately this construction is not directly applicable
to our case, since our reducibility result (in particular, Theorem 2) essentially
relies on the determinism of programs.

Non-deterministic Programs. Determinism of programs is essential to our
reducibility result. In fact, even the definition of the satisfaction relation becomes
“incorrect” in the presence of non-determinism.

To see the reason, consider an LTLC formula

ϕ := ifcall f ∨ ¬ifcall f,

which is obviously true for every program. By definition, we have

e, ρ |= ifcall f ∨ ¬ifcall f iff e, ρ |= ifcall f or e, ρ |= ¬ifcall f,
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for every expression e. This rule is problematic in the presence of nondeter-
minism. For example, consider e = (f ()) ⊕ () where ⊕ is the nondeterministic
branching. This expression decides nondeterministically whether it calls f or not.
Then e, ρ |= ifcall f ∨ ¬ifcall f but neither e, ρ |= ifcall f nor e, ρ |= ¬ifcall f .

This problem can be easily fixed by changing the definition of the satisfaction
relation. It should be a relation π, ρ |= ϕ on an infinite reduction sequence
π (instead of an expression e), a valuation and a formula in the presence of
nondeterminism.

However Theorem 2 cannot be modified accordingly to the new definition.
The definition of T [e, ρ |= ϕ] is so deeply related to the current definition of
the satisfaction that we cannot obtain a variant of Theorem 2 applicable to
nondeterministic setting.

Actually we conjecture that LTLC model-checking for nondeterministic pro-
grams is undecidable even for programs with only finite data types. The proof
of the conjecture is left for future work.

7 Related Work

LTLC model checking is a kind of temporal verification of higher-order programs,
which has been extensively studied [11,12,14,15,22]. The temporal properties of
higher-order programs have also been studied in the context of contracts, named
temporal higher-order contracts [7].

Alur et al. proposed a linear temporal logic called CARET [2], which is
designed for specifying properties for first-order programs modeled by Recur-
sive State Machines [3] and Pushdown Sytems [16]. Neither CARET nor LTLC
subsumes the other. On the one hand, CARET cannot describe properties of
higher-order functions, such as “a function argument of some function is even-
tually called.” On the other hand, CARET can describe caller properties such
as “a caller function of the function currently invoded is never returned,” which
cannot be expressed in LTLC. An extension of LTLC for specifying caller prop-
erties is left for future work. Alur and Madhusudan proposed Visibly Pushdown
Languages (VPL) [4], which can specify properties of function calls and returns,
and subsumes CARET. Like CARET, VPL is for first-order programs, not for
higher-order programs.

Recently Satake and Unno proposed a dynamic logic for higher-order pro-
grams, named HOT-PDL [22]. Their logic is not directly comparable to ours,
as their logic is for call-by-value programs. The gap can be partially filled by
applying the CPS translation, and the formulas in their logic can be translated
to LTLC formulas in many cases, although we need to extend LTLC by anony-
mous call operator call (β̃).ϕ to fully capture their logic. Many LTLC formulas
such as those in Example 2 and Sect. 4.3 cannot be expressed in HOT-PDL.

Applications of HORS model checking to program verification has been stud-
ied [11,12,14,15,17,18,22]. Decidability of resource usage verification has been
proved in [12] by using a program translation tailor-made for the resource usage
verification problem. The argument in Sect. 4.3 together with Theorem 4 gives
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another, more principled proof of the decidability result, although the current
argument proves only a partial result of [12].

8 Conclusion

We have proposed a temporal logic called LTLC, which is an extension of LTL
and can specify properties for call-by-name higher-order programs. Thanks to the
call operator, LTLC can describe properties of arguments of function currently
called. For example, LTLC can specify the order of function calls such as “the
first argument passed to the function f is called before the call of the second
argument passed to f.” We have shown that LTLC model checking is decidable
for a finite-data deterministic programs via a reduction to HORS model checking.

The most important future work is to prove the undecidability (possibly,
the decidability) of LTLC model checking for non-deterministic programs. To
further widen the scope of our method, it is worth extending LTLC for specifying
branching properties by embedding the call operator into CTL* or modal μ-
calculus.
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