
26th International Symposium, SAS 2019
Porto, Portugal, October 8–11, 2019
Proceedings

Static AnalysisLN
CS

 1
18

22
AR

Co
SS

Bor-Yuh Evan Chang (Ed.)



Lecture Notes in Computer Science 11822

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA



More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Bor-Yuh Evan Chang (Ed.)

Static Analysis
26th International Symposium, SAS 2019
Porto, Portugal, October 8–11, 2019
Proceedings

123



Editor
Bor-Yuh Evan Chang
University of Colorado
Boulder, CO, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-32303-5 ISBN 978-3-030-32304-2 (eBook)
https://doi.org/10.1007/978-3-030-32304-2

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-32304-2


Preface

This volume contains the proceedings of the 26th International Static Analysis
Symposium (SAS 2019) held on October 8–11, 2019 in Porto, Portugal as part of the
Third World Congress on Formal Methods.

Static analysis is widely recognized as a fundamental tool for program verification,
bug detection, compiler optimization, program understanding, and software mainte-
nance. The series of Static Analysis Symposia has served as the primary venue for the
presentation of theoretical, practical, and application advances in the area. Previous
symposia were held in Freiburg, New York, Edinburgh, Saint-Malo, Munich, Seattle,
Deauville, Venice, Perpignan, Los Angeles, Valencia, Kongens Lyngby, Seoul,
London, Verona, San Diego, Madrid, Paris, Santa Barbara, Pisa, Aachen, Glasgow, and
Namur.

SAS 2019 employed a double-blind reviewing process with an author-response
period. Within the review period, the Program Committee used an internal two-round
review process where each submission received three first-round reviews to drive the
possible selection of additional expert reviews as needed before the author response
period. All submissions received at least three reviews with over a third of the
submissions receiving four. The author response period was followed by a
one-and-a-half-week Program Committee discussion period with over 600 comments
generated and culminating in a synchronous, virtual Program Committee meeting on
June 12, 2019, to finalize the selection of papers.

New in 2019, SAS solicited papers on a trending topic in static analysis: the
emerging convergence of static analysis and machine learning. The conference
received 50 submissions, including nine Trends in Static Analysis papers. After
thoroughly evaluating the relevance and quality of each paper, the Program Committee
decided to accept 20 contributions, including two Trends in Static Analysis papers.

Authors were also encouraged to submit artifacts accompanying their papers to
strengthen evaluations and reproducibility of results in static analysis. The conference
received 13 submissions with artifacts of which five were accepted. Each of the
artifacts was evaluated by two or three members of the Artifact Evaluation Committee,
whose comments were available to the Program Committee.

We were also honored to include four invited talks by the following distinguished
researchers:

– Mayur Naik (University of Pennsylvania, USA) on “Rethinking Static Analysis by
Combining Discrete and Continuous Reasoning”

– Caterina Urban (Inria/ENS, France) on “Static Analysis of Data Science Software”
– Somesh Jha (University of Wisconsin-Madison, USA) on “Towards Semantic

Adversarial Examples”
– Suresh Jagannathan (Purdue University, USA) on “Learning Verifiers and

Verifying Learners”



SAS 2019 featured three associated workshops held on the day before the
conference, October 8, 2019:

– 10th Workshop on Static Analysis and Systems Biology (SASB 2019)

• Chairs: Pedro T. Monteiro (INESC-ID/IST - Universidade de Lisboa) and Jean
Krivine (CNRS)

– 10th Workshop on Tools for Automatic Program Analysis (TAPAS 2019)

• Chair: David Delmas (Airbus and Sorbonne Université)

– 8th Workshop on Numerical and Symbolic Abstract Domains (NSAD 2019)

• Chair: Laure Gonnord (Université de Lyon)

This program would not have been possible without the substantial efforts of many
people, whom we sincerely thank. The Program Committee, Artifact Evaluation
Committee, subreviewers, and external expert reviewers worked tirelessly to select the
strongest possible program while simultaneously offering constructive and supportive
comments in their reviews. The Organizing Committee of FM Week chaired by José
Nuno Oliveira (INESC TEC and University of Minho) were tremendous. We also
graciously thank the SAS Steering Committee for their leadership and timely advice.
Finally, we thank our platinum sponsor Google for supporting our invited speakers, as
well as Springer for bronze sponsorship and publishing these proceedings.

August 2019 Bor-Yuh Evan Chang
Hakjoo Oh

vi Preface



Organization

Program Chair

Bor-Yuh Evan Chang University of Colorado Boulder, USA

Program Committee

Josh Berdine Facebook, UK
Marc Brockschmidt Microsoft Research, UK
Yu-Fang Chen Academia Sinica, Taiwan
Roberto Giacobazzi Università di Verona, Italy
Ben Hardekopf University of California, Santa Barbara, USA
Thomas Jensen Inria, France
Ranjit Jhala University of California, San Diego, USA
Andy King University of Kent, UK
Shuvendu Lahiri Microsoft Research, USA
Akash Lal Microsoft Research, India
Francesco Logozzo Facebook, USA
Jan Midtgaard University of Southern Denmark, Denmark
Antoine Miné Sorbonne Université, France
Anders Møller Aarhus University, Denmark
David Monniaux VERIMAG/CNRS/Université Grenoble Alpes, France
Kedar Namjoshi Bell Labs, Nokia, USA
Sylvie Putot LIX, École polytechnique, France
Veselin Raychev DeepCode AG, Switzerland
Xavier Rival Inria/CNRS/ENS/PSL*, France
Sriram Sankaranarayanan University of Colorado Boulder, USA
Tachio Terauchi Waseda University, Japan
Aditya Thakur University of California, Davis, USA
Tomas Vojnar FIT, Brno University of Technology, Czech Republic
Kwangkeun Yi Seoul National University, South Korea
Xin Zhang Massachusetts Institute of Technology, USA
Florian Zuleger TU Wien, Austria

Artifact Evaluation Chair

Hakjoo Oh Korea University, South Korea

Artifact Evaluation Committee

François Bidet LIX, École polytechnique, France
Liqian Chen National University of Defense Technology, China



Mehmet Emre University of California, Santa Barbara, USA
John K. Feser Massachusetts Institute of Technology, USA
Kihong Heo University of Pennsylvania, USA
Maxime Jacquemin LIX, École polytechnique, France
Sehun Jeong Korea University, South Korea
Matthieu Journault Sorbonne Université, France
Yue Li Aarhus University, Denmark
Viktor Malik FIT, Brno University of Technology, Czech Republic
Suvam Mukherjee Microsoft Research, India
Abdelraouf Ouadjaout Sorbonne Université, France
Saswat Padhi University of California, Los Angeles, USA
Jiasi Shen Massachusetts Institute of Technology, USA
Gagandeep Singh ETH Zurich, Switzerland
Benno Stein University of Colorado Boulder, USA
Yulei Sui University of Technology Sydney, Australia
Tian Tan Aarhus University, Denmark
Xinyu Wang University of Texas at Austin, USA

Steering Committee

Bor-Yuh Evan Chang University of Colorado Boulder, USA
Andreas Podelski University of Freiburg, Germany
Francesco Ranzato University of Padoa, Italy
Xavier Rival Inria/CNRS/ENS/PSL*, France
Thomas Jensen Inria Rennes, France
Sandrine Blazy University of Rennes 1, France
Patrick Cousot New York University, USA

Additional Reviewers

Bjorner, Nikolaj
Ceska, Milan
Chevalier, Marc
Churchill, Berkeley
Darulova, Eva
Ghorbal, Khalil
Havlena, Vojtěch
Holik, Lukas
Katelaan, Jens

Kim, Jinyung
Lee, Woosuk
Lin, Hsin-Hung
Lång, Magnus
Maréchal, Alexandre
Pani, Thomas
Rogalewicz, Adam
Seed, Tom

viii Organization



Abstracts of Invited
Contributions



Towards Semantic Adversarial Examples

Somesh Jha

University of Wisconsin-Madison, USA
jha@cs.wisc.edu

Abstract. Fueled by massive amounts of data, models produced by
machine-learning (ML) algorithms, especially deep neural networks, are being
used in diverse domains where trustworthiness is a concern, including auto-
motive systems, finance, health care, natural language processing, and malware
detection. Of particular concern is the use of ML algorithms in cyber-physical
systems (CPS), such as self-driving cars and aviation, where an adversary can
cause serious consequences.

However, existing approaches to generating adversarial examples and
devising robust ML algorithms mostly ignore the semantics and context of the
overall system containing the ML component. For example, in an autonomous
vehicle using deep learning for perception, not every adversarial example for the
neural network might lead to a harmful consequence. Moreover, one may want
to prioritize the search for adversarial examples towards those that significantly
modify the desired semantics of the overall system. Along the same lines,
existing algorithms for constructing robust ML algorithms ignore the specifi-
cation of the overall system. In this talk, we argue that the semantics and
specification of the overall system has a crucial role to play in this line of
research. We present preliminary research results that support this claim.



Learning Verifiers and Verifying Learners

Suresh Jagannathan

Purdue University, West Lafayette, IN 47907, USA
suresh@cs.purdue.edu

Abstract. On the surface, modern-day machine learning and program verifica-
tion tools appear to have very different and contradictory goals - machine
learning emphasizes generality of the hypotheses it discovers over soundness
of the results it produces, while program verification ensures correctness of the
claims it makes, even at the expense of the generality of the problems it can
handle.

Nonetheless, it would also appear that machine learning pipelines have
much to offer program verifiers precisely because they are structured to extract
useful, albeit hidden, information from their subject domain. When applied to
software, data-driven methods may help discover facts and properties critical to
program verification that would otherwise require tedious human involvement to
state and prove. Conversely, program verification methods would seem to have
much to offer machine learning pipelines. Neural networks, the building blocks
of modern ML methods, are opaque and uninterpretible, characteristics that
make them vulnerable to safety violations and adversarial attacks. Suitably-
adapted verification methods may help to identify problematic behavior in these
networks, an indispensable need in safety-critical environments.

This talk explores two point instances to support these claims. Our first
example considers how machine learning tools can facilitate solutions to Con-
strained Horn Clauses (CHCs), a popular formalism for encoding verification
conditions that capture sophisticated safety properties. We demonstrate how
data-driven techniques can be used for efficient invariant discovery over com-
plex recursive CHCs in which the structure of the discovered invariants are
drawn from expressive feature spaces (e.g., polyhedra domains). Our second
example considers how program verification and synthesis tools can be used to
guarantee safety of reinforcement learning-based neural controllers. We suggest
a black-box technique that uses the neural network as an oracle to guide the
search for a similarly-behaving deterministic program, more amenable to veri-
fication, that is guaranteed to satisfy a desired safety specification. This program
can then be effectively used within a runtime monitoring framework as a safety
shield, overriding proposed actions of the network whenever such actions can
cause the system to violate safety conditions.

The results of these investigations give us confidence that there are sig-
nificant synergies to be had by judiciously combining learning and verification
techniques. We envision learners as a mechanism to complement the expres-
sivity of program verifiers by enabling improved efficiency and generality, while
verifiers can be used to guarantee the safety of machine learning artifacts
without compromising accuracy and utility.
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Rethinking Static Analysis by Combining
Discrete and Continuous Reasoning

Mayur Naik(B)

Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, USA

mhnaik@cis.upenn.edu

Abstract. Static analyses predominantly use discrete modes of logical
reasoning to derive facts about programs. Despite significant strides, this
form of reasoning faces new challenges in modern software applications
and practices. These challenges concern not only traditional analysis
objectives such as scalability, accuracy, and soundness, but also emerging
ones such as tailoring analysis conclusions based on relevance or severity
of particular code changes, and needs of individual programmers.

We advocate seamlessly extending static analyses to leverage contin-
uous modes of logical reasoning in order to address these challenges.
Central to our approach is expressing the specification of the static anal-
ysis in a constraint language that is amenable to computing provenance
information. We use the logic programming language Datalog as proof-
of-concept for this purpose. We illustrate the benefits of exploiting prove-
nance even in the discrete setting. Moreover, by associating weights with
constraints, we show how to amplify these benefits in the continuous
setting.

We also present open problems in aspects of analysis usability, lan-
guage expressiveness, and solver techniques. The overall process consti-
tutes a fundamental rethinking of how to design, implement, deploy, and
adapt static analyses.

Keywords: Static analysis · Constraint solving · Provenance ·
Probabilistic logics · Alarm ranking · Inductive logic programming

1 Introduction

Static analysis has made remarkable strides in theory and practice over the
decades since the seminal work of Cousot and Cousot on abstract interpretation
[10]. The practical impact of static analysis tools includes triumphs such as
Astrée [11] for verifying memory safety properties of C programs used in Airbus
controller software, SLAM [6] for verifying temporal safety properties that device
drivers on the Windows operating system must obey, Coverity [7] for checking
a wide variety of programming errors based on semantic inconsistencies in large
enterprise C/C++ applications, and Infer [9] for modularly checking various

c© Springer Nature Switzerland AG 2019
B.-Y. E. Chang (Ed.): SAS 2019, LNCS 11822, pp. 3–16, 2019.
https://doi.org/10.1007/978-3-030-32304-2_1
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4 M. Naik

safety properties of C, C++, Objective C, and Java code in Android and iOS
mobile applications.

At the same time, new programming languages with rich dynamic features,
such as Javascript and Python, and new software engineering practices such
as continuous integration and continuous deployment (CI/CD) are becoming
increasingly popular. These settings favor programmer productivity but pose
new challenges to static analysis, such as tailoring analysis conclusions based
on relevance or severity of code changes by individual developers in large teams
[19,30]. The resulting trend in the growth and diversity of software applications
is challenging even traditional objectives of static analysis, such as scalability,
accuracy, and soundness [21].

Static analyses predominantly use discrete modes of logical reasoning to
derive facts about programs: the facts and the process of deriving them are dis-
crete in nature. For instance, such analyses typically work by applying deductive
rules of the form A ⇒ B on program text. The undecidability of the static anal-
ysis problem lends such rules to be necessarily incomplete, deriving consequent
B which may be false even if antecedent A is true.

In this paper, we argue that leveraging continuous modes of logical reason-
ing opens promising avenues to address the above challenges. For instance, we
can extend the syntax of the above deductive rule with a real-valued weight
w ∈ [0, 1], and extend its semantics to the continuous domain, which allows to
selectively violate instances of the rule as well as associate a confidence score
with each derived fact. This enables to leverage inference procedures for conven-
tional probabilistic graphical models such as Bayesian networks [31] (e.g. [32])
or Markov Logic Networks (MLN) [35] (e.g. [24]). We can even learn the weights
and structure of the rules from (possibly partial or noisy) input-output data (e.g.
labeled alarms on program text) rather than being hand-engineered by human
experts. By replacing the traditional operations (∧, ∨) and values {true, false}
of the Boolean semiring with the corresponding operations (×, max ) and values
[0, 1] of the Viterbi semiring [14], we can leverage ideas from numerical relaxation
in optimization problems, such as Newton’s root-finding method, MCMC-based
random sampling, and stochastic gradient descent [36]. This opens the door to
the invention of new program approximations and to the customization of static
analyses by end-users.

Crucially, we advocate to seamlessly extend rather than replace existing meth-
ods, by synergistically combining discrete and continuous forms of logical rea-
soning in static analysis. In particular, we presume that the analysis is expressed
in a constraint language that is amenable to computing provenance information
in the form of proof trees that explain how the analysis derives output facts
(e.g., alarms) from input facts (e.g., program text). Such information allows
to answer questions such as whether a particular alarm is relevant to a par-
ticular code change in a continuously evolving codebase. Such information is
useful even in the discrete setting but its benefits are amplified in the con-
tinuous setting—for instance, allowing to answer questions such as the extent
to which an alarm is relevant to a code change. Throughout, we use the logic



Rethinking Static Analysis 5

programming language Datalog [1] as proof-of-concept for the constraint lan-
guage, since it suffices to express a wide range of analyses in the literature, and
efficient procedures exist for evaluating Datalog programs, computing prove-
nance information, and extending the Datalog language and solvers with capa-
bilities such as statistical relational models and mathematical optimization
procedures [3].

The rest of the paper is organized as follows. Section 2 illustrates the key
ingredients of our approach on the problem of improving the effective accuracy of
a static analysis by incorporating user feedback. Section 3 outlines the landscape
of challenges in static analysis where similar ideas are applicable and discusses
open problems. Finally, Sect. 4 concludes.

2 Illustrative Overview

We illustrate our approach using an example from [32] which applies a static
analysis to a multi-threaded Java program called Apache FTP server. Figure 1
shows a code fragment from the program. The RequestHandler class is used to
handle client connections. An object of this class is created for every incoming
connection to the server. The close() method is used to clean up and close
an open client connection, and the getRequest() method is used to access the
request field. Both these methods can be invoked from other parts of the pro-
gram by multiple threads in parallel on the same RequestHandler object.

Dataraces are a common and insidious kind of error that plague multi-
threaded programs. Since getRequest() and close() may be called on the same
RequestHandler object by different threads in parallel, there exists a datarace
between lines 10 and 20: the first thread may read the request field while the
second thread concurrently sets the request field to null.

On the other hand, even though the close() method may also be simul-
taneously invoked by multiple threads on the same RequestHandler object,
the atomic test-and-set operation on lines 13–16 ensures that for each object
instance, lines 17–24 are executed at most once. There is therefore no datarace
between the pair of accesses to controlSocket on lines 17 and 18, and similarly
no datarace between the accesses to request on lines 19 and 20, and so forth.

We may use a static analysis to find dataraces in this program. However,
due to the undecidable nature of the problem, the analysis may also report
alarms on lines 17–24. In the rest of this section, we illustrate how our approach
generalizes from user feedback to guide the analysis away from the false positives
and towards the actual datarace.

A Static Datarace Analysis. Fig. 1 shows a simplified version of the analysis
in Chord, a static datarace detector for Java programs [29]. The analysis is
expressed in Datalog as a set of logical rules over relations.

The analysis takes relations N (p1, p2), U(p1, p2), and A(p1, p2) as input, and
produces relations P(p1, p2) and R(p1, p2) as output. In all relations, variables
p1 and p2 range over the domain of program points. Each relation may be
visualized as the set of tuples indicating some known facts about the program.
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1 package org . apache . f t p s e r v e r ;
2
3 public class Reques tHand le r {
4 FtpReques t Imp l r e q u e s t ;
5 FtpWr i t e r w r i t e r ;
6 Buf f e r edReade r r e a d e r ;
7 Socket c o n t r o l S o c k e t ;
8 boolean i s C l o s e d ;
9 public FtpRequest ge tReques t ( ) {

10 return r e q u e s t ; // l0
11 }
12 public void c l o s e ( ) {
13 synchronized ( this ) { // l1
14 i f ( i s C l o s e d ) return ; // l2
15 i s C l o s e d = true ; // l3
16 }
17 c o n t r o l S o c k e t . c l o s e ( ) ; // l4
18 c o n t r o l S o c k e t = null ; // l5
19 r e q u e s t . c l e a r ( ) ; // l6
20 r e q u e s t = null ; // l7
21 w r i t e r . c l o s e ( ) ;
22 w r i t e r = null ;
23 r e a d e r . c l o s e ( ) ;
24 r e a d e r = null ;
25 }
26 }

Input relations:
N (p1, p2) (program point p1 is an immediate suc-

cessor of program point p2)

U(p1, p2) (no common lock guards program

points p1 and p2)

A(p1, p2) (instructions at program points p1 and

p2 may access the same memory loca-

tion, and constitute a possible datarace)

Output relations:
P(p1, p2) (different threads may reach program

points p1 and p2 in parallel)

R(p1, p2) (datarace may occur between different

threads while executing the instructions

at program points p1 and p2)

Analysis rules:
r1 : P(p1, p3) : - P(p1, p2),N (p2, p3),U(p1, p3)
r2 : P(p2, p1) : - P(p1, p2)
r3 : R(p1, p2) : - P(p1, p2),A(p1, p2)

Fig. 1. Java program and simplified static datarace analysis in Datalog.

For our example program, N (p1, p2) may contain the tuples N (l1, l2), N (l2, l3),
etc. While some input relations, such as N (p1, p2), may be directly obtained from
the text of the program being analyzed, other input relations, such as U(p1, p2)
or A(p1, p2), may themselves be the result of earlier analyses (in this case, a
lockset analysis and a pointer analysis, respectively).

The rules are intended to be read from right-to-left, with all variables uni-
versally quantified, and the : - operator interpreted as implication. For example,
the rule r1 may be read as saying, “For all program points p1, p2, p3, if p1 and p2
may execute in parallel (P(p1, p2)), and p3 may be executed immediately after
p2 (N (p2, p3)), and p1 and p3 are not guarded by a common lock (U(p1, p3)),
then p1 and p3 may themselves execute in parallel.”

Observe that the analysis is flow-sensitive, i.e. it takes into account the
order of program statements, represented by the relation N (p1, p2), but path-
insensitive, i.e. it disregards the satisfiability of path conditions and predicates
along branches. This is an example of an approximation to enable the analysis
to scale to large programs.

Applying the Analysis to a Program. To apply the above analysis to our
example program, one starts with the set of input tuples, and repeatedly applies
the inference rules r1, r2, and r3, until no new facts can be derived. Starting with
the tuple P(l4, l2), we show a portion of the derivation graph thus obtained in
Fig. 2. Each box represents a tuple and is shaded gray if it is an input tuple. Nodes
identified with rule names represent grounded clauses: for example, the node
r1(l4, l2, l3) indicates the “grounded instance” of the rule r1 with p1 = l4, p2 = l2,
and p3 = l3. This clause takes as hypotheses the tuples P(l4, l2), N (l2, l3), and
U(l4, l3), and derives the conclusion P(l4, l3), and the arrows represent these
dependencies.
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Observe that clause nodes are conjunctive: a rule fires iff all of its antecedents
are derivable. On the other hand, tuple nodes are disjunctive: a tuple is deriv-
able iff there exists at least one derivable clause of which it is the conclusion.
For instance, the tuple P(l6, l7) can be derived in one of two ways: either by
instantiating r1 with p1 = l6, p2 = l6, and p3 = l7 (as shown in Fig. 2), or by
instantiating r2 with p1 = l7 and p2 = l6 (not shown).

Observe that lines l4 and l2 can indeed execute in parallel, and the origi-
nal conclusion P(l4, l2), in Fig. 2, is true. However, the subsequent conclusion
P(l4, l3) is spurious, and is caused by the analysis being incomplete: the second
thread to enter the synchronized block will necessarily leave the method at
line l2. Among others, four subsequent false alarms—R(l4, l5), R(l5, l5), R(l6, l7),
and R(l7, l7)—result from the analysis incorrectly concluding P(l4, l3).

P(l4, l2) N (l2, l3) U(l4, l3)
r1(l4, l2, l3)

P(l4, l3) N (l3, l4) U(l4, l4)
r1(l4, l3, l4)

P(l4, l4) N (l4, l5) U(l4, l5)
r1(l4, l4, l5)

P(l4, l5) N (l5, l6) U(l4, l6)
r1(l4, l5, l6)

P(l4, l6)

r2(l4, l6)

P(l6, l4) N (l4, l5) U(l6, l5)
r1(l6, l4, l5)

P(l6, l5) N (l5, l6) U(l6, l6)
r1(l6, l5, l6)

P(l6, l6) N (l6, l7) U(l6, l7)
r1(l6, l6, l7)

P(l6, l7)

A(l4, l5)

r3(l4, l5)

R(l4, l5)

A(l6, l7)

r3(l6, l7)

R(l6, l7)

Fig. 2. A portion of the derivation graph obtained by applying the static datarace
analysis to the program in Fig. 1. The central focus of this section is following: if the
user identifies R(l4, l5) as a false alarm, then how should this affect our confidence in
the remaining alarms?

Quantifying Incompleteness using Probabilities. Incomplete analysis rules
are the principal cause of false alarms: although P(l4, l2), N (l2, l3), and U(l4, l3)
are all true, it is not the case that P(l4, l3). To address this problem, we relax
the interpretation of clause nodes, and treat them probabilistically:
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Pr(r1(l4, l2, l3) | h1) = 0.95, and (1)
Pr(¬r1(l4, l2, l3) | h1) = 1 − 0.95 = 0.05, (2)

where h1 = P(l4, l2) ∧ N (l2, l3) ∧ U(l4, l3) is the event indicating that all the
hypotheses of r1(l4, l2, l3) are true, and p1 = 0.95 is the probability of the clause
“correctly firing”. By setting p1 to a value strictly less than 1, we make it possible
for the conclusion of r1(l4, l2, l3), P(l4, l3) to still be false, even though all the
hypotheses in h1 hold.

In this new setup, as before, if any of the antecedents of r1(l4, l2, l3) is false,
then it is itself definitely false:

Pr(r1(l4, l2, l3) | ¬h1) = 0, and (3)
Pr(¬r1(l4, l2, l3) | ¬h1) = 1. (4)

We also continue to treat tuple nodes as regular disjunctions:

Pr(P(l6, l7) | r1(l6, l6, l7) ∨ r2(l7, l6)) = 1, (5)
Pr(P(l6, l7) | ¬(r1(l6, l6, l7) ∨ r2(l7, l6))) = 0, (6)

and treat all input tuples t as being known with certainty: Pr(t) = 1.
These rule probabilities can be learnt using an expectation maximization

(EM) algorithm from training data. For now, we associate the rule r3 with firing
probability p3 = 0.95, and r2 with probability p2 = 1. Finally, to simplify the
discussion, we treat P(l0, l1) and P(l1, l1) as input facts, with Pr(P(l0, l1)) = 0.40
and Pr(P(l1, l1)) = 0.60.

From Derivation Graphs to Bayesian Networks. By attaching conditional
probability distributions (CPDs) such as Eqs. 1–6 to each node of Fig. 2, we view
the derivation graph as a Bayesian network. Specifically, we perform marginal
inference on the network to associate each alarm with the probability, or belief,
that it is a true datarace. This procedure generates a list of alarms ranked
by probability, shown in Table 1a. For example, it computes the probability of
R(l4, l5) as follows:

Pr(R(l4, l5)) = Pr(R(l4, l5) ∧ r3(l4, l5)) + Pr(R(l4, l5) ∧ ¬r3(l4, l5))
= Pr(R(l4, l5) ∧ r3(l4, l5))
= Pr(R(l4, l5) | r3(l4, l5)) · Pr(r3(l4, l5))
= Pr(r3(l4, l5) | P(l4, l5) ∧ A(l4, l5)) · Pr(P(l4, l5)) · Pr(A(l4, l5))

= 0.95 · Pr(P(l4, l5)) = 0.954 · Pr(P(l4, l2))

= 0.958 · Pr(P(l1, l1)) = 0.398.

The user now inspects the top-ranked report, R(l4, l5), and classifies it as
a false alarm. The key idea underlying our approach is that generalizing from
feedback is conditioning on evidence. By replacing the prior belief Pr(a), for
each alarm a, with the posterior belief, Pr(a | ¬R(l4, l5)), our approach effec-
tively propagates the user feedback to the remaining conclusions of the analysis.
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This results in the updated list of alarms shown in Table 1b. Observe that the
belief in the closely related alarm R(l6, l7) drops from 0.324 to 0.030, while the
belief in the unrelated alarm R(l0, l7) remains unchanged at 0.279. As a result,
the entire family of false alarms drops in the ranking, so that the only true
datarace is now at the top.

The computation of the updated confidence values occurs by a similar pro-
cedure as before. For example:

Pr(R(l6, l7) | ¬R(l4, l5))

= Pr(R(l6, l7) ∧ P(l4, l5) | ¬R(l4, l5)) + Pr(R(l6, l7) ∧ ¬P(l4, l5) | ¬R(l4, l5))

= Pr(R(l6, l7) ∧ P(l4, l5) | ¬R(l4, l5)).

Next, R(l4, l5) and R(l6, l7) are conditionally independent given P(l4, l5) as it
occurs on the unique path between them. So,

Pr(R(l6, l7) ∧ P(l4, l5) | ¬R(l4, l5))
= Pr(R(l6, l7) | P(l4, l5)) · Pr(P(l4, l5) | ¬R(l4, l5))

= 0.955 · Pr(P(l4, l5) | ¬R(l4, l5)).

Finally, by Bayes’ rule, we have:

Pr(P(l4, l5) | ¬R(l4, l5)) =
Pr(¬R(l4, l5) | P(l4, l5)) · Pr(P(l4, l5))

Pr(¬R(l4, l5))

=
0.05 · 0.957 · 0.60

0.60
= 0.03.

Our prior belief in P(l4, l5) was Pr(P(l4, l5)) = 0.42, so that Pr(P(l4, l5) |
¬R(l4, l5)) � Pr(P(l4, l5)), but is still strictly greater than 0. This is because one
eventuality by which ¬R(l4, l5) may occur is for P(l4, l5) to be true, but for the
clause r3(l4, l5) to misfire. We may now conclude that Pr(R(l6, l7) | ¬R(l4, l5)) =
0.955 · 0.03 = 0.030.

The Interaction Model. In summary, given an analysis and a program to be
analyzed, our approach takes as input the set of tuples and grounded clauses
produced by the Datalog solver at fixpoint, and constructs the belief network.
Next, it performs Bayesian inference to compute the probability of each alarm,
and presents the alarm with highest probability for inspection by the user. The
user then indicates its ground truth, and our approach incorporates this feedback
as evidence for subsequent iterations.

There are several possible stopping criteria by which the user could cease
interaction, e.g., only inspect alarms with confidence higher than some threshold
p0, and stop once the confidence of the highest ranked alarm drops below p0;
or only inspect n alarms, and stop after n iterations. In all these situations, we
lose any soundness guarantees provided by the underlying analysis, but given
the large number of alarms typically emitted by analysis tools, this approach
strikes a useful tradeoff between accuracy and soundness.
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Table 1. List of alarms produced (a) before and (b) after the feedback ¬R(l4, l5).
Observe how the real datarace R(l0, l7) rises in ranking as a result of feedback.

(a) Pr(a).

Rank Belief Program points

1 0.398 l4, l5
2 0.378 l5, l5
3 0.324 l6, l7
4 0.308 l7, l7
5 0.279 l0, l7

(b) Pr(a | ¬R(l4, l5)).

Rank Belief Program points

1 0.279 l0, l7
2 0.035 l5, l5
3 0.030 l6, l7
4 0.028 l7, l7
5 0 l4, l5

3 A Taxonomy of Research Directions

In this section, we outline the landscape of challenges in static analysis, argue
how techniques similar to those in the preceding section can be used to address
them, and discuss open problems. We classify the landscape into three broad cat-
egories: (i) balancing analysis tradeoffs (Sect. 3.1), (ii) tailoring analysis results
(Sect. 3.2), and (iii) specifying and implementing analyses (Sect. 3.3). Note that
these challenges are agnostic of specific analyses and apply broadly to a variety
of different analyses.

3.1 Balancing Analysis Tradeoffs

The undecidability of the static analysis problem necessitates tradeoffs between
accuracy, cost, and soundness. We focus on two of the most common tradeoffs:
accuracy vs. cost, and accuracy vs. soundness.

Analysis Accuracy vs. Cost. This tradeoff concerns balancing the cost of
the program abstraction against the accuracy of the analysis result. A popular
paradigm to suitably strike this tradeoff is counterexample-guided abstraction
refinement (CEGAR).

In [39], we show how to enable CEGAR for arbitrary analyses specified in
Datalog. It uses a formulation of maximum satisfiability (MaxSAT), an optimiza-
tion extension of the Boolean satisfiability problem, wherein the hard constraints
encode provenance information relating analysis results (e.g. alarms) to abstrac-
tions, while the soft constraints encode the relative costs of different abstractions.
The objective is to either find the cheapest abstraction that suffices to prove a
program property of interest or show that no such abstraction exists.

Open problems in this space include supporting richer analyses, such as those
that employ widening, and considering not only the costs of different abstractions
but also their likelihood of success (e.g. [15]).

Analysis Accuracy vs. Soundness. This tradeoff concerns balancing the
accuracy of the analysis result against the soundness of the analysis. Arguably
the most common tradeoff struck by static analyses in practice, it incurs false
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positives as well as false negatives, unlike the accuracy vs. cost tradeoff which
only incurs false positives.

In [24] and [32], we show how to enable this tradeoff for arbitrary analyses
specified in Datalog. The approach in [32] was illustrated in Sect. 2 wherein
we perform marginal inference on a Bayesian network induced by provenance
constraints to rank alarms produced by the analysis. In [24], we employ a different
approach by performing MAP inference on a Markov Logic Network (MLN). The
main difference between the two approaches, besides the different probabilistic
models, is that we obtain a confidence score for each derived fact in [32], whereas
we obtain the “most likely world” in [24]. The former is more amenable to
user interaction both because it allows to rank analysis alarms and because
incorporating user feedback translates into conditioning on evidence (in contrast,
[24] requires additional constraints to propagate the user feedback).

Open problems in this space include how to transfer user feedback across
programs, providing a rigorous semantics of rule weights, and richer probabilistic
models which allow rule weights to depend on finer-grained program contexts.

3.2 Tailoring Analysis Results

A relatively recent area of exploration in static analysis concerns how to
improve usability by tailoring analysis results. We consider unguided vs. inter-
active approaches, batch vs. continuous approaches, classification vs. ranking
approaches, and different metrics for ranking.

Unguided vs. Interactive. Conventional static analyses are unguided in that
they cannot tailor results to individual users. As we illustrated in Sect. 2, con-
tinuous modes of logical reasoning allow analyses to incorporate and generalize
user feedback, but no longer guarantee soundness. Our earlier work [38] enables
interaction while preserving soundness, but does not generalize user feedback;
instead, the objective is to minimize the user burden by prioritizing questions
that maximize the alarms to be resolved. Even in this discrete setting, prove-
nance information is used to relate alarms to questions.

Open problems in this space include coping with noise inherent in interactive
approaches, how to generalize user feedback effectively within a program, and
how to transfer the knowledge learnt from interaction across programs.

Batch vs. Continuous Reasoning. Conventional static analyses operate in
batch mode in that different parts of the program are presumed to be equally
relevant to the user. However, in prevalent settings of continuous integration
and continuous deployment, the user is interested only in alarms relevant to
their code change [19,30].

In [16], we show how to compute differential provenance information between
two program versions in order to prioritize alarms relevant to the code change,
even in discrete modes of reasoning. Moreover, by incorporating continuous
modes of reasoning, we show how to amplify the benefits by ranking the alarms,
and by incorporating and generalizing user feedback.
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Open problems in this arena include how to guarantee the soundness of dif-
ferential analysis even in the discrete setting, and the related problem of what
code granularity to use for identifying the changes between two program versions
(e.g. AST-based vs. line-based).

Alarm Clustering vs. Ranking. Another dimension to tailor analysis results
is to cluster related alarms in order to reduce inspection effort. Provenance infor-
mation can be used to identify dependencies between alarms and cluster corre-
lated alarms together (e.g. [20]). However, clustering treats all alarms uniformly,
which is seldom useful in practice.

Ranking alarms on the other hand opens the door to different metrics to
prioritize alarms. We showed in Sect. 2 how continuous modes of reasoning can
be combined with provenance information to rank alarms based on ground truth.
However, alternative metrics of ranking are possible, such as relevance to code
changes, and alarm severity. An important open problem in this setting is how
to quantify severity.

3.3 Analysis Specification and Implementation

Another set of challenges concerns how to specify and implement constraint-
based analyses to effectively support the use-cases discussed above. We discuss
how to synthesize analyses automatically from data, expressiveness issues of the
language for specifying analyses, and capabilities required of analysis solvers.

Synthesizing Analyses from Data. The problem of synthesizing analyses
from input-output data (e.g., programs with labeled alarms) is motivated by
two reasons: first, allowing end-users to customize analyses to diverse settings,
and secondly, overcoming limitations of hand-engineered analyses that hinder
use-cases discussed above. For example, the effectiveness of generalizing user
feedback across alarms relies heavily on the quality of analysis rules, as rule
weights can only go so far to compensate for it.

In recent work [2,33,36], we have developed increasingly scalable approaches
to synthesize Datalog programs from input-output data. Provenance information
is crucial to scaling the approach in [33] which follows the counterexample-guided
inductive synthesis (CEGIS) paradigm for program synthesis. The key idea is
to use a Datalog solver to not only produce counterexamples for the candidate
Datalog program with respect to given input-output data, but also explain them
using “why” and “why-not” provenance. This in turn allows the iterative CEGIS
process to converge faster and scale better.

The Datalog synthesis problem can also be seen as an instance of the classic
Inductive Logic Programming (ILP) problem [26,28]. A key difference is that
ILP techniques focus on learning relations, often probabilistic ones, from vast
amounts of mined data, e.g., biological data [27]. On the other hand, in our
setting, and in a large class of synthesis techniques, the goal is to interactively
infer a program from a small, representative set of input-output examples.

Open problems in this arena include active learning to reduce the burden
on providing labeled data upfront, coping with noisy data, avoiding the need for
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syntactic rule templates, and synthesizing analyses with expressive features such
as invented predicates, recursion, negation, and aggregation. Note that coping
with noisy data is fundamentally necessary because, even if the data perfectly
captures the concrete semantics of program behavior, the synthesized analysis
must follow an abstract semantics that approximates the data.

Expressiveness of Analysis Language. The use of Datalog for static anal-
ysis dates back to Reps’s work on demand-driven analysis [34]. The desire to
express a wide variety of analyses in Datalog has led to extending the language
with features such as value construction, negation, aggregation, and higher-order
predicates. These extensions include LogicBlox’s LogiQL [3] which forms the
basis of the Doop static analysis framework [8], Semmle’s QL [5] which allows
Datalog programs to be written over the target program’s syntax, the higher-
order functional Datalog language Datafun [4], and Flix for specifying static
analyses [22]. Finally, many works extend the semantics of logic programming
to the continuous domain, such as Markov Logic Networks [35], ProbLog [12],
and its extensions such as DeepProbLog [25] and aProbLog [18].

Capabilities of Analysis Solvers. A benefit of constraint-based analysis lies
in the ability to leverage off-the-shelf solvers. The need for more expressive fea-
tures in the constraint language is counterbalanced by the need to efficiently
execute analyses specified in the language. Moreover, the use-cases discussed
above require features besides just efficient execution, notably efficient compu-
tation of provenance information. Efficient algorithms for “why” and “why not”
provenance for Datalog remain areas of active research [37,40], and notions of
provenance for more expressive logics are further beyond [13]. Finally, another
interesting direction of exploration is the integration of Datalog solvers with
solvers for other theories, such as SMT solvers [17] and solvers for mathematical
optimization (e.g. MaxSAT and Integer Linear Programming) [3,23].

4 Conclusions

We proposed a new approach to static analysis that builds upon the long-
standing constraint-based approach while providing fundamentally new capabil-
ities. The approach aims to seamlessly combine discrete and continuous modes
of logical reasoning. To this end, it relies on static analyses being specified in a
constraint language that is amenable to computing provenance information. We
showed how provenance plays a crucial role in a rich variety of applications of our
approach. Finally, we outlined a taxonomy of research directions and described
open problems in the field.
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Abstract. Data science software is playing an increasingly important
role in every aspect of our daily lives and is even slowly creeping into mis-
sion critical scenarios, despite being often opaque and unpredictable. In
this paper, we will discuss some key challenges and a number of research
questions that we are currently addressing in developing static analysis
methods and tools for data science software.

1 Introduction

Nowadays, thanks to advances in machine learning and the availability of vast
amounts of data, computer software plays an increasingly important role in
assisting or even autonomously performing tasks in our daily lives.

As data science software becomes more and more widespread, we become
increasingly vulnerable to programming errors. In particular, programming
errors that do not cause failures can have serious consequences since code that
produces an erroneous but plausible result gives no indication that something
went wrong. This issue becomes particularly worrying knowing that machine
learning software, thanks to its ability to efficiently approximate or simulate
more complex systems [22], is slowly creeping into mission critical scenarios1.

However, programming errors are not the only concern. Another important
issue is the vulnerability of machine learning models to adversarial examples
[39], that is, small input perturbations that cause the model to misbehave in
unpredictable ways. More generally, a critical issue is the notorious difficulty to
interpret and explain machine learning software2.

Finally, as we are witnessing widespread adoption of software with far-
reaching societal impact — i.e., to automate decision-making in fields such as
social welfare, criminal justice, and even health care — a number of recent
cases have evidenced the importance of ensuring software fairness and non-
discrimination3 as well as data privacy4. Going forward, data science software

1 https://www.airbus.com/innovation/future-technology/artificial-intelligence.html.
2 http://www.technologyreview.com/s/604087/the-dark-secret-at-the-heart-of-ai.
3 https://www.nytimes.com/2017/10/26/opinion/algorithm-compas-sentencing-bias.

html.
4 https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html.
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will be subject to more and more legal regulations (e.g., the European General
Data Protection Regulation adopted in 2016) as well as administrative audits.

It is thus paramount to develop method and tools that can keep up with
these developments and enhance our understanding of data science software and
ensure it behaves correctly and reliably. In this paper, we will discuss challenges
and a number of research questions that we are currently addressing in this area.

2 Key Challenges

A number of key challenges differentiate static analysis methods for data science
software from static analysis of regular software. We discuss them below.

Dirty Data. Data is often incorrect, inaccurate, incomplete, or inconsistent and
needs to be cleaned before it can be used. According to recent surveys, data
preparation occupies between 50% and 80% of the time of a data scientist5.
Moreover, data preparation code is the most fragile in a data science pipeline
as it generally heavily relies on implicit assumptions on the data. For this
latter reason, static analysis methods for data preparation code involve an
additional level of indirection compared to more classical static analysis that
infer properties about program variables.

Inscrutability. The behavior of machine learning models is poorly understood
[15]. Some mathematical properties of these models have been discovered [26]
but the mathematical theory generally still lacks behind. Therefore, static
analysis methods for machine learning have no semantics to build upon as in
traditional application scenarios, e.g. [11].

Meaningless Accuracy. The performance of machine learning models is mea-
sured by their accuracy on the testing data. However, this measure does not
provide any general guarantee on the model behavior on other, previously
unseen, data. Thus, static analysis methods for machine learning must be
data-independent, lest they remain limited to local properties, e.g., [14].

Lack of Specifications. It is often hard to formally specify the correct behav-
ior of a machine learning model, e.g., it is not obvious how to specify an
obstacle that a machine learning model should recognize6. Generally, some
specification is reconstructed at the system level, by combining together infor-
mation coming from multiple system components, e.g., from a machine learn-
ing model and multiple sensors. Similarly, without a formal specification to
refer to, static analysis methods also need to be decomposed, each component
dedicated to a well-identified property that can be formalized.

Scalability and Precision. Static analysis methods for machine learning mod-
els only need to handle relatively simple operations such as matrix multiplica-
tions and activation functions. However, scaling to certain model architectures

5 https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-
to-insights-is-janitor-work.html.

6 https://www.tesla.com/blog/tragic-loss.
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used in practice while retaining enough precision to prove useful proper-
ties, remains a challenge. To this end, new static analysis methods should
be designed that employ dedicated and clever partitioning strategies [34] or
specialized new (combinations of) abstract domains [37].

3 Research Questions

To address the above challenges we are currently working in the four main direc-
tions that we present below.

Implicit Assumptions on Data. Data preparation code is generally disre-
garded as glue code and, for this reason, is usually poorly tested. This, together
with the fact that this code is often written in a rush and is highly dependent on
the data (e.g., the use of magic constants is not uncommon for this kind of code),
greatly increases the likelihood for programming errors to remain unnoticed.

To address these issues, we have developed a static analysis that automati-
cally the infers implicit assumptions on the data that are embedded in the code.
Specifically, we infer assumptions on the structure of the data as well as on the
data values and the relations between the data. The analysis uses a combination
of existing abstract domains [7,8,29, etc.] extended to indirectly reason about
the data rather than simply reasoning about program variables.

The inferred assumptions can simply provide feedback on one’s expectations
on both the program and the data. Alternatively, they can be leveraged for test-
ing the data, e.g., via grammar-based testing [18]. Finally and more interestingly,
they can be used to automatically check and guide the cleaning of the data.

Data Usage. A common source of errors in data science software is data being
mistakenly ignored. A notable example is economists Reinhart and Rogoff’s
paper “Growth in a Time of Debt”, which was widely cited in political debates
and was later demonstrated to be flawed. Indeed, one of the flaws was a pro-
gramming error, which entirely excluded some data from the analysis [19]. Its
critics hold that this paper led to unjustified adoption of austerity policies in
the European Union [27]. The likelihood of data remaining accidentally unused
becomes particularly high for long data science pipelines.

In recent work [41], we have proposed a static analysis framework for auto-
matically detecting unused data. They key ingredient of the framework is the
notion of dependency between the data and the outcome of the program. This
yields a unifying framework that encompasses dependency-based analysis that
arise in many other contexts, such as secure information flow [38], program slic-
ing [42], as well as provenance and lineage analysis [5], to name a few.
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Algorithmic Bias. It is not difficult to envision that in the future most of the
decisions in society will be delegated to software. It is thus becoming increasingly
important to be able to detect whether the software is operating fairly or it is
reinforcing biases and perpetuating prejudices.

To this end, we have designed a general static analysis framework for proving
causal fairness [24]. Within this framework we have developed a scalable static
analysis for feed-forward multi-layer neural networks. The analysis is a combina-
tion of a forward and backward analysis; the forward analysis effectively splits
the analysis into independent parallelizable tasks and overall reduces the analy-
sis effort. One can tune the precision and cost of the analysis by adjusting the
size of the tasks and the total time allotted to the analysis. In this way, one can
adapt the analysis to the context in which it is being deployed and even make it
incremental, i.e., by resuming the tasks on which the analysis is imprecise once
more resources become available.

Global Robustness. Finally, we are working on generalizing the framework
discussed above to proving global robustness of machine learning models. Note
that this property is concerned with certifying the whole input space and is
thus much harder than local robustness [14,32]. Specifically, we are designing
a framework parametric in the chosen notion of (abstract) distance between
input data points. In order to scale to larger neural networks with more complex
architectures, we are studying new combinations of existing abstract domains
[28] as well as new specialized abstract domains.

4 Related Work

We now quickly survey some of the related work in the area, broadly defined.
The discussion is by no means exhaustive but only intended to suggest some
useful reference pointers for further exploration.

Spreadsheet Analyses. There has been considerable work on testing, analyzing,
and debugging spreadsheets [2,6,35, etc.]. These mostly target errors (e.g., type
errors) in the data rather than in the software (i.e., the spreadsheet formulas).

Adversarial Examples. Since neural networks were shown to be vulnerable to
them [39], a lot of work has been focused on constructing adversarial examples
[31,40, etc.] and harnessing them for adversarial training [16,20,30, etc.].

Robustness Analyses. Comparatively little work instead has been dedicated to
testing [32] and verifying [21,23,33, etc.] neural network robustness. The chal-
lenge remains to scale to large and complex network architectures used in prac-
tice, with a few recent notable exceptions, e.g., [14,37]. On the other hand,
robustness analyses for neural networks deal with much simpler control struc-
tures compared to regular programs [4,17,25, etc.].
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Fairness and Privacy. Work on testing and verifying other properties such as
fairness and privacy [1,10,13, etc.] is generally limited to standard machine learn-
ing software or rather small neural networks, with recent exceptions, e.g., [3].

Probabilistic Programs. Finally, data science programs can also be seen as prob-
abilistic programs, for which a vast literature exists [9,12,36, etc.]. We refer to
[36] for an in-depth discussion of the related work in this area.

5 Conclusion

We discussed the challenges and some of our progress in developing static anal-
yses for data science software. Much more work remains to be done and, as our
automated future presses for results, we hope that this exposition encourages
the formal methods community as a whole to contribute to this effort.
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Abstract. By distinguishing the fields of an object, Andersen’s field-
sensitive pointer analysis yields better precision than its field-insensitive
counterpart. A typical field-sensitive solution to inclusion-based pointer
analysis for C/C++ is to add positive weights to the edges in Andersen’s
constraint graph to model field access. However, the precise modeling is
at the cost of introducing a new type of constraint cycles, called positive
weight cycles (PWC s). A PWC , which contains at least one positive
weight constraint, can cause infinite and redundant field derivations of
an object unless the number of its fields is bounded by a pre-defined
value. PWC s significantly affect analysis performance when analyzing
large C/C++ programs with heavy use of structs and classes.

This paper presents Dea, a fast and precise approach to handling of
PWC s that significantly accelerates existing field-sensitive pointer anal-
yses by using a new field collapsing technique that captures the deriva-
tion equivalence of fields derived from the same object when resolving a
PWC .

Two fields are derivation equivalent in a PWC if they are always
pointed to by the same variables (nodes) in this PWC . A stride-based
field representation is proposed to identify and collapse derivation equiv-
alent fields into one, avoiding redundant field derivations with signifi-
cantly fewer field objects during points-to propagation. We have con-
ducted experiments using 11 open-source C/C++ programs. The eval-
uation shows that Dea is on average 7.1X faster than Pearce et al.’s
field-sensitive analysis (Pkh), obtaining the best speedup of 11.0X while
maintaining the same precision.

Keywords: Pointer analysis · Field-sensitive · Cycle elimination ·
Positive weight cycle

1 Introduction

Pointer analysis, which statically approximates the runtime values of a pointer,
is an important enabling technology that paves the way for many other pro-
gram analyses, such as program understanding, bug detection and compiler
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optimisations. Andersen’s analysis (or inclusion-based analysis) represents one
of the most commonly used pointer analyses for Java and C/C++ programs.
Field-sensitivity is an important precision enhancement that is naturally used in
Andersen’s analysis for analyzing Java [1–4], but is rarely used in many Ander-
sen’s analyses for C/C++ [5–9].

Fig. 1. A positive weight cycle example in Pearce’s field-sensitive analysis.

Developing field-sensitive analysis for C/C++ is much harder than that for
Java. The key difficulty, as also mentioned in [10,11], is that the address of a field
can be taken in C/C++ (via an address-of-field instruction q=&p→f), whereas
Java does not permit taking the address of a field. Accessing the value of a field in
Java is through the load/store instruction associated with an extra field specifier
in Java’s bytecode given its strongly-typed language feature. However, in the
C/C++ intermediate representation (e.g., LLVM IR), a load/store only accepts
a single pointer operand without a field specifier even for the reading/writing
values of a field. The address taken by the pointer operand needs to be computed
by the analysis itself to identify which field of an object the load/store may
access.

To simplify the complicated field-sensitivity in C/C++, the majority of the
works on Andersen’s analysis are field-insensitive (i.e., accessing a field of an
object is treated as accessing the entire object). One representative field-sensitive
analysis proposed by Pearce et al. [10] offers a field-index-based object mod-
eling, which distinguishes the fields of an object by their unique indices (with
nested structs expanded), yielding better precision than field-insensitive analysis
[10,11]. The approach extends Andersen’s inclusion constraints [12] to differen-
tiate an address-of-field instruction q=&p→fi from a simple copy instruction
q=p by adding a positive weight i to the field-insensitive constraint p ⊆ q to
obtain the field-sensitive one p + i ⊆ q, indicating that q points to i-th field
of an object o that p points to. In contrast, field-insensitive analysis imprecisely
assumes that p and q both point to object o based on the non-weighted constraint
p ⊆ q.

The field-sensitive points-to relations are resolved by computing the dynamic
transitive closure on top of the extended Andersen’s constraint graph, where
each node represents a variable and each edge denotes an inclusion constraint
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between two variables. One key challenge for field-sensitive analysis is to detect
and resolve a new type of cycles, called positive weight cycles (PWCS ) on the
constraint graph. A PWC is a cycle containing at least one positive weighted
constraint edge. A PWC differs from a normal constraint cycle (or non-PWC
containing only copy constraints) in two fundamental ways: (1) the points-to
sets of variables in a non-PWC are identical after constraint resolution, but the
points-to sets of variables in a PWC can be different, and (2) computing the
transitive closure of a non-PWC terminates once a fixed-point is reached, but a
PWC can cause infinite derivations unless a maximum number of fields of each
object is specified.

Figure 1 gives an example from [10, §4.1] to illustrate a PWC that incurs
infinite derivations during constraint resolution. Figure 1(b) gives the constraints
transformed from the code via Pearce et al.’s modeling [10]. Figure 1(c) shows
its corresponding constraint graph with a PWC containing a positive weighted
edge from p to q (p+1 ⊆ q) and a simple copy edge from q back to p (q ⊆ p).
An abstract object o allocated at line 3 is initially added to p’s points-to set.
Note that the object is modeled per allocation site (e.g., malloc) in Andersen’s
analysis. The constraint p+1 ⊆ q derives a new field object given each object
that p points to. The new object is then propagated back to p via q ⊆ p for a
new round of field derivation due to this PWC , resulting in infinitely deriving
fields o.f1, o.f1.f1, ... from the base object o.

To avoid infinite derivations, Pearce et al. [10] set a maximum number of fields
for each object to ensure that field access via an index is always within the scope
of an object. For a stack and global object, its number of fields can be statically
determined based on its declared types. However, a dynamically allocated heap
object may have an unknown number of fields and is thus assumed to have as
many as the largest struct in the program, causing redundant derivations.

To accelerate the constraint resolution, cycle elimination is a commonly used
technique that merges nodes within a cycle into one node if the point-to sets
of the nodes in this cycle are identical. However, the existing cycle elimination
approaches [5,6,13,14] in field-insensitive analysis can not be directly applied to
solve PWC s in field-sensitive analysis. Unlike nodes in a non-PWC , nodes in a
PWC may not have identical points-to sets, thus collapsing all nodes in a PWC
leads to precision loss. Collapsing only non-PWC s following previous algorithms
cannot solve the infinite derivation problem in field-sensitive analysis.

This paper presents Dea, a fast and precise approach to handling of PWC s
in field-sensitive Andersen’s analysis. Rather than cycle elimination, we present
a field collapsing technique to solve PWC s by capturing derivation equivalence.
Two fields derived from the same object are derivation equivalent when solving
a PWC if these fields are always pointed to by the same variables (nodes) in
this PWC . A new stride-based field representation (Sfr) is proposed to identify
and collapse derivation equivalent fields when field-sensitive constraints.

Our handling of PWC s significantly boosts the performance of existing field-
sensitive analysis (e.g., [10] proposed by Pearce et al.), while achieving the
same precision. By capturing derivation equivalence, Dea avoids redundant field
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derivations with greatly reduced overhead during points-to propagation, making
constraint solving converge more quickly. Our precision-preserving handling of
PWC s can be easily integrated into existing Andersen’s field-sensitive analy-
ses, and is also complementary to the state-of-the-art cycle elimination methods
for non-PWC s. Our evaluation shows that Dea on average achieves a speed
up of 7.1X over Pkh equipped with a recent cycle elimination technique, wave
propagation [6] for analyzing 11 open-source large-scale C/C++ programs.

Table 1. Analysis domains, LLVM instructions, and constraint edges

The key contributions of this paper are:

– We present a fast and precise handling of positive weight cycles to significantly
boost the existing field-sensitive Andersen’s analysis by capturing derivation
equivalence when solving PWC s.

– We propose a new stride-based field abstraction to identify and collapse a
sequence of derivation equivalent fields.

– We have implemented Dea in LLVM-7.0.0 and evaluated using 11 real-world
large C/C++ programs. The results show that Dea on average is 7.1X faster
than Pearce et al.’s field-sensitive analysis with the best speedup of 11.0X.

2 Background and Motivating Example

This section introduces the background of field-sensitive Andersen’s analysis,
including program representation, abstract object modeling and inference rules.
We then give a motivating example to explain the key idea of derivation equiv-
alence when resolving PWC s.

2.1 Program Representation and Field-Sensitive Analysis

We perform our pointer analysis on top of the LLVM-IR of a program, as
in [11,15–18]. The domains and the LLVM instructions relevant to field-sensitive
pointer analysis are given in Table 1. The set of all variables V is separated into
two subsets, A = O∪F which contains all possible abstract objects and their
fields, i.e., address-taken variables of a pointer, and P which contains all top-
level variables, including stack virtual registers (symbols starting with “%”) and
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global variables (symbols starting with “@”) which are explicit, i.e., directly
accessed. Address-taken variables in A are implicit, i.e., accessed indirectly at
LLVM’s load or store instructions via top-level variables.

After the SSA conversion, a program is represented by five types of instruc-
tions: p = &o (AddrOf), p = q (Copy), p = &q → fi (Field or Address-of-field)
p = ∗q (Load) and ∗p = q (Store), where p, q ∈ P and o ∈ O. Top-level variables
are put directly in SSA form, while address-taken variables are only accessed indi-
rectly via Load or Store. For an AddrOf p=&o, known as an allocation site, o is a
stack or global variable with its address taken or a dynamically created abstract
heap object (e.g., via malloc()). Parameter passings and returns are treated as
Copys.

Fig. 2. C code fragment and its
LLVM IR.

Fig. 3. The flattened fields with their unique
indices (i.e., o.f0, o.f1, o.f2, o.f3, ... ) for
object o of type struct A.

Figure 2 shows a code fragment and its corresponding partial SSA form,
where p, q, t1, t2 ∈ P and a, b, c ∈ A. Note that a is indirectly accessed at a
store ∗p = t1 by introducing a top-level pointer t1 in the partial SSA form.
Complex statements such as ∗p=∗q are decomposed into basic instructions by
introducing a top-level pointer t2.

Our handling of field-sensitivity is ANSI-compliant [19]. For each struct allo-
cation e.g., p = &o, a field-insensitive object o is created to represent the
entire struct object. The fields of a struct are distinguished by their unique
indices [10,11] with the fields of nested structs flattened as illustrated in Fig. 3.
A field object denoted by o.fi is derived from o when analyzing Field q=&p→fi
(LLVM’s getelementptr instruction), where fi denotes the i-th field of o and i is
a constant value. Following [10], the address of o is modeled by the address of
its first field with index 0. All other fields are modeled using distinct subobjects.
Two pointer dereferences are aliased if one refers to o and another refers to one
of its fields e.g., o.fi, since it is the sub component of o. However, dereferences
refer to distinct fields of o (e.g., o.f2 and o.f3) which are distinguished and not
aliased.

For a C pointer arithmetic (e.g., q = p+j), if p points to a struct object o, we
conservatively assume that q can point to any field of this struct object, i.e., the
entire object o. This is based on the assumption that the pointer arithmetic is
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not across the boundary of the object. Similar to previous practices for analyzing
C/C++, the analysis can be unsound if a pointer arithmetic used to access an
aggregate object is out of the boundary or arbitrary castings between a pointer
and an integer. Arrays are treated monolithically, i.e., accessing any element of
an array is treated as accessing the entire array object.

In Andersen’s analysis [12], resolving the points-to sets pts(v) of a variable v is
formalized as a set-constraint problem on top of the constraint graph G = 〈V,E〉,
where each node v ∈ V represents a variable, and an edge e ∈ E between two
nodes represents one of the five types of constraints (Table 1). Figure 4 gives
the inference rules of field-sensitive analysis, which solves a dynamic transi-
tive closure on G by propagating points-to information following the estab-
lished Copy/Field edges and by adding new Copy edges until a fixed-point is
reached [12].

Fig. 4. Inference rules of Pearce et al.’s field-sensitive Andersen’s analysis

2.2 A Motivating Example

Figure 5 gives an example to show the redundant derivations when solving a
PWC on the constraint graph by Pkh [10] (Pearce et al.’s field-sensitive analy-
sis) based on its inference rules (Fig. 4). We illustrate how our idea captures the
derivation equivalence by using a stride-based representation to collapse fields
which are always pointed to by all the pointers in this PWC . The example con-
sists of five types of constant edges corresponding to the five types of instructions
in Table 1 with one PWC involving nodes p1 and p2. Pointer r initially points
to o ([ADDROF]). The points-to set of p2 has the field o.f1 derived from the
object o when resolving p2

Field1←−−−r ([FIELD-1]). Since p1
Field2←−−−p2 and p2

Copy←−−p1
form a PWC with a positive weight +2, a sequence of field objects starting
from o.f3 with a stride 2 are iteratively derived and added into p1’s points-to set
([FIELD-2]) and then propagated back to p2 ([COPY]). These field objects are
derivation equivalent because all the fields are always pointed to by both p1 and
p2 in this PWC , incurring redundant derivations. Even worse, the edgep1

Store←−−−q1
flowing into and the edge q2

Load←−−p1 going out of this PWC add redundant Copy

edges (e.g., o.f3
Copy←−−q1 and q2

Copy←−−o.f3)) based on [STORE] and [LOAD], causing
redundant points-to propagation, as also illustrated in Fig. 5(a).
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To avoid redundant field derivations and unnecessary Copy edges when
resolving Load and Store. Our idea is to merge derivation equivalent fields
into a stride-based polynomial representation o.fi+ks, where i is the starting
field, s is the stride corresponding to the weight of the PWC , and k ∈ N.
Figure 5(b) illustrates the new representation o.f3+2k for collapsing equivalent
fields {o.f3, o.f5, ...} in Fig. 5(a). The new representation successfully reduces
the number of points-to targets during points-to propagation and the number
of Copy edges added into the constraint graph when solving Store/Load edges,
while maintaining the same precision, i.e., the points-to sets of r, p1, p2 (after
expanding the fields based on the polynomial representation) are identical to
those produced by Pkh.

Fig. 5. A motivating example.

3 Our Approach

This section details our approach to handling of PWC s in field-sensitive pointer
analysis, including the stride-based field abstraction to represent derivation
equivalent fields and the inference rules based on the new field representation.

3.1 Stride-Based Field Representation

Definition 1 (Stride-based Field Representation (SFR)). We use σ =
〈o, i, S〉 to denote a single object or a sequence of fields in Pearce et al.’s modeling
starting from i-th field following the strides in S. The field expansion of 〈o, i, S〉
is as follows:

FX(〈o, i, S〉)=

⎧
⎪⎪⎨

⎪⎪⎩

{o} if S =∅ ∧ i=0

{o.fj

∣
∣
∣j = i+

|S|∑

n=1

knsn, j ≤ max, kn∈N, sn∈S} otherwise
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where max denotes the maximum number of fields of object o and sn is the
n-th element of the stride set S which models precisely field derivations when
a Field edge resides in one or multiple PWC s. We use 〈o, 0, ∅〉 to represent the
entire object o and its single field o.fi is denoted by 〈o, i, {0}〉. Sfr unifies the
notations of an object and its fields. The expansion of an Sfr fully represents
the objects and fields in Pearce et al.’s modeling, while it reduces the number
of points-to targets during constraint solving. Two Sfrs can be disjointed or
overlapping (Definition 2).

Fig. 6. Inference rules of our approach

Definition 2 (Overlapping and disjointed SFRs). Two Sfrs are overlap-
ping, denoted as σ�σ′ = ∅ if σ = σ′ or two different Sfrs derived from the same
object o have at least one common field, i.e., FX(〈o, i, S〉) ∩ FX(〈o, i′, S′〉) = ∅.
A special case is the subset relation between two overlapping Sfrs, denoted as
σ � σ′, i.e., FX(〈o, i, S〉)⊆FX(〈o, i′, S′〉). We say that two Sfrs are disjointed
if σ � σ′ = ∅.
Example 1 (Field expansion). The expanded fields of 〈o, 1, {2}〉 are FX(σ) =
{o.f1, o.f3, o.f5...}. Likewise, the fields represented by 〈o, 1, {5, 6}〉 are FX(σ)=
{o.fj | j =1 + 5k1 + 6k2, k1, k2∈N}={o.f1, o.f6, o.f7, o.f11, o.f12, ...}.

3.2 Inference Rules

Figure 6 gives the inference rules of our field-sensitive points-to analysis based
on the stride-based field representation for resolving the five types of constraints.
Object and field nodes on the constraint graph are now represented by the unified
Sfrs. Rule [E-ADDROF] initializes the points-to set of p with object o represented
by 〈o, 0, ∅〉 (Definition 1) for each p AddrOf←−−−−o. Similar to [COPY] in Fig. 4, [E-COPY]
simply propagates the points-to set of u to that of v when analyzing v

Copy←−−u.

Definition 3 (Path and cycle). A path u
∗⇐= v on the constraint graph G =

〈V,E〉 is a sequence of edges leading from v to u. A path v
∗⇐=v is called a closed

path. A closed path v
∗⇐=v is a cycle if all its edges are distinct and the only node

to occur twice in this path is v.
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Definition 4 (Weight of a PWC). A PWC, denoted as C, is a cycle contain-
ing only Copy and Field edges and at least one edge is a Field with a positive
weight. The weight of C is WC =

∑
e∈C wte, where e is a Field or Copy and

wte is its weight (wte is 0 if e is a Copy). The set of weights of all the PWCs
containing e is {WC | ∀C ⊆E : e ∈ C}

Fig. 7. Solving the Field edge p2
Field2←−−−p1 which involves in multiple PWC s

Unlike rule [FIELD-1] and [FIELD-2] in Fig. 4 which generate a single field
object when analyzing p Fieldi←−−−q, [E-FIELD] generates an Sfr σ=〈o, j+w,S∪S′〉
representing a sequence of fields starting from (i+j)-th field following strides
S ∪ S′, where S′ = {0} if p Fieldi←−−−q is not involved in any PWC , otherwise S′ =
{WC | ∀C ⊆ E : (p Fieldi←−−−q) ∈ C}, a set of the weights of all the positive weight
cycles with each C containing p Fieldi←−−−q on the constraint graph (Definitions 3
and 4). If p Fieldi←−−−q is involved in multiple PWC s, σ is derived to collapse as many
equivalent fields as possible by considering the set of weights S′ of all the PWC s
containing p Fieldi←−−−q. The premise of [E-FIELD] ensures that σ represents the
derivation equivalent fields such that the targets added to the points-to sets of
all these fields are always identical when solving each cycle C. The conclusion of
[E-FIELD] ensures early termination and avoids redundant derivations, since an
Sfr σ can only be generated and added to pts(p) if there no Sfr σ′ already exists
in pts(p) such that σ′ can represent σ, i.e., σ � σ′ (Definition 2). Examples 2
and 3 give two scenarios in which a Field edge resides in single and multiple
PWC s.

Example 2 ([E-FIELD] for a single PWC). Let us revisit our motivating exam-
ple in Fig. 5 to explain [E-FIELD]. The Field edge p2

Field1←−−−r is not involved in
any PWC , therefore, [E-FIELD] generates an Sfr σ = 〈o, 1, {0}〉 with S′ ={0},
representing only field o.f1 and it then adds σ into pts(p2). Together with
p2

Copy←−−p1, the second Field edge p1
Field2←−−−p2 ∈ C forms a positive weight cycle C
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with its weight WC = 2. A new Sfr σ = 〈o, 1 + 2, {0} ∪ {2}〉 = 〈o, 3, {0, 2}〉 is
derived and added into pts(p1) given 〈o, 1, {0}〉 ∈ pts(p2). The Sfr 〈o, 3, {0, 2}〉
is then propagated back to p2. In the second iteration for resolving p1

Field2←−−−p2,
the newly derived Sfr 〈o, 5, {0, 2}〉 is discarded and not added into pts(p1) since
〈o, 5, {0, 2}〉 can be represented by 〈o, 3, {0, 2}〉, i.e., a subset relation 〈o, 5, {0, 2}〉
� 〈o, 3, {0, 2}〉 (Definition 2) holds.

Example 3 ([E-FIELD] for multiple PWCs). Figure 7 compares Dea with Pkh
to show that [E-FIELD] requires significantly fewer field derivations to resolve
p2

Field2←−−−p1 when it is involved in two PWC s, i.e., cycle C1 formed by p1 and
p2, and C2 formed by p1, p2, q2 and q1. The weights of C1 and C2 are 2 and 3
respectively, therefore S′ ={2, 3}. Initially, p1 points to σ1= 〈o, 1, {0}〉, which is
propagated to p1 along p1

Copy←−−r. We first take a look at resolving C1. A new Sfr
σ2=〈o, 1+2, {0} ∪ {2, 3}〉=〈o, 3, {0, 2, 3}〉 is derived and added to pts(p2) when
analyzing p2

Field2←−−−p1, as shown in Fig. 7(a). σ2 is then propagated back and added
to pts(p1) along p1

Copy←−−p2. The second iteration for analyzing p2
Field2←−−−p1 avoids

adding 〈o, 5, {0, 2, 3}〉 because it is a subset of σ2, into pts(p2), resulting in early
termination. Similarly, when resolving C2 which contains two Field edges, Dea

generates σ3 = 〈o, 3+1, {0, 2, 3}〉 when analyzing q1
Field1←−−−q2 and then propagates

σ3 to p1. Given this new σ3 in pts(p1), 〈o, 4+1, {0, 2, 3}〉 is derived when again
analyzing p2

Field2←−−−p1 in C2. However, 〈o, 4+1, {0, 2, 3}〉, which is a subset of σ2,
is not added to pts(p2). Note that though σ2 and σ3 are overlapping due to the
intersecting PWC s, σ2 successfully captures the equivalent fields that are always
pointed by p1, p2, q2 and σ3 captures the equivalent fields that are always pointed
by p1, q1, avoiding redundant derivations. For each PWC , Dea generates only
one Sfr, requiring at most two iterations to converge the analysis. In contrast,
Pkh performs redundant derivations until it reaches the maximum number of
fields of this object, as also illustrated in Fig. 7(b).

Let us move to rules [E-LOAD] and [E-STORE]. Unlike [STORE] and [LOAD]

in Fig. 4, our handling of Store and Load is asymmetric for both efficiency and
precision-preserving purposes. For p Store←−−−q, [E-STORE] is similar to [STORE] by
propagating pts(q) to pts(σ), where σ is pointed to by p. For an Sfr σ pointed to
by q atp Load←−−q, [LOAD] propagates the points-to set of any σ′ which overlaps with
σ (Definition 2) to pts(p). This is because a field o.fi in Pkh may belong to one or
multiple Sfrs. For example, in Fig. 7, o.f6 belongs to σ2 and σ3 when resolving a
Field edge which is involved in multiple cycles or in one PWC containing multiple
Field edges. We use Mo.fi to denote a set of all Sfrs containing o.fi, i.e., any
two Sfrs in Mo.fi share common fields including at least o.fi. According to
Definition 1, any change to the point-to sets of σ ∈ Mo.fi also applies to those of
o.fi during our constraint resolution. If ∗q at a Load refers to an Sfr σ, it also
refers σ′ ∈ Mo.fi that overlaps with σ for each field o.fi ∈ FX(σ) (Definition 2).
Therefore, [LOAD] maintains the correctness that pts(o.fi) obtains the union of
the points-to sets of all Sfrs in Mo.fi . Since a points-to target in pts(σ) must
be in the points-to set of every field in FX(σ) (i.e, for any σ ∈ Mo.fi , pts(σ) is
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always a subset of pts(o.fi)), ensuring that no spurious points-to targets other
than pts(o.fi) will be propagated to p at the Load. Thus, our handling of PWC s
is precision preserving, i.e., the points-to set of a variable after field expansion
resolved by Dea is the same as that of Pkh.

Example 4 ([E-LOAD] and [E-STORE]). Figure 8 illustrates the resolving of
p Store←−−−q andr Load←−−p with the initial points-to sets pts(p)={σ1}, pts(q)={σ3} and
pts(σ2)={σ4}. σ1 and σ2 are both derived from object o with overlapping fields,
e.g., o.f4, as highlighted in orange in Fig. 8. When resolvingp Store←−−−q, [E-STORE]
adds a new Copy edge σ1

Copy←−−q, propagating σ3 ∈ pts(q) to pts(σ1), but not
pts(σ2) though σ1 � σ2 = ∅. This avoids, for example, introducing the spurious
target σ3 to the points-to set of o.f2 (in green), which only resides in σ2 but not
in σ1. In contrast, [E-LOAD] resolves r Load←−−p by adding two Copy edges r

Copy←−−σ1

and r
Copy←−−σ2, as also depicted in Fig. 8. Since σ1�σ2 = {o.f4, ....} and σ1 ∈ pts(p),

if ∗p at Load r=∗p refers to an overlapping field e.g., o.f4 shared by σ1 and σ2,
the points-to set of r is the union of pts(σ1) and pts(σ2), i.e., pts(r) = {σ3, σ4},
achieving the precise field-sensitive results.

Fig. 8. Resolving Store p Store←−−−q and Load r Load←−−p for overlapping Sfrs (Color figure
online)

3.3 An Algorithm

Our precision-preserving handling of PWC s (i.e., the inference rules in Fig. 6)
can be integrated into existing constraint solving algorithms for field-insensitive
Andersen’s analysis, e.g., the state-of-the-art cycle elimination approaches [5,6,
13,14]. This section gives an overall algorithm of our approach by instantiating
our inference rules on top of wave propagation [6], a constraint solving strategy
with better or comparable performance as HCD/LCD [5] for analyzing large size
programs.

In Algorithm 1, all the AddrOf edges are processed only once to initialize the
worklist W (lines 2–5), followed by a while loop for the main phase of constraint
solving, which has three phases.

(1) SCC (strongly connected component) detection and weight calculation for
PWC s (lines 7–9). We use Nuutilia et al.’s algorithm [20] to detect SCCs,
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Algorithm 1. An Algorithm
1 Function Dea (G = 〈V, E〉)
2 W := ∅; Wind := ∅
3 for each e : v AddrOf←−−−o ∈ E do
4 〈o, 0, ∅〉 ∈ pts(v)
5 W .push(v) �[E-ADDROF]

6 while W �= ∅ do
7 Compute SCC on G using Nuutilia’s algorithm [20]
8 Collapse nodes in one SCC that contains only Copy edges
9 Calculate WC for each cycle in SCCs

10 while W �= ∅ do
11 v := W .pop front()

12 for each u
Copy←−−v ∈ E do

13 pts(v) ⊆ pts(u)
14 if pts(u) changed then
15 W .push(u)

�[E-COPY]

16 for each u
Fieldi←−−−v ∈ E do

17 S′ :=Strides(u
Fieldi←−−−v)

18 for each 〈o, j, S〉 ∈ pts(v) do
19 σ :=〈o, i+j, S∪S′〉
20 if � σ′ ∈ pts(u) : σ 	 σ′ then
21 σ ∈ pts(u)
22 W .push(u)

�[E-FIELD]

23 if ∃ v Store←−−−u ∈ E or ∃ u Load←−−v ∈ E then
24 push v into Wind

25 while Wind �= ∅ do
26 q := Wind.pop front()

27 for each v Store←−−−u ∈ E do
28 for each σ ∈ pts(v) do

29 if σ
Copy←−−u then

30 E := E ∪ σ
Copy←−−u

31 W .push(u)

�[E-STORE]

32 for each u Load←−−v ∈ E do
33 for each σ′ ∈ {σ′ � σ �= ∅|σ ∈ pts(v)} do

34 if u
Copy←−−σ′ then

35 E := E ∪ u
Copy←−−σ′

36 W .push(σ′)

�[E-LOAD]

37 for each u
Copy←−−v added by UpdateCallgraph do

38 W .push(v)
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which is an improvement over the original algorithm developed by Tarjan
et al. [21]. The weight WC of each positive weight cycle C is then calculated
given the detected SCCs.

(2) Points-to propagation along Copy and Field edges (lines 10–24). We propa-
gate points-to information along each Copy edge based on [E-COPY] (lines
12–15). New Sfrs are derived and added to the points-to sets of the destina-
tion node of each Field edge based on [E-FIELD] (lines 16–22). A variable v
is pushed into a new worklist Wind if there exists an incoming Store edge to
v or an outgoing Load edge from v for later handling of Loads/Stores (lines
23–24)

(3) Processing Store and Load edges (lines 25–36). New Copy edges are added to
G, and the source node of each newly added Copy edge is added to worklist
W for points-to propagation in the next iteration. Lines 37–38 update the
callgraph by creating new Copy edges (e.g., u

Copy←−−v) for parameter/return
passings when a new callee function is discovered at a callsite using the
points-to results of function pointers obtained from this points-to resolution
round. The source node v of the Copy edge is added to W to be processed
in the next iteration until a fixed point is reached, i.e., no changes are made
to the points-to set of any node.

Table 2. Basic characteristics of the benchmarks (IR’s lines of code, number of point-
ers, number of five types of instructions on the initial constraint graph, and maximum
number of fields of the largest struct in each program).

LOC #Pointers MaxFields #Field #Copy #Store #Load #AddrOf

git-checkout 1253K 624K 302 93201 88406 41620 60723 33380

json-conversions 355K 264K 64 27685 36557 37960 36872 43448

json-ubjson 330K 233K 64 24064 35813 34577 26288 34165

llvm-as-new 729K 597K 121 307167 77944 287634 41960 17435

llvm-dwp 1796K 897K 632 100877 101849 116205 142943 121541

llvm-objdump 728K 353K 121 61117 57743 56493 40314 16767

opencv perf core 1014K 715K 64 122744 192419 59599 79466 24450

opencv test dnn 889K 635K 64 105550 174080 52304 70332 22786

python 539K 420K 171 84779 74524 49215 56434 18340

redis-server 706K 374K 332 52178 60111 24542 39205 13175

Xalan 2192K 807K 133 110184 181804 35940 68812 53926

Other field-sensitive analyses (e.g., Pkh [10]) can also be implemented under
the same constraint solving algorithm by simply replacing the lines for handling
the five types of constraints with the inference rules in Fig. 4.

4 Experimental Evaluation

The objective of our evaluation is to show that our field-sensitive analysis is
significantly faster than Pearce et al.’s analysis (Pkh) yet maintains the same
precision in analyzing large size C/C++ programs.
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4.1 Implementation and Experimental Setup

Our approach is implemented on top of LLVM-7.0.0 and its sub-project SVF [18,
22,23]. A state-of-the-art constraint resolution algorithm, wave propagation [6] is
used for cycle detection and computing dynamic transitive closures on top of the
same constraint graph for both Pkh and Dea. Indirect calls via function pointers
are resolved on-the-fly during points-to resolution. A C++ virtual call p→foo()
is translated into four low-level LLVM instructions for our pointer analysis. (1)
a Load vtptr=∗p, obtaining virtual table pointer vtptr by dereferencing pointer
p to the object, (2) a Field vfn=&vtptr→ idx, obtaining the entry in the vtable
at a designated offset idx for the target function, (3) a Load fp=∗vfn, obtaining
the address of the function, and (4) a function call fp(p). Following [22,24,25], a
white list is maintained to summarize all the side-effects of external calls (e.g.,
memcpy, xmalloc and Znwm for C++ new) [26].

To evaluate the effectiveness of our implementation, we chose 11 large-
scale open-source C/C++ projects downloaded from Github, including
git-checkout (a sub project of Git for version control), json-conversions
and json-ubjson (two main Json libraries for modern C++ environment,
version 3.6.0), llvm-as-new and llvm-dwp (tools in LLVM-7.0.0 compiler),
opencv perf core and opencv test dnn (two main libraries in OpenCV-
3.4), python (version 3.4.2) and redis-server (a distributed database server,
version 5.0). The source code of each program is compiled into bit code files
Clang-7.0.0 [27] and then linked together using WLLVM [28] to produce whole
program bc files.

Table 2 collects the basic characteristics about the 11 programs before the
main pointer analysis phase. The statistics include the LLVM IR’s lines of code
(LOC) of a program, the number of pointers (#Pointers), the number of fields
of the largest struct in the program, also known as the maximum number of
fields using the upper bound for deriving fields of a heap object, and the num-
ber of each of the five types of constraint edges in the initial constraint graph.
The reason that #Field is not much smaller than #Copy is twofold (1) Field
refers to LLVM’s getelementptr instruction, which is used to get the addresses
of subelements of aggregates, including not only structs but also arrays and
nested aggregates (Fig. 3). (2) In low-level LLVM IR, a Copy only refers to an
assignment between two virtual registers, such as casting or parameter passing
(Sect. 2.1). An assignment “p = q” in high-level C/C++ is not translated into
a Copy, but a Store/Load manipulated indirectly through registers on LLVM’s
partial SSA form.

All our experiments were conducted on a platform consisting of a 3.50 GHz
Intel Xeon Quad Core CPU with 128 GB memory, running Ubuntu Linux (kernel
version 3.11.0).

4.2 Results and Analysis

Table 3 compares Dea with Pkh for each of the 11 programs evaluated in terms
of the following three analysis results after constraint resolution, the total num-
ber of address-taken variables (#AddrTakenVar), the total number of fields
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derived when resolving all Field edges (#Field), and the number of fields derived
only when resolving Field edges involving PWC s (#FieldByPWC ). Both Dea
and Pkh use LLVM Sparse Bitvectors as the points-to set implementa-
tion. The peak memory usage by Dea is 7.33G observed in git-checkout. Dea
produces identical points-to results as those by Pkh, confirming that Dea’s
precision is preserved.

From the results produced by Pkh, we can see that the number of fields (Col-
umn 4 in Table 3) occupies a large proportion of the total address-taken variables
(Column 2) in modern large-scale C/C++ programs. On average, 72.5% of the
address-taken variables are field objects. In programs git-checkout (written
in C) and json-ubjson (written in C++) with heavy use of structs and classes,
the percentages for both are higher than 80%. In 8 of the 11 programs, over 50%
of the fields are derived from PWC s.

Columns 4–5 of Table 3 compare the total number of field objects produced
by Pkh and Dea respectively. Columns 6–7 give more information about the
number of fields derived only when resolving PWC s by Pkh and Dea, we can
see that these fields are significantly reduced by Dea with an average reduc-
tion rate of 86.6%, demonstrating that Dea successfully captured the derivation
equivalence to collapse a majority of fields into Sfrs when resolving PWC s.

Table 3. Comparing the results produced by Dea with those by Pkh, including the
total number of address-taken variables, number of fields and the number of fields
derived when resolving PWC s, and the number of Copy edges connected to/from the
field object nodes derived when resolving PWC s

#AddrTakenVar #Field #FieldByPWC
Pkh Dea Pkh Dea Pkh Dea

git-checkout 135576 73967 121574 59965 68045 6436
json-conversions 62397 40993 40943 19539 22330 926
json-ubjson 60721 34987 49211 23477 27000 1266
llvm-as-new 24427 16124 19304 11001 9770 1467
llvm-dwp 145247 91945 109650 56348 62383 9081
llvm-objdump 16130 12007 11235 7112 5119 996
opencv perf core 60625 44061 40196 23632 18894 2330
opencv test dnn 53064 37957 35177 20070 17366 2259
python 30848 23713 21530 14395 9531 2396
redis-server 13109 9581 8165 4637 4234 706
Xalan 90314 62859 61466 34011 32226 4771
Max reduction 45.4% 52.3% 95.9%
Average reduction 32.4% 44.4% 86.6%
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Fig. 9. Percentages of fields derived when solving PWC s out of the total number of
fields, i.e., #FieldByPWC

#Field
* 100 (Color figure online)

Figure 9 further compares Dea with Pkh in terms of percentages of fields
derived from resolving PWC s out of the total number of fields for the 11 pro-
grams. The average percentage of 51.1% in Pkh (blue line) is reduced to only
11.7% (orange line) in Dea with a reduction of 39.4%.

Table 4. Constraint graph information (#NodeInPWC denotes the number of nodes
involving PWC s by Pkh; #SFR denotes the number of stride-based field representa-
tives, generated by Dea; #CopyByPWC, denotes the number of Copy edges flowing
into and going out of fields derived when solving PWC s; #CopyProcessed denotes the
number of processing times of Copy edges.)

#NodeInPWC #SFR #CopyByPWC #CopyProcessed
Pkh Dea Pkh Dea Pkh Dea

git-checkout 2840 2172 12372 2046 3868834 1128617
json-conversions 3631 1641 13490 2622 2253266 319960
json-ubjson 4271 1753 4311 1037 5621768 575884
llvm-as-new 1752 2085 9739 2789 2513940 688238
llvm-dwp 7263 1463 15062 2128 2802988 779424
llvm-objdump 1581 1761 7105 2013 2177990 647582
opencv perf core 1373 2030 4948 1973 4800563 655095
opencv test dnn 1007 777 4008 1577 5095795 460127
python 3817 1942 8530 3854 3495769 971376
redis-server 2783 1405 3380 1408 1288753 390783
Xalan 4874 2909 21935 7671 5143418 1554627
Max reduction 85.9% 91.0%
Avg. reduction 70.3% 77.3%
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In git-checkout, json-conversions and json-ubjson, Dea
achieves over 90% reduction in solving PWC s because these programs have
relatively large numbers of address-taken variables (Table 3) and relatively more
nodes involving PWC s (Table 4). On average, over 85% of redundant field deriva-
tions involving PWC s are avoided with the maximum reduction rate of 95.9%
in json-conversions, confirming the effectiveness of our field collapsing in
handling PWC s.

Table 4 gives the constraint graph information after points-to resolution. Col-
umn 2 lists the number of nodes involving PWC s by Pkh. For each Sfr σ
generated by Dea, Column 3 gives the numbers of Sfrs generated by Dea.
The average numbers of overlapping Sfrs for the 11 programs evaluated are
all below 1, which means that the majority of the Sfrs either represent a sin-
gle object/field or represent a sequence of fields that do not overlap with one
another.

Columns 4–5 give the numbers of Copy edges flowing into and going out of
field nodes derived when resolving PWC s by Pkh and Dea respectively. Dea on
average reduces the Copy edges in Column 4 by 70.3% with a maximum reduction
rate of 85.9% Columns 6–7 give the number of processing times of Copy edges
during points-to propagation by the two approaches. Since the number of Copy
edges is significantly reduced by Dea, the processing times of Copy edges are
reduced accordingly with an average/maximum reduction rate of 77.3%/91.0%.

Table 5 compares Dea with Pkh in terms of the overall analysis times and
the times collected for each of the three analysis phases. The total pointer anal-
ysis time consists of three major parts, as also discussed in Algorithm 1, and

Table 5. Total analysis times and the times of the three analysis stages, including
CycleDec cycle detection (Lines 7–9 of Algorithm 1), PtsProp, propagating point-to
information via Copy and Field edges (Lines 11–24), ProcessLdSt, adding new Copy
edges when processing Loads/Stores (Lines 25–36)

CycleDec PtsProp ProcessLdSt TotalTime Speed

Pkh Dea Pkh Dea Pkh Dea Pkh Dea up

git-checkout 3117.8 4600.0 138233.5 26668.1 3870.21472.5 145221.6 32740.6 4.4

json-conversions 4436.2 561.6 12248.2 939.2 17.6 11.5 16702.0 1512.3 11.0

json-ubjson 25.1 6.0 18635.2 1817.3 52.4 23.2 18712.7 1846.6 10.1

llvm-as-new 22.6 11.9 10920.4 1728.9 541.9 221.2 11484.9 1962.0 5.9

llvm-dwp 3134.1 1457.7 120654.4 22177.2 1671.2 747.5 125459.8 24382.4 5.1

llvm-objdump 22.2 22.2 10617.3 2158.4 254.8 109.7 10894.4 2290.2 4.8

opencv perf core 338.5 299.3 30049.9 3018.5 2125.5 991.7 32513.9 4309.5 7.5

opencv test dnn 67.0 64.2 3145.5 248.8 366.1 122.2 3578.6 435.2 8.2

python 51.6 18.8 167556.9 22674.4 939.9 474.8 168548.3 23168.0 7.3

redis-server 525.1 428.6 11088.3 1315.2 99.8 49.8 11713.2 1793.5 6.5

Xalan 412.3 118.1 146617.8 21729.4 352.5 218.1 147382.7 22065.6 6.7

Average speedup 7.1
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Fig. 10. Comparing the time distribution of the three analysis phases of Dea with
that of Pkh (normalized with Pkh as the base). (Color figure online)

comprises (1) cycle detection, (2) propagating point-to sets via Copy and Field
edges, and (3) processing Stores and Loads by adding new Copy edges into
the constraint graph. Overall, Dea has a best speed up of 11.0X (observed in
json-conversions) with an average speed up of 7.1X among the 11 programs.

Figure 10 gives the analysis time distributions of the three analysis phases
in Table 5 for both Pkh and Dea, where the phases are highlighted in differ-
ent colors. The time cost of PtsProp (Columns 4–5) occupies a large percentage
in resolution time by Pkh. This is because PtsProp in field-sensitive pointer
analysis needs to perform heavy set union operations for handling both Copy
and Field edges. Worse, PWC s which need to be fully resolved by Pkh incur a
large number of redundant field derivations and unnecessary Copy edges until
a pre-defined maximum number is reached, resulting in high analysis overhead
in the PtsProp phase. In contrast, as depicted in Fig. 10, the analysis overhead
introduced by PtsProp is greatly reduced by Dea, though it occupies a notice-
able portion of the total analysis time, showing that Dea effectively cuts down
the overhead introduced by PWC s (i.e., redundant points-to propagation, and
unnecessary Copy edges connecting to/from derivation equivalent fields) to help
constraint resolution converge more quickly.

5 Related Work

Andersen’s inclusion-based analysis [12] is one of the most commonly used
pointer analyses. Resolving points-to relations in Andersen’s analysis is formal-
ized as a set-constraint problem by computing a dynamic transitive closure on
top of the constraint graph of a program. The majority of works on Andersen’s
analysis for C/C++ programs are field-insensitive [1,5,6,13,14,29]. Faehndrich
et al. [29] introduced a partial online cycle elimination while processing complex
constraints (e.g., Load/Store) and demonstrated that cycle detection is critical
for scaling inclusion-based pointer analysis. Heintze and Tardieu [13] proposed a
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new field-based Andersen’s analysis that can analyze large-scale programs with
one million lines of code. Compared to field-sensitive analysis, field-based anal-
ysis imprecisely treats all instances of a field as one. For example, o1.f and o2.f
are treated as one variable f , even if o1 and o2 are two different base objects
allocated from different allocation sites.

To reduce the overhead of repeatedly finding cycles on the constraint graph
during points-to resolution, Lazy Cycle Detection [5] triggers an SCC detection
only when a visited Copy edge whose source and destination node have the
same point-to information during points-to propagation. In addition to the on-
line cycle elimination techniques, a number of preprocessing techniques, such as
Offline Variable Substitution [30] and HVN [7], have also been proposed. The
techniques explore pointer and location equivalence to reduce the size of the
constraint graph for subsequent pointer analysis without losing any precision.
Hybrid Cycle Detection [5] presented a hybrid cycle elimination algorithm by
combing linear-time offline preprocessing with online cycle detection to further
accelerate constraint resolution. Pereira et al. [6] proposed Wave Propagation by
separating the constraint resolution of Andersen’s analysis into three stages, i.e.,
collapsing of cycles, points-to propagation and insertion of new edges. The three
phases are repeated until no more changes are detected in the constraint graph.
The approach differentiates the existing (old) and new points-to information of a
pointer to reduce set union overhead on an acyclic constraint graph in topological
order during points-to propagation.

Field-sensitive analysis distinguishes fields of a struct object improving its
field-insensitive counterpart [10,11,31–34]. The challenges of field-sensitivity in
for C/C++ is that the address of a field can be taken, stored to some pointer
and later read at an arbitrary load. To tackle this challenge, Pearce et al. [10]
proposes Pkh, a representative field-sensitive analysis by employing a field-
index-based abstraction modeling in which the fields of an object are distin-
guished using unique indices. The Andersen’s constraint graph is extended by
adding a new Field constraint to model address-of-field instructions for deriv-
ing fields during constraint resolution. Miné [34] presented a field- and array-
sensitive analysis that translates field and array accesses to pointer arithmetic
in the abstract interpretation framework. LPA [35] presented a loop-oriented
pointer analysis for automatic SIMD vectorization. DSA [31] supports field-
sensitivity using byte offsets object modeling, however, the approach is based on
Steensgarrd’s unification-based analysis, using a coarser abstract object/points-
to than Andersen’s analysis.

cclyzer [11] presents a precision enhancement approach to Pearce’s field-
sensitive analysis (Pkh) by lazily inferring the types of heap objects by leverag-
ing the type casting information to filter out spurious field derivations. cclyzer
improves the precision of Pkh in the presence of factory methods and heap allo-
cation wrappers in a program, achieving the heap cloning results without explicit
context-sensitivity, but at the expense of more analysis time since an order of
magnitude more type-augmented objects are introduced into the analysis. Rather
than sacrificing performance to enhance analysis precision, Dea maintains the
same precision as Pkh, but significantly reduces its analysis overhead by fast
and precise handling of positive weight cycles, a key challenge in field-insensitive
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pointer analysis. Our approach is also complementary to other cycle elimination
resolution algorithms and fits well into existing constraint resolution frameworks
for Andersen’s analysis.

6 Conclusion

This paper presents a fast and precise handling of positive weight cycles to signif-
icantly boost the existing field-sensitive Andersen’s analysis by capturing deriva-
tion equivalence. A new stride-based field abstraction is proposed to represent
a sequence of derivation equivalent fields when resolving PWC s. Dea has been
implemented in LLVM-7.0.0 and evaluated using 11 real-world large C/C++
programs. The evaluation results show that Dea on average is 7.1X faster than
Pearce et al.’s field-sensitive analysis with the best speedup of 11.0X.
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Abstract. We address the problem of verifying the temporal safety of
heap memory at each pointer dereference. Our whole-program analysis
approach is undertaken from the perspective of pointer analysis, allow-
ing us to leverage the advantages of and advances in pointer analysis to
improve precision and scalability. A dereference ω, say, via pointer q is
unsafe iff there exists a deallocation ψ, say, via pointer p such that on
a control-flow path ρ, p aliases with q (with both pointing to an object
o representing an allocation), denoted Aψ

ω(ρ), and ψ reaches ω on ρ via
control flow, denoted Rψ

ω(ρ). Applying directly any existing pointer anal-
ysis, which is typically solved separately with an associated control-flow
reachability analysis, will render such verification highly imprecise, since
∃ρ.Aψ

ω(ρ) ∧ ∃ρ.Rψ
ω(ρ) � ∃ρ.Aψ

ω(ρ) ∧ Rψ
ω(ρ) (i.e., ∃ does not distribute

over ∧). For precision, we solve ∃ρ.Aψ
ω(ρ) ∧ Rψ

ω(ρ), with a control-flow
path ρ containing an allocation o, a deallocation ψ and a dereference
ω abstracted by a tuple of three contexts (co, cψ, cω). For scalability, a
demand-driven full context-sensitive (modulo recursion) pointer analysis,
which operates on pre-computed def-use chains with adaptive context-
sensitivity, is used to infer (co, cψ, cω), without losing soundness or pre-
cision. Our evaluation shows that our approach can successfully verify
the safety of 81.3% (or 93,141

114,508
) of all the dereferences in a set of ten C

programs totalling 1,166 KLOC.

1 Introduction

Unmanaged programming languages such as C/C++ still remain irreplaceable
in developing performance-critical systems such as operating systems, databases
and web browsers. Such languages, however, suffer from memory safety issues.
While spatial errors (e.g., buffer overflows) result in disastrous consequences
(e.g., crashes, data corruption, information leakage, privilege escalation and
control-flow hijacking), their temporal counterparts have also been shown to be
c© Springer Nature Switzerland AG 2019
B.-Y. E. Chang (Ed.): SAS 2019, LNCS 11822, pp. 48–72, 2019.
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equally deadly [28,54]. In particular, verifying absence of dangling pointer deref-
erences, an important temporal heap safety (referred to TH-safety hereafter), is
thus desirable.

A quite flourishing research thread focuses on separation logic [15,42,59],
which enables precise shape analysis for pointer-based data structures. Much
research effort has been devoted to improving scalability and automation of
separation-logic-based verification [13,58]. In particular, bi-abduction [8] empow-
ers separation-logic-based verification to generate program specifications auto-
matically for large programs with millions of lines of code, in a compositional
manner rather than as a whole-program analysis. However, one of its inevitable
downsides (from the perspective of whole-program analysis) is the loss of pre-
cision due to a maximum size limit imposed on disjunctions of pre-conditions
manipulated in order to improve performance [7,8].

Memory errors can also be found by other techniques, such as data-
flow analysis [14,41] and model checking [24,26,38]. Notably, pointer anal-
ysis [25,31,45,47,49,62] has recently made significant strides, providing a
solid foundation for developing many pointer-analysis-based static analyses for
detecting memory errors [9,30,44,56,57,60]. In this paper, we present a fully-
automated pointer-analysis-based approach, called D3 (a Disprover of Dangling
pointer Dereferences), to verifying absence of (i.e., disproving presence of) dan-
gling pointers on a per dereference basis. Compared to separation-logic-based
approaches, our approach tackles this verification task from a different angle.
Instead of focusing on reasoning about a variety of pointer-based data struc-
tures precisely in separation logic, we focus on reasoning about pointer alias-
ing and control-flow reachability context-sensitively in a whole-program setting
on-demand.

Challenges. We highlight three challenges, from the perspective of pointer
analysis:

Challenge 1: Modeling the Triple Troublemakers. A TH-safety violation
involves three distinct program locations, an allocation o (representing an
allocation site), a deallocation ψ and a dereference ω , which must be all
modelled precisely.
Challenge 2: Resolving Aliases. A dereference ω (via pointer q) is unsafe iff
there exists a deallocation ψ (via pointer p) such that on a control-flow path
ρ, p aliases with q (with both pointing to an object o), denoted Aψ

ω(ρ), and ψ
reaches ω on ρ via control flow, denoted Rψ

ω(ρ). Pointer aliasing, a well-known
difficult static analysis problem, must be solved to guarantee both soundness
and precision scalably for large programs. For the TH-safety verification, this
is particularly challenging. Any existing k-limited context-sensitive pointer
analysis that scales for large programs [25,45] (where k ≤ 3 currently) is not
precise enough (as o, ψ and ω can often span across more than three func-
tions). In addition, off-the-shelf pointer analyses provide the alias information
between ψ and ω but are oblivious to the control-flow reachability information
from ψ to ω (even if solved flow-sensitively), causing potentially a significant
precision loss, since ∃ρ.Aψ

ω(ρ)∧∃ρ.Rψ
ω(ρ) � ∃ρ.Aψ

ω(ρ)∧Rψ
ω(ρ) (i.e., ∃ does not
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distribute over ∧). Thus, increasing precision in our verification task requires
pointer analysis to be not only more precise (with longer calling-contexts)
but also synergistic with control-flow reachability analysis.
Challenge 3: Pruning the Search Space. To achieve high precision, a fine
abstraction of control-flow paths (e.g., with adequate context-sensitivity) is
required, but at a risk for causing path explosion. Furthermore, the presence
of a large number of deallocation-dereference (ψ, ω) pairs that need to be
checked further exacerbates the problem. Pruning the search space without
any loss of precision is essential.

Our Solution. In this paper, we present a whole-program analysis approach
that verifies TH-safety for each dereference ω. Specifically, ω is considered safe
iff there exists no deallocation ψ such that the pair (ψ, ω) causes a dangling
pointer dereference at ω.

To meet Challenge 1, we model this verification problem context-sensitively
with three contexts. We identify an allocation o, a deallocation ψ (via pointer
p) and a dereference ω (via pointer q) by a context tuple (co, cψ, cω) so that
⟪co, o⟫ represents a context-sensitive heap object, i.e, an object o created under
co, (cψ, p) deallocates what is pointed to by p under cψ, and (ω, q) dereferences
pointer q under context cω. We verify TH-safety with respect to (o, ψ, ω) by
disproving the presence of a control-flow path that contains a context tuple,
(co, cψ, cω), such that ⟪co, o⟫, once deallocated at (cψ, p), is still accessed subse-
quently at (cω, q) along the path.

To meet Challenge 2, we introduce a demand-driven pointer analysis that
automatically infers the context information in pointer aliases so that the result-
ing alias analysis can correlate with an associated control-flow reachability anal-
ysis as required. Given a pointer p at a deallocation (resp. a pointer q at a deref-
erence) without any context given, our pointer analysis will infer a context cψ

(resp. cω), together with a context-sensitive object ⟪co, o⟫, such that the context-
sensitive pointer (cψ, p) (resp. (cω, q)) points to ⟪co, o⟫, implying that ∃ρ.Aψ

ω(ρ).
In addition, cψ and cω are also required to satisfy the control-flow reachability
constraint ∃ρ.Rψ

ω(ρ) simultaneously so that ∃ρ.Aψ
ω(ρ)∧Rψ

ω(ρ) holds. This avoids
false positives that satisfy Rψ

ω and Aψ
ω only for two distinct paths, respectively,

which happens when ∃ρ.Aψ
ω(ρ) ∧ ∃ρ.Rψ

ω(ρ) � ∃ρ.Aψ
ω(ρ) ∧Rψ

ω(ρ). Finally, points-
to queries are raised on-demand by traversing pre-computed def-use chains (in
order to improve efficiency) and by supporting full context-sensitivity (modulo
recursion) to transcend k-limiting (in order to improve precision).

To meet Challenge 3, we make our context-sensitive analysis adaptive. A
context tuple (co, cψ, cω) is reduced to (c′

o, c
′
ψ, c′

ω) if co, cψ and cω share a
common prefix cpre, so that co = cons(cpre, c

′
o), cψ = cons(cpre, c

′
ψ), and

cω = cons(cpre, c
′
ω), where cons denotes string concatenation. This adaptive

analysis aims to reduce exponentially many prefixes starting from main(), which
would otherwise significantly impede scalability.
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Fig. 1. A small unmanaged imperative language.

Contributions. This paper makes the following main contributions:

• We propose a fully automated approach to TH-safety verification on a per
dereference basis, with a precise context-sensitive model, which enables a
control-flow path to be abstracted by three contexts for its allocation, deallo-
cation and dereference. This provides a balanced trade-off between precision
and scalability.

• We present a static whole-program analysis that solves this three-point ver-
ification problem in the presence of both data-dependence and control-flow
constraints. To this end, we develop a demand-driven pointer analysis with
full context-sensitivity (modulo recursion) that automatically infers the con-
text information required.

• We present an adaptive context-sensitive policy for TH-safety verification that
automatically truncates redundant context prefixes without losing soundness
or precision. This enables our approach to scale to some large real-world
programs.

• We have implemented D3 in LLVM and evaluated it using a suite of ten real-
world programs. Our results show that D3 scales to hundreds of KLOC, with
a capability of verifying 81.3% of all the 114,508 dereferences to be safe.

2 Preliminaries

We describe our techniques using a small language in Fig. 1. Function definitions
and statements are identified by their labels or line numbers. The language
is standard. Pointers are propagated via copy (x = y), load (x = ∗y), store
(∗x = y) and address-taking (x = &y) statements; heap objects are allocated
and deallocated by malloc() and free(), respectively; the callee of a function
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call (x = fp(�y)) is specified by a function pointer (fp) with its parameters (�y)
passed by value (as in LLVM-IR); and ret, if and while represent standard
return, branching and looping statements.

As with previous work [8,34,36,58], we currently do not handle concurrent
programs.

Inter-Procedural Control-Flow Graph (ICFG). This is a directed graph
(N,E), where each node n ∈ N represents a statement and each edge e =
(src, dst) ∈ E represents the control flow from statement src to statement dst.
In particular, if e represents a function call/return, then e is labeled with the
corresponding call-site ID κ.

Contexts. Given any statement in function f , a calling context (or context, for
short) c = [κ1, κ2, ..., κn] is a sequence of n call-site IDs in their invocation order
that uniquely specifies an abstract call-path to f on the ICFG of the program.

Allocation, Deallocation and Dereference. A context-sensitive (abstract)
object, denoted ⟪co, o⟫, represents the set of concrete objects created at alloca-
tion site o under context co. We write ψ(cψ, lψ, p) to signify a context-sensitive
deallocation of the object pointed to by p at line lψ under context cψ. Similarly,
a context-sensitive dereference ω(cω, lω, q) accesses the object pointed to by q at
line lω under context cω. Context-insensitively, these notations are simplified to
o, ψ(lψ, p) and ω(lω, q), respectively.

Pointer Analysis. A context-sensitive pointer analysis conservatively computes
a function ptcs : C × V → 2C×O that relates each context-sensitive pointer
(c, v) ∈ C × V to the set of context-sensitive objects ⟪co, o⟫ ∈ C × O pointed to
by (c, v). A pointer analysis is formulated by a set of inference rules that can be
solved using a standard fixed-point algorithm. Andersen-style [4] subset-based
context-insensitive pointer analysis pt : V → 2O is given in Fig. 2. P�s� signifies
that statement s appears in program P.

We consider only field-sensitive pointer analysis techniques. As with previ-
ous techniques [6,22,39,58], we assume that our programs are ANSI-compliant
that are devoid of buffer overflows and data misalignments. Arrays are handled
monolithically. Any access to a member of an array or struct object with a stat-
ically unknown offset is viewed to be a non-deterministic operation on the given
object (soundly but imprecisely).

TH-Safety Violation. A context-sensitive TH-safety violation, denoted
⧼⟪co, o⟫, ψ(cψ, lψ, p), ω(cω, lω, q)⧽, occurs when ⟪co, o⟫, which is deallocated at
lψ under cψ, is accessed later at lω under cω. Our context-insensitive notation is
⧼o, ψ(lψ, p), ω(lω, q)⧽.

3 Illustrating Examples

In Sect. 3.1, we explain why aliasing and control-flow reachability must be solved
synergistically rather than separately in order to achieve high precision in our
verification task, no matter how precise pointer analysis is. In Sect. 3.2, we
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Fig. 2. Andersen-style subset-based, flow- and context-insensitive pointer analysis [4].
Passing arguments into and returning results from functions are handled as copy state-
ments.

describe how our synergistic approach works on top of a demand-driven pointer
analysis, by taming path explosion with full context-sensitivity (modulo recur-
sion) adaptively.

Fig. 3. An example without any TH-safety violation.

3.1 Aliasing and Control-Flow Reachability: Separately vs.
Synergistically

Figure 3(a) gives a program, in which ψ(l5, y) does not cause a TH-safety viola-
tion at ω(l7, z) (Fig. 3(b)). The wrappers, alloc(), dealloc() and deref(),
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allocate o2, deallocate the object pointed by y at ψ(l5, y) and dereference
z at ω(l7, z), respectively. In Reach But NoAlias(), ⟪[κ9], o2⟫ is first deallo-
cated in l11 and then another object ⟪[κ10], o2⟫ is accessed indirectly in l12.
In Alias But NoReach(), ⟪[κ14], o2⟫ is first accessed indirectly in l15 and then
deallocated in l16.

If aliasing and control-flow reachability for ψ(l5, y) and ω(l7, z) are solved
separately, a TH-safety violation will be reported (but as a false positive), no
matter how precise the underlying pointer analysis is used. As illustrated in
Fig. 3(b), aliasing (the orange path) and reachability (the blue path) happen
along two different paths in the ICFG, and consequently, cannot be satisfied
simultaneously in the same path.

To avoid false positives like this, aliasing and control-flow reachability must
be solved together. In our synergistic approach, we identify o2, ψ(l5, y) and
ω(l7, z) by their respective contexts co, cψ and cω, and disprove the presence
of a context tuple (co, cψ, cω), such that ⟪co, o2⟫ is first deallocated in l5 under
cψ and subsequently accessed in l7 under cω along the same path. Therefore,
our approach will report no TH-safety violation for this program. Note that any
context-insensitive analysis that merges ⟪[κ9], o2⟫ and ⟪[κ10], o2⟫ into o2 (by
disregarding their contexts) will report a false violation as ⧼o2, ψ(l5, y), ω(l7, z)⧽.

Fig. 4. Two representative TH-safety violations caused by ψ(l5, y) and ω(l7, z) appear-
ing in Fig. 3, where the three wrappers, alloc(), dealloc() and deref() are defined.

3.2 Synergizing Pointer Analysis and Control-Flow Reachability
Analysis: On-Demand with Adaptive Context-Sensitivity

Let us illustrate our approach further by expanding Fig. 3 into Fig. 4 by examin-
ing how it detects two representative TH-safety violations caused now by ψ(l5, y)
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and ω(l7, z) considered earlier. In Fig. 4(a) (with its relevant ICFG given in
Fig. 4(c)), o2 and ψ(l5, y) are reached transitively via the two call sites in the
same function, bar(), which is called by foo(), in which ω(l7, z) is reached
via a call to deref() transitively. In Fig. 4(b) (with its relevant ICFG given in
Fig. 4(d)), ψ(l5, y) and ω(l7, z) are reached transitively via the two call sites in
the same function, qux(), which is called by baz(), in which o2 is reached via a
call to alloc() transitively.

We will only discuss Fig. 4(a) below as Fig. 4(b) can be understood similarly.

Verifying TH-Safety by Synergizing Pointer and Reachability Anal-
yses On-Demand. Our approach relies on ptdd

cs , a demand-driven version of
pointer analysis ptcs introduced in Sect. 2. For Fig. 4(a), we report a TH-safety
violation ⧼⟪[κ18, κ21], o2⟫, ψ([κ18, κ22], l5, y), ω([κ19], l7, z)⧽. To obtain this, we
check to see if y aliases z by querying ptdd

cs for the points-to sets of y and z,
i.e., ptdd

cs ([ ], y) and ptdd
cs ([ ], z), respectively, where their initial unknown con-

texts [ ] will be eventually filled up by ptdd
cs . On-demand, ptdd

cs traces back-
wards the flow of objects along the pre-computed def-use chains (obtained by
a pre-analysis) in the program. To compute ptdd

cs ([ ], y), for example, starting
from l5, ptdd

cs traces back to l4 where y is defined; moves to the call-site κ22

where y receives the value of e via parameter passing; reaches l21 where e is
defined; encounters l3 where x is returned (by entering alloc() from its exit
at κ21); and finally, arrives at l2 where x is defined, giving rise to ⟪[κ21], o2⟫∈
ptdd

cs ([κ22], y). Note that the initial unknown context [ ] has been inferred to
be [κ22] as desired. This implies that ⟪[κ18, κ21], o2⟫ ∈ ptdd

cs ([κ18, κ22], y). Simi-
larly we obtain ⟪[κ18, κ21], o2⟫ ∈ ptdd

cs ([κ19], z). Thus, ψ([κ18, κ22], l5, y) aliases
with ω([κ19], l7, z) (with y and z both pointing to ⟪[κ18, κ21], o2⟫), and in
addition, the former also reaches the latter along the same path identified by
[κ18, κ21], [κ18, κ22] and [κ19]. As a result, our approach reports this violation as
⧼⟪[κ18, κ21], o2⟫, ψ([κ18, κ22], l5, y), ω([κ19], l7, z)⧽.

Taming Path Explosion with Adaptive Context-Sensitivity. In our
approach, ptdd

cs applies context-sensitivity adaptively without analyzing the
callers of foo(), avoiding the possible path explosion that may occur between
main() and foo() in Fig. 4(c). Soundness is still guaranteed, since the con-
text elements between main() and foo() do not affect the value-flows of
⟪[κ18, κ21], o2⟫ and are thus redundant. To see this, if we extend the two
contexts in ψ([κ18, κ22], l5, y) and ω([κ19], l7, z) with two distinct prefixes,
[κa1] and [κa2], we will fail to obtain any additional violation witness, since
both are no longer aliased: ptdd

cs ([κa1, κ18, κ22], y) = {⟪[κa1, κ18, κ21], o2⟫} �=
{⟪[κa2, κ18, κ21], o2⟫} = ptdd

cs ([κa2, κ19], z). If we use the same prefix instead,
we will end up with a finer abstraction, yielding the results already subsumed.

4 Our Approach

The workflow of our four-stage approach is given in Fig. 5. To start with ( 1©), we
perform a fast but imprecise pre-analysis for a program using Andersen’s pointer
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analysis pt (Fig. 2). Then ( 2©), we build a value-flow graph to capture the flow
of values across the program based on the points-to information obtained in the
pre-analysis (Sect. 4.1). Next ( 3©), we obtain the points-to set at each dereference
by querying ptdd

cs , a demand-driven version of ptcs (discussed in Sect. 2) that now
operates on the value-flow graph (Sect. 4.2). This way, ptdd

cs will traverse pre-
computed def-use chains rather than control-flow, achieving better efficiency.
Finally ( 4©), we verify absence of a TH-safety violation at a dereference by
considering aliasing and control-flow reachability synergistically with adaptive
context-sensitivity (Sects. 4.3 and 4.4).

Fig. 5. The workflow of our approach on synergizing pointer analysis with reachability
analysis.

4.1 Value-Flow Graph Construction

We construct a value-flow graph for a program, following [12,44,49], based on
the points-to information discovered during the pre-analysis to capture the flow
of values across the program. This entails building the def-use chains for its
top-level variables (which are conceptually regarded as register variables) and
address-taken variables (which are all referred to as memory objects or objects
for short in this paper).

The def-use chains for top-level variables are readily available. However, those
for address-taken variables (accessed indirectly at loads, stores and call sites) are
implicit. To make such indirect memory accesses explicit, we resort to the rules
in Fig. 6. For an address-taken variable o, there are two types of annotations:
�μ(o)�, which represents a potential use of o, and �o = χ(o)�, which represents
both a potential definition and a potential use of o. We define Δ : L × ORD →
2ANNOT, where ANNOT is the set of annotations (shown in brackets), L is the
set of statement labels, and ORD = {≺,�} indicates if an annotation appears
immediately before (≺) or after (�) a statement.

Let us go through the rules in Fig. 6, where allow us to soundly model both
strong updates (by killing old values) and weak updates (by preserving old val-
ues) for address-taken variables. For a load statement x = ∗y at l, if y points
to o, then �μ(o)� is added before l to indicate that o may be used at this load
(Rule [Mu]). For a store statement ∗x = y at l, if x points to o, then �o = χ(o)�
is added after l to indicate that o (LHS) may be redefined in terms of both o
(RHS) in the case of a weak update and y at this store (Rule [Chi]). Rules [Ref]
and [Mod] prescribe the standard inter-procedural MOD/REF analysis. Let a
function f be defined at lf and called at a call site l via a function pointer fp.
Consider [Ref] first. If �μ(o)� is annotated inside f , then �μ(o)� is added before l
(as o may be used in f directly or indirectly), and �o = χ(o)� is added before f ’s
definition at lf (as o may be passed indirectly as a parameter to f). Consider
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Fig. 6. Rules for adding two types of annotations, �μ(o)� and �o = χ(o)�, to make
explicit the accesses of a memory object o. L(f) denotes the set of statement labels
in function f . Δ(l, ≺) and Δ(l, �) represent the sets of annotations added just before
and after l, respectively.

[Mod] now. If �o = χ(o)� is annotated inside f , then we add not only the same
annotations at l and lf as in [Ref], but also �μ(o)� after lf (as o may be returned
to its call sites) and �o = χ(o)� after l (as o may be modified at l).

Once a program has been annotated, its top-level variables and objects
appearing in the annotations are put into SSA form [11], with their versions
denoted in superscripts.

Example 1. Let us see how to add o5-related annotations in Fig. 7. For now,
the value-flow edges shown are irrelevant. In line 8, �o25 = χ(o15)� is added after
l8, i.e., as 8�, in put() as pctn is found to point to o5 by the pre-analysis in
Fig. 2 (Rule [Chi]). As a result, this inter-procedural MOD/REF effect needs to
be reflected at its definition and call sites, by adding 7≺, 7�, 14≺, 14�, 15≺, and
15� (Rule [Mod]). In line 16, �μ(o25)� is added before l16 since tray is found to
point to o5 (Rule [Mu]).

Given an annotated program in SSA form, we build its value-flow graph,
Gvfg = (L × V,E), to capture the flow of values through its def-use chains and
inter-procedural call/return edges, by using the rules in Fig. 8 to construct its
value-flow edges. We make use of two mappings, D : V → 2L and U : V → 2L,
that map a variable v ∈ V to the set of its definition sites ldef ∈ L and use sites
luse ∈ L, respectively. We write 〈lsrc, v〉 −→ 〈ldst, v

′〉 to denote the flow of a value
initially in v at lsrc to v′ at ldst. For a top-level variable x ∈ VT, Rule [DT] adds
the definition site l to D(x) and Rules [UT

Copy], [UT
Load], [UT

Store], [UT
Addr], [UT

Free]
and [UT

Call] add the use site l to U(x). For an address-taken variable o ∈ VA,
Rules [DA] and [UA

χ ]/[UA
μ ] simply collect its definition and use sites into D(o) and

U(o), respectively. The last five rules construct the edges in Gvfg by connecting
a definition site with all its use sites. [VFIntra] adds intra-procedural value-flow
edges while the other four add inter-procedural value-flow edges (with [VFT

Call]
and [VFT

Ret] for top-level variables and [VFA
Call] and [VFA

Ret] for address-taken
variables).
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Fig. 7. A program (referred to in Example 1 (annotations), Example 2 (value-flow
edges) and Example 3 (pointer analysis)), decorated with μ and χ annotations and
all the value-flow edges 1 – 9 that capture the flow of o2 from bone in line 10 through
to feedDog in line 16.

Once Gvfg has been constructed, the SSA versions of a variable will be
ignored.

Example 2. Figure 7 shows all the value-flow edges 1 – 9 capturing the flow
of o2 via fd, bone, pfd, o5 and feedDog. We obtain these edges by apply-
ing the following rules (Fig. 8): 1 for 〈l2, fd〉 −→ 〈l3, fd〉 ([VFIntra]); 2 for
〈l3, fd〉 −→ 〈l10, bone〉 ([VFT

Ret]); 3 for 〈l10, bone〉 −→ 〈l14, bone〉 ([VFIntra]); 4

for 〈l14, bone〉 −→ 〈l7, pfd〉 ([VFT
Call]); 5 for 〈l7, pfd〉 −→ 〈l8, pfd〉 and 6 for

〈l�8 , o25〉 −→ 〈l�7 , o25〉 ([VFIntra]); 7 for 〈l�7 , o25〉 −→ 〈l�14, o05〉 ([VFA
Ret]); and 8 for

〈l�14, o15〉 −→ 〈l�15, o15〉 and 9 for 〈l�15, o25〉 −→ 〈l≺16, o25〉 ([VFIntra]).
In Fig. 10 (discussed in Sect. 4.2), we will give a version of Fig. 7 with all the

value-flow edges included for the program.

4.2 Demand-Driven Context-Sensitive Pointer Analysis

Our context-sensitive pointer analysis ptdd
cs operates on the value-flow graph

Gvfg of a program. We write to signify a demand query for
the points-to set of variable v at statement l under context c. In the case of

with an empty context [ ], ptdd
cs will find all pointed-to objects

⟪co, o⟫ ∈ ptdd
cs (c, l, v), where c is also inferred automatically. This automatic

context inference is essential for achieving high precision as it provides a mech-
anism for us to synergize alias and control-flow reachability analyses as needed.
As is solved on-demand (with possibly many other points-to
queries raised along the way), by traversing backwards only the value-flow edges
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Fig. 8. Rules for building the value-flow graph Gvfg for an annotated program in SSA
form (with the version of an SSA variable omitted when it is irrelevant to avoid clutter-
ing). D(v) (U(v)) denotes the set of definition (use) sites of a variable v. F (l) identifies
the function containing l.

in Gvfg established on the fly, imprecision in Gvfg (due to spurious value-flow
edges) will affect only the efficiency but not precision of ptdd

cs .
Figure 9 gives the rules for answering , where , which

is transitive by [VFTrans], represents the flow of a value across one or more
value-flow edges in Gvfg actually traversed. Note that ⟪co, o⟫ is essentially
〈co, o, o〉 since o is the line number for the corresponding allocation site. We
say that x flows to y if . To solve , we solve

, i.e., find what flows to 〈c, l, v〉 (Rule [QRY]). If ⟪co, o⟫ flows to
〈c, l, v〉, then 〈c, l, v〉 points to ⟪co, o⟫ (Rule [PT]). If 〈c, l, v〉 has been reached,
we need to continue exploring backwards what may flow to 〈c, l, v〉 on-demand
(Rule [DDBack]). Rules [VFAddr] and [VFAlloc] handle allocation statements that
allocate memory for an address-taken variable on the stack and in the heap,
respectively.

For a load lx = ∗y with a query , ptdd
cs first checks

to see if holds by issuing a demand query
(Rule [DDLoad]), and if this is the case, then is
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Fig. 9. Rules for demand-driven context-sensitive pointer analysis ptdd
cs (with denot-

ing a demand query issued and denoting the flow of a value from nsrc to
ndst on Gvfg).

established (Rule [VFLoad]). Similarly, for a store l ∗ x = y with a query
, ptdd

cs checks to see if holds by issu-
ing a demand query (Rule [DDStore]), and if this is the case, then

is established (Rule [VFStore]).
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Rules [VFCopy], [VFT] and [VFA] simply propagate values across assignments
(with the former for copy statements and the latter two for def-use chains). In
particular, [VFA] performs a weak update at a store. Note that ptdd

cs is also
flow-sensitive with strong updates performed for singleton objects as is standard
[19,29,49].

To support the inter-procedural analysis at the function calls and returns,
[VFT

Call] and [VFT
Ret] handle top-level variables while [VFA

Call] and [VFA
Ret] handle

address-taken variables. Context-sensitivity is achieved by maintaining a context
with push (⊕) and pop (�) operations in a stack-like manner. When handling
a function call at a call site l, a new context c--- is generated by popping off l
from the current context c, denoted c--- = c� l, to track the value-flow backwards
outside the callee (c---) from inside the callee (c). Conversely, when handling a
callee function’s return statement that returns to a call site l, a new context c+++

is created by pushing l to the top of the current context c, denoted c+++ = c ⊕ l,
to represent the fact that the backward analysis will now enter the callee (c+++)
at its return statement from the call-site l outside the callee (c).

Example 3. Given for the program in Fig. 7,
ptdd

cs yields the following facts related to the nine value-flow edges marked as
1 – 9 :

This means that by Rule [VFTrans]. Finally,
we can conclude that ⟪[κ10], o2⟫ ∈ ptdd

cs ([ ], 16, feedDog) by Rule [PT].
In addition to 1 – 9 , there are other facts generated on-demand, in an

(unsuccessful) attempt to identify some other objects pointed to by feedDog.

Table 1 gives a step-by-step trace of when operating
on Fig. 10, a version of Fig. 7 with a complete value-flow graph for the same
program. For Table 1, we would like to highlight the following three aspects:

1. Value-Flow Transitivity. The flow of ⟪[κ10], o2⟫ into 〈[ ], 16, feedDog〉, i.e.,
, discussed in Example 3, is obtained by

Steps #11 – #13 – #32 – #34 – #36 – #51 – #53 – #55 – #57 – #59
– #61 – #63.

2. Generating Demand Points-to Queries. In addition to

, the other demand queries are issued in by
firing 1© Rule [DDBack] (e.g., Steps #4, #6 and #8) to start a new backward
traversal, and 2© Rules [DDLoad] and [DDStore] (e.g., Steps #2 and #19) at
a load or store statement to resolve a dereferenced pointer.
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3. Context-sensitivity. Starting with ,
i.e., at Step #1, we obtain

in Steps #2–#10. There are two call sites, κ14

and κ15, for put(). Once we know what tray points to, we can enter put()
backwards from its exit at line 7� in two ways, depending on whether it is
called from κ15 or κ14.

By performing Steps #11–#18 (with the assumption that put() is called
from κ15), we reach line 8, where we issue a demand query at Step #19,

, but only to find that ,
i.e., at the end of Steps #19–#31.

Alternatively, after having performed Steps #32–#37 (with the assump-
tion that put() is called from κ14), we reach line 8 again, where we issue
another query at Step #38, . This time, however, we
obtain , i.e., at the end of Steps #38–#50. By
completing Steps #51–#64, as already demonstrated in Example 3, we obtain
⟪[κ10], o2⟫ ∈ ptdd

cs ([ ], 16, feedDog).

Fig. 10. The program given in Fig. 7 decorated with all the value-flow edges.

4.3 Synergizing Aliasing and Control-Flow Reachability

Given a pair of deallocation ψ(lψ, p) and dereference ω(lω, q), we proceed to prove
absence of ⧼⟪co, o⟫, ψ(cψ, lψ, p), ω(cω, lω, q)⧽ on all the control-flow paths ρ across
the ICFG of the program, where cψ ∈ Cψ and cω ∈ Cω are calling contexts for
lψ and lω, respectively. We abstract ρ with a context tuple (co, cψ, cω), which is
shortened to (cψ, cω), since co can be automatically inferred by ptdd

cs from cψ and
cω.

The following two properties are checked context-sensitively:
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Table 1. A step-by-step trace of , for computing
⟪[κ10], o2⟫ ∈ ptdd

cs ([ ], 16, feedDog), with ptdd
cs operating on the value-flow graph of the

program in Fig. 10 by applying the rules given in Fig. 9.

• Aliasing, Aψ
ω : Cψ × Cω → {true, false}, indicating if (cψ, p) aliases (cω, q),

and
• Reachability, Rψ

ω : Cψ × Cω → {true, false}, indicating if lψ reaches lω on
the ICFG by going through first the return edges specified by cψ and then
the call edges specified by cω.
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Fig. 11. Rules for synergizing aliasing and control-flow reachability.

We consider aliasing and reachability together, Sψ
ω : Cψ × Cω → {true, false},

by requiring Aψ
ω and Rψ

ω to be satisfied for the same context pair (cψ, cω).
We report a TH-safety violation at the dereference iff Sψ

ω is satisfied, thereby
avoiding false-positives that satisfy both constraints on two different paths only.

Figure 11 gives our rules. Rule [Aliasing] computes an abstract path, (cψ, cω),
on which p aliases q. Note that ⟪hcψ, o⟫ and ⟪hcω, o⟫ may represent the same
(concrete) object if one of these two contexts is a suffix of (i.e., coarser than)
the other. Rule [Reaching] computes an abstract path, (cψ, cω), on which lψ
reaches lω, which happens if lψ first reaches lψ inter-procedurally via the return
edges specified by cψ, then lψ reaches lω intra-procedurally in the same function
(denoted RIntra(lψ, lω)), and finally, lω reaches lω inter-procedurally via the call
edges specified by cω.

4.4 Adaptive Context-Sensitivity

To guarantee soundness, all context pairs (cψ, cω) ∈ Cψ × Cω in the program
must be considered, making [Aliasing] in Fig. 11 prohibitively costly to verify.
To tame path explosion, we use the two rules in Fig. 12 instead with adaptive
context-sensitivity, thereby reducing significantly the number of context pairs
considered without losing soundness or precision. We explain these two rules,
illustrated in Fig. 13, below.

The key insight behind is that ptdd
cs ([ ], l, v), when asked to com-

pute the points-to set of (l, v) with an empty context [ ], which repre-
sents an abstraction of all possible contexts (from main()), will return
⟪hc, o⟫ ∈ ptdd

cs (c, l, v), where the contexts c and hc are automatically
inferred. In particular, c and hc are appropriately k-limited (with any
unnecessary context prefix cpre from main() truncated), since we have:
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Fig. 12. Two rules for replacing [Aliasing] in Fig. 11 with adaptive context-sensitivity.

Fig. 13. An illustration of the two rules in Fig. 12, where a fat dot represents a function
and an arrow represents a sequence of (transitive) function calls across the functions
in the program.

In [Aliasing], there are three possibilities for ⟪hcψ, o⟫ and ⟪hcω, o⟫ to be
aliases:

1. hc = hcψ = hcω. This case, illustrated in Fig. 13(a), is handled by [Aliasing-
EqHeapCtx], which says that it suffices to consider only (cψ, cω) by removing
any common prefix cpre from cψ and cω, since (cψ, cω) is coarser than (cψ, cω).
In addition, all context pairs (cons(c1pre, cψ), cons(c2pre, cω)), where c1pre �=c2pre,
can also be soundly removed, since ⟪cons(c1pre, hc), o⟫ cannot be aliased with
⟪cons(c2pre, hc), o⟫. By construction, car(cons(cψ, lψ)) and car(cons(cω, lω))
are guaranteed to be in the same function, allowing Rψ

ω in [Reaching] to be
checked trivially.

2. hcω = cons(c, hcψ). To check Rψ
ω in [Reaching] efficiently, [Aliasing-

NeqHeapCtx], as shown in Fig. 13(b), constructs cψ by extending cψ such
that car(cons(cψ, lψ)) and car(cons(cω, lω)) reside in the same function.
As in [Aliasing-EqHeapCtx], all context-pairs (cons(c1pre, cψ), cons(c2pre, cω)),
where c1pre �= c2pre, are ignored soundly. In addition, car(cons(cψ, lψ)) and
car(cons(cω, lω)) always reside in the same function, allowing Rψ

ω in [Reach-
ing] to be checked trivially as above.

3. hcψ = cons(c, hcω). This case, which indicates a use-before-free, is always
safe.
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Our approach D3 is adaptive since its search space exploration selects calling con-
texts with appropriate lengths adaptively without losing soundness or precision.

Example 4. Let us apply our rules to the program in Fig. 4(a) to detect
the TH-safety violation ⧼⟪[κ18, κ21], o2⟫, ψ([κ18, κ22], l5, y), ω([κ19], l7, z)⧽. Let
us consider [Aliasing-NeqHeapCtx] first. For the two points-to queries

and issued, we obtain ⟪[κ21], o2⟫ ∈
ptdd

cs ([κ22], l5, y) and ⟪[κ18, κ21], o2⟫ ∈ ptdd
cs ([κ19], l7, z). As hcω = [κ18, κ21] =

cons([κ18], [κ21]) = cons(cpre, hcψ), we have cψ = cons(cpre, cψ) = [κ18, κ21].
By applying [Aliasing-NeqHeapCtx], Aψ

ω([κ18, κ21], [κ19]) holds. Let lψ = κ18

and lω = κ19. By applying [Reaching], Rψ
ω([κ18, κ21], [κ19]) holds. Finally, by

[AliasingAndReaching], S([κ18, κ21], [κ19]) holds, triggering this as a TH-safety
violation.

4.5 Soundness

For a program P considered in Sect. 2, D3 (Fig. 5) is sound. First, Gvfg con-
structed for P , based on the rules in Fig. 8, over-approximates the flow of any
value in P as Andersen’s analysis (Fig. 2) is sound. Second, ptdd

cs (Fig. 9) is sound
as it over-approximates the points-to information in P . Third, we suppress a TH-
safety violation warning soundly according to [AliasingAndReaching] (Fig. 11).
Finally, our adaptive analysis (Fig. 12) is sound as the context pairs (cψ, cω)
pruned for [AliasingAndReaching] during the search space exploration are redun-
dant (Sect. 4.4).

5 Evaluation

We show that D3 can accomplish our TH-safety verification task for reasonably
large C programs efficiently with good precision in the context of the prior work.

5.1 Methodology

We have implemented D3 in the open-source program analysis framework,
SVF [50], which is implemented in LLVM [27]. Given a program, its source
files are first compiled individually into LLVM IR by the Clang compiler front-
end, before linked together into a single whole-program IR file by the LLVM
Gold Plugin. Our TH-safety verification task is then performed statically on the
whole-program LLVM IR file.

Two sets of benchmark are used. One set consists of 138 test cases with the
ground truth for use-after-free vulnerabilities (CWE-416) from the NIST Juliet
Test Suite for C [1], which are all TH-safety violations extracted from real-world
scenarios, with one per test case. The other set consists of ten popular open-
source C programs (with 40–260 KLOC) given in Table 2, containing a total of
114,508 pointer dereferences.
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Table 2. Results for verifying 10 open-source C programs. DSEP is a version of
D3 with aliasing Aψ

ω and reachability Rψ
ω checked separately. %Impr is computed as

D3.#Safe-DSEP.#Safe
#Deref-DSEP.#Safe

× 100%.

Program Characteristics Value-Flow Graph DSEP D3

KLOC #Derefs #Nodes #Edges Time (s) #Safe %Safe Time (s) #Safe %Safe %Impr

a2ps-4.14 65 12,601 35,201 58,255 428 7,000 55.6% 5,653 9,944 78.9% 52.6%

cpio-2.12 94 5,211 13,486 23,379 10 3,805 73.0% 180 4,964 95.3% 82.4%

ctags-5.8 42 14,628 56,320 152,846 54 10,538 72.0% 520 14,014 95.8% 85.0%

MCSim-6.0.1 60 8,718 17,914 28,365 64 5,233 60.0% 1,010 8,105 93.0% 82.4%

parted-3.2 138 1,493 7,703 16,415 9 1,133 75.9% 14 1,371 91.8% 66.1%

patch-2.7.6 88 5,334 16,926 35,269 50 4,065 76.2% 480 4,961 93.0% 70.6%

sendmail-8.15 260 21,536 128,312 328,892 1,332 12,368 57.4% 3,277 15,570 72.3% 34.9%

tar-1.31 191 11,671 54,594 109,269 225 7,741 66.3% 7,672 9,200 78.8% 37.1%

tmux-2.8 54 24,877 91,373 185,594 166 12,366 49.7% 12,295 18,266 73.4% 47.2%

wget-1.20 174 8,439 31,460 63,738 100 5,957 70.6% 1,920 6,746 79.9% 31.8%

Avg 117 11,451 45,329 100,202 244 7,021 65.7% 3,302 9,314 85.2% 59.0%

Total 1,166 114,508 453,289 1,002,022 2,438 70,206 61.3% 33,022 93,141 81.3% 51.8%

We compare D3 with a C bounded model checker, CBMC (version 5.11) [26].
CBMC, as confirmed by the authors, does not provide an option to verify TH-
safety only by disabling other types of memory errors. Thus, we have configured
it with the “pointercheck” option to detect all pointer-related errors and then
manually extracted all the TH-safety violations reported. For the small test cases
in the NIST Juliet Test Suite, loops are not bounded. For the ten real-world
programs, loops are unwound by using ”unwind 2” to accelerate termination (at
the expense of losing soundness).

Infer [7] (i.e., Abductor earlier [8]) has evolved into a bug detector by sacri-
ficing soundness, with its older verification-oriented versions no longer available
(as confirmed by its authors), The latest version of SLAyer [6] does not compile
(as also confirmed by its authors) since it relies on a specific yet unknown old
subversion of the Z3 SMT-solver. So we will not compare with such separation-
logic-based verifiers, as Infer, for example, is now designed to lower its false
positive rate by tolerating for false negatives.

In addition, we also evaluate D3 against a version of D3, denoted DSEP, for
which aliasing and control-flow reachability are considered separately.

As ptdd
cs is demand-driven, the time budget for a points-to query issued from

[Aliasing] (Fig. 12) is set to be a maximum of 10,000 value-flow edges traversed.
On time out, ptdd

cs will fall back to the result computed by Andersen’s pointer
analysis, pt, soundly (Fig. 2). We have done our experiments on a machine with
a 3.5 GHz Intel Xeon 16-core CPU and 256 GB memory, running Ubuntu OS
(version 16.04 LTS). The analysis time of a program is the average of five runs.
For D3/DSEP, the analysis times from all its stages (Fig. 5) are included, except
the pre-analysis, since Andersen’s analysis is expected to be reused by many
other static analyses for the program.
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5.2 Results and Analysis

5.2.1 Juliet Test Suite: Soundness
Both CBMC and D3 report soundly all the 138 use-after-free bugs without any
false positives. Each test case is small, with a few hundreds of LOC, costing less
than one second to verify by either tool.

5.2.2 The Ten Open-Source Programs: Precision and Scalability
For any of these programs, CBMC, which is bounded by even “unwind 2”, cannot
terminate within a 1-day time budget. We have decided to evaluate D3 against a
version, DSEP, in which both aliasing and control-flow reachability are considered
separately, as shown in Table 2.

• Precision. For a total of 114,508 dereferences in the ten programs, D3 proves
successfully 81.3% (or 93,141

114,508 ) to be safe. This translates into an average of
85.2% per program, ranging from 72.3% in sendmail to 95.8% for ctags. For
the remaining 14.8%, anout an average of 33% fail due to the out-of-budget
problem. In contrast, DSEP finds only 61.3% of all the dereferences to be safe,
with an average of 65.7% per program, ranging from 49.7% for tmux to 76.2%
for patch.
D3 is significantly more precise than DSEP (as measured by %Impr). For a
total of 44,302 dereferences that cannot be verified to be safe by DSEP, D3

recognizes 51.8% of these (i.e., 22,935
44,302 ) as being safe. The largest improve-

ments are observed for ctags (85.0%), cpio (82.4%) and MCSim (82.4%),
which contain many cases as illustrated in Fig. 3, causing DSEP to fail but D3

to succeed, since aliasing and reachability must be considered together. On
the other hand, the precision improvements for wget (31.8%) and sendmail
(34.9%), where linked lists are heavily used, are the least impressive.

• Scalability. For a given program, the size of its value-flow graph affects the
time complexity of our approach. D3 scales reasonably well to these programs,
spending a total of 33,022 s on analyzing a total of 1,166 KLOC, while DSEP

is faster (finishing in 2,438 s) but less precise. For sendmail (the largest with
260 KLOC), D3 takes 3,277 s to complete. For ctags (the smallest with 42
KLOC), D3 finishes in 520 s. D3 is the fastest for parted, which has the
smallest value-flow graph with the smallest number of dereferences. D3 is
the slowest for tmux, which has the second largest value-flow graph with the
largest number of dereferences.

6 Related Work

Pointer Analysis. Substantial progress has been made for whole-program
[23,33,48] and demand-driven [20,47,51] pointer analyses, with flow-
sensitivity [19,31], call-site-sensitivity [40,61], object-sensitivity [37,55] and
type-sensitivity [25,45]). These recent advances in both precision and scalability
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have resulted in their widespread adoption in detecting memory bugs [2,17], such
as memory leaks [9,52], null dereferences [34,36], uninitialized variables [35,60],
buffer overflows [10,30], and typestate verification [12,16]. Pointer-analysis-based
tools [44,57] can detect TH-safety violations with low false-positive rates, but
at the expense of missing true bugs. Some recent advances on pointer analysis
for object-oriented languages [32,46] improve the efficiency of the traditional k-
object-sensitivity by analyzing some methods context-insensitively, but due to
the lack of flow-insensitivity, such techniques are unsuitable for analyzing TH-
safety. In contrast, D3 is designed to be a verifier for finding TH-safety violations
with good precision soundly by considering aliasing and control-flow reachability
synergistically.

Separation Logic. As an extension of Hoare logic for heap-manipulating pro-
grams, separation logic [42] provides the basis for a long line of research on
memory safety verification. At its core is the separating conjunction ∗ that splits
the heap into disjoint heaplets, allowing program reasoning to be confined in
heaplets [15,59]. For separation-logic-based verification, scalability has consid-
erably improved with techniques like bi-abduction at the expense of sacrificing
some precision [8,58], leading to industrial-strength tools such as Microsoft’s
SLAyer [6] and Facebook’s Infer [7]. By giving up also some soundness, many
industrial-strength static analyzers, such as Clang Static Analyzer [3,43] and
Infer (the current release 0.15.0) are bug detectors, which reduce false posi-
tives at the expense of exhibiting false negatives as well. Unlike separation-
logic-based approaches that support compositional and modular reasoning, D3

takes a pointer-analysis-based approach by analyzing also only the relevant code
on-demand.

Model Checking. Model checking represents a powerful framework for reason-
ing about a wide range of properties [24]. To analyze pointer-intensive C pro-
grams, model checkers such as SLAM [5] and BLAST [21] rely on pre-computed
points-to information. Goal-driven techniques like SMACK+Corral [18] aim at
improving scalability by simplifying verification conditions. However, as pointed
out in [26], model checking still suffers from limitations in fully automated
TH-safety verification for large-sized programs, partly due to complex pointer
aliasing. Model checkers with symbolic execution (e.g., Symbiotic [53]) can find
bugs precisely but with limited scalability for large-sized programs due to path
explosion.

7 Conclusion

This paper presents D3, a novel approach for addressing the TH-safety verifica-
tion problem based on a demand-driven context-sensitive pointer analysis. D3

achieves its precision (by considering both aliasing and control-flow reachabil-
ity simultaneously) and scalability (with adaptive context-sensitivity). In future
work, we plan to empower D3 by also considering (partial) path-sensitivity and
shape analysis.
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Abstract. We improve the policy iteration-based algorithm for value set
analysis by giving a new heuristic for policy selection based on a local
static analysis. In particular, we detect loops in the program and perform
an analysis to discover the relative changes of variables in the loop, that
is, whether a variable is constant or whether its value rises, falls or both.
We use these relative changes to improve the old heuristic, achieving
better (that is, smaller) fixed points than the original approach.

Keywords: Data flow analysis · Value set analysis · Policy iteration

1 Introduction

Static analysis in the form of dataflow analysis is classically done with the algo-
rithm of Kleene iteration [3]. To that end, the program is transformed into a set
of dataflow equations. These equations are then solved via Kleene iteration, with
the solution representing some information about the program. If the analysis
is a value set analysis, these equations typically give an assignment of abstract
values to program variables for every location in the program.

Since Kleene iteration is not guaranteed to terminate, techniques such as
widening and narrowing [3] have been developed which guarantee termination
at the cost of precision and partially recover lost precision, respectively.

To improve precision and run times of the classical algorithm, the algorithm
of policy iteration [6] was reformulated to be used for dataflow analysis [2] with
the interval domain and later expanded to relational domains [4]. This algo-
rithm replaces the set of dataflow equations with a set of sets of simpler to solve
equations called policies that have the property of overapproximating the solu-
tion. Then one of the policies is chosen heuristically with the goal of finding a
solution that is also a solution of the original set of equations. The policy is
solved with Kleene iterations. If the solution is also a solution of the original set,
the algorithm terminates, otherwise, it is used as a starting point for the next
heuristically chosen policy. As we approach the least fixpoint from below, the
variant of policy iteration used in this paper is min-policy iteration [5].

The reason why this algorithm is powerful is that if the policy is cho-
sen well, a drastically simpler dataflow problem has to be solved, reducing
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running times. Also, it is possible that a fixed point is reached without using
widening, improving precision in comparison with classical Kleene iteration. Note
that policy iteration is guaranteed to find a fixed point, provided the algorithm
used to solve the policies terminates. On the other hand, if the policy is chosen
poorly, the algorithm has to solve multiple dataflow equation systems instead of
just one, potentially increasing run time. Alternatively, an equation system may
be chosen that gives a correct but unnecessarily big fixed point. Consequently,
a policy iteration-based algorithm’s performance strongly depends on a good
heuristic.

In the basic version detailed in [2], the algorithm is executed with interval
abstraction, i.e. the value sets are abstracted as intervals. To get a policy, each
intersection operation � in the program is replaced by another function. These
intersections are typically generated to model branches. For instance, a branch
depending on x ≤ 16 would be represented as x′ = x � [−∞, 16] and its dual
branch as x′ = x � [17,∞]. There are four functions that may replace �:

– l(a, b) = a
– r(a, b) = b
– m(a, b) = [a.l, b.u]
– i(a, b) = [b.l, a.u]

where x.l is the lower bound and x.u is the upper bound of interval x. If interval
a or b are empty, the result of any of the four functions is empty. Furthermore, if
a policy would result in an illegal interval such as [1, 0], the result is also treated
as empty.

The standard heuristic for choosing a policy given in [2] is very simple: At
each bound, compare both possible bounds. Constant bounds trump variable
bounds, and variable bounds trump infinite bounds. If both bounds are constant,
take the tighter bound. If both bounds are variable, take the left bounds. To
illustrate, consider again the intersections x � [−∞, 16] and x � [17,∞]. With
this heuristic, the bounds of x trump ∞ and −∞, while 16 and 17 trump the
bounds of x. Therefore the policies are:

[x.l, x.u] � [−∞,16] ⇒ [x.l, 16] =̂ m

[x.l,x.u] � [17,∞] ⇒ [17, x.u] =̂ i

This heuristic is based on the fact that when there is a branch, it usually is
there for a good reason. For example, consider the example program in Fig. 1.
The branch in the loop is there to check whether the loop terminates. Since x
is incremented in each step, it will reach the loop bound 16 at some point, so
[0, 15] is the correct interval for the loop body. Therefore it makes sense to set
it to 15 right at the beginning of the loop, which is what the deduced m policy
achieves.

However, this assumption is only correct if the program behaves as expected.
This is an assumption that does not need to hold - indeed we use static analysis
in the first place to find out whether the program behaves as expected. The
places in which it does not behave as expected are precisely the points that are
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of most interest to us. By assuming the program behaves as expected, we may
choose policies that either do not give correct solutions, costing time for policy
refinement, or policies that give larger solutions than necessary, losing precision
at the important places.

Take again the program in Fig. 1. If we were to change it only slightly, ini-
tialising y with −1 instead of 1, the loop would count downward, yet the interval
[0, 15] would still be used for the loop body, eventually reaching [−∞, 15] after
infinitely many steps or widening, even though the values [1, 15] are spurious.
If we knew, however, how x is going to change throughout the loop, we could
use this to improve the heuristic, chosing i instead of m, immediately leading to
[−∞, 0], the correct fixed point.

Another problem is the intersection of two variable-based expressions, such as
x ≤ y. This assumption would, for the purposes of policy iteration, be converted
into the following two equations:

x′ = x � [−∞, y.u]
y′ = y � [x.l,∞]

If y is constant inside the loop but variable in general (such as the length of a
dynamic data structure over which is iterated), the best choice of policy would
treat y no different from an explicit constant and therefore pick m and l as
policies for the two equations, respectively. However, standard heuristic has no
way to know whether x or y is constant over the loop and picks the default left
bound, which results in the policy l being chosen for both equations, giving the
equations

x′ = x

y′ = y

which effectively removes the assumption from the program and causes x to
increment to ∞, taking infinitely many normal iteration steps to reach conver-
gence.

Therefore, in this paper we introduce a dataflow analysis we call relative
change analysis which is capable of detecting the direction in which a variable
changes, and how we can use that information to build a better heuristic for
important cases. In Sect. 2, we detail how the RCA works. In Sect. 3, we build a
heuristic from the RCA results which can be used with policy iteration and finds
smaller solutions in many cases. In Sect. 4, we evaluate the algorithm on multiple
programs, both qualitative (i.e. with respect to solution size) and quantitative
(i.e. with respect to run time). Finally, in Sect. 5 we sum up the results presented
in this paper and give an outlook on future improvements to the presented
heuristic, both qualitatively and quantitatively.

We only consider the interval domain in this paper. However, due to the
relational nature of the relative change analysis, it seems reasonable that policy
iteration on certain relational domains such as template polyhedra domains [10],
the octagon abstract domain [8] or the zone abstract domain [7] would also
benefit from our heuristic.
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x := 0;
y := 1;
WHILE x < 16 DO

x := x + y
OD

(a) Source code

n0

n1

n2 n3

x := 0; y := 1

x < 16

x := x+ y

x ≥ 16

(b) Control flow graph

Fig. 1. The worked example. Note that from n1, the edge (n1, n2) leads into the loop,
while the edge (n1, n3) leads out of the loop.

Furthermore, our current implementation only considers programs that oper-
ate on a single, numerical domain, such as integers. Other authors have inves-
tigated how to use policy iteration on logico-numerical programs, i.e. programs
that contain Boolean variables in addition to numerical variables [11].

2 Relative Change Analysis

Before we formally define and explain the analysis we use to find the heuristic,
we will give an intuition about how this analysis is supposed to work to make
it more understandable. To that end, we take the worked example from Figure
and go through it step-by-step, performing the same operations as in the formal
part further down, but in an intutive rather than a formal way.

The very first step is to identify loops and the part of the program that leads
to a loop, which we call the loop prefix. In the worked example, the loop is
the nodes {n1, n2} with the two edges between them and the prefix is the edge
(n0, n1). We also note that the two edges we have to apply the heuristic to are
the edge (n1, n2) which goes into the loop body, and (n1, n3), which is taken
once the loop terminates. As the assumptions on these edges are both based on
x, we are especially interested in how the value of x changes over the course of
the loop.

We start at n1 with the information that x = x0 and then go through the loop.
Assumptions do not change values, therefore this information is also annotated
at n2. Now, we have the assignment x := x + y, i.e, x is modified in a way
determined by y, so we need information about the value of y, more exactly,
about the sign of y to figure out if x stays the same, grows or shrinks.

With a pre-analysis to identify constants and signs, we can determine that y
is 1 at the start of the loop and keeps a positive sign throughout the loop and
therefore, x ≥ x0 is propagated back to n1, which also turns out to be the final
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value, so we have now determined that x grows over the course of the loop and
can use this information in the actual heuristic.

2.1 Formal Definition

Formally, we build a specialised dataflow analysis we call relative change analysis
(RCA) which tracks the values of an expression relative to the valuations of all
program variables. Formally, we represent this as a mapping τ : Var0 → R with
set R := {r=, r≤, r≥, r?}. The semantics of this mapping are as follows: If a value
v is described with a mapping τ , it means that v compares to x0, i.e., the value
of x ∈ Var at the start of the program fragment, with the comparison operator
τ(x0).

Example 1. Let v := x + 1. Then τ(x0) = r≥, i.e. x + 1 ≥ x0.
Let v := −x. Then τ(x0) = r?, i.e. the relation between −x and x0 is unknown,
since negation may increase or decrease a value, depending on its sign.

R forms a lattice (R,	) with ⊥ = r=, � = r? and r≤ and r≥ incomparable,
as shown in Fig. 2. Consequently, {τ : Var0 → R} and {ρ : Var → (Var0 → R)}
also form lattices with the usual pointwise mapping for functions. Results in
the latter lattice, with the semantics ρ(x)(y0) = r◦ ⇒ x ◦ y0 are sufficient for
retrieving information about the variable change direction and can be considered
as a very simple relational lattice storing difference constraints of the form x −
y0 ≤ 0 and x0 − y ≤ 0, i.e. strongly restricted zones [7]. If, at the end of the
loop, a variable x is valuated with ρ(x), then ρ(x)(x0) is the change of x over
the course of the loop execution. However, an analysis on this lattice alone does
not yield sufficiently precise results. To illustrate this, consider the assignment
x := x + y. To know whether x is increased or decreased, the relation between y
and (x0, y0) is not relevant. Instead, we need to know the sign of y. Therefore,
we augment our analysis by storing the set of possible signs ∈ S := 2{+,0,−} as
well, which gives us the analysis domain of

Var → ((Var0 → R) × S)

which can be rewritten as

(Var → (Var0 → R)) × (Var → S)

r?

r≤ r≥

r=

Fig. 2. Lattice (R, �) as Hasse diagram
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Therefore, an analysis on this domain can be considered a reduced product of a
simple relational analysis and a sign analysis. With this domain, we can construct
transfer functions that calculate the relative change of variables with sufficient
accuracy for common operations on loop variables and small changes to them.
To this end, we define the valuation function valρ : Expr → ((Var0 → R) × S)
that calculates the value of an expression in relation to the initial valuations,
as well as the sign, to actually get a reduced product analysis as opposed to a
regular product between the relational and the sign information.

– If e ∈ Z,

valρ(e) = ([x0 → compS([ρ(x)]2 , sgn(e)) | x ∈ Var ] , sgn(e))

where comp : S × S → R computes the relation between two sets of signs
(see Appendix C for the definition). and [.]1 and [.]2 are the first and second
element of a pair, respectively.

– If e ∈ Var ,
valρ(e) = ρ(e)

– If e := e1 + e2,
valρ(e) = valρ(e1) ⊕ valρ(e2)

(τ1, S1) ⊕ (τ2, S2) =
(
[x0 → τ1(x0) ⊕ S2 � τ2(x0) ⊕ S1 | x ∈ Var ] , S1 +# S2

)

r ⊕ S =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r= r = r= ∧ {+,−} ∩ S = ∅
r≥ − �∈ S ∧ (r = r≥ ∨ (r = r= ∧ + ∈ S))
r≤ + �∈ S ∧ (r = r≤ ∨ (r = r= ∧ − ∈ S))
r? otherwise

– If e := e1 − e2,
valρ(e) = valρ(e1) � valρ(e2)

(τ1, S1) � (τ2, S2) =
([

x0 → τ1(x0) ⊕ (−#S2) | x ∈ Var
]
, S1 −# S2

)

– Valuation functions for other operators (·, /, ...) can be built in a similar
fashion.

The idea for the addition function is that we either consider the result of the
addition as the relation of the left summand modified by the sign of the right
summand, or vice-versa. Since both ways of looking at the addition are valid
overapproximations of the correct behaviour, we then take the intersection of
the results, which is guaranteed to still give us a valid overapproximation. If
we subtract, on the other hand, we only take the first interpretation, since the
second interpretation (subtracting a relation from a sign) involves negating a
relation, which always gives r?. We can therefore reuse the ⊕ operator by simply
negating the signs in S2. Now we only need to calculate the initial information
ι to build our dataflow framework. For this, we perform a simple combination
of constant propagation and sign analysis on the prefix of the loop. That is, we
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take the fragment of the program that leads up to the loop and perform the pre-
analysis only on that. If the analysis is to be part of a larger analysis framework
that also performs a reaching definitions analysis [9], the results of that can be
used to shorten that prefix to the part relevant for the loop. We obtain, for each
program variable at the loop entry point, either a constant valuation or a set of
signs in case of non-constant values. From these, we then build the ι as follows,
assuming the result is given as c : Var → Z ∪ S:

ι = [x → ([y → comp(c(x), c(y)) | y ∈ Var \ {x}] ∪ [x → r=] , s(c(x))) |x ∈ Var ]

where comp : (Z ∪ S) × (Z ∪ S) → R computes the relation between two values

in Z ∪ S (see Appendix C for the definition) and s(k) =

{
k k ∈ S

{sgn(k)} k ∈ Z

This ι takes the given values to construct relations between program variables
in the entries [ρ(x)]1 (y0), while leaving the diagonal [ρ(x)]1 (x0) as r=, since it is
known that every variable starts out equal to itself. The sign information [ρ(x)]2
is taken straight from the pre-analysis. This information at the entry of the loop
might be not sound if we only take a short prefix of the loop or if we deal with
a reactive program where the program itself runs in an infinite loop. However,
since we are building a heuristic with this information, this does not matter for
the soundness of the resulting policy iteration algorithm, since that algorithm is
sound regardless of the heuristic chosen, as long as the policies generated fulfill
the requirements of that algorithm.

Starting the dataflow analysis with this, we obtain a final valuation ρ at
the loop entry, containing the relations of all variables after executing the loop
compared to before executing the loop. Now we simply have to take the diagonal
of the relations, i.e. τloop = [x → [ρ(x)]1 (x0) | x ∈ Var ] and we know how each
variable changes over the course of the loop execution.

We will now demonstrate how the RCA works by reconsidering the worked
example from Fig. 1. The prefix of the loop is just the edge (n0, n1), so that
single edge is the fragment to run the combined constant propagation and sign
analysis on. The result will be (at location n1): [x → 0, y → 1]. From this we
construct the extremal information

ι = [x → ([x0 → r=, y0 → r≤] , {0}) , y → ([x0 → r≥, y0 → r=] , {+})]

We use ι to run the RCA on the program loop between n1 and n2. The assump-
tion x < 16 does not change the abstract value, so the only transfer function we
have to apply is x := x + y. For this, we calculate ρ(x) ⊕ ρ(y), i.e.

([x0 → r=, y0 → r≤] , {0}) ⊕ ([x0 → r≥, y0 → r=] , {+})

=
(
[x0 → (r= ⊕ {+} � r≥ ⊕ {0}) , y0 → (r≤ ⊕ {+} � r= ⊕ {0})] , {0} +# {+})

= ([x0 → (r≥ � r≥) , y0 → (r? � r=)] , {+})
= ([x0 → r≥, y0 → r=] , {+})
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This abstract value is assigned to x and merged back into the initial information
ι resulting in new information

[x → ([x0 → r≥, y0 → r≤] , {0,+}) , y → ([x0 → r≥, y0 → r=] , {+})]

Another loop execution gives
([
x0 �→ r≥, y0 �→ r≤

]
, {0,+}) ⊕ ([

x0 �→ r≥, y0 �→ r=
]
, {+})

=
([

x0 �→ (
r≥ ⊕ {+} � r≥ ⊕ {0,+})

, y0 �→ (
r≤ ⊕ {+} � r= ⊕ {0,+})]

, {0,+} +# {+}
)

=
([
x0 �→ (

r≥ � r≥
)
, y0 �→ (

r? � r≥
)]

, {+})

=
([
x0 �→ r≥, y0 �→ r≥

]
, {+})

After merging:

[x → ([x0 → r≥, y0 → r?] , {0,+}) , y → ([x0 → r≥, y0 → r=] , {+})]

Which is the loop entry information of the fixed point. Extracting the diagonal
leaves us with the relative change of the variables

τloop = [x → r≥, y → r=]

which tells us that x is growing over the course of the loop, while y is constant.

3 Change-Based Heuristic

To obtain the policy we will use, we first have to decompose the program into
loops and prefixes as mentioned above. This can be accomplished with a simple
DFS-based approach on the CFG. If the input program is in a structured form
(i.e. no gotos) we can use information about loops present in it to accelerate
loop detection. We then sort the list of loops with respect to inclusion, that is,
we make sure to analyse inner loops before we analyse outer loops so that we
can reuse the information from the inner loop for the outer loop. The prefix of
the inner loop, as far as the outer loop is considered, is just the path from the
entry of the outer loop to the entry of the inner loop, as well as the prefix of the
outer loop. In particular, this means that the parts of the outer loop that can
only be reached after reaching the inner loop are not part of the inner loop’s
prefix. For an example illustrating this, see Fig. 3. When analysing the outer
loop, we condense the inner loop into a single edge which applies (i.e. merges)
the relative change of the inner loop to the input. At the end of this step, we
will obtain a relative change τloop for each program loop. In the next step, we
take the heuristic defined by [2] and improve it with τloop . For this purpose, we
define three classes of interval bounds: B = {K,G, I} with the semantics:

K is a keep-bound, i.e. a bound that does not change over the course of the
loop.

G is a grow -bound, i.e. a bound that grows over the course of the loop.
I is an inf -bound, i.e. a bound that is infinite from the start.
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These classes can be derived from the arguments of the � and τloop . If a bound
is constant or infinite, its class is K or I respectively. If a bound is dependent
on a variable, it is either K or G, depending on that variable’s relative change:

r= ⇒ [K,K]
r≥ ⇒ [K,G]
r≤ ⇒ [G,K]
r? ⇒ [G,G]

Another relevant part of the heuristic is whether the assumption we inspect
is on the edge that leads into the loop or on the edge that leads out of the
loop, since they have different expected behaviours. Table 1 shows the selected
bound based on the bound classes in both cases. Tighter means that we take
the bound resulting in a smaller interval, as long as it’s possible (i.e. if we have
constant valuations or easily comparable signs for both left over from the pre-
analysis). Don’t care means we choose either bound, since we don’t have enough
information to know the better one (in the case of G � G) or they are equal (in
the case of I � I). In our implementation, we use left for the G � G case on the
in-loop edge and right on the out-of-loop edge. The general rule here is that we
prefer to take K, if possible. If we have to choose between G and I instead, we
take I in the in-loop case (since a variable grows against an infinite bound) and
G in the out-of-loop case (since we left the loop and therefore don’t grow any
further).

To sum up, the algorithm for obtaining a policy is as follows:

1. Split the program into (inclusion-ordered) loops and their prefixes
2. For each pair (prefix, loop):

(a) Perform a joint constant propagation and sign analysis on the prefixes
(b) Perform the RCA on the loop, condensing subloops to the results of their

RCAs
(c) Calculate τloop from ρentry(loop)
(d) Use τloop to calculate bound classes and calculate the local policies for this

loop
3. Assemble all local policies into the global policy

Example 2. Take x < 16 as the loop condition, which translates to the transfer
function xin = x�[−∞, 15] for the in-loop edge and xout = x�[16,∞] for the out-
of-loop edge. Furthermore, take τloop(x) = r≥. This leads to the classifications
(with chosen bounds in bold face)

xin = [K, G] � [I,K] =̂ [x.l, 15] =̂ m

xout = [K,G] � [K, I] =̂ [16, x.u] =̂ i

which aligns with the standard heuristic for intervals, since the loop behaves as
expected. If we change the relative change as τloop(x) = r≤ instead (which on
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Table 1. Bound selection based on bound classes

left
right

K G I

K tighter left left
G right don’t care right
I right left don’t care

(a) in-loop

left
right

K G I

K tighter left left
G right don’t care left
I right right don’t care

(b) out-of-loop

the worked example would result from accidentially writing x := x − y instead
of x := x + y), however, we get

xin = [G,K] � [I,K] =̂ [−∞, x.u] =̂ i

xout = [G,K] � [K, I] =̂ [16, x.u] =̂ i

which gives the correct fixed point [−∞, 0] for the in-loop edge and [16, 0] = ⊥
for the out-of-loop edge within one loop iteration, compared to [−∞, 15] and
⊥ from the standard heuristic after infinitely many iterations or alternatively
applying widening. With a relative change of as τloop(x) = r= instead (which
on the worked example would result from accidentially writing x := x instead of
x := x + y), we get

xin = [K,K] � [I,K] =̂ x =̂ l

xout = [K,K] � [K, I] =̂ [16, x.u] =̂ i

which gives the correct fixed point [0, 0] for the in-loop edge and [16, 0] = ⊥ for
the out-of-loop edge within one loop iteration, compared to [0, 15] and ⊥ within
one loop iteration.

With this, we have a heuristic for the initial policy selection. For the improved
policy selection, we follow the idea in [2] and simply generate a policy p′ that
conforms with the constraint that p′(p−) = Φ(p−) for the currently obtained
fixed point p−. We accomplish this by going over all the equations in p and
keeping the local policies the same if p(p−)l = Φ(p−)l at location l, and switching
them to match otherwise. If we have multiple choices (such as switching from
l to m or r), we choose the policy that is closest to the already chosen policy,
i.e. we try to keep one of the bounds the same if possible (in this case m, which
keeps the lower bound as opposed to r, which switches both bounds).



A Change-Based Heuristic for Static Analysis with Policy Iteration 83

Nested Loops. To see how the algorithm performs on a program with nested
loops, we look at two nested loops that increment their respective variables, with
the inner loop termination dependent on the outer loop variable. Program and
CFG are depicted in Fig. 3. Decomposing this program gives

({n0, n1, n2, n3}, {n3, n4})

as inner prefix and loop and

({n0, n1}, {n1, n2, n3, n4, n5})

as outer prefix and loop. We therefore first analyse the inner loop with result
τinner = [x → r=, y → r≥] and afterwards the outer loop resulting in τouter =
[x → r≥, y → r?]. The policies obtained by the standard heuristic and our heuris-
tic are shown in Table 2. The results here show that for the outer loop, the
standard heuristic already gives the optimal policy, since the behaviour of the
outer loop is the expected behaviour for a loop condition x < 16. However, for
the inner loop, the standard heuristic gives a non-optimal policy since the con-
straint contains two variables and the heuristic cannot infer which one is the
one that changes over the course of the loop. Here, our heuristic knows that y
is growing and x is constant and therefore selects the optimal policy in a single
step. The obtained fixed points are displayed in Table 3. Note that the fixed
point obtained via the standard heuristic is not a fixed point of the original pro-
gram and would trigger a policy improvement step, eventually giving the correct
result.

x := 0;
WHILE x < 16 DO

y := 0;
WHILE y < x DO

y := y + 1
OD;
x := x + 1

OD

(a) Source code

n0

n1

n2

n3

n4 n5

n6

x := 0

x < 16

y := 0

y < x

y := y + 1

y ≥ x

x := x+ 1

x ≥ 16

(b) Control flow graph with loops and pre-
fixes

Fig. 3. Two-dimensional loop
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Table 2. Policies with standard heuristic and our heuristic for the program in Fig. 3

ve Transfer Function Standard Ours

x(3,4) x4 := [y3.l + 1, ∞] � x3 m r

y(3,4) y4 := y3 � [−∞, x3.u − 1] l m

x(3,5) x5 := [−∞, y3.u] � x3 i r

y(3,5) y5 := y3 � [x3.l, ∞] l i

x(1,2) x2 := x2 � [−∞, 15] m m

x(1,6) x6 := x6 � [16, ∞] i i

Table 3. Fixed points found by the two heuristics on the program in Fig. 3. Improved
bounds have been marked in boldface

v Standard Ours

x0 � �
y0 � �
x1 [0, 16] [0, 16]

y1 � �
x2 [0, 15] [0, 15]

y2 � �
x3 [0, 15] [0, 15]

y3 [0, ∞] [0,15]

x4 [0, 15] [0, 15]

y4 [0, ∞] [0,14]

x5 [0, 15] [0, 15]

y5 [0, ∞] [1,15]

x6 [16, 16] [16, 16]

y6 � �

4 Evaluation

To evaluate the effectivity of our approach, we have first written a set of simple
programs (c.f. AppendixA) by hand to compare the standard heuristic to our
heuristic. We both compare the quality of the results by checking which heuristic
leads to the smaller fixed point once both algorithms terminate and the time it
took for the algorithm to terminate. Since policy iteration allows for selection of
policies that do not actually terminate without employing other techniques such
as widening, we have set a sufficiently high timeout to detect when this occurs
and view these cases separately in order to evaluate the improvements to the
policy iteration algorithm itself. Note that the termination guarantee from [2]
is only valid if the policies terminate, so using a technique such as widening is
necessary. Our implementation uses simple Kleene iterations to solve the policies
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themselves, without using widening, since we have encountered problems when
employing widening; particularly, if widening finds a post-fixed point as opposed
to a fixed point, the termination guarantee of policy iteration does no longer hold,
since it requires fixed points of the policies for a correct policy improvement step.
The results of this benchmark are depicted in Fig. 4.

Starting from this set of 16 programs, we have then put each of these pro-
grams through our program fuzzer twenty times which, while leaving the struc-
ture of the program intact, randomly modifies operators, variables and constants
in the program. This simulates mistakes such as off-by-one errors or using the
wrong variable in a loop condition. The aggregated results for this benchmark
are presented in Fig. 5, normalised for the maximal time of the corresponding
program for better readability. The full evaluation for each program can be found
in the appendix in Figs. 8 and 9. As we can see from Fig. 5, using the relative
change analysis to build the heuristic slows down the analysis by a factor between
2 and 4 in most cases. In exchange, we get two advantages: In most cases, we
find either the same or a smaller fixed point as the standard heuristic. Also, in

0 0.25 0.50 0.75 1 1.25 1.50 1.75 2 tPI/ms

tRPI/ms

0

0.25

0.50

0.75

1

1.25

1.50

1.75

2

equal

RPI better

PI better
incomp

Fig. 4. Evaluation results of handwritten programs. The color and shape of the sym-
bols refers to the size of the obtained fixed points. PI denotes the policy iteration
with the standard heuristic, while RPI denotes the policy iteration with our heuristic.
Accordingly, tPI is the time the analysis took with the standard heuristic, while tRPI

is the time it took with our heuristic. (Color figure online)
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Table 4. Program counts for Fig. 5, with the same classes of programs as in the legend
there. improvement means that a fixed point found with the standard heuristic has been
improved upon by our heuristic, while termination means that our heuristic found a
fixed point on a program where the standard heuristic selected a policy that does not
terminate.

Kind Count Percentage

Equal 163 50.9%

RPI better 98 30.7%

improvement 53 16.6%

termination 45 14.1%

PI better 1 0.3%

Incomparable 58 18.1%

Σ 320 100%

0 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1 tPI

tRPI

0

0.125

0.250
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0.500
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1

equal

RPI better

PI better
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Fig. 5. Evaluation results of fuzzed benchmark, normalised per benchmark for read-
ability. tPI is the time for the standard heuristic, while tRPI is the time for our heuristic
on the same program. Results outside the coordinate grid denote that the correspond-
ing analysis did not terminate. There are no cases in which the standard heuristic gave
a terminating analysis where our heuristic did not. (Color figure online)
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some of the cases where the standard heuristic fails to find a fixed point because
the chosen policy does not terminate, our heuristic manages to find a fixed point
by choosing a better policy (Table 4).

To investigate the slowdown, we have also tracked the time taken for the
heuristic and the Kleene solver, respectively, as well as the number of policy
improvement steps that were necessary to find a fixed point. Since we do not
believe partial results to be worthwile for this analysis, we only focus on those
cases where both analyses terminated. The results are depicted in Fig. 6. There
is a bit of a bias there for our heuristic causing less policy iteration steps than

0 1 2 3 4 cPI

cRPI

0

1

2

3

4

92

17

59

40

2

1

5 1

Fig. 6. Comparison between policy iteration steps for the standard heuristic (cPI) and
our heuristic (cRPI). Numbers and size of circles indicate how many programs fall into
that group.

0 10 20 30 40 50 60 70 80 90 100 %

th,PI

ts,PI

th,RPI

ts,RPI

Fig. 7. Percentage of time taken for heuristic calculation (h) and Kleene solutions
(s), with the standard heuristic (PI ) and our heuristic (RPI ). Time to check fixpoint
candidates not taken into account. Whisker length is ≤ 1.5 IQR.
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the standard heuristic, but overall, cases where both heuristics needed the same
amount of iteration steps to terminate were the most common. The timings of
heuristic calculation and Kleene solution are graphed in Fig. 7. The values there
are in percent of the whole analysis. Median values are ≈ 3% for calculating the
standard heuristic and ≈ 59% for solving the policies obtained from the standard
heuristic with Kleene iteration. For our heuristic, we get ≈ 75% of the run time
for calculation of the heuristic and ≈ 13% for Kleene iteration. The time missing
for 100% is spent for setup and for checking if the fixpoint of the policy obtained
through Kleene iteration is a fixpoint of the program. Since this part is equally
expensive for both approaches, we have not measured it. The result is that in
our approach, the heuristic takes most of the time, which was expected from the
slowdown we experienced.

5 Conclusion

In policy iteration-based value set analysis, the selection of the proper policy is
crucial to both getting a small fixed point and finding it as quickly as possible.
To that end, the algorithm utilises a heuristic with the goal of selecting such a
policy. The standard heuristic given by [2] seeks to accomplish this by looking at
the conditional the policy is used in and selecting a policy with the assumption
that the conditional is a good predictor of the surrounding program’s behaviour,
e.g., that the condition of a while loop starts off being fulfilled and becomes
unfulfilled during the loop’s execution. As we have seen, if the program contains
faulty code, this assumption might easily be violated by simple mistakes, such
as a wrong variable in nested loops, an off-by-one error or by using the wrong
operator. To that end, we have developed a heuristic that does analyse the loop’s
body to find out the ways in which a loop’s body modifies the variables rele-
vant to its condition, based on the abstract interpretation framework that we
already utilise for value set analysis in general. The effect of using this heuris-
tic is a tradeoff between speed and accuracy. The analysis with our heuristic
typically takes between 2 and 4 times as long to perform, but often gives more
accurate results in the case that the program contains the type of programming
errors mentioned above, or contains conditionals between two variables, where
the standard heuristic cannot obtain any clues about the behaviour of the loop.
Furthermore, only in very rare, specifically constructed cases do we obtain worse
results with our heuristic.

5.1 Future Work

Now that the basic heuristic based on relative changes is implemented and yields
promising results, there are a few avenues in which we will continue our research.
First off, we have two improvements for the algorithm to calculate the relative
changes in mind: On one hand, we expect speed-up by using a template-based
approach as a pre-analysis. The idea here is to first scan for the variables in the
loop condition whether they are only operated on trivially, e.g. with an operation
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such as x := x + 1. If we detect only such operations on the condition-relevant
variables in the loop body, we can forego the expensive analysis and obtain
the relative changes for use in the heuristic easily. As we have seen in Sect. 4,
75% of the run time of the algorithm with our heuristic is due to heuristic
calculation, so a significant speedup in this part could improve runtimes enough
to compete with the standard heuristic, at least on programs with simple loop
variable manipulation. The other improvement aims to increase accuracy by
employing an SMT-solver. Here, we would encode the loop body as an SMT
formula using large block encoding [1] and query, for each variable, whether the
variable can have a value greater than or less than its initial value. Another
interesting topic is the generation of improved policies; the original approach
only describes a heuristic for the initial policy, which we have improved upon
in this paper for relevant cases. However, for the policy improvement, i.e. the
case where the first attempt does not find a fixed point and a new policy has
to be chosen to continue the algorithm, we only know the requirements that
the improved policy has to fulfill, but no heuristic to determine a promising
improvement. A better heuristic in that regard, with the knowledge that the
RCA information is flawed (since policy improvement is necessary) should be
able to speed up a few corner cases where our heuristic fails to provide a fixed
point on the first attempt.

A Evaluated programs

Listing 1.1.

x := 0;
WHILE x <= 16 DO

x := x
OD

Listing 1.2.

x := 1;
WHILE x < 16 DO

x := x + 1
OD

Listing 1.3.

x := 0;
y := 1;
WHILE x < 16 DO

x := x + y
OD

Listing 1.4.

x := 0;
y := 1;
WHILE x < 16 DO

x := x - y
OD

Listing 1.5.

x := 0;
WHILE x > 16 DO

x := x + 1
OD

Listing 1.6.

x = 0;
WHILE x < 16 DO

x := x - 1
OD
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Listing 1.7.

x := 0;
y := undef ();
WHILE x <= 16 DO

x := y
OD

Listing 1.8.

x := 0;
y := undef ();
WHILE x < y DO

x := x + 1
OD

Listing 1.9.

x := 0;
y := 16;
WHILE x < y DO

x := x + 1;
y := y - 1

OD

Listing 1.10.

x := 0;
WHILE x < 16 DO

IF x < 8 THEN
x := x + 1

FI
OD

Listing 1.11.

x := 0;
WHILE x < 16 DO

IF x < 8 THEN
x := x + 1

ELSE
x := x - 1

FI
OD

Listing 1.12.

x := 0;
WHILE x < 16 DO

y := 0;
WHILE y < x DO

y := y + 1
OD;
x := x + 1

OD

Listing 1.13.

x := 0;
y := 1;
z := 16;
WHILE x < z DO

x := x - y
OD

Listing 1.14.

x0 := 0;
x1 := 0;
WHILE x0 <= x1 DO

x1 := x1 + 1;
x0 := x1

OD
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Listing 1.15.

x0 := 0;
x1 := 0;
x2 := 0;
x3 := 0;
x4 := 0;
WHILE x0 <= 16 DO

x4 := x4 + 1;
x3 := x4;
x2 := x3;
x1 := x2;
x0 := x1

OD

Listing 1.16.

x := 0;
y := undef ();
WHILE x < 16 DO

y := y + 1
OD

B Detailed Evaluation Results

In each of the following graphs, a program and twenty randomly mutated varia-
tions of it were analysed with policy iteration, once with the standard heuristic
and once with our heuristic. Each symbol represents one analysed program, with
the time it took to analyse it with the standard heuristic plotted on the x-axis
and with our heuristic on the y-axis. Since our heuristic incurs a runtime cost of
at least factor 2 in most cases, the x-axis has been scaled for better readability.

The shape and color of the symbols denotes the quality of the results. A
blue circle denotes equal results, a green triangle pointing upwards denotes bet-
ter results with our heuristic, a red triangle pointing downwards denotes worse
results with our heuristic and a black square denotes incomparable results. The
last symbol only occurs in our graph when both analyses hit a timeout.

Since the standard Kleene iteration without widening can run into infinite
chains, it is possible for the policy iteration algorithm to not terminate when
naive Kleene iteration is applied. We have chosen to denote this with the symbols
that appear outside the grid. If a symbol appears at the right side of the grid,
that means that the standard heuristic chose a non-terminating policy, but our
heuristic did not. Since a non-terminating policy yields no results, our heuristic’s
result is considered better in these cases. Theoretically, it is also possible for the
other case to appear (our heuristic not terminating, but the standard heuristic
giving results), but that case did not occur in our benchmarking. Finally, the
black square in the top-right corner of some of the diagrams denotes that a
program there hit non-termination with both our and the standard heuristic.

C Formulas

comp : (Z ∪ S) × (Z ∪ S) → R
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compS : S × S → R

comp(cx, cy) =
⊔

{compZ(zx, zy) | zx ∈ γ(cx), zy ∈ γ(cy)}

compZ(zx, zy) =

⎧
⎪⎨

⎪⎩

r= zx = zy

r≤ zx < zy

r≥ zx > zy

compS(sx, sy) =
⊔

{compZ(zx, zy) | zx ∈ γ(cx), zy ∈ γ(cy)}

γ(c) =

{
{c} c ∈ Z
⋃ {γS(s) | s ∈ c} otherwise

γS(c) =

⎧
⎪⎨

⎪⎩

{z | z ∈ Z, z < 0} s = −
{0} s = 0
{z | z ∈ Z, z > 0} s = +
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Fig. 8. Evaluation results of Mutator benchmark, programs 1–8. For an explanation,
see Sect. B (Color figure online)
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Abstract. We show that the classical approach to the soundness of
dataflow analysis is with respect to a syntactic path abstraction that
may be problematic with respect to a semantics trace-based specification.
The fix is a rigorous abstract interpretation based approach to formally
construct dataflow analysis algorithms by calculational design.

Keywords: Abstract interpretation · Dataflow analysis · Model-checking
· Soundness

1 Introduction

The very first data flow analysis algorithms [1,2,3,4] were postulated: map the
program to a control flow graph (CFG), derive binary vector fixpoint equations
using transfer functions/transformers to abstract the actions in the CFG, solve
iteratively or by elimination, the result is postutaled to be the abstract infor-
mation available on the program semantics. We call this approach “syntactic”
since the values of the variables are not taken into account at all by the transfer
functions/transformers in the equations.

Gary Kildall proposed to reason on paths in the CFG [22]: define the ab-
stract information available on any path in the CFG by composition of syntactic
transfer functions/transformers along that path and then merge/join/meet the
information on all paths. In general, this yields more precise results than the fix-
point equations (except for distributive frameworks where transformers preserve
joins/meets and the results are the same). This is an abstract form of sound-
ness since one can prove that the solution of the equations over-approximates
the merge over all paths solution. [12, Section 9] showed that the merge over all
paths solution is also the solution of fixpoint equations taken over the disjunctive
completion [12,16] of the original abstract domain. So the imprecision is not due
to the equations but to the abstract domain [17].

Bernhard Steffen observed that by considering the CFG as a transition sys-
tem, the information along a path can be specified by a modal/temporal logic
formula [28,29]. Model-checking over all paths yields the abstract information
available about the program semantics. The specification is concise and an exist-
ing model-checker can be reused for the implementation. Fixpoint iterates con-
vergence requires the abstract domain to be finite (which excludes e.g. Kildall’s
constant propagation [22] for which the model checker would not be guaranteed
to terminate). The information on the program semantics is still defined with
respect to a syntactic abstraction of the semantics, not the semantics itself.

To solve this problem, David Schmidt proposed to get the abstraction of the
paths by abstract interpretation of a trace semantics [25]. Now the information
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extracted from the program is related to the semantics, but indirectly, since it
is postulated syntactically on abstract paths, not on the traces of the semantics
itself.

David Schmidt used his model to explore “Why some flow analyzes are un-
sound?” and claimed that the live variable analysis is unsound [25, Section 7].
As shown in [13] this is because the analysis is about potential liveness while
David Schmidt’s counter-example is on definite liveness. David Schmidt claims
that this is not a problem in practice since the information is used dually [25]. If
a variable is not potentially live, it is definitely dead and its value need not be
stored e.g. in a register. But if a data flow analysis were wrong, its dual would be
wrong too. As shown by this erroneous reasoning, the syntactic modal/temporal
specification on abstract paths but not directly on the semantics may be prob-
lematic.

In this paper, we explore the definition of dataflow analyses by direct ab-
straction of the trace semantics. So the abstract information extracted by the
static analysis is directly related to the program trace semantics, not to an ab-
straction of this semantics. In this way, values of variables can be taken into
account, which is not the case with temporal specifications on abstract paths.
The analyzes should therefore be more precise and provably sound.

Surprisingly, this approach shows that the abstract syntactic definition of
liveness is unsound with respect to its semantic definition. The problem is both
for definite and potential liveness. The problem comes from the fact that the
semantic definition takes values into account while the abstract definition hence
the resulting dataflow analysis algorithm captures that incorrectly.

Example 1 For definite liveness, consider for example if ℓ1 (x==0) ℓ2 x = x-x ;
where x is dead on exit. The syntactic equational and path-based definitions
of definite liveness both yield x is live at ℓ1 and ℓ2. However, this program is
equivalent to if ℓ1 (x==0) ℓ2 x = 0 ; so x is not live at ℓ2. Moreover, this last
program is itself equivalent to ℓ1; (skip) so that no variable, in particular x is
live at ℓ1. Therefore the semantic definition of definite liveness at ℓ1 and ℓ2 in
the original program if ℓ1 (x==0) ℓ2 x = x-x ; should be that x is not live, in
contradiction with the syntactic equational and path-based definite liveness. ⊓⊔
Potential liveness or, dually, definite deadness is not better.

Example 2 For definite deadness, consider ℓ1 x = y-y ;ℓ2 where x is live at ℓ2 on
exit. Syntactically, x is not used in y-y and x is modified by the assignment so
x is syntactically dead at ℓ1. Semantically, x is not used in y-y since changing
the value of x at ℓ1 will not change the value of y-y which is always 0. However,
assume x = 0 at ℓ1 then the assignment ℓ1 x = y-y ; does not modify this value.
So in that case x is not modified by the assignment and therefore x is live at ℓ1
i.e. if the precondition x = 0 is always true, the compiler is allowed to remove the
assignment. For all other initial values x ≠ 0 at ℓ1, the assignment does modify
this value by assigning 0 in which case x is dead at ℓ1. So syntactically, x is
definitely dead at ℓ1 while, semantically, this is not always the case (i.e. when x
is 0 at ℓ1). ⊓⊔
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To solve these soundness problems, we first define a structural fixpoint trace
semantics in Section 2. Then, in Section 3, we first provide an intuitive semantic
definition of liveness by abstraction of a trace semantics: “a variable is live at
some point if its value may be read before the next time it is modified”. The
above examples 1 and 2 show that the classical syntactic liveness algorithm
is unsound with respect to this definition. At that point we could change the
algorithm or the liveness definition. We choose the second alternative (so as not
to have to change compilers, but this choice is arbitrary!). This second definition
“a variable is live at some point if its value may be read before the next time
it is assigned to” mixes a syntactic (assignment) and a semantic (value) points
of view (thus preventing meaningful program syntactic transformation such as
useless assignment elimination). It specifies exactly in what sense the classical
syntactic deadness/liveness algorithm [20,19,21] is sound. Then by a further
purely syntactic abstraction “a variable is live at some point if its value may be
used before the next time it is assigned to” (where use and assigned to are defined
syntactically, thus preventing expression and assignment optimizations), we get,
by calculational design [8], the classical syntactic potential liveness algorithm
[20,19,21] in Section 4, and the dual definite deadness algorithm in Section 5.
The definition of the trace semantics is structural, so we get the classical syntactic
deadness/liveness algorithm in structural form. Surprisingly, there is no fixpoint
iteration and the (implicit) equations are solved by elimination, which is more
efficient. This is comparable to equation resolution by elimination for reducible
flowcharts [27,24,26] but much simpler and efficient. In Section 6, we discuss
whether liveness analysis is correctly used for code optimization. We conclude
in Section 7.

2 Syntax and Trace Semantics

Programs are a subset of C with the following context-free syntax.
x, y,… ∈ V variable (V not empty)

A ∈ A ∶∶= 1 | x | A1 - A2 arithmetic expression
B ∈ B ∶∶= A1 < A2 | B1 nand B2 boolean expression
S ∈ S ∶∶= statement

x = A ; assignment
| ; skip
| if (B) S | if (B) S else S conditionals
| while (B) S | break ; iteration and break
| { Sl } compound statement

Sl ∈ Sl ∶∶= Sl S | 𝜖 statement list
P ∈ P ∶∶= Sl program

A break exits the closest enclosing loop, if none this is a syntactic error. If P is
a program then int main () { P } is a valid C program. We call “[program]
component” S ∈ Pc ≜ S ∪ Sl ∪ P either a statement, a statement list, or a
program.
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2.1 Program labels

Labels are not part of the language, but useful to discuss program points reached
during execution. For each program component S, we define informally
atJSK the program point at which execution of S starts;
aftJSK the program exit point after S, at which execution of S is supposed to nor-

mally terminate, if ever;
escJSK a boolean indicating whether or not the program component S contains a

break ; statement escaping out of that component S;
brk-toJSK the program point at which execution of the program component S goes to

when a break ; statement escapes out of that component S;
brks-ofJSK the set of labels of all break ; statements that can escape out of S;
inJSK the set of program points inside S (including atJSK but excluding aftJSK and

brk-toJSK);
labsJSK the potentially reachable program points while executing S either at, in, or

after the statement, or resulting from a break.

2.2 Traces

Because liveness analysis at a program point relates the past, present, and fu-
ture of a computation, we use a trace semantics relating the past computation
reaching that program point to the future computation continuing this past
computation. For simplicity, the program point where liveness is calculated is
the entry point atJSK at a program component S.

A trace 𝜋 ∈ 𝕋+∞ is a sequence of states separated by events. States are
program labels designating the next action to be executed in the program. The
events record the effect of this execution i.e. the value assigned to a variable,
a test B which is true (marked (B)) or false (marked (¬B)), a break ; exiting
from a loop, or a skip when execution goes on with no variable modification. For
example, the program

ℓ1 x = x + 1 ; if ℓ2 (x < 0) ℓ3 x = 0 ; ℓ4 (1)

executed with initial value 0 of x has execution trace ℓ1 x = x + 1 = 1−−−−−−−−−−−−−−−−−−−−→ ℓ2
¬(x < 0)
−−−−−−−−−−−−−−→

ℓ4. A trace 𝜋 can be finite 𝜋 ∈ 𝕋+ or infinite 𝜋 ∈ 𝕋∞ (recording a non-terminating
computation) so 𝕋+∞ ≜ 𝕋+ ∪ 𝕋∞ 1. Trace concatenation ⌢⋅ is defined as follows

𝜋1ℓ1 ⌢⋅ ℓ2𝜋2 undefined if ℓ1 ≠ ℓ2 𝜋1 ⌢⋅ ℓ2𝜋2 ≜ 𝜋1 if 𝜋1 ∈ 𝕋∞ is infinite
𝜋1ℓ1 ⌢⋅ ℓ1𝜋2 ≜ 𝜋1ℓ1𝜋2 if 𝜋1 ∈ 𝕋+ is finite

In pattern matching, we sometimes need the empty trace ∋. For example if ℓ𝜋ℓ′
= ℓ then 𝜋 = ∋ and so ℓ = ℓ′.

States do not record the value of variables x. 𝝔(𝜋)x is the last value assigned
to x on trace 𝜋 (or 0 at initialization).

𝝔(ℓ)x ≜ 0 𝝔(𝜋ℓ x = A = 𝜈−−−−−−−−−−−−−−−→ ℓ′)x ≜ 𝜈 𝝔(𝜋ℓ …−−−−−−→ ℓ′)x ≜ 𝝔(𝜋ℓ)x otherwise (2)
1 Abstracting program label states would yield Stephen Brookes trace semantics [6].
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2.3 Trace semantics
The trace semantics of a program component S is a relation between past traces
reaching the entry point atJSK and future traces recording the computation of S
from atJSK. For example, program S in (1) has the following two pairs of traces
in its trace semantics.

⟨ℓ0 x = 0 = 0−−−−−−−−−−−−−−−−−→ ℓ1, ℓ1 x = x + 1 = 1−−−−−−−−−−−−−−−−−−−−−−→ ℓ2
¬(x < 0)
−−−−−−−−−−−−−−−−→ ℓ4⟩ ∈ 𝓢+∞JSK

⟨ℓ0 x = 1 = 1−−−−−−−−−−−−−−−−−→ ℓ1, ℓ1 x = x + 1 = 2−−−−−−−−−−−−−−−−−−−−−−→ ℓ2
¬(x < 0)
−−−−−−−−−−−−−−−−→ ℓ4⟩ ∈ 𝓢+∞JSK

In the maximal trace semantics 𝓢+∞JSK, the observation of the future compu-
tation is maximal. It is finite when the program execution stops and infinite
when the execution does not terminate. In the prefix trace semantics 𝓢∗JSK, the
observation of the future computation is finite and can stop at any time during
the execution (in particular just at the program entry). For example, program
S in (1) has the following two pairs of traces in its prefix trace semantics.

⟨ℓ0 x = 0 = 0−−−−−−−−−−−−−−−−−→ ℓ1, ℓ1⟩ ∈ 𝓢∗JSK ⟨ℓ0 x = 1 = 1−−−−−−−−−−−−−−−−−→ ℓ1, ℓ1 x = x + 1 = 2−−−−−−−−−−−−−−−−−−−−−−→ ℓ2⟩ ∈ 𝓢∗JSK
It follows from this discussion that the prefix trace semantics is a relation between
finite traces 𝓢∗JSK ∈ ℘(𝕋+ × 𝕋+) while the maximal trace semantics is a relation
between finite traces and finite or infinite traces 𝓢+∞JSK ∈ ℘(𝕋+ × 𝕋+∞).
2.4 Formal definition of the prefix trace semantics

The prefix trace semantics is defined in fixpoint form by structural induction on
the syntax of program components.
• A prefix future trace of an assignment S ∶∶= ℓ x = A ; (where atJSK = ℓ)
continuing some past trace 𝜋ℓ either stops at ℓ or is ℓ followed by the event
x = A = 𝜈 where 𝜈 ∈ 𝕍 is the value assigned to x (that is the value of the arith-
metic expression A evaluated on 𝜋ℓ) and finishing at the label aftJSK after the
assignment.

𝓢∗JSK ≜ {⟨𝜋ℓ, ℓ⟩, ⟨𝜋ℓ, ℓ x = A = 𝜈−−−−−−−−−−−−−−−→ aftJSK⟩ ∣ 𝜋ℓ ∈ 𝕋+ ∧ 𝜈 =𝓐JAK𝝔(𝜋ℓ)} (3)

We often write ℓ x = 𝑣−−−−−−−−−−→ ℓ′ for ℓ x = A = 𝑣−−−−−−−−−−−−−−−→ ℓ′ (since ℓ x = A ; can be recovered from
the program text and the unique program label ℓ). The value of an arithmetic
expression A in environment 𝜌 ∈ Ev ≜ V → 𝕍 is 𝓐JAK𝜌 ∈ 𝕍:

𝓐J1K𝜌 ≜ 1 𝓐JxK𝜌 ≜ 𝜌(x) 𝓐JA1 - A2K𝜌 ≜𝓐JA1K𝜌 −𝓐JA2K𝜌 (4)

• A prefix trace of a break statement S ∶∶= ℓ break ; continuing some initial
trace 𝜋ℓ either stops at ℓ or is the trace ℓ followed by the break ; event and
ending at the break label brk-toJSK (which is defined as the exit label of the
closest enclosing iteration).

𝓢∗JSK ≜ {⟨𝜋ℓ, ℓ⟩, ⟨𝜋ℓ, ℓ break−−−−−−−−−−−→ brk-toJSK⟩ ∣ 𝜋ℓ ∈ 𝕋+} (5)

• A prefix trace of a conditional statement S ∶∶= if ℓ (B) S𝑡 continuing some
initial trace 𝜋1ℓ is
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• either ℓ when the observation of the execution stops on entry of the program
component;
• or, when the value of the boolean expression B on 𝜋1ℓ is ff, ℓ followed by the

event ¬(B) and finishing at the label aftJSK after the conditional statement;
• or finally, when the value of the boolean expression B on 𝜋1ℓ is tt, ℓ followed

by the test event B followed by a prefix trace of S𝑡 continuing 𝜋1ℓ
B−−−−→ atJS𝑡K.

𝓢∗JSK ≜ {⟨𝜋1ℓ, ℓ⟩ ∣ 𝜋1ℓ ∈ 𝕋+} (6)

∪ {⟨𝜋1ℓ, ℓ
¬(B)
−−−−−−−−→ aftJSK⟩ ∣𝓑JBK𝝔(𝜋1ℓ) = ff ∧ 𝜋1ℓ ∈ 𝕋+}

∪ {⟨𝜋1ℓ, ℓ
B−−−−→ atJS𝑡K ⌢⋅ 𝜋2⟩ ∣𝓑JBK𝝔(𝜋1ℓ) = tt ∧ ⟨𝜋1ℓ

B−−−−→ atJS𝑡K, 𝜋2⟩ ∈ 𝓢∗JS𝑡K}
Notice that if 𝜋2 starting atJS𝑡K is a maximal trace of S𝑡 terminating aftJS𝑡K then
ℓ B−−−−→ atJS𝑡K ⌢⋅ 𝜋2 is also a maximal trace of S terminating aftJSK since aftJS𝑡K =
aftJSK.

Observe also that definition (6) includes the case of a conditional within an
iteration and containing a break statement in the true branch S𝑡. Since brk-toJSK =
brk-toJS𝑡K, from ⟨𝜋1ℓ

B−−−−→ atJS𝑡K, 𝜋2 break−−−−−−−−−−−→ brk-toJS𝑡K⟩ ∈ 𝓢∗JS𝑡K, we infer that
⟨𝜋1ℓ, ℓ

B−−−−→ atJS𝑡K ⌢⋅ 𝜋2 break−−−−−−−−−−−→ brk-toJSK⟩ ∈ 𝓢∗JSK.
• A prefix trace 𝜋 of the empty statement list Sl ∶∶= 𝜖 is reduced to the
program label at that empty statement.

𝓢∗JSlK ≜ {⟨𝜋atJSlK, atJSlK⟩ ∣ 𝜋atJSlK ∈ 𝕋+} (7)

• A prefix trace of a statement list Sl ∶∶= Sl′ S continuing an initial trace 𝜋1
can be a prefix trace of Sl′ or a finite maximal trace of Sl′ followed by a prefix
trace of S.
𝓢∗JSlK ≜ 𝓢∗JSl′K (8)

∪ {⟨𝜋1, 𝜋2 ⌢⋅ 𝜋3⟩ ∈ 𝓢∗JSlK ∣ ⟨𝜋1, 𝜋2⟩ ∈ 𝓢∗JSl′K ∧ ⟨𝜋1 ⌢⋅ 𝜋2, 𝜋3⟩ ∈ 𝓢∗JSK}
Notice that if ⟨𝜋1 ⌢⋅ 𝜋2, 𝜋3⟩ ∈ 𝓢∗JSK then trace 𝜋3 starts atJSK = aftJSl′K so the
trace 𝜋2 in ⟨𝜋1, 𝜋2⟩ ∈ 𝓢∗JSl′K must end aftJSl′K. Therefore 𝜋2 must be a maximal
terminating execution of Sl′ i.e. S is executed only if Sl′ terminates.

• The prefix finite trace semantic definition 𝓢∗JSK (9) of an iteration statement
of the form S ∶∶= while ℓ (B) S𝑏 is the ⊆-least solution lfp⊆𝓕∗JSK to the equation
𝑋 = 𝓕∗JSK(𝑋). Since 𝓕∗JSK ∈ ℘(𝕋+ × 𝕋+) → ℘(𝕋+ × 𝕋+) is ⊆- monotone (if
𝑋 ⊆ 𝑋′ then 𝓕∗JSK(𝑋) ⊆ 𝓕∗JSK(𝑋′) and ⟨℘(𝕋+ × 𝕋+), ⊆, ∅, 𝕋+ × 𝕋+, ∪, ∩⟩
is a complete lattice, lfp⊆𝓕∗JSK exists by Tarski’s fixpoint theorem [30] and
can be defined as the limit of iterates [11], which is useful to abstract into
iterative static analysis algorithms. In definition (9) of the transformer 𝓕∗JSK,
case (9.a) corresponds to a loop execution observation stopping on entry, (9.b)
corresponds to an observation of a loop exiting after 0 or more iterations, and
(9.c) corresponds to a loop execution observation that stops anywhere in the
body S𝑏 after 0 or more iterations. This last case covers the case of an iteration
terminated by a break statement (to aftJSK after the iteration statement).
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𝓢∗JSK = lfp⊆𝓕∗JSK (9)

𝓕∗Jwhile ℓ (B) S𝑏K(𝑋) ≜ {⟨𝜋1ℓ′, ℓ′⟩ | 𝜋1ℓ′ ∈ 𝕋+ ∧ ℓ′ = ℓ} 2 (a)

∪ {⟨𝜋1ℓ′, ℓ′𝜋2ℓ′
¬(B)
−−−−−−−−→ aftJSK⟩ | ⟨𝜋1ℓ′, ℓ′𝜋2ℓ′⟩ ∈ 𝑋 ∧

𝓑JBK𝝔(𝜋1ℓ′𝜋2ℓ′) = ff ∧ ℓ′ = ℓ} (b)

∪ {⟨𝜋1ℓ′, ℓ′𝜋2ℓ′
B−−−−→ atJS𝑏K ⌢⋅ 𝜋3⟩ | ⟨𝜋1ℓ′, ℓ′𝜋2ℓ′⟩ ∈ 𝑋 ∧

𝓑JBK𝝔(𝜋1ℓ′𝜋2ℓ′) = tt ∧ ⟨𝜋1ℓ′𝜋2ℓ′
B−−−−→atJS𝑏K, 𝜋3⟩ ∈ 𝓢∗JS𝑏K ∧ ℓ′ = ℓ} (c)

• The prefix trace semantics of the other program components is similar. It
follows that for each program component S, we have

{⟨𝜋1atJSK, atJSK⟩ | 𝜋1atJSK ∈ 𝕋+} ⊆ 𝓢∗JSK (10)

2.5 Definition of the maximal trace semantics

The maximal trace semantics 𝓢+∞JSK = 𝓢+JSK∪𝓢∞JSK is derived from the prefix
trace semantics 𝓢∗JSK by keeping the longest finite traces 𝓢+JSK and passing to
the limit 𝓢∞JSK of prefix-closed traces for infinite traces.

𝓢+JSK ≜ {⟨𝜋1, 𝜋2ℓ⟩ ∈ 𝓢∗JSK ∣ (ℓ = aftJSK) ∨ (escJSK ∧ ℓ = brk-toJSK)} (11)
𝓢∞JSK ≜ lim(𝓢∗JSK) (12)

where the limit is limT ≜ {⟨𝜋, 𝜋′⟩ ∣ 𝜋′ ∈ 𝕋∞ ∧ ∀𝑛 ∈ N . ⟨𝜋, 𝜋′[0..𝑛]⟩ ∈ T}. (13)

The intuition for (13) is the following. Let S be an iteration. ⟨𝜋, 𝜋′⟩ ∈ 𝓢∞JSK =
lim𝓢∗JSK where 𝜋′ is infinite if and only if, whenever we take a prefix 𝜋′[0..𝑛] of
𝜋′, it is a possible finite observation of the execution of S and so belongs to the
prefix trace semantics ⟨𝜋, 𝜋′[0..𝑛]⟩ ∈ 𝓢∗JSK.
3 The semantic and syntactic liveness/deadness

abstractions

3.1 The generic liveness/deadness abstractions

Informally “a variable is (potentially/definitely) live at some point if it holds a
value that may/must be used in the future before the next time the variable is
modified”. The liveness abstraction 𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋⟩ of a program trace
𝜋 continuing an initial trace 𝜋0 of a program component S is parameterized by
2 A definition of the form 𝑑(�⃗�) ≜ {𝑓(�⃗�′) ∣ 𝑃(�⃗�′, �⃗�)} has the variables �⃗�′ in 𝑃(�⃗�′, �⃗�) bound

to those of 𝑓(�⃗�′) whereas �⃗� is free in 𝑃(�⃗�′, �⃗�) since it appears neither in 𝑓(�⃗�′) nor (by
assumption) under quantifiers in 𝑃(�⃗�′, �⃗�). The �⃗� of 𝑃(�⃗�′, �⃗�) is therefore bound to the
�⃗� of 𝑑(�⃗�).
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– use defining the set useJ𝑎K𝜌 of variables which value is used when executing
action 𝑎 in environment 𝜌;

– mod defining the set modJ𝑎K𝜌 of variables which value is modified when
executing action 𝑎 in environment 𝜌.

Liveness depends on the set 𝐿𝑏 of variables assumed to be live on exit of the
program component S by a break statement and 𝐿𝑒 by a normal exit after S. It
is defined inductively on a finite trace (or co-inductively for an infinite trace) as
follows

𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, ℓ⟩ ≜ {x ∈ V ∣ (ℓ = aftJSK ∧ x ∈ 𝐿𝑒) ∨ (a) (14)
(escJSK ∧ ℓ = brk-toJSK ∧ x ∈ 𝐿𝑏)}

𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, ℓ 𝑎−−−−→ ℓ′𝜋1⟩ ≜ {x ∈ V ∣ x ∈ useJ𝑎K𝝔(𝜋0) ∨ (b)
(x ∉ modJ𝑎K𝝔(𝜋0) ∧ x ∈ 𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0 ⌢⋅ ℓ 𝑎−−−−→ℓ′, ℓ′𝜋1⟩)}

The potential and definite liveness are abstractions of the maximal trace seman-
tics 𝓢 = 𝓢+∞JSK is by merge over all traces

𝛼∃luse,modJSK 𝓢 𝐿𝑏, 𝐿𝑒 = ⋃
⟨𝜋0, 𝜋⟩ ∈𝓢

𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋⟩ potential liveness (15)

𝛼∀luse,modJSK 𝓢 𝐿𝑏, 𝐿𝑒 = ⋂
⟨𝜋0, 𝜋⟩ ∈𝓢

𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋⟩ definite liveness (16)

Potential and definite deadness are defined dually.

𝛼∃duse,modJSK 𝓢 𝐷𝑏, 𝐷𝑒 = ¬𝛼∀luse,modJSK 𝓢 ¬𝐷𝑏, ¬𝐷𝑒 potential deadness (17)
𝛼∀duse,modJSK 𝓢 𝐷𝑏, 𝐷𝑒 = ¬𝛼∃luse,modJSK 𝓢 ¬𝐷𝑏, ¬𝐷𝑒 definite deadness (18)

If S and S′ have the same aft, esc, and brk-to labelling, they have the same
𝛼luse,mod, 𝛼∃luse,mod, 𝛼∀luse,mod, 𝛼∃duse,mod, and 𝛼∃luse,mod.

Unfolding the recursive definition (14) , we get

Lemma 1 If 𝜋1 = ℓ1
𝑎1−−−−−→ ℓ2

𝑎2−−−−−→ …
𝑎𝑛−1−−−−−−−−→ ℓ𝑛 and ⟨𝜋0, 𝜋1⟩ ∈ 𝓢∗JSK then

𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ = {x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] .

x∉modJ𝑎𝑗K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑗−1−−−−−−−−→ ℓ𝑗) ∧ x∈useJ𝑎𝑖K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑖−1−−−−−−−→ ℓ𝑖)}
∪ ( ℓ𝑛 = aftJSK ? 𝐿𝑒 : ∅ ) ∪ ( escJSK ∧ ℓ𝑛 = brk-toJSK ? 𝐿𝑏 : ∅ ). ⊓⊔

Proof (of Lem. 1) For the basis 𝑛 = 1, only the first clause (a) of (14) is applicable
with 𝜋1 = ℓ1, [1, 𝑛 − 1] is empty, and 𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ = ( ℓ1 = aftJSK ?
𝐿𝑒 : ∅ ) ∪ ( escJSK ∧ ℓ1 = brk-toJSK ? 𝐿𝑏 : ∅ ) which is precisely what is given by
Lem. 1 since [1, 𝑛 − 1] = ∅ so the first term is empty.

For the induction step 𝑛+1 > 1, we have 𝜋1 = ℓ1
𝑎1−−−−−→ ℓ2

𝑎2−−−−−→ ℓ3
𝑎3−−−−−→ …

𝑎𝑛−−−−−→ ℓ𝑛+1
and only the second clause (b) of (14) is applicable so we get
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𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ Hassuming 𝑛 + 1 ⩾ 2I
= {x ∈ V ∣ x ∈ useJ𝑎1K𝝔(𝜋0) ∨ (x ∉ modJ𝑎1K𝝔(𝜋0)) ∧ x ∈ 𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0 ⌢⋅
ℓ1
𝑎1−−−−−→ℓ2, ℓ2

𝑎2−−−−−→ ℓ3
𝑎3−−−−−→ …

𝑎𝑛−−−−−→ ℓ𝑛+1⟩)} H(14.b) when 𝑛 > 1I
= {(x ∈ V ∣ x ∈ useJ𝑎1K𝝔(𝜋0)) ∨ (x ∉ modJ𝑎1K𝝔(𝜋0) ∧ ∃𝑖 ∈ [2, 𝑛] . ∀𝑗 ∈ [2, 𝑖 − 1] . x ∉

modJ𝑎𝑗K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑗−1−−−−−−−−→ ℓ𝑗)∧x ∈ useJ𝑎𝑖K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑖−1−−−−−−−→ ℓ𝑖))∨
( ℓ𝑛+1 = aftJSK ? x ∈ 𝐿𝑒 : ff ) ∨ ( escJSK ∧ ℓ𝑛+1 = brk-toJSK ? x ∈ 𝐿𝑏 : ff )}

Hsince 𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→, ℓ2 𝑎2−−−−−→ … 𝑎𝑛−−−−−→ ℓ𝑛+1⟩ = {x ∈ V ∣

∃𝑖 ∈ [2, 𝑛] . ∀𝑗 ∈ [2, 𝑖 − 1] . x ∉modJ𝑎𝑗K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑗−1−−−−−−−−→ ℓ𝑗) ∧ x ∈
useJ𝑎𝑖K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑖−1−−−−−−−→ ℓ𝑖)} ∪ ( ℓ𝑛+1 = aftJSK ? 𝐿𝑒 : ∅ ) ∪ ( escJSK ∧
ℓ𝑛+1 = brk-toJSK ? 𝐿𝑏 : ∅ ) by ind. hyp. for Lem. 1I

= {x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛] . ∀𝑗 ∈ [1, 𝑖−1] . x ∉ modJ𝑎𝑗K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑗−1−−−−−−−−→ ℓ𝑗)∧x ∈
useJ𝑎𝑖K𝝔(𝜋0 ⌢⋅ ℓ1 𝑎1−−−−−→ ℓ2… 𝑎𝑖−1−−−−−−−→ ℓ𝑖)} ∪ ( ℓ𝑛+1 = aftJSK ? 𝐿𝑒 : ∅ ) ∪ ( escJSK ∧ ℓ𝑛+1 =
brk-toJSK ? 𝐿𝑏 : ∅ )Hincorporating (x ∈ V ∣ x ∈ useJ𝑎1K𝝔(𝜋0)) in the case 𝑖 = 1 for which
[1, 𝑖 − 1] = ∅ and 𝝔(𝜋0 ⌢⋅ ℓ1

𝑎1−−−−−→ ℓ2…
𝑎𝑖−1−−−−−−−→ ℓ𝑖) = 𝝔(𝜋0 ⌢⋅ ℓ1) = 𝝔(𝜋0).I

This proves Lem. 1 for the induction step and we conclude by recurrence on
𝑛. ⊓⊔

We also observe that potential liveness (hence dually definite deadness) can be
equivalently defined using maximal or prefix traces.

Lemma 2 𝛼∃luse,modJSK (𝓢+∞JSK) = 𝛼∃luse,modJSK (𝓢∗JSK). ⊓⊔

Proof of Lem. 2. To show that 𝛼∃luse,modJSK (𝓢+∞JSK) = 𝛼∃luse,modJSK (𝓢∗JSK) we
must, by (15), prove that

𝐴 = ⋃
⟨𝜋0, 𝜋⟩ ∈𝓢+∞JSK𝛼

l
use,modJSK 𝐿𝑏, 𝐿𝑒⟨𝜋0, 𝜋⟩ = ⋃

⟨𝜋0, 𝜋′⟩ ∈𝓢∗JSK𝛼
l
use,modJSK 𝐿𝑏, 𝐿𝑒⟨𝜋0, 𝜋′⟩ = 𝐵.

– Assume x ∈ 𝐴 because of some ⟨𝜋0, 𝜋⟩ ∈ 𝓢+∞JSK. There are two cases.
• Either x ∈ 𝐴 follows from (14.a) and so the second alternative in (14.b)

has always been chosen before reaching the end of the trace 𝜋 with a label
ℓ = aftJSK or escJSK = tt and ℓ = brk-toJSK. In both cases, 𝜋 is maximal by
(11), ⟨𝜋0, 𝜋⟩ ∈ 𝓢∗JSK, and so x ∈ 𝐵 by (14).
• Otherwise, x ∈ 𝐴 follows from (14.b) where the second alternative has been

chosen finitely many times (so x is unmodified) until the first alternative
is chosen because x is used. Consider the prefix of 𝜋 up to that point of
use. By (13), it is, or an extension of it, 𝜋′ is in the prefix semantics ⟨𝜋0,
𝜋′⟩ ∈ 𝓢∗JSK and so from this trace we derive from (14.b) that x ∈ 𝐵.
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It follows that 𝐴 ⊆ 𝐵.
– Conversely, assume x ∈ 𝐵. Then there exists ⟨𝜋0, 𝜋′⟩ ∈ 𝓢∗JSK such that

x ∈ 𝛼luse,modJSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋′⟩. Consider a maximal extension of 𝜋′ so that
there exists 𝜋″ with ⟨𝜋0, 𝜋′ ⋅ 𝜋″⟩ ∈ 𝓢+∞JSK. There are two cases, depending
of whether x ∈ 𝐵 in (14.a) or (14.b).
• If x ∈ 𝐵 because of (14.a) then the 𝜋′ ends at aftJSK or at brk-toJSK and so
𝜋′ is maximal that is ⟨𝜋0, 𝜋′⟩ ∈ 𝓢+∞JSK and so x ∈ 𝐴.
• If x ∈ 𝐵 because of (14.b) then x ∈ 𝐵 is used in 𝜋′ without being modified

before and so this is also the case in ⟨𝜋0, 𝜋′ ⋅ 𝜋″⟩ ∈ 𝓢+∞JSK, 𝜋″ = ∋, and
then x ∈ 𝐴 by (14).

In both cases, 𝐵 ⊆ 𝐴.
– By antisymmetry, 𝐴 = 𝐵. ⊓⊔

3.2 The semantic liveness/deadness abstractions

Semantically, an action 𝑎 uses variable y in a given environment 𝜌 if and only if
it is possible to change the value of y so as to change the effect of action 𝑎 on
program execution. For an assignment, the assigned value will be changed. For
a test, which has no side effect, the branch taken will be different. For example,
y ∉ useJx = y - yK 𝜌 and x ∉ useJx = xK 𝜌. Formally,

useJskipK 𝜌 ≜ ∅ (19)
useJx = AK 𝜌 ≜ {y ∣ ∃𝜈 ∈ 𝕍 .𝓐JAK 𝜌 ≠𝓐JAK 𝜌[y← 𝜈] ∧ 𝜌(x) ≠𝓐JAK 𝜌}

useJ𝑎K 𝜌 ≜ {y ∣ ∃𝜈 ∈ 𝕍 .𝓑J𝑎K 𝜌 ≠𝓑J𝑎K 𝜌[y← 𝜈]} 𝑎 ∈ {B, ¬(B)}

Notice that x ∈ useJ𝑎K in (19) compares two executions of action 𝑎 in different
environments so that (14) is a dependency analysis involving a trace and the
abstraction of another one by a different environment [10]. An action 𝑎 mod-
ifies variable x in an environment 𝜌 if and only the execution of action 𝑎 in
environment 𝜌 changes the value of x. This corresponds to

modJ𝑎K 𝜌 ≜ {x ∣ 𝑎 = (x = A) ∧ (𝜌(x) ≠𝓐JAK 𝜌)}
So the semantic potential liveness abstract semantics is

𝓢∃lJSK ≜ 𝛼∃luse,modJSK (𝓢+∞JSK) (20)

instantiating (15) with use as use and mod as mod (and similarly for the other
cases).

3.3 The classical syntactic liveness/deadness abstractions

Classical dataflow analysis as considered in [25] is purely syntactic i.e. approxi-
mates semantic properties by coarser syntactic ones based on the program syntax
only. The set 𝕦𝕤𝕖J𝑎K of variables used and the set 𝕞𝕠𝕕J𝑎K of variables assigned
to/modified in an action 𝑎 ∈ 𝔸 are postulated to be as follows (the parameter 𝜌
is useless but added for consistency with (14)).
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𝕦𝕤𝕖Jx = AK 𝜌 ≜ 𝕧𝕒𝕣𝕤JAK 𝕦𝕤𝕖JskipK 𝜌 ≜ ∅ 𝕦𝕤𝕖JBK 𝜌 ≜ 𝕦𝕤𝕖J¬(B)K 𝜌 ≜ 𝕧𝕒𝕣𝕤JBK
𝕞𝕠𝕕Jx = AK 𝜌 ≜ {x} 𝕞𝕠𝕕JskipK 𝜌 ≜ ∅ 𝕞𝕠𝕕JBK 𝜌 ≜ 𝕞𝕠𝕕J¬(B)K 𝜌 ≜ ∅ (21)

where 𝕧𝕒𝕣𝕤JEK is the set of program variables occurring in arithmetic or boolean
expression E.

So the classical syntactic potential liveness abstract semantics is
𝓢∃∃𝕝JSK ≜ 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢+∞JSK) (22)

instantiating (15) with use as 𝕦𝕤𝕖 and mod as 𝕞𝕠𝕕 (and similarly for the other
cases).

3.4 Unsoundness of the syntactic liveness/deadness abstractions
One would expect soundness that is the potentially live variables determined
syntactically by [25] is a pointwise over-approximation of the potentially live
variables determined semantically but this is wrong 𝓢∃lJSK ⊈̇ 𝓢∃∃𝕝JSK, as shown
by Ex. 2. The problem is that

∃𝜌 ∈ Ev . y ∈ useJ𝑎K 𝜌 ⇒ ∀𝜌 ∈ Ev . y ∈ 𝕦𝕤𝕖J𝑎K 𝜌 (23)

but in general, as shown by Ex. 2, ∃𝜌 ∈ Ev . x ∈ 𝕞𝕠𝕕J𝑎K 𝜌 ∧ x ∉ modJ𝑎K 𝜌.
Proof of (23). Let us first remark that if x ∉ 𝕧𝕒𝕣𝕤JBK and ∀y ∈ V ⧵ {x} . 𝜌′(y) =
𝜌(y) then 𝓑JBK𝜌 =𝓑JBK𝜌′ and similarly for arithmetic expressions.

(23) is trivial for skip since useJskipK 𝜌 y = ff in (19). Otherwise, by contrapo-
sition, assume that y ∉ 𝕦𝕤𝕖J𝑎K𝜌.

If 𝑎 = x = A then y ∉ 𝕧𝕒𝕣𝕤JAK by (21) so ∀𝜈 ∈ 𝕍 . 𝓐JAK 𝜌 = 𝓐JAK 𝜌[y ← 𝜈],
proving ¬(useJx = AK 𝜌 y) by (19).

Similarly if 𝑎 = B or 𝑎 = ¬(B) then changing y does not change the value of
the boolean expression so y is not semantically used by (19). ⊓⊔

3.5 Soundness of the syntactic liveness/deadness abstractions
with respect to revised syntactic/semantic liveness/deadness
abstractions

To fix the problem 𝓢∃lJSK ⊈̇ 𝓢∃∃𝕝JSK, we can either change 𝛼∃luse,mod or 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕.
Changing 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕 would mean changing the classical potential live variable al-
gorithm [20,19,21] and all compilers using it. So we change 𝛼∃luse,mod so as to
explain exactly in what sense the unchanged classical potential live variable al-
gorithm is sound (even if this is not the most semantically intuitive one). We
remark that we have 𝛼∃luse,𝕞𝕠𝕕 ⊆̇ 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕 so the classical potential live variable
algorithm 𝓢∃∃𝕝JSK which over-approximates 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢+∞JSK) is sound. How-
ever, the program transformations that preserve mod but not 𝕞𝕠𝕕 may change
the liveness analysis. Therefore we define

𝓢∃𝕝JSK ≜ 𝛼∃luse,𝕞𝕠𝕕 (𝓢+∞JSK) (24)
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Theorem 1 If 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢+∞JSK) ⊆̇ 𝓢∃∃𝕝JSK then 𝓢∃𝕝JSK ⊆̇ 𝓢∃∃𝕝JSK.

Proof of Th. 1. We have to prove that 𝛼∃luse,𝕞𝕠𝕕JSK ⊆̇ 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK, pointwise.
We first prove that 𝛼luse,𝕞𝕠𝕕JSK ⊆̇ 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK. We proceed by induction (more
precisely bi-induction [15] to account for infinite traces).

For the basis

𝛼luse,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, ℓ⟩
= {x ∈ V ∣ (ℓ = aftJSK ∧ x ∈ 𝐿𝑒) ∨ (escJSK ∧ ℓ = brk-toJSK ∧ x ∈ 𝐿𝑏)} H(14.a)I
⊆ 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, ℓ⟩ H(14.a) and ⊆ reflexiveI

For the induction step

𝛼luse,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, ℓ 𝑎−−−−→ ℓ′𝜋1⟩
= {x ∈ V ∣ x ∈ useJ𝑎K𝝔(𝜋0) ∨ (x ∉ 𝕞𝕠𝕕J𝑎K𝝔(𝜋0) ∧ x ∈ 𝛼luse,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0 ⌢⋅ ℓ 𝑎−−−−→ℓ′,
ℓ′𝜋1⟩)} H(14.b)I
⊆ {x ∈ V ∣ x ∈ 𝕦𝕤𝕖J𝑎K𝝔(𝜋0) ∨ (x ∉ 𝕞𝕠𝕕J𝑎K𝝔(𝜋0) ∧x ∈ 𝛼luse,𝕞𝕠𝕕JSK𝐿𝑏, 𝐿𝑒 ⟨𝜋0 ⌢⋅ ℓ 𝑎−−−−→ℓ′,
ℓ′𝜋1⟩)} H(23)I
⊆ {x ∈ V ∣ x ∈ 𝕦𝕤𝕖J𝑎K𝝔(𝜋0)∨ (x ∉ 𝕞𝕠𝕕J𝑎K𝝔(𝜋0)∧x ∈ 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK𝐿𝑏, 𝐿𝑒 ⟨𝜋0 ⌢⋅ ℓ 𝑎−−−−→ℓ′,
ℓ′𝜋1⟩)} Hind. hyp.I

= 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, ℓ 𝑎−−−−→ ℓ′𝜋1⟩ H(14.b)I
It follows that

𝛼∃luse,𝕞𝕠𝕕JSK 𝓢 𝐿𝑏, 𝐿𝑒
= ⋃
⟨𝜋0, 𝜋⟩ ∈𝓢

𝛼luse,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋⟩ H(15)I
⊆ ⋃
⟨𝜋0, 𝜋⟩ ∈𝓢

𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋⟩ H𝛼luse,𝕞𝕠𝕕JSK ⊆̇ 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSKI
= 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝓢 𝐿𝑏, 𝐿𝑒 H(15)I
If 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢+∞JSK) ⊆̇ 𝓢∃∃𝕝JSK then 𝛼∃luse,𝕞𝕠𝕕JSK (𝓢+∞JSK) ⊆̇ 𝓢∃∃𝕝JSK and there-
fore, by (24), 𝓢∃𝕝JSK ≜ 𝛼∃luse,𝕞𝕠𝕕 (𝓢+∞JSK) ⊆̇ 𝓢∃∃𝕝JSK.
The other cases 𝓢∀𝕝JSK, 𝓢∃∃𝕕JSK, and 𝓢∀𝕕JSK are similar.
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4 Calculational design of the structural syntactic
potential liveness static analysis

By Th. 1, a liveness inference algorithm 𝓢∃∃𝕝JSK is sound whenever

𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢+∞JSK) ⊆̇ 𝓢∃∃𝕝JSK,
equivalently

𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢∗JSK) ⊆̇ 𝓢∃∃𝕝JSK
by Lem. 2. So we can construct this algorithm 𝓢∃∃𝕝JSK by a calculus that sim-
plifies the term 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢∗JSK). Since the semantics 𝓢∗JSK is structural, we
get a structural algorithm which proceeds by elimination, without any fixpoint
iteration. We first give the result in Figure 1 and then show the systematic
calculational design [8]. Notice that although the semantics is forward, the anal-
ysis is backward (see e.g. the statement list and iteration). We omit the unused
environment parameter of 𝕦𝕤𝕖 and 𝕞𝕠𝕕.

Structural syntactic potential liveness analysis
�̂�∃∃𝕝JSl ℓK 𝐿𝑒 ≜ �̂�∃∃𝕝JSl ℓK ∅, 𝐿𝑒 (25)

�̂�∃∃𝕝Jx = A ;K 𝐿𝑏, 𝐿𝑒 ≜ 𝕦𝕤𝕖Jx = AK ∪ (𝐿𝑒 ⧵𝕞𝕠𝕕Jx = AK)
�̂�∃∃𝕝J;K 𝐿𝑏, 𝐿𝑒 ≜ 𝐿𝑒

�̂�∃∃𝕝JSl′ SK 𝐿𝑏, 𝐿𝑒 ≜ �̂�∃∃𝕝JSl′K 𝐿𝑏, (�̂�∃∃𝕝JSK 𝐿𝑏, 𝐿𝑒)
�̂�∃∃𝕝J 𝜖 K 𝐿𝑏, 𝐿𝑒 ≜ 𝐿𝑒

�̂�∃∃𝕝Jif (B) S𝑡K 𝐿𝑏, 𝐿𝑒 ≜ 𝕦𝕤𝕖JBK ∪ 𝐿𝑒 ∪ �̂�∃∃𝕝JS𝑡K 𝐿𝑏, 𝐿𝑒
�̂�∃∃𝕝Jif (B) S𝑡 else S𝑓K 𝐿𝑏, 𝐿𝑒 ≜ 𝕦𝕤𝕖JBK ∪ �̂�∃∃𝕝JS𝑡K 𝐿𝑏, 𝐿𝑒 ∪ �̂�∃∃𝕝JS𝑓K 𝐿𝑏, 𝐿𝑒

�̂�∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒 ≜ 𝕦𝕤𝕖JBK ∪ 𝐿𝑒 ∪ �̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒
�̂�∃∃𝕝Jbreak ;K 𝐿𝑏, 𝐿𝑒 ≜ 𝐿𝑏
�̂�∃∃𝕝J{ Sl }K 𝐿𝑏, 𝐿𝑒 ≜ �̂�∃∃𝕝JSlK 𝐿𝑏, 𝐿𝑒 ⊓⊔

Fig. 1. Potential liveness

Theorem 2 �̂�∃∃𝕝JSK defined by (25) is syntactically sound that is 𝓢∃∃𝕝JSK =
𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓢∗JSK) ⊆̇ �̂�∃∃𝕝JSK.

Proof of Th. 2. By structural induction on S. We provide an example of a base
case (assignment) and an inductive case (iteration), all other cases are similar.

– For the assignment S ∶∶= ℓ x = A ;, let us calculate 𝓢∃∃𝕝JSK 𝐿𝑏, 𝐿𝑒
= 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK(𝓢∗JSK) 𝐿𝑏, 𝐿𝑒 H(22) and Lem. 2I
= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ �̂�∗JSK} Hdef. (15) of 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSKI
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= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0atJSK, atJSK⟩} ∪ ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0atJSK,
atJSK x = A =𝓐JAK𝝔(𝜋0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩} Hdef. (3) of 𝓢∗JSKI

= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0atJSK, atJSK x = A =𝓐JAK𝝔(𝜋0atJSK)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩}Hdef. (14.a) of 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0atJSK, atJSK⟩ = ∅ I

= ⋃{y ∈ V ∣ y ∈ 𝕦𝕤𝕖Jx = AK𝝔(𝜋0atJSK) ∨ (y ∉ 𝕞𝕠𝕕Jx = AK𝝔(𝜋0atJSK) ∧ y ∈
𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0atJSK ⌢⋅ atJSK x = A =𝓐JAK𝝔(𝜋0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK, aftJSK⟩)}
Hdef. (14.b) of 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕 𝐿𝑏, 𝐿𝑒 ⟨𝜋0atJSK, atJSK x = A =𝓐JAK𝝔(𝜋0atJSK)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩I
= {y ∈ V ∣ y ∈ 𝕦𝕤𝕖Jx = AK ∨ (y ∉ 𝕞𝕠𝕕Jx = AK ∧ y ∈ 𝐿𝑒)}Hdef. (14.a) of 𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, aftJSK⟩ ≜ {x ∈ V ∣ x ∈ 𝐿𝑒} = 𝐿𝑒 since

escJSK = ff and omitting the useless parameters of 𝕦𝕤𝕖 and 𝕞𝕠𝕕I
= 𝕦𝕤𝕖Jx = AK ∪ (𝐿𝑒 ⧵𝕞𝕠𝕕Jx = AK) Hdef. ∈I
= �̂�∃∃𝕝Jx = A ;K 𝐿𝑏, 𝐿𝑒 H(25), Q.E.D.I
⊆ is never used in this derivation so �̂�∃∃𝕝Jx = A ;K 𝐿𝑏, 𝐿𝑒 = 𝓢∃∃𝕝Jx = A ;K 𝐿𝑏, 𝐿𝑒 is
the best (most precise) abstraction for the assignment.

– For the iteration S ∶∶= while ℓ (B) S𝑏, we apply the semi-commutation fixpoint
approximation Theorem 1 of [9] to the fixpoint definition (9) of the prefix trace
semantics of the iteration. For the semi-commutation where we can assume that
𝑋 is an iterate of 𝓕∗Jwhile ℓ (B) S𝑏K from ∅ and therefore 𝑋 ⊆ 𝓢∗JSK, we have

𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓕∗Jwhile ℓ (B) S𝑏K(𝑋)) 𝐿𝑏, 𝐿𝑒
= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ 𝓕∗Jwhile ℓ (B) S𝑏K(𝑋)} H(15)I
= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨𝜋1ℓ′, ℓ′⟩ | 𝜋1ℓ′ ∈ 𝕋+ ∧ ℓ′ = ℓ}} ∪ (𝑎)
⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨𝜋1ℓ′, ℓ′𝜋2ℓ′ ¬(B)−−−−−−−−→ aftJSK⟩ | ⟨𝜋1ℓ′,
ℓ′𝜋2ℓ′⟩ ∈ 𝑋 ∧𝓑JBK𝝔(𝜋1ℓ′𝜋2ℓ′) = ff ∧ ℓ′ = ℓ}} ∪ (𝑏)
⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨𝜋1ℓ′, ℓ′𝜋2ℓ′ B−−−−→ atJS𝑏K ⌢⋅ 𝜋3⟩ | ⟨𝜋1ℓ′,
ℓ′𝜋2ℓ′⟩ ∈ 𝑋∧𝓑JBK𝝔(𝜋1ℓ′𝜋2ℓ′) = tt∧⟨𝜋1ℓ′𝜋2ℓ′

B−−−−→ atJS𝑏K, 𝜋3⟩∈𝓢∗JS𝑏K∧ ℓ′ = ℓ}} (𝑐)H(9)I
We go on by cases.
• For the case (𝑎), we have
⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨𝜋1ℓ′, ℓ′⟩ | 𝜋1ℓ′ ∈ 𝕋+ ∧ ℓ′ = ℓ}} H(a)I

= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋1ℓ, ℓ⟩ ∣ 𝜋1ℓ ∈ 𝕋+} Hwhere ℓ = atJwhile ℓ (B) S𝑏KI
= {x ∈ V ∣ (ℓ = aftJSK ∧ x ∈ 𝐿𝑒) ∨ (escJSK ∧ ℓ = brk-toJSK ∧ x ∈ 𝐿𝑏)} H(14.a)I
= ∅ Hℓ = atJSK ≠ aftJSK and ℓ = atJSK ≠ brk-toJSK for iterationI
• For the case (𝑏) where 𝑋 ⊆ 𝓢∗JSK is a subset of the iterates, we have
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⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨𝜋1ℓ′, ℓ′𝜋2ℓ′ ¬(B)−−−−−−−−→ aftJSK⟩ | ⟨𝜋1ℓ′,
ℓ′𝜋2ℓ′⟩ ∈ 𝑋 ∧𝓑JBK𝝔(𝜋1ℓ′𝜋2ℓ′) = ff ∧ ℓ′ = ℓ}}

= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋1ℓ, ℓ𝜋2ℓ ¬(B)−−−−−−−−→ aftJSK⟩ ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋 ∧
𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = ff} Hdef. ∈ and ℓ′ = ℓ = atJSKI

= ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛−1] . ∀𝑗 ∈ [1, 𝑖−1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K∧x ∈ 𝕦𝕤𝕖J𝑎𝑖K}∪𝐿𝑒∪ ∣ ⟨𝜋1ℓ,
ℓ𝜋2ℓ⟩ ∈ 𝑋 ∧𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = ff}

Hby Lem. 1 where ℓ𝜋2ℓ
¬(B)
−−−−−−−−→ aftJSK = ℓ1 𝑎1−−−−−→ ℓ2 𝑎2−−−−−→ … 𝑎𝑛−2−−−−−−−−→ ℓ𝑛−1 =

ℓ
𝑎𝑛−1 = ¬(B)−−−−−−−−−−−−−−−−−−→ ℓ𝑛 where ℓ = ℓ1 and ℓ𝑛 = aftJSK, ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋 ⊆ 𝓢∗JSK so

⟨𝜋1ℓ, ℓ𝜋2ℓ
¬(B)
−−−−−−−−→ aftJSK⟩ ∈ 𝓢∗JSK, and escJSK = ffI

= ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛 − 2] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∪ {x ∈ V ∣
∀𝑗 ∈ [1, 𝑛−2] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K∧x ∈ 𝕦𝕤𝕖JBK}∪𝐿𝑒 ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋∧𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) =
ff} H[1, 𝑛 − 1] = [1, 𝑛 − 2] ∪ {𝑛 − 1}, 𝑎𝑛−1 = ¬(B), and 𝕦𝕤𝕖J¬(B)K = 𝕦𝕤𝕖JBKI
⊆ ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛 − 2] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K ∣ ⟨𝜋1ℓ,
ℓ𝜋2ℓ⟩ ∈ 𝑋}} ∪ 𝕦𝕤𝕖JBK ∪ 𝐿𝑒Hignoring the check ∀𝑗 ∈ [1, 𝑛 − 2] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K that x has not been

modified before its use in ¬(B), that the test B is false, and ℓ𝜋2ℓ ≜
ℓ1
𝑎1−−−−−→ ℓ2

𝑎2−−−−−→ …
𝑎𝑛−2−−−−−−−−→ ℓ𝑛−1 with ℓ = ℓ1 and ℓ𝑛−1 = ℓI

⊆ ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ 𝑋} ∪ 𝕦𝕤𝕖JBK ∪ 𝐿𝑒 HLem. 1I
= 𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝑋) 𝐿𝑏, 𝐿𝑒 ∪ 𝕦𝕤𝕖JBK ∪ 𝐿𝑒 H(15)I

• For the case (𝑐) where 𝑋 ⊆ 𝓢∗JSK is a subset of the iterates, we have

⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ {⟨𝜋1ℓ′, ℓ′𝜋2ℓ′ B−−−−→ atJS𝑏K ⌢⋅ 𝜋3⟩ | ⟨𝜋1ℓ′,
ℓ′𝜋2ℓ′⟩ ∈ 𝑋 ∧𝓑JBK𝝔(𝜋1ℓ′𝜋2ℓ′) = tt ∧ ⟨𝜋1ℓ′𝜋2ℓ′

B−−−−→ atJS𝑏K, 𝜋3⟩ ∈𝓢∗JS𝑏K ∧ ℓ′ = ℓ}}
= ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋1ℓ, ℓ𝜋2ℓ B−−−−→ atJS𝑏K ⌢⋅ 𝜋3⟩ ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋 ∧

𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = tt ∧ ⟨𝜋3, 𝜋1ℓ𝜋2ℓ
B−−−−→ atJS𝑏K⟩ ∈ 𝓢∗JS𝑏K}Hdef. ∈ and ℓ′ = ℓ = atJSKI

= ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∪ ( ℓ𝑛 =
aftJSK ? 𝐿𝑒 : ∅ ) ∪ ( escJSK ∧ ℓ𝑛 = brk-toJSK ? 𝐿𝑏 : ∅ ) ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋 ∧
𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = tt ∧ ⟨𝜋3, 𝜋1ℓ𝜋2ℓ

B−−−−→ atJS𝑏K⟩ ∈ 𝓢∗JS𝑏K∧ ℓ𝜋2ℓ B−−−−→ atJS𝑏K ⌢⋅ 𝜋3 =
ℓ1
𝑎1−−−−−→ ℓ2

𝑎2−−−−−→ …
𝑎𝑛−1−−−−−−−−→ ℓ𝑛} Hby Lem. 1 I
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= ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1, 𝑛 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∣ ⟨𝜋1ℓ,
ℓ𝜋2ℓ⟩ ∈ 𝑋 ∧𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = tt ∧ ⟨𝜋3, 𝜋1ℓ𝜋2ℓ

B−−−−→ atJS𝑏K⟩ ∈ 𝓢∗JS𝑏K ∧ ℓ𝜋2ℓ =
ℓ1
𝑎1−−−−−→ ℓ2

𝑎2−−−−−→ …
𝑎𝑚−1−−−−−−−−−→ ℓ𝑚 ∧ ℓ B−−−−→ atJS𝑏K = ℓ𝑚 𝑎𝑚 = B−−−−−−−−−−−−→ ℓ𝑚+1 ∧ 𝜋3 = ℓ𝑚+1

𝑎𝑚+1−−−−−−−−−→
…
𝑎𝑛−1−−−−−−−−→ ℓ𝑛}

Hby decomposing the trace according to its pattern, ⟨𝜋3, 𝜋1ℓ𝜋2ℓ
B−−−−→

atJS𝑏K⟩ ∈ 𝓢∗JS𝑏K so ℓ𝑛 ≠ aftJSK, and escJSK = ffI
= ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1,𝑚 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∪ {x ∈ V ∣
∀𝑗 ∈ [1,𝑚 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑚K} ∪ {x ∈ V ∣ ∃𝑖 ∈ [𝑚 + 1, 𝑛 − 1] . ∀𝑗 ∈
[1, 𝑖−1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K∧x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋∧𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = tt∧⟨𝜋3,

𝜋1ℓ𝜋2ℓ
B−−−−→ atJS𝑏K⟩ ∈ 𝓢∗JS𝑏K ∧ ℓ𝜋2ℓ = ℓ1 𝑎1−−−−−→ ℓ2 𝑎2−−−−−→ … 𝑎𝑚−1−−−−−−−−−→ ℓ𝑚 ∧ ℓ B−−−−→

atJS𝑏K = ℓ𝑚 𝑎𝑚 = B−−−−−−−−−−−−→ ℓ𝑚+1 ∧ 𝜋3 = ℓ𝑚+1
𝑎𝑚+1−−−−−−−−−→ …

𝑎𝑛−1−−−−−−−−→ ℓ𝑛}Hby decomposing [1, 𝑛 − 1] = [1,𝑚 − 1] ∪ {𝑚} ∪ [𝑚 + 1, 𝑛 − 1]I
⊆ ⋃{{x ∈ V ∣ ∃𝑖 ∈ [1,𝑚 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∣ ⟨𝜋1ℓ,
ℓ𝜋2ℓ⟩ ∈ 𝑋 ∧ ℓ𝜋2ℓ = ℓ1

𝑎1−−−−−→ ℓ2
𝑎2−−−−−→ …

𝑎𝑚−1−−−−−−−−−→ ℓ𝑚} ∪ 𝕦𝕤𝕖JBK ∪ ⋃{{x ∈ V ∣ ∃𝑖 ∈
[𝑚 + 1, 𝑛 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∣ ⟨𝜋3, 𝜋1ℓ𝜋2ℓ B−−−−→

atJS𝑏K⟩ ∈ 𝓢∗JS𝑏K ∧ 𝜋3 = ℓ𝑚+1 𝑎𝑚+1−−−−−−−−−→ … 𝑎𝑛−1−−−−−−−−→ ℓ𝑛}Hdef. ∪, ignoring the check ∀𝑗 ∈ [1,𝑚 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K that x has
not been modified before its use in 𝑎𝑚 = B, ignoring the value of
𝓑JBK𝝔(𝜋1ℓ𝜋2ℓ) = ttI

⊆ ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋} ∪ 𝕦𝕤𝕖JBK ∪⋃{{x ∈ V ∣ ∃𝑖 ∈
[𝑚 + 1, 𝑛 − 1] . ∀𝑗 ∈ [1, 𝑖 − 1] . x ∉ 𝕞𝕠𝕕J𝑎𝑗K ∧ x ∈ 𝕦𝕤𝕖J𝑎𝑖K} ∪ ( ℓ𝑛 = aftJS𝑏K ?

𝐿𝑒 : ∅ ) ∪ ( escJS𝑏K ∧ ℓ𝑛 = brk-toJS𝑏K ? 𝐿𝑏 : ∅ ) ∣ ⟨𝜋3, 𝜋1ℓ𝜋2ℓ
B−−−−→ atJS𝑏K⟩ ∈

𝓢∗JS𝑏K ∧ 𝜋3 = ℓ𝑚+1 𝑎𝑚+1−−−−−−−−−→ … 𝑎𝑛−1−−−−−−−−→ ℓ𝑛}Hby Lem. 1 for the first term since aftJSK ≠ ℓ and brk-toJSK ≠ ℓ and
over-approximating the third termI

⊆ ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒 ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∣ ⟨𝜋1ℓ, ℓ𝜋2ℓ⟩ ∈ 𝑋} ∪ 𝕦𝕤𝕖JBK ∪
⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JS𝑏K 𝐿𝑏, 𝐿𝑒 ⟨𝜋1ℓ𝜋2ℓ B−−−−→ atJS𝑏K, 𝜋3⟩ ∣ ⟨𝜋1ℓ𝜋2ℓ B−−−−→ atJS𝑏K, 𝜋3⟩ ∈
𝓢∗JS𝑏K} Hby Lem. 1I
⊆ ⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JSK 𝐿𝑏, 𝐿𝑒⟨𝜋0, 𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ 𝑋}∪𝕦𝕤𝕖JBK∪⋃{𝛼l𝕦𝕤𝕖,𝕞𝕠𝕕JS𝑏K 𝐿𝑏, 𝐿𝑒⟨𝜋0,
𝜋1⟩ ∣ ⟨𝜋0, 𝜋1⟩ ∈ 𝓢∗JS𝑏K} Hover-approximating the semantics 𝑋 and 𝓢∗JS𝑏KI
⊆ (𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝑋) 𝐿𝑏, 𝐿𝑒) ∪ 𝕦𝕤𝕖JBK ∪ (𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕S𝑏] (𝓢∗JS𝑏K) 𝐿𝑏, 𝐿𝑒) H(15)I
⊆ (𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝑋) 𝐿𝑏, 𝐿𝑒) ∪ 𝕦𝕤𝕖JBK ∪ �̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒
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Hstructural induction hypothesis of Th. 2I
• Gathering the three cases (𝑎), (𝑏), and (𝑐), we have proved the semi-commutation

condition

𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝓕∗Jwhile ℓ (B) S𝑏K(𝑋)) 𝐿𝑏, 𝐿𝑒 ⊆
𝐿𝑒 ∪ (𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝑋) 𝐿𝑏, 𝐿𝑒 ∪ 𝕦𝕤𝕖JBK ∪ 𝐿𝑒) ∪ (𝛼∃l𝕦𝕤𝕖,𝕞𝕠𝕕JSK (𝑋) 𝐿𝑏, 𝐿𝑒) ∪ 𝕦𝕤𝕖JBK ∪
�̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒

So we define

𝓑∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒 𝑋 ≜ 𝐿𝑒 ∪ 𝑋 ∪ 𝕦𝕤𝕖JBK ∪ �̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒
to get �̂�∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒 ≜ lfp⊆𝓑∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒. The iterates
are
𝑋0 = ∅
𝑋1 =𝓑∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒 𝑋0 = 𝐿𝑒 ∪ 𝕦𝕤𝕖JBK ∪ �̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒
𝑋2 =𝓑∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒 𝑋2 = 𝐿𝑒 ∪ 𝕦𝕤𝕖JBK ∪ �̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒 = 𝑋1

Therefore the least fixpoint is the constant

�̂�∃∃𝕝Jwhile (B) S𝑏K 𝐿𝑏, 𝐿𝑒 = 𝐿𝑒 ∪ 𝕦𝕤𝕖JBK ∪ �̂�∃∃𝕝JS𝑏K 𝐿𝑏, 𝐿𝑒
as stated in (25), Q.E.D. ⊓⊔

We conclude that algorithm (25) is sound with respect to the revised syntac-
tic/semantic definition 𝓢∃𝕝JSK of liveness in (24).

Theorem 3 𝓢∃𝕝JSK = 𝛼∃luse,𝕞𝕠𝕕 (𝓢+∞JSK) ⊆̇ �̂�∃∃𝕝JSK.
Proof (of Th. 3)
𝛼∃luse,𝕞𝕠𝕕 (𝓢+∞JSK)

= 𝛼∃luse,𝕞𝕠𝕕 (𝓢∗JSK) HLem. 2I
⊆̇ �̂�∃∃𝕝JSK HTh. 2 and Th. 1I ⊓⊔
5 Calculational design of the syntactic structural

deadness static analysis

By duality we obtain the syntactic definite deadness analysis which is the infor-
mation actually needed in compilers.
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Structural syntactic definite deadness analysis
�̂�∀𝕕JSl ℓK 𝐷𝑒 = �̂�∀𝕕JSl ℓK V , 𝐷𝑒 (26)

�̂�∀𝕕Jx = A ;K 𝐷𝑏, 𝐷𝑒 = ¬𝕦𝕤𝕖Jx = AK ∩ (𝐷𝑒 ∪𝕞𝕠𝕕Jx = AK)
�̂�∀𝕕J;K 𝐷𝑏, 𝐷𝑒 = 𝐷𝑒

�̂�∀𝕕JSl′ SK 𝐷𝑏, 𝐷𝑒 = �̂�∀𝕕JSl′K 𝐷𝑏, (�̂�∀𝕕JSK 𝐷𝑏, 𝐷𝑒)
�̂�∀𝕕J 𝜖 K 𝐷𝑏, 𝐷𝑒 = 𝐷𝑒

�̂�∀𝕕Jif (B) S𝑡K 𝐷𝑏, 𝐷𝑒 = ¬𝕦𝕤𝕖JBK ∩ 𝐷𝑒 ∩ �̂�∀𝕕JS𝑡K 𝐷𝑏, 𝐷𝑒
�̂�∀𝕕Jif (B) S𝑡 else S𝑓K 𝐷𝑏, 𝐷𝑒 = ¬𝕦𝕤𝕖JBK ∩ �̂�∀𝕕JS𝑡K 𝐷𝑏, 𝐷𝑒 ∩ �̂�∀𝕕JS𝑓K 𝐷𝑏, 𝐷𝑒

�̂�∀𝕕Jwhile (B) S𝑏K 𝐷𝑏, 𝐷𝑒 = ¬𝕦𝕤𝕖JBK ∩ 𝐷𝑒 ∩ �̂�∀𝕕JS𝑏K 𝐷𝑏, 𝐷𝑒
�̂�∀𝕕Jbreak ;K 𝐷𝑏, 𝐷𝑒 = 𝐷𝑏
�̂�∀𝕕J{ Sl }K 𝐷𝑏, 𝐷𝑒 = �̂�∀𝕕JSlK 𝐷𝑏, 𝐷𝑒 ⊓⊔

Theorem 4 (Structural syntactic definite deadness analysis) For
all program components S, define 𝓢∀𝕕JSK 𝐷𝑏, 𝐷𝑒 ≜ ¬𝓢∃∃𝕝JSK ¬𝐷𝑏, ¬𝐷𝑒. 𝓢∀𝕕
is equivalently defined by �̂�∀𝕕 in (26).

Proof of Th. 4. The proof is by structural induction and essentially consists in
applying De Morgan laws for complement. For example,

𝓢∀𝕕Jif (B) S𝑡K 𝐷𝑏, 𝐷𝑒
= ¬𝓢∃∃𝕝Jif (B) S𝑡K ¬𝐷𝑏, ¬𝐷𝑒 Hdefinition of 𝓢∀𝕕JSK as dual of 𝓢∃∃𝕝JSKI
= ¬(𝕦𝕤𝕖JBK ∪ ¬𝐷𝑒 ∪𝓢∃∃𝕝JS𝑡K ¬𝐷𝑏, ¬𝐷𝑒) H(25)I
= ¬𝕦𝕤𝕖JBK ∩ ¬¬𝐷𝑒 ∩ ¬𝓢∃∃𝕝JS𝑡K ¬𝐷𝑏, ¬𝐷𝑒) HDe Morgan lawsI
= ¬𝕦𝕤𝕖JBK ∩ 𝐷𝑒 ∩𝓢∀𝕕JS𝑡K 𝐷𝑏, 𝐷𝑒 Hstructural induction hypothesisI
All other cases are similar. ⊓⊔

6 Is liveness analysis correctly used for code optimization?
6.1 Liveness specification
We have considered three possible specifications of liveness. A purely semantic
one 𝓢∃l in (20) with respect to which the liveness analysis algorithm (25) is
unsound and a syntactic one 𝓢∃∃𝕝 in (22) as well as a revised syntactic/semantic
liveness specification 𝓢∃𝕝 in (24) for which, by Th. 1 and 2, the liveness analysis
algorithm (25) is sound. The problem is that, as shown in Section 3.4, the
syntactic specification of liveness 𝓢∃∃𝕝 in (22) is unsound with respect to the
purely semantic specification 𝓢∃l in (20). This is problematic since applications
of the liveness analysis algorithm (25) are not designed with respect to what the
algorithm does, but with respect to the specification of what it is supposed to
do. Therefore, a potential problem is in the use of the liveness analysis algorithm
(25) with a semantic definition 𝓢∃l in (20) of soundness for which it is incorrect.
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6.2 What could go wrong when optimizing programs?

Consider a compiler that successively performs

1. a (syntactic) liveness analysis 𝓢∃∃𝕝;
2. next, a code optimization by removal

(a) of assignments to variables that are dead after this assignment,
(b) of assignments to variables that do not change the value of this vari-

able (using Kildall’s constancy analysis [22] or a more precise symbolic
constancy analysis [18,31]);

3. next, a register allocation such that
(a) simultaneously live variables are stored in different registers,
(b) when no register is left and one is needed, one of those containing the

value of a dead variable is preferred (to avoid saving the value of the
variable to its memory location as would be needed for live variables).

For the following program (where all variables are dead on exit)

semantically syntactically
live dead live dead

x=0; scanf(y);
if (x==0){
ℓ1 ... x and y neither used nor modified ... ℓ1 {x} {y} {y} {x}
ℓ2 x = y - y; } ℓ2 {x} {y} {y} {x}

else {
x=42;

}
ℓ3 print(x); ℓ3 {x} {y} {x} {y}

x is semantically live at ℓ1, ℓ2, and ℓ3 since it is never modified (in particular
not modified at ℓ2) before being used at ℓ3. However it is syntactically dead at
ℓ1 and ℓ2 since it is not used before being assigned at ℓ2. Code elimination (2b)
will suppress the assignment at ℓ2 since the value of x is unchanged. Assume x
is in a register at ℓ1 and a fresh register is needed but none is left available. By
(3b) the register containing x may be selected since its value need not be saved
to memory because x is syntactically dead at ℓ1. Then the value of x is lost at
ℓ3, a compilation bug. The problem is the notion of modification assimilated to
an assignment in (21) and syntactic liveness 𝓢∃∃𝕝 in (22) when this assignment
is redundant and may be eliminated from the object program.

This error does not occur with semantic liveness 𝓢∃l in (20) which declares
x live at ℓ1 so the register containing its value will be saved to memory (and
reloaded at ℓ3).
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6.3 Why does it not go wrong?

One solution is to prevent program transformations (such as (2b) and (3b) above)
that do not preserve the soundness of the semantic liveness 𝓢∃l in (20). Since
(2b) does not depend on the liveness analysis, it can be moved before. Another
solution is to redo the liveness analysis after any program transformation that
does not preserve the information. A better solution is adopted in CompCert [23]:
the liveness analysis and code elimination are performed simultaneously and the
liveness analysis is designed to be valid after code elimination. The soundness of
the liveness analysis is stated and proved as “after code elimination, the program
execution does not depend on the values of the variables declared dead by the
analysis”. More generally, a program transformation based on a sound static
program analysis must be formally proved to be correct. This can be done in the
framework of abstract interpretation [14].

7 Conclusion

We have shown that Gary Kildall approach to data flow analysis by abstrac-
tion over a path and merge over all paths [22] as well as Bernhard Steffen’s
approach “Data Flow Analysis is Model Checking” [28,29] (requiring finite ab-
stract domains) formalized by David Schmidt as “Data Flow Analysis is Model
Checking of Abstract Interpretations” [28,29], (including its recent reformulation
[5]), hide subtleties in the definition of soundness, which may lead to incorrect
semantics-based compiler optimizations.

Moreover, the use of transition systems in model checking forgets about the
program structure and so cannot be used directly to formally derive structural
elimination algorithms which may be more efficient than fixpoint algorithms.
Of course elimination would not be necessarily feasible in presence of arbitrary
branching in or out of loops. But nevertheless, by the chaotic iteration theorem
[7], the result remains valid for all loops with forward branching only.

We have argued that “Data Flow Analysis is an Abstract Interpretation of
a Trace Semantics”, as first propounded by [12, Section 7.2.0.6.3] solves the
soundness and design problems thanks to a not so natural replacement of “se-
mantically modified” by “syntactically assigned to”. Therefore liveness analysis
must be performed after program assignment transformations.

Since the program cannot be modified after the classical syntactic liveness
analysis since the analysis can become wrong after the transformation, an alter-
native, à la CompCert [23], is to use dependency: the soundness of the liveness
analysis is stated and proved as “the program execution does not depend on the
values of the variables declared dead by the analysis”.

More generally, this is another illustration that program property specifica-
tion is better performed directly on a semantics rather than, as is the case in
dataflow analysis, on any of its abstractions.

Let us leave the conclusion to an anonymous reviewer. “It is an old story
that the dataflow analysis framework (”syntactic” dataflow analysis in paper’s
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characterization) is way too weak. For modern programming languages, control
flow is not syntactic but a part of semantics. Dataflow analysis assumes the
control flow to be available before the analysis hence a stalemate for modern
languages with higher order functions, dynamic bindings, or dynamic gotos;
dataflow analysis has neither a systematic guide to prove the correctness of an
analysis nor systematic approach to manage the precision of the analysis. On
the other hand, the semantics-based design theory (abstract interpretation) is
general enough to handle any kind of source languages and powerful enough to
prove the correctness and to manage its precision.”
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Abstract. Indexed grammars are a generalization of context-free gram-
mars and recognize a proper subset of context-sensitive languages. The
class of languages recognized by indexed grammars are called indexed
languages and they correspond to the languages recognized by nested
stack automata. For example indexed grammars can recognize the lan-
guage {anbncn | n � 1} which is not context-free, but they cannot rec-
ognize {(abn)n | n � 1} which is context-sensitive. Indexed grammars
identify a set of languages that are more expressive than context-free
languages, while having decidability results that lie in between the ones
of context-free and context-sensitive languages. In this work we study
indexed grammars in order to formalize the relation between indexed
languages and the other classes of languages in the Chomsky hierarchy.
To this end, we provide a fixpoint characterization of the languages rec-
ognized by an indexed grammar and we study possible ways to abstract,
in the abstract interpretation sense, these languages and their grammars
into context-free and regular languages.

1 Introduction

Chomsky’s hierarchy [6] drove most of the research in theoretical computer sci-
ence for decades. Its structure, and its inner separation results between formal
languages, represent the corner stone to understand the expressive power of sym-
bolic structures. In this paper we show how abstract interpretation can be used
for studying formal languages, in particular we consider indexed languages as
our concrete semantics. This because of two reasons: (1) they lack, to the best
of our knowledge, of a fixpoint semantics and (2) they represent an intermedi-
ate family of languages between context-free (CF) and context-sensitive (CS),
therefore including CF and regular (REG) languages as subclasses.

Indexed languages have been introduced in [2] as an extension of CF lan-
guages in order to include languages such as {anbncn | n � 1}. It is known that
indexed languages are strictly less expressive than CS languages, e.g., the lan-
guage {(abn)n | n � 1} is CS but not indexed. This intermediate class between
CF and CS has interesting properties, e.g., decidable emptiness test and NP-
complete membership check, where the first is undecidable and the latter is
PSPACE-complete in CS.
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Indexed languages are described by indexed grammars which differ from CF
grammars in that each non-terminal is equipped with a stack on which push
and pop instructions can be performed. Moreover, the stack can be copied to all
non-terminals on the right side of each production.

Although sporadically used in the literature (we can mention its use in nat-
ural language analysis [20] and in logic programming [5]) indexed languages
represent an ideal concrete semantics for rebuilding part of Chomsky’s hierarchy
by abstract interpretation, in particular for the case of regular and CF languages.

Abstract interpretation [10,11] is a general theory for the approximation of
dynamic systems. It generalizes most existing methodologies for static program
analysis into a unique sound-by-construction framework which is based on a
simple but striking idea: extracting properties of a system is approximating its
semantics [10]. In this paper we show that abstract interpretation can be used
for studying the relation between formal languages in Chomsky’s hierarchy.

The first step in our construction is to give a fixpoint semantics to indexed
languages (Sect. 4). The construction follows the one known for CS languages,
and derives a system of equations associated with each indexed grammar. We
prove that the fixpoint solution of this system of equations corresponds precisely
to the language generated by the grammar. This will provide the base fixpoint
semantics for making abstract interpretation.

We show in Sect. 5 that no best abstraction, which in abstract interpretation
are represented by Galois Insertions, is possible between indexed languages and
respectively CF and regular languages, w.r.t. set inclusion. This means that we
need to act at the level of grammar structures (i.e., on the way languages are
generated and represented in grammatical form) in order to generate languages
as abstract interpretations of an index grammar. It is therefore necessary to
weaken the structure of Galois insertion-based abstract interpretation and con-
sider abstractions that do not admit adjoint [12]. This is a quite widespread
phenomenon in program analysis, e.g., the polyhedra abstract domain does not
form a Galois insertion with the concrete semantics [14]. We introduce several
abstractions of grammatical structures in such a way that the abstract language
transformer associated with the system of equations of the indexed language gen-
erates the desired language. We show that certain simplifications of the produc-
tions of indexed grammars can be specified as abstractions, now in the standard
Galois insertion based framework, and that the corresponding abstract semantics
coincides precisely to classes of languages in Chomsky’s hierarchy, in our case
the class of CF languages. The main advantage is that known fixpoint character-
isation and algorithms for CF languages can be extracted in a calculational way
by abstract interpretation of the fixpoint semantics of the more concrete indexed
grammars. This shows that standard methods for the design of static program
analyses and hierarchy of semantics (e.g., see [9,15,16]) can be applied to sys-
tematically derive fixpoint presentations for families of formal languages and to
let abstract interpretation methods to be applicable to Chomsky’s hierarchy.

Section 6 concludes the paper with a discussion of related future works.
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2 Background

Mathematical Notation. We denote with X = (X1, . . . ,Xn) a tuple X of n ele-
ments. We define with proji the projection function of the i-th element of a
tuple such that proji(X) = Xi and proj-1(X) = Xn.

Given two sets S and T , we denote with ℘(S) the powerset of S, with S ⊂ T

strict inclusion and with S ⊆ T inclusion. 〈P,�P〉 denotes a poset P with ordering
relation �P. A function f : P → Q on poset is additive when for any Y ⊆ P :
f(

∨
P Y) =

∨
Q f(Y), and co-additive when for any Y ⊆ P : f(

∧
P Y) =

∧
Q f(Y). A

poset 〈P,�P〉 with P �= ∅, is a lattice if ∀x,y ∈ P we have that x ∨ y, x ∧ y ∈ P.
A lattice is complete if for every S ⊆ P we have that

∨
S ∈ P and

∧
S ∈ P. A

lattice is denoted 〈C,�C,∨C,∧C,�C,⊥C〉.

Abstract Domains. The Abstract Interpretation (AI) framework is based on the
correspondence between a domain of concrete or exact properties and a domain
of abstract or approximate properties [11]. The concrete is specified by a set C

called the concrete semantic domain and a partial function FC : C → C which
is the concrete semantic transfer function with fixpoint solution starting from a
basic element ⊥C ∈ C such that F0C(⊥C) = ⊥C and Fi+1

C (⊥C) = FC(F
i
C(⊥C)). In

particular, the concrete iterates may be in increasing order for a partial order
�C∈ ℘(C × C). This partial order relation may induce a partial order 〈C,�C〉
or even a complete lattice structure on C [11].

The abstract is specified by an abstract semantic domain A which is an
approximate version of the concrete semantic domain C. The objective of an
abstract interpretation is to find an abstract property a ∈ A, if any, which is
a correct approximation of the concrete semantics c ∈ C. Abstract semantics
can be specified by transfinite recursion using an abstract basis ⊥A ∈ A and an
abstract semantic function FA : A → A such that F0A(⊥A) = ⊥A and Fi+1

A (⊥A) =
FA(Fi

A(⊥A)). The abstract iterates may be in increasing order for a partial order
�A∈ ℘(A × A) which may induce an order structure 〈A,�A,⊥A,∪A〉 ensuring
that the abstract iteration is convergent [11].

The correspondence between the concrete and abstract properties is specified
by a soundness relation σ ∈ ℘(C × A) where 〈c,a〉 ∈ σ means that the concrete
semantics c has the abstract property a. A common assumption is that every con-
crete property has an abstract approximation: ∀c ∈ C : ∃a ∈ A : 〈c,a〉 ∈ σ [11].

The Galois Insertion approach to AI is based on a Galois Insertion (or equiv-
alently closure operators, Moore families, complete join congruence relations or
families of principal ideals [11]) correspondence between concrete and abstract
properties. Galois Insertions (GI) are defined between a concrete domain 〈C,�C〉
and an abstract domain 〈A,�A〉 which are assumed to be at least posets [10].
A GI is a tuple (C,α,γ,A) where the abstraction map α : C → A and the con-
cretization map γ : A → C give rise to an adjunction: ∀a ∈ A, c ∈ C : α(c) �A

a ⇔ c �C γ(a). Thus, α(c) �A a and, equivalently c �C γ(a), means that a is
a sound approximation of c in A. A tuple (C,α,γ,A) is a GI iff α is additive iff
γ is co-additive [10]. A GI is a Galois Connection (GC) where α◦γ = id. Indeed,
GIs ensure that α(c) actually provides the best possible approximation of the
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concrete value c ∈ C on A. Whenever we have an additive (resp. co-additive)
function f between two domains we can always build a GI by considering the right
(resp. left) adjoint map induced by f. In fact, every abstraction map induces a
concretization map and viceversa, formally γ(a) =

∨
C{c | α(c) �A a} and

α(a) =
∧

A{a | γ(a) �C c} [10].
An Upper Closure Operator (uco) ϕ ∈ C → C on a poset 〈C,�〉 is an oper-

ator that is monotone, idempotent and extensive (i.e. ∀c ∈ C c � ϕ(c)) [11].
Closures are uniquely determined by the set of their fixpoints ϕ(C). The set
of all closures on C is denoted by uco(C). The lattice of abstract domains
of C is therefore isomorphic to uco(C) [11]. If C is a complete lattice, then
〈uco(C),�,�,�, λx.�, id〉 is a complete lattice, where id = λx.x and for every
ρ,η ∈ uco(C), ρ � η ↔ ∀y ∈ C ρ(y) � η(y) ↔ η(C) ⊆ ρ(C). The glb � is
isomorphic to the so called reduced product, i.e.

�
i∈I ρi is the most abstract

common concretization of all ρi.
Given X ⊆ C, the least abstract domain containing X is the least closure

including X as fixpoints, which is the Moore-closure M(X) = {
∧

S | S ⊆ X}. Note
that

�
i∈I ρi = M(

⋃
i∈I ρi). If (C,α,γ,A) is a GI then ϕ = γ ◦ α is the closure

associated with A, such that ϕ(C) is a complete lattice isomorphic to A.

Abstract Interpretation. The least fixpoint (lfp) of an operator F on a poset
〈P,�〉, when it exists, is denoted by lfp�F, or by lfpF when � is clear. Any
continuous operator F ∈ C → C on a given complete lattice 〈C,�,�,�,�,⊥〉
admits a lfp: lfp

�
⊥F =

∨
n∈N

Fi(⊥), where for any i ∈ N and x ∈ C: F0(x) = x and
Fi+1(x) = F(Fi(x)). Given an abstract domain 〈A,�A〉 of 〈C,�C〉, F# ∈ A → A

is a correct (sound) approximation of F ∈ C → C when α(lfp�CF) �A lfp�AF#.
To this end it is enough to have a monotone map α : C → A such that α(⊥C) =
⊥A and α ◦ F �A F# ◦ α [12]. An abstraction is complete when α ◦ F = F# ◦ α.
In this case of complete abstractions we have α(lfp�CF) = lfp�AF# [11,21].

3 Indexed Languages

Indexed grammars were introduced by Aho in the late 1960s to model a natural
subclass of context-sensitive languages, more expressive than context-free gram-
mars with interesting closure properties [2]. In this paper we use the definition
of indexed grammar provided in [1].

Definition 1. An Indexed Grammar is a 5-tuple G = (N, T , I,P,S) such that:

(1) N, T and I are three mutually disjoint finite sets of symbols: the set N of
non-terminals, the set T of terminals and the set I of indices, where ε is a
designated symbol for the empty sequence;

(2) S ∈ N is a distinguished symbol in N, namely the start symbol;
(3) P is a finite set of productions, each having the form of one of the following:

(a) A → α (Stack copy)
(b) A → Bf (Push)
(c) Af → β (Pop)
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where A,B ∈ N are non-terminal symbols, f ∈ I is an index symbol and
α,β ∈ (N ∪ T)∗.

Observe the similarity to context-free grammars which are only defined by
production rules of type (3a). The above definition is a finite representation of
rules that rewrite pairs of non-terminal and sequences of index symbols that we
call stacks. A key feature of indexed grammars is that their productions in P

expand non-terminal/stack pairs of the form (A,σ), where A ∈ N and σ ∈ I∗.
So each non-terminal symbol A ∈ N together with its stack σ ∈ I∗, can be
viewed as a pair (A,σ) and the start symbol S is shorthand for the pair (S, ε).
Therefore, with a slight abuse of notation, in the rest of the paper we use α to
denote a string of terminal symbols and non-terminals symbols with its stack,
namely α ∈ ((N×I∗)∪T)∗. The string α is often referred to as a sentential form.
Given any non-empty stack σ ∈ I+, the top symbol is the left-most index. The
stack is implicit and is copied, to all non-terminals only, when the production is
applied. So, for example, the type (3a) production rule A → aBC is shorthand
for (A,σ) → a(B,σ)(C,σ) with A,B,C ∈ N, a ∈ T and σ ∈ I∗. A production
rule of the form (3b) implements a push onto the stack while a production rule
of the form (3c) encodes a pop off of the stack. For example, the production
rule A → Bf applied to (A,σ) expands to (B, fσ) where fσ is the stack with the
index f ∈ I pushed on. Likewise, Af → β can only be applied to (A,σ) if the
top of the stack string σ is f. The result is β such that any non-terminal B ∈ β

is of the form (B,σ ′), where σ ′ is the stack with the top character popped off.
Push and Pop productions differ from the original definition given by Aho [2] in
which, by Definition 1, at most one index symbol is loaded or unloaded in any
production.

Let G = (N, T , I,P,S) be an indexed grammar. A derivation in G is a sequence
of strings α1,α2, . . . ,αn with αi ∈ ((N×I∗)∪T)∗, where αi+1 is derived from αi

by the application of one production in P, written αi →G αi+1. The subscript
G is dropped whenever G is clearly understood. Let →∗

G be the reflexive and
transitive closure of →G defined as usual: α →0

G α for n � 0, α →n+1
G γ if

∃β : α →n
G β and β →G γ; α →∗

G β iff α →i
G β for some i � 0.

The language L(G) recognized by an indexed grammar G is

L(G) = {w ∈ T∗ | (S, ε) →∗
G w} .

We denote with IL the set of indexed languages.
From now on the set of non-terminals N will range on superscript symbols

such as A,B, . . . , the set of terminals T on symbols a,b, c,d, e while indices I on
f,g.

Example 1. The language L = {anbncn | n � 1} is generated by the indexed
grammar G = ({S, T ,A,B,C}, {a,b, c}, {f},P,S), with productions:

S → T Af → aA Bε → b

T → Tf Aε → a Cf → cC

T → ABC Bf → bB Cε → c
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For example, the word “aabbcc” can be generated by the following deriva-
tion: (S, ε) → (T , ε) → (T , f) → (A, f)(B, f)(C, f) → a(A, ε)(B, f)(C, f) →
aa(B, f)(C, f) →∗ aabbcc.

REG
a∗b∗

CF

anbn

Indexed

anbncn
a2n

{ww | w ∈ {a,b}∗}

{www | w ∈ {a,b}∗}
anbn2

an

CS

(abn)n

{w ∈ {a,b,c}∗ | #a = #b = #c}

an!

Fig. 1. Chomsky hierarchy

Indexed languages are recognized by nested stack automata [3]. A nested
stack automaton is a finite automaton that can make use of a stack containing
data which can be additional stacks. Like a stack automaton, a nested stack
automaton may step up or down in the stack, and read the current symbol; in
addition, it may at any place create a new stack, operate on that one, eventually
destroy it, and continue operating on the old stack. In this way, stacks can be
nested recursively to an arbitrary depth; however, the automaton always operates
on the innermost stack only. For more details on nested stack automata see [3].

As argued above, the class of indexed languages properly includes the one
of CF languages, while being properly included in the one of CS languages.
Figure 1 represents these different classes and highlights some of the languages
that characterize the different classes [24].

Table 1 reports some decidability and computational complexity properties of
indexed languages and of the others formal languages in the Chomsky hierarchy.
As expected, the decidability results of indexed languages lay in between the
ones of CS and CF languages.

4 Fixpoint Characterization of Indexed Languages

In order to study the existence of abstraction functions between context-
sensitive, indexed and context-free languages we need to provide a fixpoint
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Table 1. Decidability and complexity results

Class Emptiness Membership Equivalence

Regular P (O(n)) P (O(n)) NL-complete

Context-free P (O(n3)) P (O(n3)) Undecidable

Indexed EXP-complete NP-complete Undecidable

Context-sensitive Undecidable PSPACE-complete Undecidable

characterization of indexed languages. The fixpoint characterizations of CF lan-
guages, well known as the ALGOL-like theorem, and CS languages are already
constructed and proved [22,23].

The fixpoint characterization that we present is mainly derived from the
one of CS languages [23]. Essentially it consists of two elements: a substitution
function that simulates a context-free rule for the pair non-terminal/stack (pro-
ductions of type (3a) and (3b)) and a regular expression to verify the context of
the stack in case of a pop production (3c).

Before showing the theorem, let us give some notations and definitions. Let
V be the set of variables of an indexed grammar: an element of V is either a pair
of non-terminal/stack or a terminal symbol, namely V = (N×I∗)∪T . Therefore,
if α is a sentential form of an indexed grammar, then α ∈ V∗.

Definition 2. An indexed state X is a m-tuple X = (X1, . . . ,Xm) of sets of
sentential forms Xi ∈ ℘(V∗) with i ∈ [1,m].

Thus, the set of possible m-tuples of indexed states is ℘(V∗) × · · · × ℘(V∗)
︸ ︷︷ ︸

m

.

Definition 3. A substitution function h is a map h : ℘(V∗) → ℘(V∗).

Functions h will be defined in the proof of Theorem1 and will be used to simulate
an application of a CF-like production.

Regular sets over V are denoted by regular expressions R ∈ ℘(V∗) and will
be used to verify the top character of the stack for pop productions.

Definition 4. Given a substitution function h and a regular set R, we define a
pair π = (h,R) called a π-function. A π-function is a map

π : ℘(V∗) × · · · × ℘(V∗)
︸ ︷︷ ︸

m

→ ℘(V∗)

defined as follows:

π(X) = h(
⋃

X ∩ R)

where
⋃

X = X1∪· · ·∪Xm is the set corresponding to the union of all components
of the indexed state X. We denote with the bold symbol

π : ℘(V∗) × · · · × ℘(V∗)
︸ ︷︷ ︸

m

→ ℘(V∗) × · · · × ℘(V∗)
︸ ︷︷ ︸

m
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a vector function of π-functions π = (π1, . . . ,πm) such that

π(X) = (π1(X), . . . ,πm(X)).

As we will see in the proof of Theorem 1, a π-function allows us to simulate an
application of an indexed production.

Theorem 1. Let G be an indexed grammar, then L(G) is a component of the
least fixpoint of a system of equations on indexed states:

X
j+1
G = πG(Xj

G) (1)

where X0
G = ({(S, ε)}, ∅, . . . , ∅)

︸ ︷︷ ︸

n

is the initial indexed state and the vector function

of π-functions induced by G is πG = (πG,1, . . . ,πG,n).

Proof. The proof considers an indexed grammar G = (N, T , I,P,S) with m pro-
ductions in P. Let [ τ ]i ∈ P be an enumeration of all productions in P with
i ∈ [1,m], where τ ∈ P could be in one of the three forms of Definition 1. We
build a system of equations having the form (1) where each indexed state XG has
n = m + 2 components: one for each production in P, namely XG,1, . . . ,XG,m

and two additional components XG,0 and XG,t, where t is a variable symbol
denoting the “terminals” set and it is always at position m + 1 of XG. So the
components of each indexed state are XG = (XG,0,XG,1, . . . ,XG,m,XG,t). The
least fixpoint computation of the so obtained system of equations is calculated by
the iterative application of the vector function πG = (πG,0,πG,1, . . . ,πG,m,πG,t)
associated to the grammar G. The sets from XG,1 to XG,m are associated to the
m productions in P while XG,t contains only terminal symbols and XG,0 ini-
tialize a sentential form. In particular, given the initial indexed state X0

G, the
language is iteratively built in the last element XG,t of XG such that at fixpoint
XFIX

G,t = L(G). From now on, the subscript G is dropped whenever it is clearly
understood.

We introduce a barred version of the set of non-terminals N: N̄ = {Ā | A ∈ N}

where Ā is the corresponding “marked” non-terminal to A. We also extend the
set of variables V in order to contain marked non-terminals: V = (N∪ N̄, I∗)∪T .
Marked non-terminals are the only symbols which can be rewritten by an indexed
production.

In detail, given an indexed grammar G, the vector of π-functions induced
by G is πG = (π0,π1, . . . ,πm,πt). For i ∈ [1,m], we associate the πi-function
πi = (hi,Ri) with the i-th production in the enumeration of P. Each substitution
function hi, with i ∈ [1,m], is defined inductively as follows where α,β ∈ V∗

and σ ∈ I∗:

hi(∅) = ∅
hi({ε}) = {ε}

hi({a}) = {a}, if a ∈ T
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hi({(Ā,σ)}) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

{α} if (Ā,σ) ∈ V and [A → α ]i ∈ P (Stack copy rule)

{(B, fσ)} if (Ā,σ) ∈ V and [A → Bf ]i ∈ P (Push rule)

{β} if (Ā,σ) ∈ V and [Af → β ]i ∈ P (Pop rule)

{(Ā,σ)} otherwise

hi({αY}) = hi({α})hi({Y}), if α ∈ V+ and Y ∈ V

hi(Q) =
⋃

α∈Q hi({α}), if Q ∈ ℘(V∗), Q �= ∅ and α �∈ Q.

Intuitively, the substitution function hi will apply the i-th production to the
marked non-terminal corresponding to the non-terminal of the associated pro-
duction, without checking the stack symbols, i.e. in a context-free way. The other
non-terminals remain untouched.

Given G, each regular expression Ri associated to the i-th production of P,
with i ∈ [1,m], is defined as follows, with f ∈ I and σ ∈ I∗:

Ri =

{

V∗(Ā, fσ)V∗ if [Af → β]i ∈ P (Pop rule)
V∗ otherwise.

Intuitively, if the i-th indexed production Af → β associated to Ri is of type
(3c), then only the sentential forms containing the signed non-terminal Ā and
having f as the top symbol of its stack, will be selected from intersection.

Now an application of πi = (hi,Ri), with i ∈ [1,m], to an indexed state
corresponds to an application of the i-th indexed production.

We define the π-function π0: its role is to mark the leftmost non-terminal
of each sentential form (this marked non-terminal is the one used in the next
iteration). Formally, π0 = (h0,R0) is inductively defined as follows for α ∈ V+:

h0(∅) = ∅
h0({ε}) = {ε}

h0({Yα}) =

⎧

⎪
⎨

⎪
⎩

Y h0({α}) if Y ∈ T

(Ā,σ) unmark({α}) if Y = (A,σ) and A ∈ N

(A,σ)h0({α}) if Y = (Ā,σ) and Ā ∈ N̄

h0(Q) =
⋃

α∈Q h0({α}), if Q ∈ ℘(V∗), Q �= ∅ and α �∈ Q.

and function unmark : ℘(V∗) → ℘(V∗) differs from h0 in:

unmark({Yα}) =

{

(A,σ) unmark({α}) if Y = (Ā,σ) and Ā ∈ N̄

Y unmark({α}) otherwise.

The regular expression associated to h0 is R0 = V∗. Function h0 marks the
leftmost unmarked non-terminal while it unmarks any previously marked ones.

We define the π-function πt to be applied to the last element of the state X

that collects in Xt all the terminal words. Formally, πt = (ht,Rt) where ht is the
identity function, namely ht = id , and Rt = T∗. This leads us to the following
system of equations where 0 � i � m and j � 1:

⎧

⎨

⎩

X0 = ({(S, ε)}, ∅, . . . , ∅)
X

j+1
t = πt(X

j)

X
j+1
i = πi(X

j)
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Let (S, ε) →n w , with w ∈ T∗ and n � 1, be a derivation of G after
n steps. We can construct a sequence of π-functions that exactly simulate the
derivations in G such that the word w ∈ X2n+1

G,t . Indeed, an application of the
i-th production in P is exactly simulated by an application of two π-functions:
πG,0 to mark the non-terminal used in the production and πG,i to apply the i-th
index production. After 2n steps, an application of the π-function πG,t at step
2n + 1 yields w ∈ X2n+1

G,t .
Conversely it is straightforward to show by induction on n that, for every

w ∈ T∗, if w ∈ Xn
G,t, with n � 1, then there exists a derivation in G yield-

ing w after (n − 1)/2 steps, namely (S, ε) →(n−1)/2 w. This means that
XFIX

G,t = L(G). ��
Example 2. Consider the indexed language L = {anbncn | n � 1} and the
indexed grammar G = ({S, T ,A,B,C}, {a,b, c}, {f},P,S) generating it presented
in Example 1. Let the productions in P be enumerated as follow:

[S → T ]1 [Af → aA ]4 [Bε → b ]7
[ T → Tf ]2 [Aε → a ]5 [Cf → cC ]8
[ T → ABC ]3 [Bf → bB ]6 [Cε → c ]9

We denote a substitution as a list of replacements, e.g. {(S̄,σ) → (T ,σ)} denotes
the substitution h1 defined by h1({(S̄,σ)}) = {(T ,σ)} and identity otherwise.
Following Theorem 1, the fixpoint characterization of the indexed grammar of
Example 1 is:

X
j+1
0 = π0(h0,R0) = h0(V

∗ ∩ ⋃
Xj)

X
j+1
1 = π1(h1,R1) = {(S̄,σ) → (T ,σ)}(V∗ ∩ ⋃

Xj)

X
j+1
2 = π2(h2,R2) = {(T̄ ,σ) → (T , fσ)}(V∗ ∩ ⋃

Xj)

X
j+1
3 = π3(h3,R3) = {(T̄ ,σ) → (A,σ)(B,σ)(C,σ)}(V∗ ∩ ⋃

Xj)

X
j+1
4 = π4(h4,R4) = {(Ā, fσ) → a(A,σ)}(V∗(Ā, fσ)V∗ ∩ ⋃

Xj)

X
j+1
5 = π5(h5,R5) = {(Ā, ε) → a}(V∗(Ā, ε)V∗ ∩ ⋃

Xj)

X
j+1
6 = π6(h6,R6) = {(B̄, fσ) → b(B,σ)}(V∗(B̄, fσ)V∗ ∩ ⋃

Xj)

X
j+1
7 = π7(h7,R7) = {(B̄, ε) → b}(V∗(B̄, ε)V∗ ∩ ⋃

Xj)

X
j+1
8 = π8(h8,R8) = {(C̄, fσ) → c(C,σ)}(V∗(C̄, fσ)V∗ ∩ ⋃

Xj)

X
j+1
9 = π9(h9,R9) = {(C̄, ε) → c}(V∗(C̄, ε)V∗ ∩ ⋃

Xj)

X
j+1
t = πt(ht,Rt) = (T∗ ∩ ⋃

Xj)

where σ ∈ I∗, X0 = ({(S, ε)}, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅) and the union of all com-
ponents is given by

⋃
Xj =

⋃
{X

j
y | y ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, t}}. We have

XFIX
t = L(G) = {anbncn | n � 1}.

For example, the word “aabbcc” can be generated in Xt, after 19 steps, by
the following derivation:

aabbcc ∈ πtπ9π0π8π0π7π0π6π0π5π0π4π0π3π0π2π0π1π0(X
0)



Abstract Interpretation of Indexed Grammars 131

5 Abstract Indexed Grammars

We want to investigate if the relation that exists between regular, CF, indexed
and CS languages can be expressed as GIs, namely if less expressive languages
can be seen as abstractions of more expressive ones.

Given a finite set of alphabet symbols Σ, we consider the complete lattice
of all possible languages on Σ, namely 〈℘(Σ∗),⊆,∪,∩,Σ∗, ∅〉. Suppose that we
want to model the relation between Indexed and CF languages as a GI. This
means that we want to abstract an indexed language into the best (w.r.t. set
inclusion) CF language that includes it. However, this is not possible since CF
languages are not closed under intersection, and therefore the abstract domain
of CF languages 〈CF ,⊆〉 is not a Moore family. The same holds when analyzing
the relation between CS and indexed languages, and the one between CF and
regular languages: the families of indexed languages and of regular languages do
not form a Moore family of 〈℘(Σ∗),⊆〉, as shown in the following three examples.

Example 3. Consider the following family of languages: ∀i � 0 : Li = {aibi}.
Each set Li is a regular language since its complement language Li is a finite set
and regular languages are closed under complement operation, this means that
∀i � 0 : Li ∈ REG . Taking the intersection of all Li, namely L =

⋂
∞

i=0 Li, we
get L = {anbn | n � 0} where the w is the complement operation. L ∈ CF since
it can be created from the union of several simpler languages:

L = {aibj | i > j} ∪ {aibj | i < j} ∪ (a ∪ b)∗b(a ∪ b)∗a(a ∪ b)∗

that is, all strings of as followed by bs in which the number of as and bs differ,
joined with all strings not of the form aibj. The language {aibj | i > j} ∈ CF and
a CF grammar generating it is S → aSb | aS | a similarly {aibj | i < j} ∈ CF ,
while (a∪b)∗b(a∪b)∗a(a∪b)∗ ∈ REG since it is a regular expression. Observe
that we have obtained a CF language from an (infinite) intersection of regular
languages.

Example 4. Consider the following two CF languages and their corresponding
CF grammars:

L1 = {anbncm | n,m � 0} L2 = {anbmcm | n,m � 0}

S → AC S → AB

A → aAb | ε A → aA | ε

C → cC | ε B → bBc | ε

Note that L1 ∩ L2 = L = {anbncn | n � 0} and L is an indexed language but not
CF, namely L ∈ IL \ CF .

Example 5. Consider the following indexed languages L1 = {w ∈ {a,b, c}∗ |

#a = #b} and L2 = {w ∈ {a,b, c}∗ | #b = #c} where #a means the number of
symbols a in a word. L1 can be generated by the following CF grammar:

S → SS S → aSb S → bSa S → c S → ε
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and similarly for L2. Consider the language

L = L1 ∩ L2 = {w ∈ {a,b, c}∗ | #a = #b = #c}.

L ∈ CS but L �∈ IL. A CS grammar generating L is:

S → ABC AB → BA BC → CB CA → AC A → a C → c

S → ABCS AC → CA BA → AB CB → BC B → b

Observe that we have obtained a CS language from an intersection of two indexed
languages.

The examples above show that it is not possible to specify GIs between the
domains of languages in the Chiomsky hierarchy. However, this does not exclude
the possibility of approximating the fixpoint semantics of indexed grammars by
acting on the productions of the grammars. This corresponds to constraining
the structures of productions or the way the memory (stack) of the productions
of indexed grammars are used, by acting on the indexed states of the equa-
tional characterization associated. We provide abstractions of indexed gram-
mars, namely of the mechanism used to generate the indexed languages, with
the aim of transforming an indexed language into a more abstract (namely a less
expressive) language in Chomsky’s hierarchy, such as CF or REG languages. We
start in Sect. 5.1 with a simple abstraction, stack elimination, which eliminates
completely the stack of all non-terminals. Then, with the purpose of refining the
abstraction, we present two other abstractions: stack limitation (Sect. 5.2), which
limits the stack capacity, and stack copy limitation (Sect. 5.3), which limits stack
copy productions.

5.1 Stack Elimination

Definition 5. Stack elimination removes the stack of each non-terminal in a
sentential form of an indexed grammar. Namely, given a sentential form α, each
pair (A,σ) ∈ α, with A ∈ N and σ ∈ I∗, is replaced by (A, I∗).

The idea of stack elimination is to abstract away from the stack, namely, to
abstract the stack to top in the sentential form. In the concrete domain, the
abstract value top of the stack precisely corresponds to the set of all possible
stacks. In other words, this corresponds to have a set of sentential forms one for
each possible stack value. A major consequence of applying stack elimination is
that the three kinds of indexed productions (stack copy, push and pop) in an
indexed grammar are turned into a single context-free production.

We want to demonstrate that stack elimination is a sound abstraction of
indexed grammars. In the following we denote with ΦG the domain ℘(V∗)m

of possible indexed states of an indexed grammar G = (N, T , I,P,S) with m

productions in P, used in the fixpoint characterization of Theorem1. It is possible
to define a function on the concrete domain 〈ΦG,�〉 that iteratively computes
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the language of an indexed grammar G. The partial order � over ΦG is defined
as follows:

∀X,Y ∈ ΦG : X � Y ⇐⇒ proj-1(X) ⊆ proj-1(Y)

The transition relation between two indexed states Xi,Xi+1 ∈ ΦG corresponds
to the application of the vector function πG : ΦG → ΦG, namely Xi+1 = πG(Xi).

We formalize the abstract domain as a closure ρE : ΦG → ΦG on 〈ΦG,�〉,
as follows:

ρE(X) = (ρE(X1), . . . , ρE(Xm))

and, with a slight abuse of notation, ρE(Xi) = {ρE(si) | si ∈ Xi} where for
si = λi1 . . . λiw with λij ∈ V we have:

ρE(λi1)ρ
E(λi2 . . . λiw) =

{

(A, I∗) if λi1 = (A,σ)
λi1 otherwise.

Intuitively, the stack of all non-terminal symbols is set to I∗. This means that
there is no restrictions on the symbol on the top of the stack when performing
a pop operation, turning push and pop productions to stack copy productions.

Lemma 1. The function ρE on domain 〈ΦG,�〉 is an upper closure operator.
Moreover, we have that lfp� πG(X0) = ρE ◦ lfp� πG(X0) while lfp� πG(X0) �
lfp� πG(ρE(X0)).

Lemma 2. Let G̃ be the indexed grammar obtained by stack elimination from
an indexed grammar G, then lfp� πG̃(X0) = lfp� πG(ρE(X0)).

This allows us to prove the soundness of the abstraction showing that any
language obtained by stack elimination from an indexed grammar is an over
approximation of its original indexed language:

Theorem 2. Let G̃ be the indexed grammar obtained by stack elimination from
the indexed grammar G, then L(G) ⊆ L(G̃).

The loss of precision is due to the fact that, when eliminating the stack, an
indexed grammar can no longer count or store occurrences of an index symbol,
thus it is reduced to a CF grammar. Moreover, it turns out that if the original
indexed grammar G is such that L(G) ∈ IL but L(G) �∈ CF then L(G̃) is a CF
language but not indexed.

Corollary 1. Let G̃ be the indexed grammar obtained from G by stack elimina-
tion such that L(G) ∈ IL \ CF, then L(G̃) �∈ IL \ CF.

Example 6. The language L = {anbncn | n � 1} in Example 1 is an indexed
language but not CF, namely L ∈ IL \ CF . If we apply stack elimination as
described above, we obtain a new language L(G̃) generated by the new grammar
G̃ with the following productions:
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S → T A → aA B → b

T → T A → a C → cC

T → ABC B → bB C → c

The language generated from G̃ is L(G̃) = {a∗b∗c∗} and it is a regular language,
L(G̃) ∈ REG.

Although some examples may be deceiving, in general it is not true that any
indexed languages become regular by stack elimination. Indeed, indexed gram-
mars could contain context-free characteristic rules that do not affect stacks and
so, after stack elimination, still remain, turning the language to a CF language
and not regular. The following is an example of such an indexed grammar.

Example 7. The language L = {anbncn | n � 1} could be generated also by the
following indexed grammar:

S → aSfc Tf → Tb

S → T Tε → ε

If we apply stack elimination, we obtain the language L̃ = {anb∗cn | n � 1}.
Note that L ⊆ L̃ and L̃ ∈ CF but L̃ �∈ REG .

It is indeed obvious to observe that stack elimination produces precisely the
class of CF languages.

Corollary 2. For any CF grammar G̃ there exists an indexed grammar G such
that: lfp� πG̃(X0) = lfp� πG(ρE(X0)).

5.2 Stack Limitation

Definition 6. Stack limitation limits the numbers of symbols on the stack of
each non-terminal by a constant k � 0. This means that each stack can contain
at most k symbols and all others k + 1 symbols pushed on to the stack will be
discarded.

We want to demonstrate that stack limitation is a sound abstraction of
indexed grammars. As in the previous section, we operate on the concrete domain
〈ΦG,�〉. We formalize the abstract domain as an upper closure operator ρL

k, with
k � 0, on the concrete domain 〈ΦG,�〉. We define ρL

k : ΦG → ΦG:

ρL
k(X) = (ρL

k(X1), . . . , ρL
k(Xm))

and, with a slight abuse of notation, ρL
k(Xi) = {ρL

k(si) | si ∈ Xi} where for
si = λi1 . . . λiw with λij ∈ V we have:

ρL
k(λi1)ρ

L
k(λi2 . . . λiw) =

{

(A, σ̂) if λi1 = (A,σ) and |σ| > k

λi1 otherwise.

where |σ| = z if σ = qz . . . qk+1qk . . . q1 and |ε| = 0 with σ ∈ I∗, and for
1 � i � z, qi ∈ I, qz top symbol and σ̂ = qk . . . q1. Intuitively, by function ρL

k,
the stack of each non-terminal is limited to k symbols and each additional push
of others symbols will be discarded. Observe that this technique corresponds to
limiting push productions only.
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Lemma 3. The function ρL
k on the domain 〈ΦG,�〉 is an upper closure opera-

tor. Moreover, lfp� πG(X0) = ρL
k ◦ lfp� πG(X0).

Lemma 4. Let G̃k be the indexed grammar obtained by stack limitation with the
constant k from an indexed grammar G, then lfp� πG̃k

(X0) = lfp� πG(ρL
k(X

0)).

In the following theorem we prove that stack limitation, as defined by function
ρL

k, is not sound, namely, at fixpoint, the language generated is not always an
over approximation of the original concrete language.

Theorem 3. lfp� πG(X0) �� lfp� πG(ρL
k(X

0)).

Proof. The proof is made by providing a counterexample. The language L =
{anbncn | n � 1} in Example 1 has only one push production: T → Tf. Therefore,
after stack limitation, each stack can contain at most k index symbols of f and
the following family of languages is generated:

∀k � 0 , Lk = {anbncn | 1 � n � k + 1}

For all k � 0, the language Lk is a regular language since each family contains
a finite number of words: for k = 0 then {abc}, k = 1 then {abc,aabbcc}, . . . .
Moreover, each Lk is not an over approximation of the original language since
L �⊆ Lk, this leads to lfp� πG(X0) �� lfp� πG(ρL

k(X
0)). ��

Observe that the infinite intersection of all family of languages Lk obtained
by stack limitation from a language L, corresponds to L0, namely

⋂
∞

k=0 Lk = L0,
while the infinite union of all Lk is a superset of the original language L, namely
L ⊆ ⋃

∞

k=0 Lk.
At first glance, the family of languages generated from a language non-stack-

limited is regular, as the previous example showed but, in general, this is not
always true: the next example shows a counterexample, similar to Example 7:

Example 8. The language L = {anbncn | n � 1} could be generated also by the
following indexed grammar:

S → aSfc Tf → Tb

S → T Tε → ε

If we apply stack limitation we get the following family of languages:

∀k � 1 , Lk = {anbmcn | n � 1 ∧ m � k}

Note that ∀k � 1 Lk ∈ CF while for k = 0 L0 = {ε} the empty word ε is not
accepted by L.

We can force the soundness of stack limitation abstraction by modifying the
upper closure operator ρL

k as follows, obtaining the new uco ρLE
k :

ρLE
k (X) = · · · = ρLE

k (λij) =

{

(A, I∗) if λi1 = (A,σ) and |σ| > k or k = 0
λi1 otherwise.

Intuitively, ρLE
k eliminates completely the stack of a non-terminal if and only if

k = 0 or the size of the stack exceeds the parameter k.
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Lemma 5. lfp� πG(X0) � lfp� πG(ρLE
k (X0)).

By Lemma 5 and by substituting ρL
k with the new uco ρLE

k in Lemmas 3 and
4, we can prove the soundness of this new abstraction.

Theorem 4. Let G̃k be the indexed grammar obtained by stack limitation with
the constant k from an indexed grammar G, then L(G) ⊆ L(G̃k).

5.3 Stack Copy Limitation

Definition 7. Stack copy limitation limits the copy of the stack, from the right-
side of a production, to a finite number of non-terminals symbols in a given set
H. The contents of the other stacks are set to I∗ meaning that you can do push
and pop operations with no limits as in Sect. 5.1.

As before, we want to demonstrate that stack copy limitation is a sound abstrac-
tion of indexed grammars. As in the previous sections, we formalize the abstract
domain as an upper closure operator ρC

H on the concrete domain 〈ΦG,�〉 with
H ⊆ N where N is the set of non-terminals of the indexed grammar. We define
ρC

H : ΦG → ΦG as:

ρC
H(X) = (ρC

H(X1), . . . , ρC
H(Xm))

and, with a slight abuse of notation, ρC
H(Xi) = {ρC

H(si) | si ∈ Xi} where for
si = λi1 . . . λiw with λij ∈ V we have:

ρC
H(λi1)ρ

C
H(λi2 . . . λiw) =

{

(A, I∗) if λi1 = (A,σ) and A �∈ H

λi1 otherwise.

Intuitively, the function ρC
H eliminates the stack of only a restricted set of non-

terminals, namely those not in the set H, while for all non-terminals in H the
stack will be copied and so all the indices symbols on it still remain. Observe
that if H = N then ρC

H = id where id is the identity function, while if H = ∅
then ρC

H = ρE where ρE is the stack elimination technique presented in Sect. 5.1.

Lemma 6. The function ρC
H on the domain 〈ΦG,�〉 is an uco. Moreover, we

have lfp� πG(X0) = ρC
H ◦ lfp� πG(X0) while lfp� πG(X0) � lfp� πG(ρC

H(X0)).

Lemma 7. Let G̃H be the indexed grammar obtained by stack copy limitation
from an indexed grammar G, with H ⊆ N where N is the set of non-terminals
of G, then lfp� πG̃H

(X0) = lfp� πG(ρC
H(X0)).

The following theorem asserts the soundness of the abstraction by showing
that any language obtained by stack copy limitation from an indexed grammar
is an over approximation of its original indexed language:

Theorem 5. Let G̃H be the indexed grammar obtained by stack copy limitation
of a subset of non-terminals H from an indexed grammar G, then L(G) ⊆ L(G̃H).
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As expected, the quality of this abstraction, in terms of classification in the
Chomsky hierarchy, may be better then stack elimination, depending on which
non-terminals form the set H ⊆ N.

Example 9. Consider the language L = {anbncn | n � 1} in Example 1 and
let H = {A}, then by stack copy limitation we obtain: L̃ = {anb∗c∗ | n � 1}.
Observe that L̃ ∈ REG and L ⊆ L̃, indeed, if H contains one of the three non-
terminals then stack copy limitation is equivalent to stack elimination. However,
if H = {A,B}, then by stack copy limitation we obtain L̃′ = {anbnc∗ | n � 1}.
Note that L ⊆ L̃′ ⊆ L̃, L̃′ ∈ CF and L̃′ �∈ REG .

We conclude by showing in Fig. 2 the three sound abstractions presented in
this section applied to Example 6.

a∗b∗c∗

REG

CFIndexed

anbncn

anbnc∗

ρ
E ,ρ

LE ,ρ
Cρ

C

ρC

Fig. 2. Sound abstractions of indexed grammars presented in Sect. 5 and applied to
Example 6

6 Related and Future Works

The approximation of grammar structures by abstract interpretation is not new.
In [13] and [15] the authors introduced the idea of abstracting formal languages
by abstract interpretation for the design of static analysers that manipulate
symbolic structures. This provided both the source for new symbolic abstract
domains for program analysis and the possibility of formalising known algo-
rithms, such as parsers, as abstract interpreters. Abstractions into regular lan-
guages have been used in formal verification (e.g., see [7]). In program analysis
non-regular approximations of formal languages have been used in aliasing anal-
ysis [19]. The idea of grammar abstraction as a relation between CF grammars
has been also used for relating concrete and abstract syntax in [4]. We exploit
this latter line of research by establishing a relation, formalised here by abstract
interpretation, between indexed grammars with the aim of relating languages in
Chomsky’s hierarchy [6].

None of the above mentioned approaches considered the more general prob-
lem of correlating languages in Chomsky’s hierarchy by the theory of fixpoint
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abstraction by abstract interpretation. We believe that a systematic reconstruc-
tion of Chomsky’s hierarchy by fixpoint abstract interpretation may provide both
new insights into a fundamental field of computer science and new algorithms
and methods for approximating structures described by grammars. Indeed, the
current work originated from the desire of finding suitable abstract domains for
expressing the invariant properties among obfuscated malware variants [17,18].
We reformulated the Chomsky’s hierarchy by using the standard abstract inter-
pretation methods: we provided a fixpoint semantics for indexed languages and
we characterised classes of less expressive languages in terms of fixpoint abstrac-
tions of this semantics. In our case, the approximation of indexed languages
shows how it is possible to systematically and constructively derive all fix-
point descriptions for CF languages as abstract interpretations. In particular,
we proved that a calculational design, in the style of [8], of these fixpoint repre-
sentation for CF languages is possible, and how new families of languages can
be derived in this form. As future work we plan to generalize known separation
results between classes of languages, e.g., the Pumping Lemmata, as instances
of incompleteness of language abstractions. The idea is that, if a family of lan-
guages corresponds to a suitable abstraction of the fixpoint semantics of a more
concrete family of languages–in our case indexed languages, then languages not
expressible in one family should correspond to witnesses of the incompleteness
of this abstraction [21]. The interest in this perspective over Chomsky’s hier-
archy is in the fact that we can reformulate most of this hierarchy, including
separation results, in terms of abstract interpretation, providing powerful tools
for comparing symbolic abstract domains with respect to their expressive power.
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Abstract. We study the language inclusion problem L1 ⊆ L2 where
L1 is regular. Our approach relies on abstract interpretation and checks
whether an overapproximating abstraction of L1, obtained by succes-
sively overapproximating the Kleene iterates of its least fixpoint charac-
terization, is included in L2. We show that a language inclusion problem
is decidable whenever this overapproximating abstraction satisfies a com-
pleteness condition (i.e. its loss of precision causes no false alarm) and
prevents infinite ascending chains (i.e. it guarantees termination of least
fixpoint computations). Such overapproximating abstraction function on
languages can be defined using quasiorder relations on words where the
abstraction gives the language of all words “greater than or equal to” a
given input word for that quasiorder. We put forward a range of qua-
siorders that allow us to systematically design decision procedures for
different language inclusion problems such as regular languages into reg-
ular languages or into trace sets of one-counter nets. In the case of inclu-
sion between regular languages, some of the induced inclusion checking
procedures correspond to well-known state-of-the-art algorithms like the
so-called antichain algorithms. Finally, we provide an equivalent greatest
fixpoint language inclusion check which relies on quotients of languages
and, to the best of our knowledge, was not previously known.

1 Introduction

Language inclusion is a fundamental and classical problem which consists in
deciding, given two languages L1 and L2, whether L1 ⊆ L2 holds. We consider
languages of finite words over a finite alphabet Σ.

The basic idea of our approach for solving a language inclusion problem
L1 ⊆ L2 is to leverage Cousot and Cousot’s abstract interpretation [6,7] for
checking the inclusion of an overapproximation (i.e. a superset) of L1 into L2.
This idea draws inspiration from the work of Hofmann and Chen [18], who used
abstract interpretation to decide language inclusion between languages of infinite
words.

Assuming that L1 is specified as least fixpoint of an equation system on
℘(Σ∗), an approximation of L1 is obtained by applying an overapproximating
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B.-Y. E. Chang (Ed.): SAS 2019, LNCS 11822, pp. 140–161, 2019.
https://doi.org/10.1007/978-3-030-32304-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32304-2_8&domain=pdf
http://orcid.org/0000-0002-3625-6003
http://orcid.org/0000-0003-0159-0068
http://orcid.org/0000-0001-7531-6374
https://doi.org/10.1007/978-3-030-32304-2_8


Language Inclusion Algorithms as Complete Abstract Interpretations 141

abstraction function for sets of words ρ : ℘(Σ∗) → ℘(Σ∗) at each step of the
Kleene iterates converging to the least fixpoint. This ρ is an upper closure opera-
tor which is used in standard abstract interpretation for approximating an input
language by adding words (possibly none) to it. This abstract interpretation-
based approach provides an abstract inclusion check ρ(L1) ⊆ L2 which is always
sound by construction. We then give conditions on ρ which ensure a complete
abstract inclusion check, namely, the answer to ρ(L1) ⊆ L2 is always exact
(no “false alarms” in abstract interpretation terminology): (i) ρ(L2) = L2; (ii)
ρ is a complete abstraction for symbol concatenation λX ∈ ℘(Σ∗).aX, for all
a ∈ Σ, according to the standard notion of completeness in abstract interpreta-
tion [6,16,23]. This approach leads us to design in Sect. 4 an algorithmic frame-
work for language inclusion problems which is parameterized by an underlying
language abstraction (cf. Theorem 4.5).

We then focus on overapproximating abstractions ρ which are induced by a
quasiorder relation � on words in Σ∗. Here, a language L is overapproximated
by adding all the words which are “greater than or equal to” some word of L
for �. This allows us to instantiate the above conditions (i) and (ii) for having
a complete abstract inclusion check in terms of the quasiorder �. Termination,
which corresponds to having finitely many Kleene iterates in the fixpoint com-
putations, is guaranteed by requiring that the relation � is a well-quasiorder.

We define quasiorders satisfying the above conditions which are directly
derived from the standard Nerode equivalence relations on words. These qua-
siorders have been first investigated by Ehrenfeucht et al. [11] and have been
later generalized and extended by de Luca and Varricchio [8,9]. In particular,
drawing from a result by de Luca and Varricchio [8], we show that the lan-
guage abstractions induced by the Nerode quasiorders are the most general ones
which fit in our algorithmic framework for checking language inclusion. While
these quasiorder abstractions do not depend on some language representation
(e.g., some class of automata), we provide quasiorders which instead exploit an
underlying language representation given by a finite automaton. In particular,
by selecting suitable well-quasiorders for the class of language inclusion problems
at hand we are able to systematically derive decision procedures for the inclusion
problem L1 ⊆ L2 when: (i) both L1 and L2 are regular and (ii) L1 is regular
and L2 is the trace language of a one-counter net.

These decision procedures that we systematically derive here by instanti-
ating our framework are then related to existing language inclusion checking
algorithms. We study in detail the case where both languages L1 and L2 are
regular and represented by finite state automata. When our decision procedure
for L1 ⊆ L2 is derived from a well-quasiorder on Σ∗ by exploiting the automaton-
based representation of L2, it turns out that we obtain the well-known “antichain
algorithm” by De Wulf et al. [10]. Also, by including a simulation relation in the
definition of the well-quasiorder we derive a decision procedure that partially
matches the inclusion algorithm by Abdulla et al. [2], hence also that by Bonchi
and Pous [4]. For the case in which L1 is regular and L2 is the set of traces
of a one-counter net we derive an alternative proof for the decidability of the
language inclusion problem [19].
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Finally, we leverage a standard duality result in abstract fixpoint checking [5]
and put forward a greatest fixpoint approach (instead of the above least fixpoint-
based procedure) for the case where both L1 and L2 are regular languages. In this
case, we exploit the properties of the overapproximating abstraction induced by
the quasiorder in order to show that the Kleene iterates of this greatest fixpoint
computation are finitely many. Interestingly, the Kleene iterates of the greatest
fixpoint are finitely many whether you apply the overapproximating abstraction
or not, which we show relying on forward complete abstract interpretations [15].
An extended version of this paper is available on-line [14].

2 Background

Order Theory Basics. If X is a subset of some universe set U then Xc denotes
the complement of X with respect to U , and U is implicitly given by the context.

〈D,�〉 is a quasiordered set (qoset) when � is a quasiorder relation on D, i.e.
a reflexive and transitive binary relation. A qoset satisfies the ascending (resp.
descending) chain condition (ACC, resp. DCC) if there is no countably infinite
sequence of distinct elements {xi}i∈N such that, for all i ∈ N, xi � xi+1 (resp.
xi+1 � xi). A qoset is called ACC (DCC) when it satisfies the ACC (DCC).

A qoset 〈D,�〉 is a partially ordered set (poset) when � is antisymmetric.
A subset of a poset is directed if it is nonempty and every pair of elements has
an upper bound in it. A poset 〈D,�〉 is a directed-complete partial order (CPO)
if it has the least upper bound (lub) of all its directed subsets. A poset is a
join-semilattice if it has the lub of all its nonempty finite subsets (so that binary
lubs are enough). A poset is a complete lattice if it has the lub of all its arbitrary
(possibly empty) subsets (so that it also has the greatest lower bound (glb) of
all its arbitrary subsets).

A qoset 〈D,�〉 is a well-quasiordered set (wqoset) when for every countably
infinite sequence of elements {xi}i∈N there exist i, j ∈ N such that i < j and
xi � xj . For every qoset 〈D,�〉 with X,Y ⊆ D, we define the following relation:

X � Y
�⇐⇒ ∀x ∈ X,∃y ∈ Y, y � x.

A minor of a subset X ⊆ D, denoted by �X, is a subset of minimal elements
of X w.r.t. �, i.e. �X � {x ∈ X | ∀y ∈ X, y � x implies y = x}. The minor of
X satisfies the following properties: (i) X � �X and (ii) �X is an antichain,
that is, x1 � x2 for no distinct x1, x2 ∈ �X. Let us recall that every subset of a
wqoset 〈D,�〉 has at least one minor set, all minor sets are finite and if 〈D,�〉
is additionally a poset then there exists exactly one minor set. We denote the
set of antichains of a qoset 〈D,�〉 by AC〈D,�〉 � {X ⊆ D | X is an antichain}.
It turns out that 〈AC〈D,�〉,�〉 is a qoset, it is ACC if 〈D,�〉 is a wqoset and it
is a poset if 〈D,�〉 is a poset.

Kleene Iterates. Let 〈X,�〉 be a qoset, f : X → X be a function and b ∈ X.
Then, the trace of values of the variable x ∈ X computed by the following
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iterative procedure:

Kleene(f, b) �

⎧
⎨

⎩

x := b;
while f(x) �= x do x := f(x);
return x;

provides the possibly infinite sequence of so-called Kleene iterates of the function
f starting from the basis b. When 〈X,�〉 is a ACC (resp. DCC) CPO, b � f(b)
(resp. f(b) � b) and f is monotonic then Kleene(f, b) terminates and returns
the least (resp. greatest) fixpoint of the function f which is greater (resp. less)
than or equal to b.

Let us also recall that given a monotonic function f : C → C on a complete
lattice C, its least and greatest fixpoints always exist, and we denote them, resp.,
by lfp(f) and gfp(f).

For the sake of clarity, we overload the notation and use the same symbol for
an operator/relation and its componentwise (i.e. pointwise) extension on product
domains. A vector

#»

Y in some product domain D|S| might be also denoted by
〈Yi〉i∈S and

#»

Y q denotes its component Yq.

Language Theory Basics. Let Σ be an alphabet (that is, a finite nonempty
set of symbols). Words are finite sequences of symbols where ε denote the empty
sequence. Languages are sets of words where Σ∗ is the set of all words. Concate-
nation in Σ∗ is simply denoted by juxtaposition, both for concatenating words
uv, languages L1L2 and words with languages such as uLv. We sometimes use
the symbol · to refer explicitly to the concatenation operation.

A finite automaton (FA) is a tuple A = 〈Q, δ, I, F,Σ〉 where Σ is the alphabet,
Q is the finite set of states, I ⊆ Q are the initial states, F ⊆ Q are the final
states, and δ : Q × Σ → ℘(Q) is the transition relation. If u ∈ Σ∗ and q, q′ ∈ Q

then q
u� q′ means that the state q′ is reachable from q by following the string

u. Therefore, q
ε� q′ holds iff q = q′. The language generated by a FA A is

L(A) � {u ∈ Σ∗ | ∃qi ∈ I,∃qf ∈ F, qi
u� qf}. Figure 1 depicts an example of

FA.

3 Inclusion Check by Complete Abstractions

The language inclusion problem consists in checking whether L1 ⊆ L2 holds
where L1 and L2 are two languages over an alphabet Σ. In this section, we show
how (backward) complete abstractions ρ can be used to compute an overapprox-
imation ρ(L1) of L1 such that ρ(L1) ⊆ L2 ⇔ L1 ⊆ L2.

Let uco(C) denote the set of upper closure operators (or simply closure
operators) on a poset 〈C,≤C〉, that is, the set of monotonic, idempotent (i.e.,
ρ(x) = ρ(ρ(x))) and increasing (i.e., x ≤C ρ(x)) functions in C → C. We often
write c ∈ ρ(C) (or simply c ∈ ρ when C is clear from the context) to denote
that there exists c′ ∈ C with c = ρ(c′), and let us recall that this happens iff
ρ(c) = c.
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Closure-based abstract interpretation [7] can be applied to solve a generic
inclusion checking problem stated through least fixpoints as follows. Let ρ ∈
uco(C) and c2 ∈ C such that c2 ∈ ρ. Then, for all c1 ∈ C, it turns out that

c1 ≤C c2 ⇔ ρ(c1) ≤C ρ(c2) ⇔ ρ(c1) ≤C c2. (1)

We apply here the notion of backward completeness in abstract interpreta-
tion [6,7,16,23]. In abstract interpretation, a closure operator ρ ∈ uco(C) on
a concrete domain C plays the role of abstraction function for objects of C.
A closure ρ ∈ uco(C) is called backward complete for a concrete monotonic
function f : C → C when ρf = ρfρ holds. The intuition is that backward com-
pleteness models an ideal situation where no loss of precision is accumulated in
the computations of ρf when its concrete input objects are approximated by ρ.
It is well-known [7] that in this case backward completeness implies completeness
of least fixpoints, namely, ρ(lfp(f)) = lfp(ρf) = lfp(ρfρ) holds by assuming that
these least fixpoints exist (this is the case, e.g., when C is a CPO). Theorem 3.1
states that in order to check an inclusion c1 ≤C c2 for some c1 = lfp(f) and
c2 ∈ ρ, it is enough to perform an inclusion check lfp(ρf) ≤C c2 which is defined
on the abstraction ρ(C).

Theorem 3.1. If C is a CPO, f : C → C is monotonic, ρ ∈ uco(C) is backward
complete for f and c2 ∈ ρ, then lfp(f) ≤C c2 ⇔ lfp(ρf) ≤C c2. In particular, if
〈ρ,≤C〉 is ACC then the Kleene iterates of lfp(ρf) are finitely many.

In the following sections we apply this general abstraction technique for a
number of different language inclusion problems, by designing decision algo-
rithms which rely on specific backward complete abstractions of ℘(Σ∗).

4 An Algorithmic Framework for Language Inclusion

4.1 Languages as Fixed Points

Let A = 〈Q, δ, I, F,Σ〉 be a FA. Given S, T ⊆ Q, define

WA
S,T � {u ∈ Σ∗ | ∃q ∈ S, ∃q′ ∈ T, q

u� q′}.

When S = {q} or T = {q′} we abuse the notation and write WA
q,T , WA

S,q′ , or
WA

q,q′ . Also, we omit the automaton A in superscripts when this is clear from the
context. The language accepted by A is therefore L(A) = WA

I,F . Observe that

L(A) =
⋃

q∈IW
A
q,F =

⋃
q∈F WA

I,q (2)

where, as usual,
⋃

∅ = ∅. Let us recall how to define the language accepted by
an automaton as a solution of a set of equations [24]. Given a Boolean predicate
p(x) (typically a membership predicate) and two sets T and F , we define the
following parametric choice function:

ψT
F (p(x)) �

{
T if p(x) holds
F otherwise

.
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1 2

b

a

ba

Fig. 1. A finite automaton A with L(A) = (a + (b+a))∗.

The FA A induces the following set of equations, where the Xq’s are variables
of type Xq ∈ ℘(Σ∗) indexed by states q ∈ Q:

Eqn(A) � {Xq = ψ
{ε}
∅

(q ∈ F ) ∪ ⋃
a∈Σ,q′∈δ(q,a)aXq′ | q ∈ Q}.

Thus, the functions in the right-hand side of the equations in Eqn(A) have
type ℘(Σ∗)|Q| → ℘(Σ∗). Since 〈℘(Σ∗)|Q|,⊆〉 is a (product) complete lattice (as
〈℘(Σ∗),⊆〉 is a complete lattice) and all the right-hand side functions in Eqn(A)
are monotonic, the least solution 〈Yq〉q∈Q of Eqn(A) does exist and it is easily
seen that for every q ∈ Q, Yq = WA

q,F holds.
Note that, by using right (rather than left) concatenations, one could

also define an equivalent set of equations whose least solution coincides with
〈WA

I,q〉q∈Q instead of 〈WA
q,F 〉q∈Q.

Example 4.1. Let us consider the automaton A in Fig. 1. The set of equations
induced by A are as follows:

Eqn(A) =

{
X1 = {ε} ∪ X1a ∪ X2a

X2 = ∅ ∪ X1b ∪ X2b
. ♦

Equivalently, the equations in Eqn(A) can be stated using an “initial” vector
#»εF ∈ ℘(Σ∗)|Q| and the function PreA : ℘(Σ∗)|Q|→℘(Σ∗)|Q| defined as follows:

#»εF � 〈ψ{ε}
∅

(q ∈ F )〉q∈Q, PreA(〈Xq〉q∈Q) � 〈⋃a∈Σ,q′∈δ(q,a)aXq′〉q∈Q.

Since ε ∈ WA
q,F for all q ∈ F , the least fixpoint computation can start from

the vector #»εF and iteratively apply PreA, that is, it turns out that

〈WA
q,F 〉q∈Q = lfp(λ

# »

X. #»εF ∪ PreA(
# »

X)). (3)

Together with Equation (2), it follows that L(A) equals the union of the
component languages of the vector lfp(λ

# »

X. #»εF ∪ PreA(
# »

X)) indexed by initial
states in I.

Example 4.2 (Continuation of Example 4.1). The fixpoint characterization
of 〈WA

q,F 〉q∈Q is:
(

WA
q1,q1

WA
q2,q1

)

= lfp
(

λ

(
X1

X2

)

.

({ε} ∪ aX1 ∪ bX2

∅ ∪ aX1 ∪ bX2

))

=
(

(a + (b+a))∗

(a + b)∗a

)

. ♦
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Fixpoint-Based Inclusion Check. Consider the language inclusion problem
L1 ⊆ L2, where L1 = L(A) for some FA A = 〈Q, δ, I, F,Σ〉. The language L2

can be formalized as a vector in ℘(Σ∗)|Q| as follows:

#  »

L2
I � 〈ψL2

Σ∗(q ∈ I)〉q∈Q. (4)

Using (2), (3) and (4), it is routine to prove that

L(A) ⊆ L2 ⇔ lfp(λ
# »

X. #»εF ∪ PreA(
# »

X)) ⊆ #  »

L2
I . (5)

4.2 Abstract Inclusion Check Using Closures

In what follows we will use Theorem 3.1 for solving the language inclusion prob-
lem, where we will have that C = 〈℘(Σ∗)|Q|,⊆〉, f = λ

# »

X. #»εF ∪ PreA(
# »

X) and
ρ : ℘(Σ∗)|Q| → ℘(Σ∗)|Q| is an upper closure operator.

Theorem 4.3. Let Σ be an alphabet. If ρ ∈ uco(℘(Σ∗)) is backward complete
for λX ∈ ℘(Σ∗). aX for all a ∈ Σ, then, for all FAs A = 〈Q, δ, I, F,Σ〉, the
closure ρ is backward complete for PreA and λ

# »

X. #»εF ∪ PreA(
# »

X).

Corollary 4.4. If ρ ∈ uco(℘(Σ∗)) is backward complete for λX ∈ ℘(Σ∗). aX

for all a ∈ Σ then ρ(lfp(λ
# »

X. #»εF ∪ PreA(
# »

X))) = lfp(λ
# »

X. ρ( #»εF ∪ PreA(
# »

X))).

Note that if ρ is backward complete for λX.aX for all a ∈ Σ and L2 ∈ ρ then,
as a consequence of Theorem 3.1 and Corollary 4.4, the equivalence (5) becomes

L(A) ⊆ L2 ⇔ lfp(λ
# »

X. ρ( #»εF ∪ PreA(
# »

X))) ⊆ #  »

L2
I . (6)

4.3 Abstract Inclusion Check Using Galois Connections

To solve a language inclusion problem L(A) ⊆ L2 using equivalence (6) we
must first compute the corresponding least fixpoint and then decide its inclusion
in

#  »

L2
I . Since closure operators are fully isomorphic to Galois connections [7,

Section 6], they allow us to conveniently define and reason on abstract domains
independently of their representation. Recall that a Galois Connection (GC) or
adjunction between two posets 〈C,≤C〉 (called concrete domain) and 〈A,≤A〉
(called abstract domain) consists of two functions α : C → A and γ : A → C
such that α(c) ≤A a ⇔ c ≤C γ(a) always holds. A Galois Connection is denoted
by 〈C,≤C〉 −−−→←−−−

α

γ 〈A,≤A〉. In an adjunction, α is called the left-adjoint of γ, and,
dually, γ is called the right-adjoint of α. This terminology is justified by the fact
that if some function α : C → A admits a right-adjoint γ : A → C then this is
unique (and this dually holds for left-adjoints).

The next result shows that there exists an algorithm that solves the lan-
guage inclusion problem L(A) ⊆ L2 on an abstraction D of the concrete domain
of languages 〈℘(Σ∗),⊆〉 whenever D satisfies a list of requirements related to
backward completeness and computability.
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Theorem 4.5. Let A = 〈Q, δ, I, F,Σ〉 be a FA and let L2 be a language over Σ.
Let 〈℘(Σ∗),⊆〉 −−−→←−−−

α

γ 〈D,≤D〉 be a GC where 〈D,≤D〉 is a poset. Assume that
the following properties hold:

(i) L2 ∈ γ(D) and for every a ∈ Σ and X ∈ ℘(Σ∗), α(aX) = α(aγα(X)).
(ii) (D,≤D,�) is an effective domain, meaning that: (D,≤D,�) is an ACC join-

semilattice, every element of D has a finite representation, ≤D is decidable
and � is a computable binary lub.

(iii) There is an algorithm, say Pre�(
# »

X), which computes α(PreA(γ(
# »

X))), for
all

# »

X ∈ ℘(Σ∗)|Q|.
(iv) There is an algorithm, say ε�, computing α( #»εF ).
(v) There is an algorithm, say Incl�(

# »

X), deciding the abstract inclusion
# »

X ≤D α(
#  »

L2
I), for every vector

# »

X ∈ α(℘(Σ∗)|Q|).

Then, the following algorithm decides whether L(A) ⊆ L2:
〈Yq〉q∈Q := Kleene(λ

# »

X. ε� � Pre�(
# »

X), #»
∅∅∅);

return Incl�(〈Yq〉q∈Q);

Quasiorder Galois Connections. It turns out that Theorem 4.5 still holds for
abstract domains which are mere qosets rather than posets.

Definition 4.6 (Quasiorder GC). A quasiorder GC (QGC) 〈C,≤C〉 −−−→←−−−
α

γ

〈D,≤D〉 consists of: (a) two qosets 〈C,≤C〉 and 〈D,≤D〉 such that one of them
is a poset; (b) two functions α : C → D and γ : D → C such that α(c) ≤D d ⇔
c ≤C γ(d) holds for all c ∈ C and d ∈ D. �

Analogously to GCs, it is easily seen that in QGCs both α and γ are mono-
tonic as well as c ≤C γ(α(c)) and α(γ(d)) ≤D d always hold. Observe that if
C is a poset and d ≤D d′ ≤D d with d �= d′ then γ(d) = γ(d′), because γ is
monotonic, and conversely, if D is a poset and c ≤C c′ ≤C c with c �= c′ then
α(c) = α(c′) holds. Similarly to GCs, if C is a poset then γ ◦ α ∈ uco(〈C,≤C〉)
holds for QGCs.

In the following, we apply all the standard order-theoretic notions used for
posets also to a qoset 〈D,≤D〉 by implicitly referring to the quotient poset
〈D/∼=D

,≤D/∼=D
〉 where ∼=D � ≤D ∩ ≤−1

D .
For example:

– 〈D,≤D〉 is ACC (CPO) means that the poset 〈D/∼=D
,≤D/∼=D

〉 is ACC (CPO).
– 〈D,≤D〉 is a join-semilattice means that 〈D/∼=D

,≤D/∼=D
〉 is a join-semilattice;

a binary lub for D (one could have several binary lubs) is a map λ〈d, d′〉.d�d′

such that λ〈[d]∼=D
, [d′]∼=D

〉.[d � d′]∼=D
is the lub in the poset 〈D/∼=D

,≤D/∼=D
〉.

Corollary 4.7. Theorem4.5 still holds for a QGC 〈℘(Σ∗),⊆〉 −−−→←−−−
α

γ 〈D,≤D〉
where 〈D,≤D〉 is a qoset.
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5 Instantiating the Framework

In this section we focus on a particular class of closures on sets of words: those
induced by quasiorder relations on words. Then, we provide a list of conditions
on quasiorders such that the induced closures fit our framework. In addition, we
study some instances of such quasiorders and compare them.

5.1 Word-Based Abstractions

Let � ⊆ Σ∗ × Σ∗ be a quasiorder relation on words. The corresponding closure
operator ρ� ∈ uco(℘(Σ∗)) is defined as follows:

ρ�(X) � {v ∈ Σ∗ | ∃u ∈ X, u � v}. (7)

Thus, ρ�(X) is the �-upward closure of X and it is easy to check that ρ� is
indeed a closure on 〈℘(Σ∗),⊆〉.

A quasiorder � on Σ∗ is called left-monotonic (resp. right-monotonic) if
∀y, x1, x2 ∈ Σ∗, x1 � x2 ⇒ yx1 � yx2 (resp. x1y � x2y). Also, � is called
monotonic if it is both left- and right-monotonic.

Definition 5.1 (L-Consistent Quasiorder). Let L ∈ ℘(Σ∗). A quasiorder
�L on Σ∗ is called left (resp. right) L-consistent when: (a) �L ∩ (L × ¬L) = ∅

and (b) �L is left- (resp. right-) monotonic. Also, �L is called L-consistent
when it is both left and right L-consistent. �

It turns out that a L-consistent quasiorder induces a closure which includes
L and is backward complete for concatenation.

Lemma 5.2. Let L be a language over Σ and �L be a left (resp. right)
L-consistent quasiorder on Σ∗. Then,

(a) ρ�L
(L) = L.

(b) ρ�L
is backward complete for λX. aX (resp. λX.Xa) for all a ∈ Σ.

Moreover, we show that the �-upward closure ρ� in (7) can be equiva-
lently defined through the qoset of antichains. In fact, the qoset of antichains
〈AC〈Σ∗,�〉,�〉 can be viewed as a language abstraction through the minor
abstraction map. Let α� : ℘(Σ∗) → AC〈Σ∗,�〉 and γ� : AC〈Σ∗,�〉 → ℘(Σ∗)
be defined as follows:

α�(X) � �X, γ�(Y ) � ρ�(Y ). (8)

Theorem 5.3. Let 〈Σ∗,�〉 be a qoset.

(a) 〈℘(Σ∗),⊆〉 −−−−→←−−−−
α�

γ� 〈AC〈Σ∗,�〉,�〉 is a QGC.

(b) γ� ◦ α� = ρ�.
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The QGC 〈℘(Σ∗),⊆〉 −−−−→←−−−−
α�

γ� 〈AC〈Σ∗,�〉,�〉 allows us to represent and manip-

ulate �-upward closed sets in ℘(Σ∗) using finite subsets, as already shown by
Abdulla et al. [1].

We are now in position to show that, given a language L2 whose membership
decision problem is decidable, for every decidable L2-consistent wqo relation �L2 ,

the QGC 〈℘(Σ∗),⊆〉 −−−−−→←−−−−−
α�L2

γ�L2 〈AC〈Σ∗,�L2 〉,�〉 of Theorem 5.3 (a) yields an algo-

rithm for deciding the inclusion L(A) ⊆ L2 where A is a FA. In particular, for a
left L2-consistent wqo �l

L2
, the algorithm FAIncW solves this inclusion problem.

FAIncW is called “word-based” algorithm because the vector 〈Yq〉q∈Q used by
FAIncW consists of finite sets of words.
FAIncW: Word-based algorithm for L(A) ⊆ L2

Data: FA A = 〈Q, δ, I, F,Σ〉; a decision procedure
for membership in L2; a decidable left L2-consistent wqo �l

L2
.

1 〈Yq〉q∈Q := Kleene(λ
# »

X. � #»εF  � �PreA(
# »

X), #»
∅∅∅);

2 forall the q ∈ I do
3 forall the u ∈ Yq do
4 if u /∈ L2 then return false
5 return true;

Theorem 5.4. Let A be a FA and let L2 be a language such that: (i) membership
in L2 is decidable; (ii) there exists a decidable left L2-consistent wqo on Σ∗.
Then, the algorithm FAIncW decides the inclusion L(A) ⊆ L2.

A symmetric version of algorithm FAIncW (and of Theorem 5.4) for right L2-
consistent wqos, which relies on equations concatenating to the right (instead of
to the left as in Eqn(A)), can be found in the extended version of this paper [14].

In what follows, we will consider different quasiorders and we will show that
they fulfill the requirements of Theorem5.4 (or its symmetric version for right
quasiorders), so that they yield algorithms for solving the language inclusion
problem.

5.2 Nerode Quasiorders

Given w ∈ Σ∗ and X ∈ ℘(Σ∗), left and right quotients are defined as usual:
w−1X � {u ∈ Σ∗ | wu ∈ X} and Xw−1 � {u ∈ Σ∗ | uw ∈ X}. Given a
language L ⊆ Σ∗, let us define the following quasiorder relations on Σ∗:

u �l
L v

�⇐⇒ Lu−1 ⊆ Lv−1, u �r
L v

�⇐⇒ u−1L ⊆ v−1L.

De Luca and Varricchio [8] call them, resp., the left (�l
L) and right (�r

L) Nerode
quasiorders relative to L. The following result shows that Nerode quasiorders are
the most general (i.e., greatest for set inclusion) L2-consistent quasiorders for
which the algorithm FAIncW can be instantiated to decide a language inclusion
L(A) ⊆ L2.
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Lemma 5.5. Let L ⊆ Σ∗ be a language.

(a) �l
L and �r

L are, resp., left and right L-consistent quasiorders. If L is regular
then �l

L and �r
L are, additionally, decidable wqos.

(b) Let � be a quasiorder on Σ∗. If � is left (resp. right) L-consistent then
ρ�l

L
⊆ ρ� (resp. ρ�r

L
⊆ ρ�).

Let us now consider a first instantiation of Theorem5.4. Because member-
ship is decidable for regular languages, Lemma 5.5 (a) for �l

L2
implies that

the hypotheses (i) and (ii) of Theorem5.4 are satisfied, so that the algorithm
FAIncW decides the inclusion L(A) ⊆ L2. Furthermore, under these hypotheses,
Lemma 5.5 (b) shows that �l

L2
is the most general (i.e., greatest for set inclusion)

left L2-consistent quasiorder relation on Σ∗ for which the algorithm FAIncW can
be instantiated for deciding an inclusion L(A) ⊆ L2.

Remark 5.6 (On the Complexity of Nerode quasiorders). For the inclu-
sion problem between languages generated by finite automata, deciding the (left
or right) Nerode quasiorder can be easily shown1 to be as hard as the language
inclusion problem, which is PSPACE-complete. For the inclusion problem of a
language generated by an automaton within the trace set of a one-counter net
(cf. Sect. 5.3) the right Nerode quasiorder is a right language-consistent well-
quasiorder but it turns out to be undecidable (cf. Lemma5.12). More details can
be found in the extended version of this paper [14]. �

5.3 State-Based Quasiorders

Consider the inclusion problem L(A1) ⊆ L(A2) where A1 and A2 are FAs. In
the following, we study a class of well-quasiorders based on A2, called state-
based quasiorders. This is a strict subclass of Nerode quasiorders defined in
Sect. 5.2 and sidesteps the untractability or undecidability of Nerode quasiorders
(cf. Remark 5.6) yet allowing to define an algorithm solving the language inclu-
sion problem.

Inclusion in Regular Languages. We define the quasiorders ≤l
A and ≤r

A on
Σ∗ induced by a FA A = 〈Q, δ, I, F,Σ〉 as follows:

u ≤l
A v

�⇐⇒ preA
u (F ) ⊆ preA

v (F ), u ≤r
A v

�⇐⇒ postA
u (I) ⊆ postA

v (I), (9)

where, for all X ⊆ Q and u ∈ Σ∗, preA
u (X) � {q ∈ Q | u ∈ WA

q,X} and
postA

u (X) � {q′ ∈ Q | u ∈ WA
X,q′}.

Lemma 5.7. Let A be a FA. Then, ≤l
A and ≤r

A are, resp., decidable left and
right L(A)-consistent wqos.
1 Sketch: Given A1 = (Q1, δ1, I1, F1, Σ) and A2 = (Q2, δ2, I2, F2, Σ) define A3 =

(Q1 ∪ Q2 ∪ {q†}, δ3, {q†}, F1 ∪ F2) where δ3 maps (q†, a) to I1, (q†, b) to I2 and like
δ1 or δ2 elsewhere. Then, it turns out that a �r

L(A3) b ⇔ a−1L(A3) ⊆ b−1L(A3) ⇔
L(A1) ⊆ L(A2).
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It follows from Lemma 5.7 that Theorem 5.4 applies to ≤l
A2

(and ≤r
A2

), so
that one can instantiate the algorithm FAIncW with the wqo ≤l

A2
for deciding

L(A1) ⊆ L(A2). Turning back to the left Nerode wqo �l
L(A2)

we find that:

u �l
L(A2)

v ⇔ L(A2)u−1 ⊆ L(A2)v−1 ⇔ W
I,pre

A2
u (F )

⊆ W
I,pre

A2
v (F )

.

Since preA2
u (F ) ⊆ preA2

v (F ) ⇒ W
I,pre

A2
u (F )

⊆ W
I,pre

A2
v (F )

, it follows that
u ≤l

A2
v ⇒ u �l

L(A2)
v. Moreover, by Lemmas 5.5 (b) and 5.7, we have that

ρ≤l
L(A2)

⊆ ρ≤l
A2

.

Simulation-Based Quasiorders. Recall that, given a FA A = 〈Q, δ, I, F,Σ〉,
a simulation on A is a binary relation � ⊆ Q × Q such that if p � q then: (i)
p ∈ F implies q ∈ F and (ii) for every transition p

a−→ p′, there exists a transition
q

a−→ q′ such that p′ � q′. It is well-known that simulation implies language
inclusion, i.e., if � is a simulation on A then

q � q′ ⇒ WA
q,F ⊆ WA

q′,F .

We lift a quasiorder � on Q to a quasiorder �∀∃ on ℘(Q) as follows:

X �∀∃ Y
�⇐⇒ ∀x ∈ X,∃y ∈ Y, x � y

so that X �∀∃ Y ⇒ WA
X,F ⊆ WA

Y,F holds. Therefore, we define the right
simulation-based quasiorder �r

A on Σ∗ as follows:

u �r
A v

�⇐⇒ postA
u (I) �∀∃ postA

v (I). (10)

Lemma 5.8. Given a simulation relation � on A, the right simulation-based
quasiorder �r

A is a decidable right L(A)-consistent wqo.

Thus, once again, Theorem 5.4 applies to �r
A2

and this allows us to instantiate
the algorithm FAIncW to �r

A2
for deciding L(A1) ⊆ L(A2).

Observe that u �r
A2

v implies W
post

A2
u (I),F

⊆ W
post

A2
v (I),F

, which is equiva-
lent to the right Nerode quasiorder u �r

L(A2)
v, so that u �r

A2
v ⇒ u �r

L(A2)
v.

Moreover, u ≤r
A2

v ⇒ u �r
A2

v trivially holds. Summing up, the following con-
tainments relate (the right versions of) state-based, simulation-based and Nerode
quasiorders:

≤r
A2

⊆ �r
A2

⊆ �r
L(A2)

.

All these quasiorders are decidable L(A2)-consistent wqos so that the algorithm
FAIncW can be instantiated for each of them for deciding L(A1) ⊆ L(A2).

Inclusion in Traces of One-Counter Nets. We show that our framework can
be instantiated to systematically derive an algorithm for deciding the inclusion
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L(A) ⊆ L2 where L2 is the trace set of a one-counter net. This is accomplished
by defining a decidable L2-consistent quasiorder so that Theorem 5.4 can be
applied.

Intuitively, a one-counter net is a FA equipped with a nonnegative integer
counter. Formally, a One-Counter Net (OCN) [17] is a tuple O = 〈Q,Σ, δ〉 where
Q is a finite set of states, Σ is an alphabet and δ ⊆ Q × Σ × {−1, 0, 1} × Q is
a set of transitions A configuration of O is a pair qn consisting of a state q ∈ Q
and a value n ∈ N for the counter. Given two configurations qn and q′n′ we
write qn

a−→ q′n′ and call it a a-step (or simply step) if there exists a transition
(q, a, d, q′) ∈ δ such that n′ = n+d. Given qn ∈ Q×N, the trace set T (qn) ⊆ Σ∗

of an OCN is defined as follows:

T (qn) � {u ∈ Σ∗ | Zqn
u �= ∅} where

Zqn
u � {qknk | qn

a1−→ q1n1
a2−→ · · · ak−→ qknk, a1 · · · ak = u}.

Observe that Zqn
ε = {qn} and Zqn

u is a finite set for every word u ∈ Σ∗.
Let N⊥ � N∪{⊥} where ⊥ ≤N⊥ n holds for all n ∈ N⊥, while for all n, n′ ∈ N,

n ≤N⊥ n′ is the standard ordering relation. For a finite set of states S ⊆ Q × N

define the so-called macro state MS : Q → N⊥ as follows:

MS(q) � max{n ∈ N | qn ∈ S},

where max ∅ � ⊥. Define the following quasiorder on Σ∗:

u ≤r
qn v

�⇐⇒ ∀q′ ∈ Q, MZqn
u

(q′) ≤N⊥ MZqn
v

(q′).

Lemma 5.9. Given a OCN O together with a configuration qn, ≤r
qn is a right

T (qn)-consistent decidable wqo.

Thus, as a consequence of Theorem 5.4, Lemma 5.9 and the decidability of
membership in T (qn), we derive the following known decidability result [19,
Theorem 3.2] by resorting to our framework.

Theorem 5.10. Given a FA A and a OCN O together with a configuration qn,
the problem L(A) ⊆ T (qn) is decidable.

Moreover, the following result closes a conjecture made by de Luca and Var-
ricchio [8, Section 6].

Lemma 5.11. The right Nerode quasiorder �r
T (qn) is a well-quasiorder.

It is worth remarking that, by Lemma5.5 (a), the left and right Nerode
quasiorders relative to T (qn) are T (qn)-consistent. However, the left Nerode
quasiorder does not need to be a wqo for otherwise T (qn) would be regular.

Lemma 5.12. The right Nerode quasiorder for the trace set of OCN is
undecidable.

We conjecture that, using our framework, Theorem 5.10 can be extended to
traces of Petri Nets, which is already known to be true [19].
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6 A Novel Perspective on the Antichain Algorithm

Let A1 = 〈Q1, δ1, I1, F1, Σ〉 and A2 = 〈Q2, δ2, I2, F2, Σ〉 be two FAs and consider
the left L(A2)-consistent wqo ≤l

A2
defined in (9). Theorem 5.4 shows that the

algorithm FAIncW solves the inclusion problem L(A1) ⊆ L(A2) by computing on
the qoset abstraction 〈AC〈Σ∗,≤l

A2
〉,�〉 of antichains of 〈Σ∗,≤l

A2
〉.

Since u ≤l
A2

v ⇔ preA2
u (F2) ⊆ preA2

v (F2) holds, we can equivalently consider
the set of states preA2

u (F2) rather than a word u ∈ Σ∗. This leads us to design
an algorithm analogous to FAIncW but computing on the poset 〈AC〈℘(Q2),⊆〉,�〉
of antichains of sets of states of 〈℘(Q2),⊆〉. In order to do this, the poset
〈AC〈℘(Q2),⊆〉,�〉 is viewed as an abstraction of the qoset 〈AC〈Σ∗,≤l

A2
〉,�′〉 (where

�′ is used for distinguishing the two ordering relations on antichains) through
the abstraction and concretization maps αA2 : AC〈Σ∗,≤l

A2
〉 → AC〈℘(Q2),⊆〉 and

γA2 : AC〈℘(Q2),⊆〉 → AC〈Σ∗,≤l
A2

〉 defined as follows:

αA2(X) � {preA2
u (F2) ∈ ℘(Q2) | u ∈ X},

γA2(Y ) � �{u ∈ Σ∗ | preA2
u (F2) ∈ Y }.

Lemma 6.1. 〈AC〈Σ∗,≤l
A2

〉,�′〉 −−−−−→←−−−−−
αA2

γA2 〈AC〈℘(Q2),⊆〉,�〉 is a QGC.

Combining the word-based algorithm FAIncW with αA2 and γA2 we are able to
systematically derive a new algorithm which solves the inclusion L(A1) ⊆ L(A2)
using the abstract domain 〈AC〈℘(Q2),⊆〉,�〉 which is viewed as an abstraction of
〈℘(Σ∗),⊆〉 by composing the following two QGCs:

〈℘(Σ∗),⊆〉 −−−−−→←−−−−−
α≤l

A2

γ≤l
A2 〈AC〈Σ∗,≤l

A2
〉,�′〉, [by Theorem 5.3(a)]

〈AC〈Σ∗,≤l
A2

〉,�′〉 −−−−→←−−−−
αA2

γA2 〈AC〈℘(Q2),⊆〉,�〉. [by Lemma 6.1]

Let α : ℘(Σ∗) → AC〈℘(Q2),⊆〉, γ : AC〈℘(Q2),⊆〉 → ℘(Σ∗) and PreA2
A1

: ℘(Q2)
|Q1| →

℘(Q2)
|Q1| be defined as follows:

α(X) � �{preA2
u (F2) ∈ ℘(Q2) | u ∈ X}�,

γ(Y ) � {u ∈ Σ∗ | ∃S ∈ Y, S ⊆ preA2
u (F2)},

PreA2
A1

(〈Xq〉q∈Q1) � 〈�{ preA2
a (S) | ∃a ∈ Σ, q′ ∈ Q1, q′ ∈ δ1(q, a) ∧ S ∈ Xq′

}�〉q∈Q1 .

Lemma 6.2. The following properties hold:

(a) α = αA2
◦ α≤l

A2

(b) γ = γ≤l
A2

◦ γA2

(c) 〈℘(Σ∗),⊆〉 −−−→←−−−
α

γ 〈AC〈℘(Q2),⊆〉,�〉 is a GC
(d) γ ◦ α = ρ≤l

A2
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(e) For all # »
X ∈ α(℘(Σ∗)|Q1|),PreA2

A1
(

# »
X ) = αA2

◦ α≤l
A2

◦ PreA1
◦γ≤l

A2
◦ γA2 (

# »
X )

It follows from Lemma 6.2 that the GC 〈℘(Σ∗),⊆〉 −−−→←−−−
α

γ 〈AC〈℘(Q2),⊆〉,�〉
together with the abstract function PreA2

A1
satisfy the hypotheses (i)–(iv) of The-

orem 4.5. Thus, in order to obtain an algorithm for deciding L(A1) ⊆ L(A2)
it remains to show that requirement (v) of Theorem 4.5 holds, i.e., there is an
algorithm to decide whether

#»

Y � α(
#  »

L2
I2) for every

#»

Y ∈ α(℘(Σ∗))|Q1|.
Let us notice that the Kleene iterates of the function λ

# »

X. α( #»εF1)�PreA2
A1

(
# »

X)
of Theorem 4.5 are vectors of antichains in 〈AC〈℘(Q2),⊆〉,�〉, where each com-
ponent indexed by some q ∈ Q1 represents (through its minor set) a set of
sets of states that are predecessors of F2 in A2 by a word generated by A1

from that state q (i.e., preA2
u (F2) with u ∈ WA1

q,F1
). Since ε ∈ WA1

q,F1
for all

q ∈ F1 and preA2
ε (F2) = F2 the iterations of the procedure Kleene begin with

α( #»εF1) = 〈ψF2
∅

(q ∈ F1)〉q∈Q1 . By taking the minor of each vector component,
we are considering smaller sets which still preserve the relation � (because
A � B ⇔ �A � B ⇔ A � �B ⇔ �A � �B). Let

#»

Y be the fixpoint
computed by the Kleene procedure. We have that, for each component q ∈ Q1,
#»

Y q = �{preA2
u (F2) | u ∈ WA1

q,F1
}. Whenever L(A1) ⊆ L(A2) holds, all the sets

of states in
#»

Y q for q ∈ I1 are predecessors of F2 in A2 by words in L(A2),
so that they all contain at least one initial state in I2. As a result, we obtain
the following algorithm FAIncS, a “state-based” inclusion algorithm for deciding
L(A1) ⊆ L(A2).

FAIncS: State-based algorithm for L(A1) ⊆ L(A2)
Data: FAs A1 = 〈Q1, δ1, I1, F1, Σ〉 and A2 = 〈Q2, δ2, I2, F2, Σ〉.

1 〈Yq〉q∈Q1 := Kleene(λ
# »

X. α( #»εF1) � PreA2
A1

(
# »

X), #»
∅∅∅);

2 forall the q ∈ I1 do
3 forall the s ∈ Yq do
4 if s ∩ I2 = ∅ then return false;
5 return true;

Theorem 6.3. Let A1,A2 be FAs. The algorithm FAIncS decides the inclusion
L(A1) ⊆ L(A2).

De Wulf et al. [10] introduced two antichain algorithms, called forward and
backward, for deciding the universality of the language generated by a FA, i.e.,
whether the language is Σ∗ or not. Then, they extended the backward algorithm
in order to decide language inclusion. In what follows we show that FAIncS is
equivalent to the corresponding extension of the forward algorithm and, there-
fore, dual to the antichain algorithm of De Wulf et al. [10].

To do that, we first define the poset of antichains in which the forward
antichain algorithm computes its fixpoint. Then, we give a formal definition of
the forward antichain algorithm for deciding language inclusion and show that
this algorithm coincides with FAIncS when applied to the reverse automata.
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Since the language inclusion between two languages holds iff it holds between
the reverse languages generated by the reverse automata, we conclude that the
algorithm FAIncS is equivalent to the forward antichain algorithm.

Let us consider the following poset of antichains 〈AC〈℘(Q2),⊆〉, �̃〉 where

X �̃ Y
�⇐⇒ ∀y ∈ Y,∃x ∈ X, x ⊆ y.

It is easy to see that �̃ and �−1 coincides. As observed by De Wulf et al. [10], it
turns out that 〈AC〈℘(Q2),⊆〉, �̃〉 is a finite lattice, where �̃ and �̃ denote, resp.,
glb and lub of antichains. The lattice 〈AC〈℘(Q2),⊆〉, �̃〉 is the domain in which the
forward antichain algorithm computes on for deciding universality. The following
result extends this forward algorithm in order to decide language inclusion.

Theorem 6.4 bf ([10, Theorems 3 and 6] ). Let
#     »FP �

�̃{ # »

X ∈ (AC〈℘(Q2),⊆〉)|Q1| | # »

X = PostA2
A1

(
# »

X) �̃ 〈ψ{I2}
∅

(q ∈ I1)〉q∈Q1}
with PostA2

A1
(〈Xq〉q∈Q1)�〈�{postA2

a (X) |∃a∈ Σ, q′ ∈ Q1, X ∈Xq′ , q ∈ δ1(q
′, a)}�〉q∈Q1 .

Then, L(A1) � L(A2) iff ∃q ∈ F1,
#     »FPq �̃ {F c

2}.
Let AR denote the reverse of A, where arrows are flipped and the initial/final

states become final/initial. Note that language inclusion can be decided by con-
sidering the reverse automata since L(A1) ⊆ L(A2) ⇔ L(AR

1 ) ⊆ L(AR
2 ) holds.

Furthermore, it is straightforward to check that PostA2
A1

= PreAR
2

AR
1
. We therefore

obtain the following result.

Theorem 6.5. Let
#     »FP �

�̃{ # »

X ∈ (AC〈℘(Q2),⊆〉)|Q1| | # »

X = PreA2
A1

(
# »

X) �̃ 〈ψ{F2}
∅

(q ∈ F1)〉q∈Q1}.
Then, L(A1) � L(A2) iff ∃q ∈ I1,

#     »FPq �̃ {Ic
2}.

Since �̃ = �−1, we have that �̃ = �. Moreover, by definition of α we have
that 〈ψ{F2}

∅
(q ∈ F1)〉q∈Q1 = α( #»εF1). Therefore, we can rewrite the vector

#     »FP
of Theorem 6.5 as

#     »FP =
⊔{ # »

X | # »

X = PreA2
A1

(
# »

X) � α( #»εF1)}, which is the least
fixpoint for � of PreA2

A1
above α( #»εF1). It turns out that the Kleene iterates

of this least fixpoint computation that converge to
#     »FP exactly coincide with

the iterates computed by the Kleene procedure of the state-based algorithm
FAIncS. In particular, if

#»

Y is the output vector of the call to Kleene in FAIncS
then

#»

Y =
#     »FP . Furthermore,

#     »FPq �̃ {Ic
2} ⇔ ∃S ∈ #     »FPq, S ∩ I2 = ∅. Summing

up, the �-lfp algorithm FAIncS coincides with the �̃-gfp antichain algorithm of
Theorem 6.5.

We can also derive an algorithm equivalent to FAIncS by considering the
antichain poset 〈AC〈℘(Q2),⊇〉,�〉 for the dual lattice 〈℘(Q2),⊇〉 and by replacing
the functions αA2 , γA2 , α, γ and PreA2

A1
of Lemma 6.2, resp., with:

αc
A2

(X) � {cpreA2
u (F c

2 ) | u ∈ X}, γc
A2

(Y ) � �{u ∈ Σ∗ | cpreA2
u (F c

2 ) ∈ Y },
αc(X) � �{cpreA2

u (F c
2 ) | u ∈ X}, γc(Y ) � {u ∈ Σ∗ |∃y ∈ Y, y ⊇ cpreA2

u (F c
2 )},
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CPreA2
A1

(〈Xq〉q∈Q1) �
〈�{cpreA2

a (S) | ∃a ∈ Σ, q′ ∈ Q1, q′ ∈ δ1(q, a) ∧ S ∈ Xq′}〉q∈Q1 .

where cpreA2
u (F c

2 ) = (preA2
u (F2))c. When using these functions, we obtain a

lfp algorithm computing on the domain 〈AC〈℘(Q2),⊇〉,�〉. Indeed, it turns out
that L(A1) ⊆ L(A2) iff Kleene(λ

# »

X. αc( #»εF1) � CPreA2
A1

(
# »

X), #»
∅∅∅) � αc(

#  »

L2
I1). It

is straightforward to check that this algorithm coincides with the backward
antichain algorithm defined by De Wulf et al. [10, Algorithm 1, Theorem 6] since
both compute on the same domain, �X corresponds to the maximal (w.r.t. set
inclusion) elements of X, αc({ε}) = {F c

2} and for all X ∈ αc(℘(Σ∗)), we have
that X � αc(L2) ⇔ ∀S ∈ X, I2 � S.

We have thus shown that the two forward/backward antichain algorithms
introduced by De Wulf et al. [10] can be systematically derived by instantiat-
ing our framework. The original antichain algorithms were later improved by
Abdulla et al. [2] and, subsequently, by Bonchi and Pous [4]. Among their
improvements, they showed how to exploit a precomputed binary relation
between pairs of states of the input automata such that language inclusion holds
for all pairs in the relation. When that binary relation is a simulation relation,
our framework allows to partially match their results by using the quasiorder
�r

A defined in Sect. 5.3. However, this quasiorder relation �r
A does not consider

pairs of states Q2 × Q2 whereas the aforementioned works do.

7 An Equivalent Greatest Fixpoint Algorithm

Let us recall a result from Cousot [5, Theorem 4] that if g : C → C is a monotonic
function on a complete lattice 〈C,≤,∨,∧〉 which admits its unique right-adjoint
g̃ : C → C (i.e., g(c) ≤ c′ ⇔ c ≤ g̃(c′) holds) then the following equivalence
holds: for all c, c′ ∈ C,

lfp(λx. c ∨ g(x)) ≤ c′ ⇔ c ≤ gfp(λy. c′ ∧ g̃(y)). (11)

This property has been exploited to derive equivalent least/greatest fixpoint-
based invariance proof methods for programs [5]. In the following, we use (11)
to derive an algorithm for deciding the inclusion L(A1) ⊆ L(A2), which relies
on the computation of a greatest fixpoint rather than a least fixpoint. This can
be achieved by exploiting the following simple observation, which provides an
adjunction between concatenation and quotients of sets of words.

Lemma 7.1. For all X,Y ⊆ Σ∗ and w ∈ Σ∗, wY ⊆ Z ⇔ Y ⊆ w−1Z and
Y w ⊆ Z ⇔ Y ⊆ Zw−1.

Given the set of equations induced by a FA A = 〈Q, δ, I, F,Σ〉, we define the
function P̃reA : ℘(Σ∗)|Q| → ℘(Σ∗)|Q| as follows:
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P̃reA(〈Xq〉q∈Q) � 〈⋂a∈Σ,q′∈δ(q,a) a−1Xq〉q′∈Q,

where, as usual,
⋂

∅ = Σ∗. It turns out that P̃reA is the right-adjoint of PreA.

Lemma 7.2. For all
# »

X,
#»

Y ∈ ℘(Σ∗)|Q|, PreA(
# »

X) ⊆ #»

Y ⇔ # »

X ⊆ P̃reA(
#»

Y ).

Hence, from equivalences (5) and (11) we obtain:

L(A1) ⊆ L2 ⇔ #»εF1 ⊆ gfp(λ
# »

X.
#  »

L2
I1 ∩ P̃reA1(

# »

X)). (12)

The following algorithm FAIncGfp decides the inclusion L(A1) ⊆ L2 by
implementing the greatest fixpoint computation in equivalence (12). The intu-
ition behind algorithm FAIncGfp is that

L1 ⊆ L2 ⇔ ∀w ∈ L1, (ε ∈ w−1L2 ⇔ ε ∈ ⋂
w∈L1

w−1L2),

where L1 = L(A1). Therefore, FAIncGfp computes the set
⋂

w∈L1
w−1L2 by using

the automaton A1 and by considering prefixes of L1 of increasing lengths. This
means that after n iterations of Kleene, the algorithm FAIncGfp has computed⋂

wu∈L1,|w|≤n,q0∈I1,q0
w�q

w−1L2, for every state q ∈ Q1.

FAIncGfp: Greatest fixpoint algorithm for L(A1) ⊆ L2

Data: FA A1 = 〈Q1, δ1, I1, F1, Σ〉; regular language L2.

1 〈Yq〉q∈Q := Kleene(λ
# »

X.
#  »

L2
I1 ∩ P̃reA1(

# »

X),
#   »

Σ∗);
2 forall the q ∈ F1 do
3 if ε /∈ Yq then return false;
4 return true;

The regularity of L2 clanguages of being closed under intersections and quo-
tients show that each iterate computed by Kleene(λ

# »

X.
#  »

L2
I1 ∩ P̃reA1(

# »

X),
#   »

Σ∗) is
a (computable) regular language. To the best of our knowledge, this language
inclusion algorithm FAIncGfp has never been described in the literature before.

Next, we discharge the fundamental assumption on which the correctness of
this algorithm FAIncGfp depends on: the Kleene iterates computed by FAIncGfp
are finitely many. In order to do that, we consider an abstract version of the
greatest fixpoint computation exploiting a closure operator which guarantees
that the abstract Kleene iterates are finitely many. This closure operator ρ≤A2

will be defined by using an ordering relation ≤A2 induced by a FA A2 such
that L2 = L(A2) and will be shown to be forward complete for the function
λ

# »

X.
#  »

L2
I1 ∩ P̃reA1(

# »

X) used by FAIncGfp.
Forward completeness of abstract interpretations [15] is different from and

orthogonal to backward completeness introduced in Sect. 3 and used in Sects. 4
and 5. In particular, a remarkable consequence of exploiting a forward complete
abstraction is that the Kleene iterates of the concrete and abstract greatest
fixpoint computations coincide. The intuition here is that this forward complete
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closure ρ≤A2
allows us to establish that all Kleene iterates of gfp(

# »

X.
#  »

L2
I1 ∩

P̃reA1(
# »

X)) belong to the image of the closure ρ≤A2
, more precisely that every

Kleene iterate is a language which is upward closed for ≤A2 . Interestingly, a
similar phenomenon occurs in well-structured transition systems [1,13].

Let us now describe in detail this abstraction. A closure ρ ∈ uco(C) on a
concrete domain C is forward complete for a monotonic function f : C → C
if ρfρ = fρ holds. The intuition here is that forward completeness means that
no loss of precision is accumulated when the output of a computation of fρ is
approximated by ρ, or, equivalently, f maps elements of ρ into elements of ρ.
Dually to the case of backward completeness, forward completeness implies that
gfp(f) = gfp(fρ) = gfp(ρfρ) holds, when these greatest fixpoints exist (this
is the case, e.g., when C is a complete lattice). It turns out that forward and
backward completeness are related by the following duality on the function f .

Lemma 7.3 ([15, Corollary 1]). Let 〈C,≤C〉 be a complete lattice and assume
that f : C → C admits the right-adjoint f̃ : C → C, i.e., f(c) ≤C c′ ⇔ c ≤C f̃(c′)
holds. Then, ρ is backward complete for f iff ρ is forward complete for f̃ .

Thus, by Lemma 7.3, in the following result instead of assuming the hypothe-
ses implying that a closure ρ is forward complete for the right-adjoint P̃reA1 we
state some hypotheses which guarantee that ρ is backward complete for its left-
adjoint PreA1 .

Theorem 7.4. Let A1 = 〈Q1, δ1, I1, F1, Σ〉 be a FA, L2 be a regular language
and ρ ∈ uco(℘(Σ∗)). Let us assume that:

(1) ρ(L2) = L2;
(2) ρ is backward complete for λX. aX for all a ∈ Σ.

Then, L(A1) ⊆ L2 iff #»εF1 ⊆ gfp(
# »

X. ρ(
#  »

L2
I1 ∩ P̃reA1(

# »

X))). Moreover, the Kleene
iterates computed by gfp(

# »

X. ρ(
#  »

L2
I1 ∩ P̃reA1(

# »

X))) coincide in lockstep with those
of gfp(

# »

X.
#  »

L2
I1 ∩ P̃reA1(

# »

X)).

We can now establish that the sequence of Kleene iterates computed by
gfp(

# »

X.
#  »

L2
I1 ∩ P̃reA1(

# »

X)) is finite. Let L2 = L(A2), for some FA A2, and con-
sider the corresponding left state-based quasiorder ≤l

A2
on Σ∗ as defined by (9).

Lemma 5.7 tells us that ≤l
A2

is a left L2-consistent wqo. Furthermore, since Q2 is
finite we have that both ≤l

A2
and (≤l

A2
)−1 are wqos, so that, in turn, 〈ρ≤l

A2
,⊆〉

is a poset which is both ACC and DCC. In particular, the definition of ≤l
A2

implies that every chain in 〈ρ≤l
A2

,⊆〉 has at most 2|Q2| elements, so that if we

compute 2|Q2| Kleene iterates then we have necessarily computed the greatest
fixpoint. Moreover, as a consequence of the DCC property we have that the
Kleene iterates of gfp(λ

# »

X. ρ≤A2
(

#  »

L2
I1 ∩ P̃reA1(

# »

X))) are finitely many, hence so
are the iterates of gfp(λ

# »

X.
#  »

L2
I1 ∩ P̃reA1(

# »

X)) because they go in lockstep as
stated by Theorem 7.4.
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Corollary 7.5. Let A1 be a FA and let L2 be a regular language. Then, the
algorithm FAIncGfp decides the inclusion L(A1) ⊆ L2

Finally, it is worth citing that Fiedor et al. [12] put forward an algorithm
for deciding WS1S formulae which relies on the same lfp computation used in
FAIncS. Then, they derive a dual gfp computation by relying on Park’s dual-
ity [22]: lfp(λX. f(X)) = (gfp(λX. (f(Xc)c))c. Their approach differs from ours
since we use the equivalence (11) to compute a gfp, different from the lfp, which
still allows us to decide the inclusion problem. Furthermore, their algorithm
decides whether a given automaton accepts ε and it is not clear how their algo-
rithm could be extended for deciding language inclusion.

8 Conclusion and Future Work

We believe that this work only scratched the surface of the use of well-quasiorders
on words for solving language inclusion problems. In particular, our approach
based on complete abstract interpretations allowed us to systematically derive
within our framework well-known algorithms, such as the antichain algorithms
by De Wulf et al. [10], as well as novel algorithms, such as FAIncGfp, for deciding
the inclusion of regular languages. Due to lack of space, we deliberately omitted
from this paper the study of the inclusion problem L(G) ⊆ L where G is a
context-free grammar, in exchange for a deeper understanding of the L(A) ⊆ L
case. The case L(G) ⊆ L(A) is covered in the extended version [14].

Future directions include leveraging well-quasiorders for infinite words [21] to
shed new light on the inclusion problem between ω languages. Our results could
also be extended to inclusion of tree languages by relying on the extensions of
Myhill-Nerode theorems for tree languages [20]. Another interesting topic for
future work is the enhancement of quasiorders using simulation relations. Even
though we already showed in this paper that simulations can be used to refine
our language inclusion algorithms, we are not on par with the thoughtful use of
simulation relations made by Abdulla et al. [2] and Bonchi and Pous [4]. Finally,
let us mention that the correspondence between least and greatest fixpoint-
based inclusion checks assuming complete abstractions was studied by Bonchi
et al. [3] with the aim of formally connecting sound up-to techniques and com-
plete abstract interpretations. Further possible developments include the study
of our abstract interpretation-based algorithms for language inclusion from the
point of view of sound up-to techniques.
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Abstract. The Monniaux Problem in abstract interpretation asks,
roughly speaking, whether the following question is decidable: given
a program P , a safety (e.g., non-reachability) specification ϕ, and an
abstract domain of invariants D, does there exist an inductive invariant
I in D guaranteeing that program P meets its specification ϕ. The Mon-
niaux Problem is of course parameterised by the classes of programs and
invariant domains that one considers.

In this paper, we show that the Monniaux Problem is undecidable for
unguarded affine programs and semilinear invariants (unions of polyhe-
dra). Moreover, we show that decidability is recovered in the important
special case of simple linear loops.

1 Introduction

Invariants are one of the most fundamental and useful notions in the quantita-
tive sciences, appearing in a wide range of contexts, from gauge theory, dynam-
ical systems, and control theory in physics, mathematics, and engineering to
program verification, static analysis, abstract interpretation, and programming
language semantics (among others) in computer science. In spite of decades of
scientific work and progress, automated invariant synthesis remains a topic of
active research, especially in the fields of program analysis and abstract inter-
pretation, and plays a central role in methods and tools seeking to establish
correctness properties of computer programs; see, e.g., [20], and particularly
Sect. 8 therein.
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The focus of the present paper is the Monniaux Problem on the decid-
ability of the existence of separating invariants, which was formulated by David
Monniaux in [22,23] and also raised by him in a series of personal communi-
cations with various members of the theoretical computer science community
over the past five years or so. There are in fact a multitude of versions of the
Monniaux Problem—indeed, it would be more appropriate to speak of a class
of problems rather than a single question—but at a high level the formulation
below is one of the most general:

Consider a program P operating over some numerical domain (such as
the integers or rationals), and assume that P has an underlying finite
control-flow graph over the set of nodes Q = {q1, . . . , qr}. Let us assume
that P makes use of d numerical variables, and each transition q

t−→ q′

comprises a function ft : R
d → R

d as well as a guard gt ⊆ R
d. Let

x, y ∈ Q
d be two points in the ambient space. By way of intuition and

motivation, we are interested in the reachability problem as to whether,
starting in location q1 with variables having valuation x, it is possible
to reach location qr with variables having valuation y, by following the
available transitions and under the obvious interpretation of the various
functions and guards. Unfortunately, in most settings this problem is well-
known to be undecidable.
Let D ⊆ 2R

d

be an ‘abstract domain’ for P , i.e., a collection of subsets of
R

d. For example, D could be the collection of all convex polyhedra in R
d,

or the collection of all closed semialgebraic sets in R
d, etc.

The Monniaux Problem can now be formulated as a decision question: is
it possible to adorn each control location q with an element Iq ∈ D such
that:
1. x ∈ Iq1 ;
2. The collection of Iq’s forms an inductive invariant : for each transition

q
t−→ q′, we have that ft(Iq ∩ gt) ⊆ Iq′ ; and

3. y /∈ Iqr .
We call such a collection {Iq : q ∈ Q} a separating inductive invariant
for program P . (Clearly, the existence of a separating inductive invariant
constitutes a proof of non-reachability for P with the given x and y.)
Associated with this decision problem, in positive instances one is also
potentially interested in the synthesis problem, i.e., the matter of algo-
rithmically producing a suitable separating invariant {Iq : q ∈ Q}.1

The Monniaux Problem is therefore parameterised by a number of items, key
of which are (i) the abstract domain D under consideration, and (ii) the kind of
functions and guards allowed in transitions.

Our main interest in this paper lies in the decidability of the existence of sep-
arating invariants for various instances of the Monniaux Problem. We give below
a cursory cross-sectional survey of existing work and results in this direction.
1 In the remainder of this paper, the term ‘invariant’ shall always refer to the inductive

kind.
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Arguably the earliest positive result in this area is due to Karr, who showed
that strongest affine invariants (conjunctions of affine equalities) for affine pro-
grams (no guards, and all transition functions are given by affine expressions)
could be computed algorithmically [19]. Note that the ability to synthesise
strongest (i.e., smallest with respect to set inclusion) invariants immediately
entails the decidability of the Monniaux Problem instance, since the existence of
some separating invariant is clearly equivalent to whether the strongest invariant
is separating. Müller-Olm and Seidl later extended this work on affine programs
to include the computation of strongest polynomial invariants of fixed degree [24],
and a randomised algorithm for discovering affine relations was proposed by Gul-
wani and Necula [16]. More recently, Hrushovski et al. showed how to compute a
basis for all polynomial relations at every location of a given affine program [16].

The approaches described above all compute invariants consisting exclusively
of conjunctions of equality relations. By contrast, an early and highly influential
paper by Cousot and Halbwachs considers the domain of convex closed polyhe-
dra [8], for programs having polynomial transition functions and guards. Whilst
no decidability results appear in that paper, much further work was devoted
to the development of restricted polyhedral domains for which theoretical guar-
antees could be obtained, leading (among others) to the octagon domain of
Miné [21], the octahedron domain of Clarisó and Cortadella [5], and the template
polyhedra of Sankaranarayanan et al. [25]. In fact, as observed by Monniaux [23],
if one considers a domain of convex polyhedra having a uniformly bounded num-
ber of faces (therefore subsuming in particular the domains just described), then
for any class of programs with polynomial transition relations and guards, the
existence of separating invariants becomes decidable, as the problem can equiv-
alently be phrased in the first-order theory of the reals.

One of the central motivating questions for the Monniaux Problem is whether
one can always compute separating invariants for the full domain of polyhedra.
Unfortunately, on this matter very little is known at present. In recent work,
Monniaux showed undecidability for the domain of convex polyhedra and the
class of programs having affine transition functions and polynomial guards [23].
One of the main results of the present paper is to show undecidability for
the domain of semilinear sets2 and the class of affine programs (without any
guards)—in fact, affine programs with only a single control location and two
transitions:

Theorem 1. Let A,B ∈ Q
d×d be two rational square matrices of dimension d,

and let x, y ∈ Q
d be two points in Q

d. Then the existence of a semilinear set
I ⊆ R

d having the following properties:

1. x ∈ I;
2. AI ⊆ I and BI ⊆ I; and
3. y /∈ I
is an undecidable problem.
2 A semilinear set consists of a finite union of polyhedra, or equivalently is defined as

the solution set of a Boolean combination of linear inequalities.
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Remark 2. It is worth pointing out that the theorem remains valid even for suf-
ficiently large fixed d (our proof shows undecidability for d = 336, but this value
could undoubtedly be improved). If moreover one requires I to be topologically
closed, one can lower d to having fixed value 27 (which again is unlikely to be
optimal). Finally, an examination of the proof reveals that the theorem also holds
for the domain of semialgebraic sets, and in fact for any domain of o-minimal
sets in the sense of [1]. The proof also carries through whether one considers the
domain of semilinear sets having rational, algebraic, or real coordinates.

Although the above is a negative (undecidability) result, it should be viewed
in a positive light; as Monniaux writes in [23], “We started this work hoping to
vindicate forty years of research on heuristics by showing that the existence of
polyhedral inductive separating invariants in a system with transitions in linear
arithmetic (integer or rational) is undecidable.” Theorem 1 shows that, at least
as regards non-convex invariants, the development and use of heuristics is indeed
vindicated and will continue to remain essential. Related questions of complete-
ness of given abstraction scheme have also been examined by Giaccobazzi et al.
in [13,14].

It is important to note that our undecidability result requires at least two
transitions. In fact, much research work has been expended on the class of simple
affine loops, i.e., one-location programs equipped with a single self-transition.
In terms of invariants, Fijalkow et al. establish in [10,11] the decidability of
the existence of semialgebraic separating invariants, and specifically state the
question of the existence of separating semilinear invariants as an open problem.
Almagor et al. extend this line of work in [1] to more complex targets (in lieu
of the point y) and richer classes of invariants. The second main result of the
present paper is to settle the open question of [10,11] in the affirmative:

Theorem 3. Let A ∈ Q
d×d be a rational square matrix of dimension d, and

let x, y ∈ Q
d be two points in Q

d. It is decidable whether there exists a closed
semilinear set I ⊆ R

d having algebraic coordinates such that:

1. x ∈ I;
2. AI ⊆ I; and
3. y /∈ I.

Remark 4. The proof shows that, in fixed dimension d, the decision procedure
runs in polynomial time. It is worth noting that one also has decidability if A,
x, and y are taken to have real-algebraic (rather than rational) entries.

Let us conclude this section by briefly commenting on the important issue of
convexity. At its inception, abstract interpretation had a marked preference for
domains of convex invariants, of which the interval domain, the octagon domain,
and of course the domain of convex polyhedra are prime examples. Convexity
confers several distinct advantages, including simplicity of representation, algo-
rithmic tractability and scalability, ease of implementation, and better termina-
tion heuristics (such as the use of widening). The central drawback of convexity,
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on the other hand, is its poor expressive power. This has been noted time and
again: “convex polyhedra [. . . ] are insufficient for expressing certain invariants,
and what is often needed is a disjunction of convex polyhedra.” [2]; “the abil-
ity to express non-convex properties is sometimes required in order to achieve
a precise analysis of some numerical properties” [12]. Abstract interpretation
can accommodate non-convexity either by introducing disjunctions (see, e.g., [2]
and references therein), or via the development of special-purpose domains of
non-convex invariants such as donut domains [12]. The technology, data struc-
tures, algorithms, and heuristics supporting the use of disjunctions in the lead-
ing abstract-interpretation tool Astrée are presented in great detail in [7]. In
the world of software verification, where predicate abstraction is the dominant
paradigm, disjunctions—and hence non-convexity—are nowadays native features
of the landscape.

It is important to note that the two main results presented in this paper,
Theorems 1 and 3, have only been proven for families of invariants that are
not necessarily convex. The Monniaux Problem restricted to families of convex
invariants remains open and challenging.

Full proofs can be found in the companion arXiv report [9].

2 Preliminaries

2.1 Complex and Algebraic Numbers

The set of complex numbers is C, and for a complex number z its modulus is
|z|, its real part is Re (z) and its imaginary part is Im (z).

Let C
∗ denote the set of non-zero complex numbers. We write S1 for the

complex unit circle, i.e. the set of complex numbers of modulus 1. We let U

denote the set of roots of unity, i.e. complex numbers z ∈ S1 such that zn = 1
for some n ∈ N.

When working in C
d, the norm of a vector z is ||z||, defined as the maximum

of the moduli of each complex number zi for i in {1, . . . , d}. For ε > 0 and z in
C

d, we write B(z, ε) for the open ball centered in z of radius ε. The topological
closure of a set I ⊆ C

d is I, its interior Io, and its frontier ∂I, defined as
I ∩ Cd \ I.

We will mostly work in the field A ⊆ C of algebraic numbers, that is, roots
of polynomials with coefficients in Z. It is possible to represent and manipu-
late algebraic numbers effectively, by storing their minimal polynomial and a
sufficiently precise numerical approximation. An excellent reference in computa-
tional algebraic number theory is [6]. All standard algebraic operations such as
sums, products, root-finding of polynomials, or computing Jordan normal forms
of matrices with algebraic entries can be performed effectively.

2.2 Semilinear Sets

We now define semilinear sets in C
d, by identifying C

d with R
2d. A set I ⊆ R

2d

is semilinear if it is the set of real solutions of some finite Boolean combination



On the Monniaux Problem in Abstract Interpretation 167

of linear inequalities with algebraic coefficients. We give an equivalent definition
now using half-spaces and polyhedra. A half-space H is a subset of C

d of the
form

H =

{
z ∈ C

d |
d∑

i=1

Re (zu) � a

}
,

for some u in A
d, a in A∩R and � ∈ {≥, >}. A polyhedron is a finite intersection

of half-spaces, and a semilinear set a finite union of polyhedra.
We recall some well known facts about semilinear sets which will be useful

for our purposes.

Lemma 5 (Projections of Semilinear Sets). Let I be a semilinear set in
C

d+d′
. Then the projection of I on the first d coordinates, defined by

Π(I, d) =
{

z ∈ C
d | ∃t ∈ C

d′
, (z, t) ∈ I

}
is a semilinear set.

Lemma 6 (Sections of Semilinear Sets). Let I be a semilinear set in C
d+d′

and t in C
d′

. Then the section of I along t, defined by

Section (I, t) =
{
z ∈ C

d | (z, t) ∈ I}
,

is a semilinear set.
Furthermore, there exists a bound B in R such that for all t in C

d′
of norm

at most 1, if Section (I, t) is non-empty, then it contains some z in C
d of norm

at most B.

For the reader’s intuitions, note that the last part of this lemma does not
hold for more complicated sets. For instance, consider the hyperbola defined by
I =

{
(x, y) ∈ R

2 | xy = 1
}
. Choosing a small x forces to choose a large y, hence

there exist no bound B as stated in the lemma for I.
The dimension of a set X of Rd is the minimal k in N such that X is included

in a finite union of affine subspaces of dimension at most k.

Lemma 7 (Dimension of Semilinear Sets). Let I be a semilinear set in
R

d. If Io = ∅, then I has dimension at most d − 1.

3 Main Results Overview

We are interested in instances of the Monniaux Problem in which there are no
guards, all transitions are affine (or equivalently linear, since affine transitions
can be made linear by increasing the dimension of the ambient space by 1), and
invariants are semilinear. This gives rise to the semilinear invariant problem,
where an instance is given by a set of square matrices A1, . . . , Ak ∈ A

d×d and
two points x, y ∈ A

d. A semilinear set I ⊆ C
d is a separating invariant if
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1. x ∈ I,
2. AiI ⊆ I for all i ≤ k,
3. y /∈ I.

The semilinear invariant problem asks whether such an invariant exists.
We need to introduce some terminology. The triple ((Ai)i≤k, x, y) is a reach

instance if there exists a matrix M belonging to the semigroup generated by
(Ai)i≤k such that Mx = y, and otherwise it is a non-reach instance. Clearly
a separating invariant can only exist for non-reach instances. An instance for
k = 1 is called an Orbit instance.

3.1 Undecidability for Several Matrices

Our first result is the undecidability of the semilinear invariant problem. We
start by showing it is undecidable in fixed dimension, with a fixed number of
matrices and requiring that the invariant be closed. We defer the proofs until
Sect. 4.

Theorem 8. The semilinear invariant problem is undecidable for 9 matrices of
dimension 3 and closed invariants.

In establishing the above, we used many matrices of small dimension. One
could instead use only two matrices, but increasing the dimension to 27.

Theorem 9. The semilinear invariant problem is undecidable for 2 matrices of
dimension 27 and closed invariants.

In the above results, it can happen that the target belongs to the closure of
the set of reachable points. We now show that we can ignore those “non-robust”
systems and maintain undecidability.

Theorem 10. The semilinear invariant problem is undecidable for “robust”
instances, i.e. instances in which the target point does not belong to the closure
of the set of reachable points.

The proof of the above result does not require that the invariants be closed.
We can therefore establish Theorem 1 by making use of the same construction
as in the proof of Theorem 9 to encode all the matrices of Theorem 10 into only
two distinct matrices.

3.2 Decidability for Simple Linear Loops

In this section, we are only concerned with Orbit instances. Since it is possible
to decide (in polynomial time) whether an Orbit instance is reach or non-reach
[17,18], we can always assume that we are given a non-reach instance. All decid-
ability results are only concerned with closed invariants, this is crucial in several
proofs.
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Theorem 11. There is an algorithm that decides whether an Orbit instance
admits a closed semilinear invariant. Furthermore, it runs in polynomial time
assuming the dimension d is fixed.

We now comment a few instructive examples to illustrate the different cases
that arise. The proof of Theorem 11 is postponed to Sect. 5.

Example 12. Consider the Orbit instance � = (A, x, y) in dimension 2 where

A =
1
2

[
1 −2
2 1

]
,

x = (1, 0) and y = (3, 3). The orbit is depicted on Fig. 1. Here, A is a counter-
clockwise rotation around the origin with an expanding scaling factor. A suitable
semilinear invariant can be constructed by taking the complement of the convex
hull of a large enough number of points of the orbit, and adding the missing
points. In this example, we can take

I = {x,Ax} ∪ Conv ({Anx, n ≤ 8})c .

Fig. 1. An invariant for Example 12.

Constructing an invariant of this form will often be possible, for instance
when A has an eigenvalue of modulus > 1. A similar (yet more involved) con-
struction gives the same result when A has an eigenvalue of modulus < 1. The
case in which all eigenvalues have modulus 1 is more involved. Broadly speak-
ing, invariant properties in such cases are often better described by sets involving
equations or inequalities of higher degree [10], which is why interesting semilinear
invariants do not exist in many instances. However, delineating exactly which
instances admit separating semilinear invariants is challenging, and is our main
technical contribution on this front. The following few examples illustrate some
of the phenomena that occur.
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Example 13. Remove the expanding factor from the previous instance, that is,
put instead

A =
1√
5

[
1 −2
2 1

]
.

Now A being a rotation of an irrational angle, the orbit of x is dense in the circle
of radius 1. It is quite easy to prove that no semilinear invariant exists (except
for the whole space R

2) for this instance, whatever the value of y. This gives a
first instance of non-existence of a semilinear invariants. Many such examples
exist, and we shall now supply a more subtle one. Note that simple invariants do
exist, such as the unit circle, which is a semialgebraic set but not a semilinear
one.

Example 14. Consider � = (A, x, y) in dimension 4 with

A =
[
A′ I2
0 A′

]
,

where A′ is the matrix from Example 13, x = (0, 0, 1, 0) and y is arbitrary. When
repeatedly applying A to x, the last two coordinates describe a circle of radius 1
as in the previous example. However, the first two coordinates diverge: at each
step, they are rotated and the last two coordinates are added. In this instance,
no semilinear invariant exists (except again for the whole space R

4), however
proving this is somewhat involved. Note however once more that a semialgebraic
invariant may easily be constructed.

In Examples 13 and 14, no non-trivial semilinear invariant exist, or equiv-
alently any semilinear invariant must contain I0, where I0 is the whole space.
In all instances for which constructing an invariant is not necessarily immedi-
ate (as is the case in Example 12), we will provide a minimal invariant, that
is, a semilinear I0 with the property that any semilinear invariant will have to
contain I0. In such cases there exists a semilinear invariant (namely I0) if and
only if y /∈ I0. We conclude with two examples having such minimal semilinear
invariants (Fig. 2).

Example 15. Consider � = (A, x, y) in dimension 3 with

A =
[
A′ 0
0 −1

]
,

where A′ is the matrix of Example 13, a 2-dimensional rotation by an angle
which is not a rational multiple of 2π and x = (1, 0, 1). As we iterate matrix A,
the two first coordinates describe a circle, and the third coordinate alternates
between 1 and −1: the orbit is dense in the union of two parallel circles. Yet the
minimal semilinear invariant comprises the union of the two planes containing
these circles.
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Fig. 2. The minimal invariant for Example 15. Here, Ō denotes the topological closure
of the orbit of x.

Example 16. Consider � = (A, x, y) in dimension 8 with

A =
[
A′ 0
0 −A′

]
,

where A′ is the matrix from Example 14. This can be seen as two instances
of Example 14 running in parallel. Let x = (0, 0, 1, 0, 0, 0,−7, 0), and note
that both blocks of x are initially related by a multiplicative factor, namely
−7(x1, x2, x3, x4) = (x5, x6, x7, x8). Moreover, as the first block is multiplied
by the matrix A′ while the second one is multiplied by −A′, the multiplicative
factor relating the two blocks alernates between 7 and −7. Thus, the minimal
semilinear invariant in this setting is

I0 = {u ∈ R
8 | (u1, u2, u3, u4) = ±7(u5, u6, u7, u8)},

which has dimension 4. If however, we had x = (0, 0, 1, 0, 1, 0,−7, 0), then the
minimal semilinear invariant would be

{u ∈ R
8 | (u3, u4) = ±7(u7, u8)},

which has dimension 6. Roughly speaking, no semilinear relation holds between
(u1, u2) and (u5, u6).

4 Undecidability Proofs

4.1 Proof of Theorem 8

We reduce an instance of the ω-PCP problem defined as follows: given nine
pairs of non-empty words {(u(1), v(1)), . . . , (u(9), v(9))} on alphabet {0, 2}, does
there exist an infinite word w = w1w2 . . . on alphabet {1, . . . , 9} such that
u(w1)u(w2) · · · = v(w1)v(w2) . . . . This problem is known to be undecidable [15].
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In order to simplify future notations, given a finite or infinite word w, we
denote |w| the length of the word w and given an integer i ≤ |w|, we write wi

for the i’th letter of w. Given a finite or infinite word w on alphabet {1, . . . , 9}
we denote u(w) and v(w) the words on the alphabet {0, 2} such that u(w) =
u(w1)u(w2) . . . and v(w) = v(w1)v(w2) . . . . Given a (finite or infinite) word w on
the alphabet {0, 2}∗, denote by [w] =

∑|w|
i=1 wi41−i the quaternary encoding of

w. It is clear that it satisfies [ww′] = [w] + 4−|w| [w′] and that [w] ∈ [0, 8
3 ].

Let {(u(1), v(1)), . . . , (u(9), v(9))} be an instance of the ω-PCP problem. For
all i ≤ 9, for readibility, we denote |u(i)| = ni and |v(i)| = mi. We build the
matrices M1, . . . ,M9 where

Mi =

⎡
⎣1

[
u(i)

] − [
v(i)

]
0 4−ni 0
0 0 4−mi

⎤
⎦

In the following, we write Mw for w = w1 . . . wk ∈ {1, . . . , 9}∗ the matrix M =
Mwk

. . . Mw1 , which can be checked to satisfy

Mw =

⎡
⎢⎣1

[
u(w)

] − [
v(w)

]
0 4−|u(w)| 0
0 0 4−|v(w)|

⎤
⎥⎦ , Mw

⎡
⎣0

1
1

⎤
⎦ =

⎡
⎣[uw] − [vw]

4−|uw|

4−|vw|

⎤
⎦ .

Let us show that there exists a separating invariant of ((Mi)i≤9, x, y) where
x = (0, 1, 1) and y = (0, 0, 0) iff the ω-PCP instance has no solution.

Let us first assume the ω-PCP instance has a solution w. Fix r ∈ N and
let w �r= w1 · · · wr and xr = Mw�rx. We have that xr = (

[
u(w�r)] − [

v(w�r)] ,

4−|u(w�r)|, 4−|v(w�r)|) and since u(w) = v(w), it is clear that xr → 0 = y as r →
∞. Any separating invariant I must contain this sequence xr since I contains
the initial point and is stable under (Mi)i≤9. Moreover, I is closed so it must
contain the limit of the sequence, (0, 0, 0), which is the target point. Thus I
cannot be a separating invariant. Therefore there is no separating invariant of
((Mi)i≤9, (0, 1, 1), (0, 0, 0)).

Now, let us assume the ω-PCP instance has no solution. There exists n0 ∈ N

such that for every infinite word w on alphabet {0, . . . , 9} there exists n ≤ n0

such that u
(w)
n �= v

(w)
n . Indeed, consider the tree which root is labelled by (ε, ε)

and, given a node (u, v) of the tree, if for all n ≤ min(|u|, |v|) we have un = vn,
then this node has 9 children: the nodes (uu(i), vv(i)) for i = 1 . . . 9. This tree is
finitely branching and does not contain any infinite path (which would induce a
solution to the ω-PCP instance). Thus, according to König’s lemma, it is finite.
We can therefore choose the height of this tree as our n0.

We define the invariant I = I ′ ∪ I ′′ where3

I ′ =
{
(s, c, d) : |s| ≥ 4(c + d) + 4−n0−1 ∧ c ≥ 0 ∧ d ≥ 0

}
3 This is a semilinear invariant since |x| � y if and only if x � y ∨ −x � y.
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and
I ′′ =

{
Mwx : w ∈ {1, . . . , 9}∗ ∧ |w| ≤ n0 + 1

}
Let us show that I is a separating invariant of ((Mi)i≤9, (0, 1, 1), (0, 0, 0)). By
definition, I is closed, semilinear, contains x and does not contain y. The difficult
point is to show stability under Mi for i ≤ 9.

– Let Mwx ∈ I ′′, for some w: there are two cases. Either |w| � n0, then
|wi| � n0+1, therefore MiMwx = Mwiz ∈ I ′′. Otherwise, MiMwx = Mwix =
(s, c, d) where s =

[
u(wi)

] − [
v(wi)

]
, c = 4−|u(wi)| and d = 4−|v(wi)|. But then,

there exists n � n0 such that u
(wi)
n �= v

(wi)
n . Let n be the smallest such

number, then

s =
[
u(wi)

]
−

[
v(wi)

]

= (u(wi)
n − v(wi)

n )41−n +
|wi|∑

j=n+1

(u(wi)
j − v

(wi)
j )41−j

since u
(wi)
j = v

(wi)
j for j < n. Thus,

|s| � 2 · 41−n − 8
34−n since |u(wi)

n − u(wi)
n | = 2 and [·] ∈ [0, 8

3 ]

� 41−n + 4−n

� 4(c + d) + 4−n0−1 since n � n0 and |u(wi)|, |v(wi)| � n0 + 2.

This shows that Mi(Mwx) ∈ I ′ ⊆ I.
– Let z = (s, c, d) ∈ I ′, then |s| � 4(c+d)+4−n0−1. Without loss of generality,

assume that d � c (this is completely symmetric in c and d). Let (s′, c′, d′) =
Miz, and we check that then

|s′| = |s + c
[
u(i)

]
− d

[
v(i)

]
| by applying the matrix Mi

� |s| − d max(
[
u(i)

]
,
[
v(i)

]
)

� 4(c + d) + 4−n0−1 − d max(
[
u(i)

]
,
[
v(i)

]
) by assumption on s

� 4(c + d) + 4−n0−1 − d 8
3 since [·] ∈ [0, 8

3 ]

= 4(c + d/3) + 4−n0−1

� 4(c′ + d′) + 4−n0−1 since c � c′ and d/4 � d′

since c′ = c4−|u(i)| and d′ = d4−|v(i)|. This shows that Miz ∈ I ′ ⊆ I.

This shows that I is thus stable and concludes the reduction.

4.2 Proof of Theorem9

We reduce the instances of Theorem 8 to 2 matrices of size 27. The first matrix
Ms shifts upwards the position of the values in the point by 3, while the second
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matrix Mp applies one of the matrices of the previous reduction, depending on
the position of the values within the matrices, then put the obtained value at
the top. In other words, MpM

i−1
s for 1 ≤ i ≤ 9 intuitively has the same effect

as Mi had in the proof of Theorem 8. In the following, we reuse the notations
and results of the proof of Theorem 8.

Define matrices Ms and Mp, where I3 is the identity matrix of size 3×3, and
for any z ∈ R

3 and i ∈ {0, . . . , 8}, the ith shift z↓i ∈ R
27 of z, where 0n ∈ R

n

denotes the zero vector of size n, as follows:

Ms =

⎡
⎢⎢⎣

0 · · · 0 I3
I3

. . .
I3 0

⎤
⎥⎥⎦ , Mp =

⎡
⎢⎢⎣

M1 · · · M9

0 · · · 0
...

...
0 · · · 0

⎤
⎥⎥⎦ , z↓i =

⎡
⎣ 03i

z
024−3i

⎤
⎦ .

It follows that Msz
↓i = z↓i+1 mod 9 and Mpz

↓i = (Mi+1z)↓0. Assume that there
exists a separating invariant I for (M1, . . . ,M9, x, y) and let

J =
8⋃

i=0

{
z↓i : z ∈ I}

which is a closed semilinear set. Then for any z↓i ∈ J , we have Msz
↓i =

z↓i+1 mod 9 ∈ I by definition and Mpz
↓i = (Miz)↓0 ∈ J since Miz ∈ I by

virtue of z ∈ I and I being invariant. Furthermore, x′ = x↓0 ∈ I since x ∈ I,
and y′ = y↓0 /∈ J for otherwise we would have y ∈ I. Therefore J is a separating
invariant for (Ms,Mp, x

′, y′).
Assume that there exists a separating invariant J for (Ms,Mp, x

′, y′) and let
I =

{
z : z↓0 ∈ J }

which is a closed semilinear set. Clearly x ∈ I since x′ = x↓0 ∈
J and y /∈ I since y′ = y↓0 /∈ J . Let z ∈ I and i ∈ {1, . . . , 9}, then (Miz)↓0 =
MpM

i−1
s z↓0 ∈ J and since z↓0 ∈ J and J is invariant under Ms and Mp, thus

Miz ∈ I. Therefore I is a non-reachability invariant for (M1, . . . ,M9, x, y).

4.3 Proof Sketch of Theorem 10

We do the proof of Theorem 10 twice: first we use linear guards in order to
limit the selection of the matrices. The added power of the guards allows for a
relatively simple proof. This first proof can be seen as an extended sketch of the
second one, that can be found in the companion arXiv report, where we remove
the guards to obtain the result claimed. We do so by emulating the guards using
extra variables.

We reduce from the ω-PCP problem and reuse some of the notations of
the proof of Theorem 8. Let {(u(1), v(1)), . . . , (u(9), v(9))} be an instance of the
ω-PCP problem. We build the matrices M̂1, . . . , M̂9,Me,M− where

M̂i =

⎡
⎣Mi

1 2
0 1

⎤
⎦ , Me =

⎡
⎣03×3

1 0
0 1

⎤
⎦ , M− =

⎡
⎣I3

1 −2
0 1

⎤
⎦
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and M1, . . . ,M9 are from the proof of Theorem 8. Moreover, when in (s, c, d, n, a),
the matrices M̂i and Me can only be selected if the linear guard |s| < 4(c + d)
holds, and the matrix M− can only be selected if s = c = d = 0.

Informally, in state (s, c, d, n, a), the subvector (s, c, d) has the same role as
before: s contains the difference of the values of the numbers obtained using the
vi and ui, while c and d are used in order to help compute this value. In the
proof of Theorem 8, we showed that when the ω-PCP instance had no solution,
there existed a value n0 such that any pair of words created with the alphabet
(u(i), v(i)) differed on one of the first n0 terms. The variable n is used with the
guards in order to detect this value n0: if such an n0 exists, then at most n0 + 1
matrices Mi can be selected before the guard stops holding. Moreover, firing a
matrix Mi adds 2 to n ensuring that when the guard stops holding, n is smaller
or equal to 2(n0 + 1). Conversely, if no such n0 exist, then there is a way to
select matrices Mi such that the guard always holds, allowing the variable n to
become an even number as high as one wants. The existence of an upper bound
on the value of n is used to build an invariant or to prove that there cannot
exist an invariant. Finally, the value a is only here in order to allow for affine
modification of the values. It is never modified.

Let x̂ = (x, 0, 1) and ŷ = (y, 1, 1). Note that ŷ is not in the adherence of the
reachable set as the fourth variable of any reachable point is an even number
while y’s is an odd one.

Assume the ω-PCP instance does not possess a solution. Then there exists
n0 ∈ N such that any pair of words (u(w), v(w)) differs on one of the first n0

letters. Define the invariant I = I ′ ∪ I ′′ where

I ′ = {M̂wx̂ : w ∈ {1, . . . , 9}∗ ∧ |w| � n0 + 1}
I ′′ = {(0, 0, 0, n, 1) : n � 0 ∨ (∃k ∈ N, n = 2k ∧ n � 2(n0 + 1))}.

This invariant is clearly semilinear, it contains x̂ and does not contain ŷ. If
z = (0, 0, 0, n, 1) ∈ I ′′ then only M− can be triggered due to the guards and
M−z = (0, 0, 0, n − 2, 1) ∈ I ′′. Now if z = (s, c, d, n, a) = M̂wx̂ ∈ I ′ for some
w ∈ {1, . . . , 9}∗, then M− cannot be fired as the guard does not hold. If one
fires Me, by construction of I ′, n is an even number smaller than 2(n0 +1), thus
Mez ∈ I ′′. Now in order to fire a matrix M̂i, one needs |s| < 4(c+d) to hold. We
showed in the proof of Theorem 8 that, from the initial configuration x, after
n0 + 1 transitions using one of the matrices Mi then 1/4n0+1 � |s| − 4(c + d).
As a consequence, if the guard holds, then |w| � n0 and M̂iz = M̂wix̂ ∈ I ′.
Therefore, I is a separating invariant of (M̂1, . . . M̂9,Me,M−, x̂, ŷ).

Now assume the ω-PCP possesses a solution w ∈ {1, . . . , 9}ω. For k ∈ N, we
denote w �k the prefix of length k of w. Let k ∈ N and (s, c, d, n, a) = M̂w�kx,
then |s| < 4(c + d). Indeed, assume that u(w�k) is longer than v(w�k). Then
u(w�k) = v(w�k)t for some word t ∈ {0, 2}∗ because uw(w)v(w). Let � = |u(w�k)|
and recall that c = 4−�, then

s = |[u(w�k)] − [v(w�k)]| = 4−�[t] � 4−� 8
3 � 4c < 4(c + d).



176 N. Fijalkow et al.

The symmetric case is similar but uses d instead. Therefore the guard is satisfied
and MeM̂w�k x̂ = (0, 0, 0, 2k, 1) ∈ I is reachable for all k ∈ N. Let I be a semi-
linear invariant containing the reachability set, then I ∩ {(0, 0, 0, x, 1) : x ∈ R}
is semilinear and contains (0, 0, 0, 2k, 1) for all k ∈ N. This implies that it nec-
essarily contains an unbounded interval and there must exists k0 ∈ N such that
(0, 0, 0, 2k0 +1, 1) ∈ I. Since I is stable by the matrix M−, I contains the target
y. Therefore, I is not a separating invariant of ((M̂1, . . . M̂9,Me,M−), x, y).

5 Decidability Proofs

This section is aimed at sketching the main ideas of the proof of Theorem 11
while avoiding technicalities and details. We point to the appendix for full proofs.
Recall that we only consider closed semilinear invariants.

– We first normalize the Orbit instance, which amounts to putting matrix A in
Jordan normal form, and eliminating some easy instances. This is described
in Sect. 5.1.

– We then eliminate some positive cases in Sect. 5.2. More precisely, we con-
struct invariants whenever one of the three following conditions is realized:

• A has an eigenvalue of modulus > 1.
• A has an eigenvalue of modulus < 1.
• A has a Jordan block of size ≥ 2 with an eigenvalue that is a root of unity.

– We are now left with an instance where all eigenvalues are of modulus 1
and not roots of unity, which is the most involved part of the paper. In
this setting, we exhibit the minimal semilinear invariant I containing x. In
particular, there exists a semilinear invariant (namely, I) if and only if y /∈ I.
This part is explained in Sect. 5.3.

5.1 Normalization

As a first step, recall that every matrix A can be written in the form A = Q−1JQ,
where Q is invertible and J is in Jordan normal form. The following lemma
transfers semilinear invariants through the change-of-basis matrix Q.

Lemma 17. Let � = (A, x, y) be an Orbit instance, and Q an invertible matrix
in A

d×d. Construct the Orbit instance �Q = (QAQ−1, Qx,Qy). Then I is a
semilinear invariant for �Q if, and only if, Q−1I is a semilinear invariant for �.

Proof. First of all, Q−1I is semilinear if, and only if, I is semilinear. We have:

– QAQ−1I ⊆ I if, and only if, AQ−1I ⊆ Q−1I,
– Qx ∈ I if, and only if, x ∈ Q−1I,
– Qy /∈ I, if, and only if, y /∈ Q−1I.

This concludes the proof.
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Thanks to Lemma 17, we can reduce the problem of the existence of semi-
linear invariants for Orbit instances to cases in which the matrix is in Jordan
normal form, i.e., is a diagonal block matrix, where the blocks (called Jordan
blocks) are of the form: ⎡

⎢⎢⎢⎢⎣
λ 1

λ
. . .
. . . 1

λ

⎤
⎥⎥⎥⎥⎦

Note that this transformation can be achieved in polynomial time [3,4]. Formally,
a Jordan block is a matrix λI + N with λ ∈ C, I the identity matrix and N the
matrix with 1’s on the upper diagonal, and 0’s everywhere else. The number λ
is an eigenvalue of A. We will use notation Jd(λ) for the Jordan block of size d
with eigenvalue λ. A Jordan block of dimension one is called diagonal, and A is
diagonalisable if, and only if, all Jordan blocks are diagonal.

The d dimensions of the matrix A are indexed by pairs (J, k), where J ranges
over the Jordan blocks and k ∈ {1, . . . , d(J)} where d(J) is the dimension of the
Jordan block J . For instance, if the matrix A has two Jordan blocks, J1 of
dimension 1 and J2 of dimension 2, then the three dimensions of A are (J1, 1)
(corresponding to the Jordan block J1) and (J2, 1), (J2, 2) (corresponding to the
Jordan block J2).

For a point v and a subset S of {1, . . . , d}, let vS be the projection of v on
the dimensions in S, and extend this notation to matrices. For instance, vJ is
the point corresponding to the dimensions of the Jordan block J , and vJ,>k is
projected on the coordinates of the Jordan block J whose index is greater than
k. We write Sc for the coordinates which are not in S.

There are a few degenerate cases which we handle now. We say that an Orbit
instance � = (A, x, y) in Jordan normal form is normalized if:

– There is no Jordan block associated with the eigenvalue 0, or equivalently A
is invertible.

– For each Jordan block J , the last coordinate of the point xJ is not zero, i.e.
xJ,d(J) �= 0.

– There is no diagonal Jordan block with an eigenvalue which is a root of unity,
– Any Jordan block J with an eigenvalue of modulus < 1 has yJ �= 0.

Lemma 18. The existence of semilinear invariants for Orbit instances reduces
to the same problem for normalized Orbit instances in Jordan normal form.

5.2 Positive Cases

Many Orbit instances present a divergence which we can exploit to construct a
semilinear invariant. Such behaviours are easily identified once the matrix is in
Jordan Normal Form, as properties of its Jordan blocks. We isolate three such
cases.
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– If there is an eigenvalue of modulus > 1. Call J its Jordan block. Projecting
to the last coordinate of J the orbit of x diverges to ∞ in modulus (see
Example 12). A long enough “initial segment” {x,Ax, . . . , Akx} together with
the complement of its convex hull (on the last coordinate of J) constitutes a
semilinear invariant.

– If there is an eigenvalue of modulus < 1 in block J , the situation is quite
similar with a convergence towards 0. However, the construction we give is
more involved, the reason being that we may not just concentrate on the last
nonzero coordinate xJ,l of xJ , since yJ,l may very well be 0, which belongs to
the adherence of the orbit on this coordinate. Yet on the full block, yJ �= 0.
We show how to construct, for any 0 < ε, a semilinear invariant I such that
B(0, ε′) ⊆ I ⊆ B(0, ε) for some ε′ > 0. Picking ε small enough we make sure
that y /∈ I, and then {x,Ax, . . . , Akx} ∪ I is a semilinear invariant if k is
large enough so that ||Akx|| ≤ ε′.

– Finally, if there is an eigenvalue which is a root of unity, say λn = 1, on
a Jordan block J of size at least 2 (that is, a non diagonal block), then
penultimate coordinate on J of the orbit goes to ∞ in modulus. In this case,
the orbit on this coordinate is contained in a union of n half-lines which we
cut far enough away from 0 and add an initial segment to build a semilinear
invariant.

Note that in each of these cases, we concentrate on the corresponding (stable)
eigenspace, construct a separating semilinear invariant for this restriction of
the problem, and extend it to the full space by allowing any value on other
coordinates.

5.3 Minimal Invariants

We have now reduced to an instance where all eigenvalues have modulus 1 and
are not roots of unity. Intuitively, in this setting, semilinear invariants fail, as they
are not precise enough to exploit subtle multiplicative relations that may hold
among eigenvalues. However, it may be the case that some coarse information
in the input can still be stabilised by an semilinear invariant, for instance if
two synchronised blocks are exactly identical (see Examples 15 and 16 for more
elaborate cases).

We start by identifying exactly where semilinear invariants fail. Call two
eigenvalues equivalent if their quotient is a root of unity (that is, they have a
multiplicative relationship of degree 1). We show that whenever no two different
eigenvalues are even non-equivalent, the only stable semilinear sets are trivial.
As a consequence, computing the minimal semilinear invariant in this setting is
easy, as it is basically the whole space (except where x is 0). However, this lower
bound (non-existence of semilinear invariant) constitutes the most technically
involved part. Our proof is inductive with as base case the diagonal case, where
it makes crucial use of the Skolem-Mahler-Lech theorem.

When the matrix has several equivalent eigenvalues, we show how to itera-
tively reduce the dimension in order to eventually fall into the previous scenario.
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Rougly speaking, if A is comprised of two identical blocks B, we show that it suf-
fices to compute a minimal invariant IB for B, since {z | z̃1 ∈ IB and z̃2 = z̃1}
(with obvious notations) is a minimal invariant for A. This is achieved, by first
assuming that all equivalent eigenvalues are in fact equal and then easily reduc-
ing to this case by considering a large enough iterations of A.
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Abstract. Thanks to significant progress in the adopted implementa-
tion techniques, the recent years have witnessed a renewed interest in
the development of analysis tools based on the domain of convex poly-
hedra. In this paper we revisit the application of this abstract domain
to the case of reachability analysis for hybrid systems, focusing on the
lesson learned during the development of the tool PHAVerLite. In par-
ticular, we motivate the implementation of specialized versions of several
well known abstract operators, as well as the adoption of a heuristic tech-
nique (boxed polyhedra) for the handling of finite collections of polyhedra,
showing their impact on the efficiency of the analysis tool.

1 Introduction

Hybrid automata model dynamic systems exhibiting both discrete and contin-
uous behaviors. Due to the intrinsic complexity of these systems, soon after
their introduction several approaches have been put forward to apply formal
methods, so as to support the developer when reasoning about their correctness.
Most notably, in [21,22] it was shown how abstract interpretation [9] based on
the domain of convex polyhedra [12] can be used to compute correct approxi-
mations of the reachable states for the class of linear hybrid automata.

During the following years, many tools for the automatic analysis of hybrid
systems have been implemented. In particular, PHAVer (Polyhedral Hybrid
Automaton Verifier, [13,14]) represented a significant progress with respect to
its predecessor HyTech [23]. The applicability of the approach was extended
from the piecewise constant to the affine class of automata, by on-the-fly over-
approximation of the continuous dynamics tailored by a systematic partition-
ing of the state space. Building on the PPL (Parma Polyhedra Library [4,5]),
PHAVer features a robust and relatively efficient backend for computing on the
domain of NNC (not necessarily closed) polyhedra. Moreover, it is character-
ized by the systematic adoption of heuristic techniques meant to overcome the
inherent limitations affecting the implemented analysis: the excessive complex-
ity of operators based on convex polyhedra; the loss of accuracy caused by the
convex approximation; and the slow convergence of the fixpoint computation,
c© Springer Nature Switzerland AG 2019
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in particular when relying on partitioning techniques while using exact
arithmetic. Since 2011, PHAVer is included as a plug-in (PHAVer/SX) in
SpaceEx [17]. Several other verification tools for hybrid systems that are based
on different abstract domains and/or approximation algorithms have been devel-
oped [31]. Here we only mention another SpaceEx plug-in, the LGG sce-
nario [17,18], based on a domain of template polyhedra, which however sacrifices
formal soundness due to the adoption of floating point computations.

In recent years, we are witnessing new momentum in the development of
efficient algorithms for the domain of convex polyhedra:

– by revisiting the Cartesian factoring technique proposed in [19,20], it was
shown that a static analysis tool based on convex polyhedra [32] is able to
obtain impressive speedups when analyzing benchmarks taken from the soft-
ware verification competition SV-COMP;

– a constraint-only version of the domain of convex polyhedra has been imple-
mented in the VPL (Verimag Polyhedra Library), exploiting Parametric Lin-
ear Programming to quickly identify and remove redundancies [26];

– a new conversion algorithm has been proposed in [6] for the domain of NNC
polyhedra, improving upon the previous approaches [2,21]; this lead to the
development of the PPLite library [7], which is shown to obtain remarkable
efficiency improvements on the static analysis of C programs.

This progress motivated new interest in revisiting the application of poly-
hedral computations in the context of the analysis and verification of hybrid
systems. In particular, choosing PHAVer/SX as a starting point, a new plug-in
PHAVer-lite/SX [16] has been implemented for the SpaceEx platform, mainly
characterized by the replacement of the PPL backend with the newly developed
library PPLite [7]. Building on the encouraging efficiency results obtained by
PHAVer-lite/SX, in this paper we describe the new tool PHAVerLite [15].

While providing the same formal soundness guarantees, PHAVerLite differs
from PHAVer-lite/SX in that it is designed as a stand-alone tool, like the origi-
nal PHAVer. The independence from the SpaceEx platform simplifies the appli-
cation of more significant changes to the underlying algorithm for reachability
analysis, so as to easily experiment with novel computational heuristics, design
tradeoffs and specialized operators on the underlying domain of NNC polyhedra.
In Fig. 1 we summarize the efficiency improvements obtained, with respect to both
PHAVer/SX and PHAVer-lite/SX, when analyzing the benchmarks coming from
the HPWC (hybrid systems with piecewise constant dynamics) category of the
ARCH-COMP friendly competition [15,16]. In the 2019 edition, the HPWC cat-
egory had a total of 25 tests: 15 ‘safe’ tests (aiming at proving a safety property,
so that a reachability analysis is permitted to compute overapproximations) and
10 ‘unsafe’ tests (aiming at disproving a safety property, meaning that no overap-
proximation is permitted). For the 13 tests on which PHAVer/SX is able to ter-
minate1 the overall speedup factor obtained by PHAVerLite is ∼337; moreover,

1 The tests on PHAVer-lite/SX and PHAVerLite have been executed on an Intel Core
i7-3632QM CPU; the tests on PHAVer/SX were executed on a faster CPU (∼25%).
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PHAVerLite is able to complete the analysis (successfully proving or disproving
the corresponding property as required) of all but one of the 25 benchmarks in
∼224 s.
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Fig. 1. Comparing the tools PHAVer/SX, PHAVer-lite/SX and PHAVerLite on the
ARCH-COMP HPWC benchmarks.

The main contribution of this paper, however, is not the presentation of
the tool itself: rather, we describe in detail a few of the specific improvements
implemented in PHAVerLite, highlighting their impact on the overall efficiency.
In particular,

– we propose specialized implementations for several “common” abstract oper-
ators on the domain of convex polyhedra: the computation of affine images
(Sect. 3.1); the approximation of the convex polyhedral hull (Sect. 3.2); and
the splitting of a polyhedron according to a constraint (Sect. 5);

– we propose a novel heuristic approach (boxed polyhedra) for a more efficient
handling of finite collections of polyhedra (Sect. 4.2), which can also be viewed
as an instance of an online meta-analysis [11].

In summary, our investigation shows that, when adopting an abstract domain
sacrificing some performance to favor precision, a good portion of the inefficien-
cies can often be eliminated by the identification of suitable heuristic techniques.

The paper is structured as follows. Section 2 briefly recalls some prelimi-
nary concepts. Section 3 reconsiders the implementation of affine images for
convex polyhedra and discusses ways to overapproximate the expensive con-
vex polyhedral hull. Section 4 tackles the problem of the efficient handling of
finite collections of polyhedra, showing the effectiveness of a new heuristics.



186 A. Becchi and E. Zaffanella

Section 5 proposes a new operator for polyhedra libraries based on the Double
Description framework, motivated by the usage of location partitioning tech-
niques. We conclude in Sect. 6.

2 Preliminaries

A non-trivial, non-strict linear inequality constraint β defines a closed half-space
con({β}) of the vector space R

n; we write ¬β to denote the complement of β,
i.e., the open half-space con({¬β}) = R

n \ con({β}). A not necessarily closed
(NNC) convex polyhedron φ = con(C) ⊆ R

n is defined as the set of solutions of a
finite system C of (strict or non-strict) linear inequality constraints; equivalently,
φ = gen(G) can be defined as the set obtained by suitably combining the elements
(lines, rays, points and closure points) of a generator system G. The Double
Description framework [28] exploits both representations; we write φ ≡ (C,G)
to denote that φ = con(C) = gen(G). The set Pn of all NNC polyhedra on
R

n, partially ordered by set inclusion, is a lattice 〈 Pn,⊆, ∅, Rn,∩,� 〉, where the
emptyset and R

n are the bottom and top elements, the binary meet operator is
set intersection and the binary join operator ‘�’ is the convex polyhedral hull.

The use of the domain of convex polyhedra for static analyses based on
abstract interpretation has been introduced in [12]. The semantics of the ana-
lyzed system is modeled by suitably combining the lattice operators mentioned
above with other operators that approximate the concrete behavior of the sys-
tem. For instance, the effect of a conditional guard described by linear constraints
can be modeled by the meet of the lattice, whereas the convex polyhedral hull
can be used to approximate the merging of control flow paths. The effect of
affine assignments on state variables can be modeled by computing the image
of a domain element under an affine transformation; the addition of k new state
variables is modeled by operator add dimsk : Pn → Pn+k, embedding the input
polyhedron in a higher dimension space, where the newly added dimensions are
unconstrained; similarly, the removal of a set V of state variables, where |V | = k,
can be modeled by a projection operator rem dimsV : Pn+k → Pn.

The set CPn of closed polyhedra on the vector space R
n is a sublattice

of Pn; CBn denotes the set of closed boxes on R
n, i.e., those polyhedra that

can be defined by inequality constraints having the form ±xi ≤ k. Note that
〈CBn,⊆, ∅, Rn,∩〉 is a meet-sublattice of CPn.

For a set S, ℘(S) denotes the powerset of S; we will write ℘f(S) to denote the
finite powerset of S, i.e., the set of all the finite subsets of S. The cardinality of
S is denoted by |S|. The finite powerset construction [3] is a domain refinement
similar to disjunctive completion [10]. It can be used to lift a base-level abstract
domain to model disjunctions by explicit (hence, finite) collections of base-level
elements. In the following, we instantiate the finite powerset construction by
fixing Pn as the base-level abstract domain, thereby trading some generality for
concreteness and readability. The reader interested in obtaining more details
and some links to the relevant literature is referred to [3]. For efficiency, it is
important that these finite collections of elements do not contain redundancies.
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A set S ∈ ℘f(Pn) is non-redundant (with respect to the base-level partial
order ⊆) if and only if ∅ /∈ S and ∀φ1, φ2 ∈ S : φ1 ⊆ φ2 =⇒ φ1 = φ2.
The set of finite non-redundant subsets of Pn is denoted ℘fn(Pn). The reduction
function Ω: ℘f(Pn) → ℘fn(Pn) is defined, for each S ∈ ℘f(Pn) by

Ω(S) def= S \ {φ1 ∈ S | φ1 = ∅ ∨ ∃φ2 ∈ S . φ1 ⊂ φ2}.

Definition 1 (Finite powerset over Pn). The finite powerset domain over Pn

is the join-semilattice 〈℘fn(Pn),�,⊥,⊕Ω〉, where the bottom element is ⊥ = ∅
and the binary join operator is defined by S1 ⊕Ω S2

def= Ω(S1 ∪ S2).

Note that S1 � S2 if and only if ∀φ1 ∈ S1 : ∃φ2 ∈ S2 . φ1 ⊆ φ2 (i.e., ‘�’ is the
Hoare powerdomain partial order).

We adopt a tailored definition for hybrid automata. In particular, we assume
that: initial states and state invariants are modeled by NNC polyhedra having
a fixed space dimension n; the discrete post operator is modeled by a linear
relation on pre-state and post-state variables (hence, having space dimension
2n); and the continuous flow operator is modeled by linear constraints on the
first-order derivatives of the variables (i.e., piecewise constant dynamics).

Definition 2. Let Loc, Lab and Var be finite sets of locations, synchronization
labels and state variables, respectively, where n = |Var |. A hybrid automaton
H = 〈Loc,Lab,Var , init, inv,−→,flow〉 is defined by:

– initial states init : Loc → Pn and invariant states inv : Loc → Pn, satisfying
init(�) ⊆ inv(�);

– a finite set −→ ⊆ (Loc × Lab × P2n × Loc) of discrete transitions between
locations; we write �1

a,μ−→ �2 to denote that (�1, a, μ, �2) ∈ −→;
– a continuous flow relation flow: Loc → Pn specifying the constraints on the

first order derivatives of the state variables.

Note that we consider the case where all initial states and invariants are convex.
Finite disjunctions can still be modeled by splitting locations; as an alternative,
one may explicitly choose ℘f(Pn) as the codomain of ‘init’ and/or ‘inv’.

The goal of reachability analysis is to compute or overapproximate the reach-
able set of configurations for the automaton. The reachable set is defined as the
fixpoint of a system of semantic equations, one for each location of the automa-
ton, having the following form [21]:

reach(�) def=

⎛
⎝

⎛
⎝init(�) ∪

⋃

�′ a,μ−→�

dpost
(
reach(�′), μ, inv(�)

)
⎞
⎠ ↗ flow(�)

⎞
⎠ ∩ inv(�)

Informally, this equation means that the reachable state at location � satisfies its
invariant predicate inv(�) and is obtained by letting the state evolve according
to the continuous relation flow(�) (using the time-elapse operator ↗), starting
from either an initial state in init(�) or from a state that can reach � through
any incoming transition, via the discrete post operator dpost.
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Depending on the desired precision/efficiency tradeoff, on the domain of NNC
polyhedra the set reach(�) can be modeled by using either a single polyhedron or
a finite set of polyhedra: analysis tools such as PHAVer let the user choose the
approach. Convergence may be enforced by using widening operators [1,3,12,21],
but it is often the case that no widening is applied (e.g., when overapproximations
are not permitted), thereby obtaining a potentially non-terminating analysis.

3 Improving Polyhedra Operators

An approximation of the reachable set of a hybrid automaton can be computed
by iterating a suitable composition of well known operators on the domain of
NNC polyhedra [21,22]. In this section we focus our attention on the efficient
(exact or approximated) implementation of some of these operators.

3.1 Computing the Discrete Post Operator

The discrete post operator models the effect of a transition �1
a,μ−→ �2 mapping the

automaton state from the source location �1 to the target location �2. Namely,
if S1 = {φ1, . . . , φm1} is the current reachable state at �1, each disjunctive com-
ponent φi ∈ Pn is mapped by μ ∈ P2n to a disjunctive component ψj ∈ Pn,
contributing to the formation of the reachable state S2 = {ψ1, . . . , ψm2} of the
target location �2.2

Focusing now on a single disjunctive component φ ∈ Pn, the relational app-
roach to compute the corresponding target component ψ ∈ Pn is by a straight-
forward application of the relational constraints in μ, which amounts to the
following abstract domain operations:

– state φ ∈ Pn is embedded in space P2n, by adding n unconstrained primed
variables V ′, yielding μ1 = add dimsn(φ);

– the constraints in μ are added to μ1 ∈ P2n, obtaining μ2 = μ1 ∩ μ;
– μ2 is brought back to Pn, by projecting away the n unprimed variables V ,

obtaining ψ2 = rem dimsV (μ2);
– finally, ψ2 is intersected with the target invariant, yielding ψ = ψ2 ∩ inv(�2).

While generally applicable, this relational approach may incur a high compu-
tational overhead, due to the temporary doubling of the number of variables. As
a consequence, most analysis tools provide optimized implementations for those
special cases when the relational constraints in μ happen to encode a rather
simple relation between the pre- and post- values of state variables. A common
approach is to classify the constraints in μ as follows:

– guard constraints: these are constraints that mention unprimed (i.e., source-
state) variables only; they are meant to filter the source state, possibly dis-
abling the transition altogether;

2 The synchronization label a ∈ Lab only plays a role when a hybrid automaton is
defined as the parallel composition of several smaller automata.
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– identity relations: these are constraints having the form x′
i = xi, modeling

the fact that state variable xi is not affected by the transition;
– simple resets and increments: these have the form x′

i = k and x′
i = xi ± k,

respectively.

If all the constraints defining μ have one of the forms above, then the discrete
transition can be implemented rather efficiently, without the addition of new
variables. However, there are cases escaping from the given classification.

Example 1. The Dutch Railway Network benchmark (DRNW) is one of the test
in the HPWC category of the ARCH-COMP competition [15]. The automaton
specified in this benchmark is rather peculiar: being derived from a MPL (max-
plus-linear) system specified using difference-bound constraints, it happens to
be a purely discrete automaton (i.e., it has a trivial continuous flow dynamics).
The automaton tracks the value of 14 variables Var = {x1, . . . , x14}, each one
representing the departure time of trains from given railway stations. It has a
single location, featuring 12 self-loop discrete transitions, each one corresponding
to a different “region”. An example of linear relation μ ∈ P28 (modeling the
discrete transition for Region 1) is described by the following constraint system
where xi and x′

i denote the pre- and post- values of state variable xi, respectively:

40 + x1 ≥ 72 + x6, 55 + x7 ≥ 54 + x8,
55 + x7 ≥ 37 + x5, 90 + x11 ≥ 93 + x12,
x′

1 = 38 + x6, x′
2 = 40 + x1,

x′
3 = 50 + x2, x′

4 = 41 + x3,
x′

5 = 41 + x4, x′
6 = 53 + x5,

x′
7 = 38 + x14, x′

8 = 36 + x14,
x′

9 = 55 + x7, x′
10 = 35 + x9,

x′
11 = 54 + x10, x′

12 = 58 + x10,
x′

13 = 90 + x11, x′
14 = 16 + x13.

The first 4 constraints describing μ, mentioning unprimed variables only, form
the transition guard. The remaining 14 constraints of μ bind a distinct primed
variable to a linear expression on unprimed variables only; these can be seen
as implementing a (non-simple) reset of all the state variables. Note that these
resets are meant to be computed simultaneously: in particular, due to the pres-
ence of circular dependencies (e.g., x1 → x6 → x5 → x4 → x3 → x2 → x1), the
semantics of the overall parallel reset operation is not equivalent to a sequential
composition of the individual resets.

Due to the problem with variable dependencies, tools such as PHAVer/SX
implement the discrete transition �1

a,μ−→ �2 following the relational approach.
An alternative, parallel approach, which can be adopted whenever μ is a

combination of linear guard and reset constraints as in Example 1, relies on
polyhedra libraries implementing the parallel affine image operator. In this
case, after intersecting the source state φ with the guard constraints, this spe-
cific operator is applied, avoiding the intermediate changes of space dimension.
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While being more efficient than the relational approach, even in this case the
computational overhead may be significant; this is due to the fact that, in
libraries based on the Double Description method, the parallel affine image oper-
ator is often implemented by rewriting the generator system: in order to obtain
the constraint description, a non-incremental application of the conversion algo-
rithm by Chernikova is required.3

To avoid the problem above, we propose the compiled parallel approach, based
on an alternative implementation of the parallel affine image operator (available
in PPLite 0.4), only requiring incremental applications of the Chernikova algo-
rithm. To this end, we “compile” the set of parallel bindings into a carefully
chosen sequence of calls to the non-parallel affine image operator (whose incre-
mental computation is simple). We initially build a dependency graph where
each arc xi → xj means that the new value of xi depends on xj (hence, a bind-
ing resetting xj can be processed only after having processed the binding for xi).
Using the graph, we process those bindings having no dependencies, keeping the
graph up-to-date. When identifying a circular dependency (i.e., a cycle in the
graph), we break it by introducing a minimal number of primed variables, so as
to allow continuing with the sequential processing of the bindings. The unprimed
versions of these additional variables are later projected away. By following this
technique, all of the bindings can be processed by adding only a few variables,
thereby better exploiting the incremental nature of Chernikova algorithm.

Example 2. Considering Example 1, the new approach to compute the discrete
post operator starts, as before, by adding to φ the guard constraints. Then we
compute the dependency graph for the reset constraints, identifying cycles

x1 → x6 → x5 → x4 → x3 → x2 → x1,

x14 → x13 → x11 → x10 → x9 → x7 → x14,

as well as the non-circular dependencies x8 → x14 and x12 → x14.
Since x8 and x12 have no entering arcs, the corresponding bindings x′

8 =
36+x14 and x′

12 = 58+x10 can be processed (in any order). After that no other
binding can be processed, since we are left with the two cycles. Considering the
first cycle, we add a new space dimension for variable x′

1; as a consequence, we
can process the sequence of bindings x′

1 = 38 + x6, x′
6 = 53 + x5, x′

5 = 41 + x4,
x′

4 = 41+x3, x′
3 = 50+x2, x′

2 = 40+x1 (in this order) and then project away the
unprimed variable x1. The bindings forming the other cycle are handled similarly,
for instance adding (and then projecting away) a single space dimension for x′

14.

In Table 1 we show the time spent in PHAVerLite when computing the reach-
able states for the specific benchmark DRNW-BDR01, when adopting the clas-
sical relational and the compiled parallel approaches. As said before, since this
benchmark has a trivial continuous dynamics, almost all of the analysis time is
actually spent in the 96 calls to the discrete post operator. By exploiting incre-
mentality, the new approach is able to obtain a significant speedup factor (col-
umn ‘Ratio’). It is worth stressing that, even though the relational constraints
3 This is the case for the Apron library [24] and for PPLite up to version 0.3.



Revisiting Polyhedral Analysis for Hybrid Systems 191

μ ∈ P28 of Example 1 are all difference-bound constraints, the approach we are
proposing is more general, as it can handle all kinds of affine constraints.

Table 1. Efficiency of the discrete post operator for the DRNW-BDR01 benchmark.

Discrete post Overall analysis

Implementation Calls Time Time Ratio

Relational 96 129.28 129.60 11.86

Compiled parallel 96 10.64 10.93 1.00

3.2 Approximating the Convex Polyhedral Hull

As briefly recalled in Sect. 2, in principle the computation of reach(�) requires
to compute the set union of the initial states and the contributes of incom-
ing transitions. Since this may incur high computational costs, the classical
approach [21,22] maintains a single polyhedron per location and systematically
overapproximates set unions using the convex polyhedral hull ‘�’.

As a matter of fact, there are cases when even the computation of the convex
polyhedral hull can be regarded as an overkill, so that more aggressive approx-
imations are applied. One approach is to replace the abstract domain of NNC
polyhedra with some further abstraction (such as octagons [27] or even boxes).
Another possibility is to keep computing on the domain of NNC polyhedra,
but use an approximate version of the convex polyhedral hull operator. Letting
φ1 = con(C1) and φ2 = con(C2), there are several options:

– the envelope φ1 �env φ2, proposed in [8], is defined by keeping only those
constraints β ∈ C1 ∪ C2 that are valid for both φ1 and φ2;

– the weak join φ1 �w φ2, formalized in [30], is the smallest polyhedron con-
taining φ1 ∪ φ2 which is defined by constraints sharing the same slope with
the ones occurring in C1 ∪ C2;

– the inversion join φ1 �inv φ2 [30] further improves on the weak join by also
inferring some constraint slopes not occurring in C1 ∪ C2.

Note that (φ1 ∪ φ2) ⊆ (φ1 � φ2) ⊆ (φ1 �inv φ2) ⊆ (φ1 �w φ2) ⊆ (φ1 �env φ2).
In the following we consider the operator adopted in the original PHAVer,

named constraint hull, which happens to be equivalent to the weak join of [30].
Given a constraint β1 ∈ C1, the problem of finding the tightest constraint β2

having the same slope of β1 and satisfying φ2 ⊆ con(β2) can be addressed either
as a Linear Programming problem or, if the chosen representation allows it, by
enumerating the generators defining φ2. In both cases, we can obtain a significant
efficiency improvement with respect to the computation of the convex polyhedral
hull, which may either require a high number of iterations of the Chernikova
conversion algorithm or a high number of redundancy checks when adopting a
constraint-only approach.
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Example 3. The Fischer protocol benchmark (FISC) is one of the tests from
the HPWC category of the ARCH-COMP competition [15]; it models a time
based protocol for mutual exclusion between processes described in [25]. For the
instance FISCS06, whose composed automaton has 6 variables and 28672 loca-
tions, the verification goal is to prove that, during the interaction of 6 processes,
no two processes can be in the critical section at the same time. In order to
prove this property it is sufficient to keep a single polyhedron for each location.
In Table 2 we compare the overall analysis time obtained when using different
implementations to compute (exact or approximated) unions of NNC polyhedra.
Column ‘Iters’ reports the number of iterations of the fixpoint computation; col-
umn ‘Poly’ reports the number of polyhedra in the reachable set (which equals
the number of reachable locations when using ‘�’ or ‘�w’). The analysis exceeds
a 20 min timeout threshold when adopting exact unions (i.e., when computing on
the finite powerset domain of NNC polyhedra); the “constraint hull” approach
performs significantly better than the convex polyhedral hull, also because it
causes the analysis to converge after fewer iterations. Note that the one reported
is the total time spent by PHAVerLite, including the parsing phase and the gen-
eration of the automaton by parallel composition of its components; together,
these consume almost 40% of the 11.42 s spent on FISCS06.

Table 2. Comparing exact and approximated unions for the FISCS06 benchmark.

Implementation Iters Poly Time Time ratio

∪ >184040 >137072 >1200.00 >100.0

� 27289 2378 261.00 22.9

�w 8738 2378 11.42 1.0

The results above have been obtained after replacing the original constraint
hull implementation in PHAVer with a specialized operator (based on the enu-
meration of generators) made available in version 0.4 of the PPLite library. While
this change has a negligible effect on the FISCS06 benchmark itself, we have
observed impressive speedups on those benchmarks characterized by a higher
number of state variables. For example, the time to compute the 917 applica-
tions of the constraint hull operator for the DISC04 benchmark (having 17 state
variables) dropped from 675.50 to 2.14 s.

When using PHAVerLite on the experiments of Fig. 1, 3 of the 15 ‘safe’ tests
require the full precision of the set union operator; for 11 tests the overapprox-
imation provided by the constraint hull operator is precise enough to prove the
property of interest; for the remaining test, a timeout is obtained no matter the
considered approach.
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4 Handling Sets of Polyhedra

As discussed in the previous section, when the analyzed system can be veri-
fied by approximating disjunctions using a single polyhedron (either by apply-
ing the convex polyhedral hull or by more aggressive forms of approximation),
then this is usually the most efficient approach. There are however cases (e.g.,
when disproving the safety property in an ‘unsafe’ test) when in order to com-
plete successfully the verification task at hand the analysis needs to (explicitly
or implicitly) maintain a collection of elements of the chosen abstract domain.
Therefore, in this section we consider an analysis that models disjunctions using
explicit, finite collections of polyhedra in Pn.

In this context, it can be seen that most of the operators defining the seman-
tics of the system happens to be additive, so that they can be modeled by an
element-wise application of the corresponding approximation operator defined on
the base-level domain Pn. For instance, the meet (i.e., set intersection) operator
on Pn can be lifted on finite sets S1, S2 of polyhedra as follows:

S1 � S2
def= {φ1 ∩ φ2 | φ1 ∈ S1, φ2 ∈ S2 }. (1)

If n1 = |S1| and n2 = |S2|, this approach requires n1 · n2 applications of the
base-level meet operator. In order to keep efficiency under control, it is there-
fore important that these finite collections of elements do not encode redundant
information.

4.1 On Redundancy Removal

The intuitive notion of “redundancy” needs some clarification. In the context
of reachability analysis, the concrete semantics of a finite set S ∈ ℘f(Pn) is
defined by the set union operator [[S]] =

⋃
S. Hence, strictly speaking, S may

be encoding redundant information in several, distinct ways:

1. an element φ ∈ S can be said to be redundant in S when it can be simply
dropped without affecting the semantics, so that [[S]] = [[S \ {φ}]];

2. if there exists φ1, φ2 ∈ S such that φ1 ∩ φ2 �= ∅, then φ1 and/or φ2 could
be partitioned in sets S′

1 and S′
2 of smaller, pairwise disjoint polyhedra such

that [[S]] = [[S \ {φ1, φ2} ∪ S′
1 ∪ S′

2]]; after partitioning, some of the elements
in S′

1 ∪ S′
2 may become redundant according to 1 and hence removed;

3. a subset S′ ⊆ S, where |S′| > 1, could be merged into a single polyhedron
φ =

⊎
S′ such that [[S]] = [[S \ S′ ∪ {φ}]], decreasing the cardinality of the

finite collection.

Note that the first form of redundancy listed above corresponds to the one
used when introducing the finite powerset construction (see Sect. 2). Since main-
taining non-redundancy has its own computational cost, most analysis tools usu-
ally choose this lighter definition.

As a matter of fact, the original code in PHAVer was sometimes adopting
an even weaker form of redundancy removal when joining two finite sets of
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polyhedra; namely, S1 ⊕w S2
def= S1 ∪ {φ2 ∈ S2 | �φ1 ∈ S1 . φ2 ⊆ φ1 }. Note

that ‘⊕w’ is not symmetric: thus, it may fail to remove some elements in S1

that are made redundant by elements coming from S2. On the other hand, the
application of the symmetric operator ‘⊕Ω’ requires a higher number of inclusion
tests: in the worst case, which is always attained when φ is not redundant in S,
S ⊕w{φ} requires |S| inclusion tests, whereas S ⊕Ω{φ} requires 2 · |S| tests.

Example 4. The Distributed Controller (DISC) is one of the tests coming from
the HPWC category of the ARCH-COMP competition [15]; it models the dis-
tributed controller for a robot that reads and processes data from a number of
sensors having different priorities. In Table 3 we show some statistics collected
during the analysis of instance DISC03 of the benchmark (i.e., using 3 sensors, so
that the automaton is defined on 11 variables and 258 locations), where we have
prevented PHAVerLite from computing the poly hull approximation and rather
maintain a finite set of polyhedra for each location.4 Distinguishing between
those calls that actually add φ to S and those calls that detect φ to be redun-
dant, we report the total number of calls to the semantic operator S ⊕ {φ}, the
resulting total number of inclusion tests performed, as well as their average num-
ber and the average size of S. By detecting and removing redundant elements in
S, operator ‘⊕Ω’ is able to significantly reduce the average size of S; moreover,
since some of the removed elements were in the “waiting list”, they no longer
need to be processed by the reachability algorithm, resulting in a significant
decrease of the number of calls to S ⊕Ω{φ}. As a result, the total number of
inclusion tests is reduced by a factor of more than 20.

Table 3. The effectiveness of operators ‘⊕w’ and ‘⊕Ω’ on the DISC03 benchmark.

φ not redundant (added) φ redundant (not added)

⊕w ⊕Ω Ratio ⊕w ⊕Ω Ratio

Calls to S ⊕ {φ} 63738 15131 4.2 109827 14945 7.3

Total ⊆ tests 79312223 4112746 19.3 11613424 331650 35.0

Avg |S| 1244.3 135.9 9.2 792.0 113.1 7.0

Avg ⊆ tests 1244.3 271.8 4.6 105.7 22.2 4.8

Total rem from S 0 9692 — 0 0 —

4.2 Improving Efficiency of the Inclusion Tests

As seen in the previous section, Ω-reduction can significantly decrease the num-
ber of inclusion tests that need to be performed. In our quest for efficiency, the
next step is to try and improve the efficiency of the inclusion test itself.

Assuming that we are computing on a polyhedra library based on the Double
Description approach, the inclusion test φ1 ⊆ φ2 on polyhedra φ1, φ2 ∈ Pn is
4 This was done for exposition purposes, since this specific benchmark can be success-

fully verified, more efficiently, by using a single polyhedron for each location.
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usually implemented by checking that all the generators of φ1 = gen(G1) sat-
isfy all the constraints of φ2 = con(C2). In the worst case, this amounts to the
computation of |G1| · |C2| scalar products, each one requiring n + 1 multiplica-
tions and n additions of (arbitrary precision) integral coefficients, where n is the
dimension of the vector space.

By observing again the data in Table 3, we can see that most of the inclusion
tests are failing : for instance, in order to detect that φ is redundant in S (last
but one column in the table), we perform 331650 inclusion tests, among which
the successful ones are 14945, i.e., only 4.5%; things are even worse when φ is
not redundant (3rd column of the table), since in this case we perform 4112746
inclusion tests, among which the successful ones are 9692, i.e., only 0.24%. There-
fore, in order to improve efficiency, we look for heuristic procedures that allow
to quickly identify cases when the polyhedra inclusion test will necessarily fail.
To this end, we associate further abstractions to our polyhedra.

Definition 3. The bounding box function bbox: Pn → CBn is defined, for each
polyhedron φ ∈ Pn, as follows:

bbox(φ) =
⋂

{B ∈ CBn | φ ⊆ B}.

Note that the bounding box is required to be tight, i.e., it is the most precise
box in CBn containing φ.

Lemma 1. Let φ1, φ2 ∈ Pn. If bbox(φ1) �⊆ bbox(φ2), then φ1 �⊆ φ2.

Thus, a correct (but incomplete) test for non-inclusion on Pn can be obtained by
checking non-inclusion of the bounding boxes. Since non-inclusion on boxes can
be checked by performing at most 2 · n (arbitrary precision) extended rational
comparisons, the efficiency gain with respect to the test on Pn may be significant.

The same approach can be iterated by further abstracting the bounding box
information into an even lighter approximation.

Definition 4. For each 1-dimensional box B ∈ CB1, the pseudo volume and
the number of rays of B are defined as

pvol(B) def=

⎧⎪⎨
⎪⎩

0, if B is empty;
1 + (ub − lb), ifB = [lb, ub] �= ∅ is bounded;
+∞, otherwise;

nrays(B) def=

⎧⎪⎨
⎪⎩

0, if B = [lb, ub] is bounded;
2, if B = R;
1, otherwise.

These are extended to n-dimensional boxes B ∈ CBn as follows:

pvol(B) def=
n∏

i=1

pvol(πi(B)), nrays(B) def=
n∑

i=1

nrays(πi(B)),

where πi(B) is the projection of box B on the i-th coordinate of the vector space.
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Note that, in the definition of ‘pvol’, the systematic addition of 1 to the length
of each 1-dimensional box is meant to force the computation of a positive pseudo
volume even for those boxes having some projections of length zero.

Lemma 2. Let B1, B2 ∈ CBn. If pvol(B1) > pvol(B2) or nrays(B1) >
nrays(B2), then B1 �⊆ B2.

Hence, a correct (but incomplete) test for non-inclusion on CBn can be obtained
by performing a constant number of comparisons.

This is the main idea behind the boxed polyhedra domain, where each poly-
hedron φ ∈ Pn in the finite collection is matched by information on the corre-
sponding bounding box. Note that the approach we are proposing can also be
viewed as the application of a dynamic meta-analysis [11].

Definition 5. A boxed polyhedron is a tuple 〈v, r,B, φ〉 such that φ ∈ Pn,
B = bbox(φ), r = nrays(B) and v = pvol(B). The set of boxed polyhedra is
partially ordered by the lexicographic composition of the orders defined on its
components.

In Table 4 we evaluate the effectiveness of Lemmas 1 and 2 in reducing the
number of polyhedra inclusion tests for the DISC03 benchmark. Note that we are
using the ‘⊕Ω’ operator, so that the total number of inclusion tests has already
been reduced from 90.9M to 4.4M, as reported in Table 3. It can be seen that,
for the considered benchmark, the semi-decision procedures are effective on more
than 95% of the inclusion tests performed. Also note that the non-inclusion tests
based on the number of rays never succeeds: this is due to the fact that, in test
DISC03, all polyhedra happen to be polytopes.

Table 4. The effectiveness of the semi-decision procedures for inclusion tests on boxed
polyhedra 〈vi, ri, Bi, φi〉 for the DISC03 benchmark.

Lemma 2 Lemma 1

v1 > v2 r1 > r2 B1 �⊆ B2 φ1 �⊆ φ2

Num tests 4444396 2274428 2274428 212357

⊆ decided 2169968 0 2062071 212357

% 48.82 0.00 46.40 4.78

When implementing the inclusion test on boxed polyhedra, an optimization
can be obtained even when Lemma 1 fails to apply.5 In fact, by exploiting the
knowledge that bbox(φ1) ⊆ bbox(φ2), we can replace the full inclusion test
φ1 ⊆ φ2 with a lighter one, where we avoid to check the interval constraints of
φ2 against the generators of φ1. The effect of this heuristics can be significant: for

5 Note that this implies that neither Lemma 2 applies.
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instance, when computing the inclusion tests φ1 ⊆ φ2 for the DISC03 benchmark,
about 70% of the constraints are interval constraints.

A further improvement can be obtained if the finite collections are sorted
according to a suitable variant of the partial order relation defined on boxed poly-
hedra: this enables the application of binary search (rather than linear search) to
quickly detect the subrange of boxed polyhedra that actually need to be checked
for inclusion. In our experiments, we sorted these lists in increasing order of the
vi component (the bounding box pseudo-volume). For the DISC03 benchmark,
this reduces the total number of tests for applicability of Lemma 2 by more than
90% (from 4444396 to 314722).

Table 5. Comparing efficiency for the DISCS03 benchmark.

Reduction Num iter Boxing Time Ratio

⊕w 63805 Unboxed 1492.79 141.77

Boxed 108.76 10.33

⊕Ω 9625 Unboxed 93.28 8.86

Boxed 10.53 1.00

In Table 5 we report the timings obtained for the DISC03 benchmark when
varying the reduction strategy and the choice of the powerset element (boxed or
unboxed polyhedra). The improvements provided by the two techniques carry
over to computation times; moreover, the two techniques provide almost orthog-
onal efficiency improvements.

In our implementation of boxed polyhedra, the bounding box information is
computed on-demand and cached. Some care has to be taken to invalidate these
caches after applying semantic operators that change the polyhedra.

4.3 Improving Other Operators

When adopting the finite powerset of boxed polyhedra, we can improve the effi-
ciency of other semantic operators. For instance, consider the implementation of
the lattice meet: as discussed before (see Eq. 1), after the element-wise applica-
tion of the polyhedra intersections, the resulting powerset needs to be checked
for redundancies; in particular, some of the computed intersections φ1 ∩ φ2 may
be empty. In principle, the generation of these empty elements could be avoided
by checking if the two arguments φ1 and φ2 are disjoint, but on the domain of
polyhedra Pn this check happens to be as expensive as the computation of the
intersection itself. With boxed polyhedra, the following result applies.

Lemma 3. Let φ1, φ2 ∈ Pn. If bbox(φ1) ∩ bbox(φ2) = ∅, then φ1 ∩ φ2 = ∅.
Lemma 3 can be used, for instance, to quickly detect that φ1 ∈ reach(�1) is
disjoint from the guard component of an outgoing transition �1

a,μ−→ �2 (i.e., the
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transition is disabled). For the DISC03 benchmark this happens in about 34%
of cases (15374 times on a total of 45514 checks). However, the efficiency gain
obtained is negligible.

5 Splitting Polyhedra

In Sects. 3.2 and 4 we revisited different ways to model, in the abstract semantic
construction, the merging of different execution paths. The efficient handling of
this merge operator is quite often one of the main concerns when designing a
static analysis tool. In this section, we turn our attention to the “dual” semantic
operator, which intuitively splits an execution path in two branches.

In a classical (forward semantics) program static analysis, splitting typically
occurs when approximating the effect of conditional branching: for instance, the
analysis of an if-then-else statement splits the current approximation into
a then-component (satisfying the conditional guard) and an else-component
(satisfying its complement). In the context of the verification of hybrid systems,
a similar semantic operator may be needed when a location state is partitioned
according to some constraints, so as to better approximate a continuous flow
relation which is not piecewise constant. Similarly, the split operator can be
used in the abstract solving of a geometric CSP [29], where the current search
space is partitioned into subdomains, refining the following propagation steps.
Splits are also relevant for powerset domains: for instance, given two sets of
polyhedra S1, S2 ∈ ℘f(Pn), the algorithm checking whether S1 is geometrically
covered by S2, i.e., (∪ S1) ⊆ (∪ S2), typically requires the splitting of those
polyhedra in S1 that are not included in a polyhedron in S2.

Depending on the application and the underlying abstract domain, different
variants of this operator may be defined.

Definition 6. Let β be a non-strict linear inequality constraint on R
n and β′

be the non-strict version of its (strict) complement ¬β. The strict and the non-
strict split operators are defined, for each φ ∈ Pn, as splitsβ(φ) = (φ1, φ2) and
splitns

β (φ) = (φ1, φ
′
2), where φ1 = φ ∩ con({β}), φ2 = φ ∩ con({¬β}) and

φ′
2 = φ ∩ con({β′}).

Note that φ = φ1 ∪ φ2 = φ1 ∪ φ′
2; also, φ1 ∩ φ2 = ∅, while φ1 and φ′

2 may
overlap. The non-strict operator ‘splitns

β ’ can also be defined on the domain of
topologically closed polyhedra CPn.

Available polyhedra libraries do not provide a direct implementation for the
split operator: it is typically implemented by the user, by first cloning the input
polyhedron and then separately adding the constraint β and its (strict or non-
strict) complement to the constraint systems of the two polyhedra. Such an
approach, however, easily results in a duplication of the computational work.

To see this, consider an implementation based on the Double Description
method6 and, for ease of exposition, consider the non-strict split operator applied
6 To some extent, the reasoning should also apply to constraint-only representations,

if the implementation attempts to identify and remove redundant constraints.
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to a closed polyhedron φ ≡ 〈C,G〉 ∈ CPn. The addition of β to constraint system
C requires a call to the incremental Chernikova conversion algorithm. The core of
this procedure partitions the generator system G into G+, G0 and G−, according
to the sign of the scalar product of each generator with β, and then linearly
combines G+ and G− to produce G�; the resulting polyhedron φ1 ≡ 〈C ∪ {β},G1〉
is defined by the new generator system G1 = G+ ∪ G0 ∪ G�. Since β and β′ only
differ in the sign of their coefficients, when adding β′ to C (so as to obtain φ′

2)
we end up recomputing the same partition of G, modulo exchanging the roles of
G+ and G−; also, the previously computed set G� can be reused as is, since the
linear combination procedure is symmetric. Hence, φ′

2 ≡ 〈C ∪ {β′},G′
2〉 is easily

obtained by reusing the computation done before, letting G′
2 = G− ∪ G0 ∪ G�,

with no additional scalar products or linear combinations.
When encoding NNC polyhedra using the direct representation proposed

in [6], the implementation of the strict operator ‘splitsβ ’ is more complicated, but
it essentially preserves all of the computational savings mentioned above. This
is not the case when the NNC polyhedra are encoded by using an additional
slack variable [2,21], which is the classical approach implemented in Apron and
PPL. In such a case, the NNC polyhedron φ ∈ Pn would be encoded by a
closed representation ψ ∈ CPn+1, violating a basic assumption underlying our
optimization. The following example describes the problem in more detail.

x

ε

ψ

φ

ρρ′

β
x

ε ψ2

ψ1

φ2 φ1

Fig. 2. When using the ε-representation approach, the complementary constraints β
and ¬β are encoded by ρ and ρ′, which are not complementary in R

2.

Example 5. On the upper left portion of Fig. 2 we show the topologically closed
ε-representation ψ ∈ CP

2 for the 1-dimensional, half-open interval φ = con({1 ≤
x < 6}) ∈ P1, which is depicted below ψ. The (closure) points of the polyhedra
are denoted by (unfilled) circles. Consider the constraint β ≡ (x ≥ 4), so that
¬β ≡ (x < 4) and splitsβ(P) = (φ1, φ2), where φ1 = con({4 ≤ x < 6}) and φ2 =
con({1 ≤ x < 4}), represented on the lower right portion of the figure. Working
on the ε-representations though, the two (non-strict and strict) inequalities β and
¬β are respectively encoded by ρ ≡ (4 ≤ x+0 ·ε) and ρ′ ≡ (x+ε ≤ 4), which are
both non-strict and not complementary on R

2. Hence, a proper computation of
the split operator on the ε-representation ψ (shown on the upper right portion
of Fig. 2) requires two distinct calls to the incremental conversion procedure to
obtain ψ1 and ψ2.
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In Table 6 we show the efficiency of different implementations of the split
operation: we compare the ‘standard’, user-defined implementation (on both the
PPL and the PPLite libraries) with the newly defined abstract operator (only
available in PPLite). The polyhedron chosen for the test is a half-open hypercube
H ∈ P12, defined by constraints of the form −1 < xi ≤ 1; for the tests on CP12

we use its topological closure cl(H); we also perform a test on H′ ∈ P12, which is
obtained from H by adding three non-skeleton points [6] (that is, H′ also contains
the relative interior of three of the facets that are disjoint from H). In all cases,
the polyhedron is split by constraint β ≡ (x0 + 2x1 − 2x10 − x11 ≥ 0); when
splitting H, we test both the strict and non-strict variant of the split operation.

Table 6. Splitting H, cl(H) and H′ using β. Units: Time (s), Vec (K), Sat (M).

splitnsβ (H) splitsβ(H) splitnsβ (cl(H)) splitsβ(H′)
Library Impl Time Vec Sat Time Vec Sat Time Vec Sat Time Vec Sat

PPL standard 0.450 244 43.65 0.457 245 43.66 0.167 10 9.45 7.823 283 1742.13

PPLite standard 0.068 10 4.73 0.069 10 4.73 0.066 10 4.73 0.070 10 4.81

split 0.035 5 2.36 0.036 5 2.37 0.035 5 2.36 0.038 5 2.44

In columns ‘Vec’ and ‘Sat’ we report the number of operations performed on
vectors (scalar products and linear combinations) and saturation rows (popula-
tion counts, unions and tests for inclusion on bit-vectors): it can be seen that the
newly implemented operator systematically halves the values of these counters.
Note that, since this test is characterized by low magnitude coefficients, the effi-
ciency gain on vector operations is probably underestimated. The comparison
with the PPL implementation confirms that libraries based on the ε-dimension
approach are significantly less efficient, in particular when the input polyhedron
contains non-skeleton constraints/generators.

6 Conclusion

Starting from PHAVer, we have developed a new tool PHAVerLite for the anal-
ysis of hybrid systems characterized by piecewise constant continuous dynamics.
While revisiting the application of the domain of NNC polyhedra to the problem
of computing or overapproximating the reachable states, we focused our atten-
tion on several well known abstract operators, showing that remarkable efficiency
improvements can be obtained by providing implementations that are specialized
for the considered context. For a more efficient handling of sets of polyhedra,
we have proposed a new heuristic approach, where we couple each polyhedron
in the set with information corresponding to further approximations (bounding
box and pseudo volume). As future work, we plan to extend our investigation to
other semantic operators, including those that are needed when extending the
analysis to more general classes of hybrid systems.
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29. Pelleau, M., Miné, A., Truchet, C., Benhamou, F.: A constraint solver based on
abstract domains. In: 14th International Conference Verification, Model Checking,
and Abstract Interpretation, VMCAI 2013, Rome, Italy. Proceedings, pp. 434–454
(2013)

30. Sankaranarayanan, S., Colón, M.A., Sipma, H., Manna, Z.: Efficient strongly rela-
tional polyhedral analysis. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006.
LNCS, vol. 3855, pp. 111–125. Springer, Heidelberg (2005). https://doi.org/10.
1007/11609773 8
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Abstract. Polyhedral projection is a main operation of the polyhedron
abstract domain. It can be computed via parametric linear programming
(PLP), which is more efficient than the classic Fourier-Motzkin elimina-
tion method.

In prior work, PLP was done in arbitrary precision rational arithmetic.
In this paper, we present an approach where most of the computation
is performed in floating-point arithmetic, then exact rational results are
reconstructed.

We also propose a workaround for a difficulty that plagued previ-
ous attempts at using PLP for computations on polyhedra: in general
the linear programming problems are degenerate, resulting in redundant
computations and geometric descriptions.

Keywords: Polyhedral projection · Parametric linear programming ·
Floating-point arithmetic

1 Introduction and Related Work

Abstract interpretation [6] is an approach for obtaining invariant properties of
programs, which may be used to verify their correctness. Abstract interpretation
searches for invariants within an abstract domain. For numerical properties, a
common and cheap choice is one interval per variable per location in the program,
but this cannot represent relationships between variables. Such imprecision often
makes it impossible to prove properties of the program using that domain. If we
retain linear equalities and inequalities between variables, we obtain the domain
of convex polyhedra [7], which is more expensive, but more precise.

Several implementations of the domain of convex polyhedra over the field of
rational numbers are available. The most popular ones for abstract interpreta-
tion are NewPolka1 and the Parma Polyhedra Library (PPL) [1]. These libraries,
and others, use the double description of polyhedra: as generators (vertices,
and for unbounded polyhedra, rays and lines) and constraints (linear equalities

Grenoble INP—Institute of Engineering Univ. Grenoble Alpes
1 Now distributed as part of APRON http://apron.cri.ensmp.fr/library/.
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and inequalities). Some operations are easier on one representation than on the
other, and some, such as removing redundant constraints or generators, are eas-
ier if both are available. One representation is computed from the other using
Chernikova’s algorithm [4,16]. This algorithm is expensive in some cases, and,
furthermore, in some cases, one representation is exponentially larger than the
other. This is in particular the case of the generator representation of hypercubes
or, more generally, products of intervals; thus interval analysis which simulate
using convex polyhedra in the double description has cost exponential in the
dimension.

In 2012 Verimag started implementing a library using constraints only, called
VPL (Verified Polyhedra Library) [11,17]. There are several reasons for using
only constraints; we have already cited the high generator complexity of some
polyhedra commonly found in abstract interpretation, and the high cost of
Chernikova’s algorithm. Another reason was to be able to certify the results
of the computation, in particular that the obtained polyhedra includes the one
that should have been computed, which is the property that ensures the sound-
ness of abstract interpretation. One can certify that each constraint is correct
by exhibiting coefficients, as in Farkas’ lemma.

In the first version of VPL, all main operations boiled down to projection, per-
formed using Fourier-Motzkin elimination [9], but this method generates many
redundant constraints which must be eliminated at high cost. Also, for projecting
out many variables x1, . . . , xn, it computes all intermediate steps (projection of
x1, then of x2. . . ), even though they may be unneeded and have high description
complexity. In the second version, projection and convex hull both boil down to
parametric linear programming [14]. The current version of VPL is based on a
parametric linear programming solver implemented in arbitrary precision arith-
metic in OCaml [18].

In this paper, we improved on this approach in two respects.

– We replace most of the exact computations in arbitrary precision rational
numbers by floating-point computations performed using an off-the-shelf lin-
ear programming solver. We can however recover exact solutions and check
them exactly, an approach that has previously been used for SMT-solving
[15,20].

– We resolve some difficulties due to geometric degeneracy in the problems to
be solved, which previously resulted in many redundant computations.

Furthermore, the solving is divided into independent tasks, which may be sched-
uled in parallel. The parallel implementation is covered in [5].

2 Notations and Preliminaries

2.1 Notations

Capital letters (e.g. A) denote matrices, small bold letters (e.g. x) denote vectors,
small letters (e.g. b) denote scalars. The ith row of A is ai•, its jth column is
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a•j . P : Ax+b ≥ 0 denotes a polyhedron and C a constraint. The ith constraint
of P is Ci: ai•x ≥ bi, where bi is the ith element of b. aij denotes the element at
the ith row and the jth column of A. Q denotes the field of rational numbers,
and F is the set of finite floating-point numbers, considered as a subset of Q.

2.2 Linear Programming

Linear programming (LP) consists in getting the optimal value of a linear func-
tion Z(λ) subject to a set of linear constraints Aλ = b, λ ≥ 02, where λ is the
vector of variables. The optimal value Z∗ is reached at λ∗: Z∗ = Z(λ∗).

2.3 Basic and Non-basic Variables

We use the implementation of the simplex algorithm in GLPK3 as LP solver.
In the simplex algorithm each constraint is expressed in the form (λB)i =∑n

j=1 aij(λN )j + ci, where (λB)i is known as a basic variable, the (λN )j is non-
basic variable, and ci is a constant. The basic variables constitute a basis. The
basic and non-basic variables form a partition of the variables, and the objective
function is obtained by substituting the basic variables with non-basic variables.

2.4 Parametric Linear Programming

A parametric linear program (PLP) is a linear program, subjecting to Aλ =
b, λ ≥ 0, whose objective function Z(λ,x) contains parameters x appearing
linearly.4 The PLP reaches optimum at the vertex λ∗, and the optimal solution
is a set of (Ri, Z

∗
i (x)). Ri is the region of parameters x, in which the basis does

not change. Z∗
i (x) is the optimal function corresponding to Ri, meaning that

all the parameters in Ri will lead to the same optimal function Z∗
i (x). In the

case of primal degeneracy (Sect. 4), the optimal vertex λ∗ has multiple partitions
of basic and non-basic variables, thus an optimal function can be obtained by
different bases, i.e., several regions share the same optimal function.

2.5 Redundant Constraints

Definition 1 (Redundant). A constraint is said to be redundant if it can be
removed without changing the shape of the polyhedron.

In our algorithms, there are several steps at which redundant constraints
must be removed, which we call minimization of the polyhedron. For instance

2 This is the canonical form of the LP problem. All the LP problems can be trans-
formed into this form.

3 The GNU Linear Programming Toolkit (GLPK) is a linear programming solver
implemented in floating-point arithmetic. https://www.gnu.org/software/glpk/.

4 There also exist parametric linear programs where the parameters are in the constant
terms of the inequalities, we do not consider them here.

https://www.gnu.org/software/glpk/
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we have P = {C1 : x1 − 2x2 ≤ −2, C2 : −2x1 + x2 ≤ −1, C3 : x1 + x2 ≤ 8, C4 :
−2x1 − 4x2 ≤ −7}, and C4 is a redundant constraint.

The redundancy can be tested by Farkas’ Lemma: a redundant constraint
can be expressed as the combination of some other constraints.

Theorem 1 (Farkas’ Lemma). Let A ∈ R
m×nA ∈ R

m×n and b ∈ R
mb ∈ R

m.
Then exactly one of the following two statements is true:

– There exists an x ∈ R
n such that Ax = b and x ≥ 0.

– There exists a y ∈ R
m such that ATy ≥ 0 and bTy < 0.

It is easy to determine the redundant constraints using Farkas’ lemma,
but in our case we have much more irredundant constraints than redundant
ones, in which case using Farkas’ lemma is not efficient. A new minimization
algorithm which can find out the irredundant constraints more efficiently is
explained in [19].

3 Algorithm

As our PLP algorithm is implemented with mix of rational numbers and floating-
point numbers, we will make explicit the type of data used in the algorithm. In
the pseudo-code, we annotate data with (nametype), where name is the name of
data and type is either Q or/and F. Q×F means that the data is stored in both
rational and floating-point numbers.

Floating-point computations are imprecise, and thus the floating-point LP
solver may provide an incorrect answer: it may report that the problem is infea-
sible whereas it is feasible, that it is feasible even though it is infeasible, and
it may provide an “optimal” solution that is not truly optimal. What our app-
roach guarantees is that, whatever the errors committed by the floating-point
LP solvers, the polyhedron that we computed is a valid over-approximation: it
always includes the polyhedron that should have been computed. Details will be
explained later in this section and in Sect. 5.

In this section we do not consider the degeneracy, which will be talked in
Sect. 4.

3.1 Flow Chart

The Fig. 1 shows the flow chart of our algorithm. The rectangles are processes
and diamonds are decisions. The processes/decisions colored by orange are com-
puted by floating-point arithmetic, and that by green uses rational numbers. The
dotted red frames show the cases that rarely happen, which means that most
computation in our approach uses floating-point numbers.

In Sect. 3 we will present the overview of the algorithm. Then we will explain
into details the processes/decisions framed by dashed blue rectangles in Sect. 5.
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Fig. 1. Flow chart

3.2 Ray-Tracing Minimization

At several steps we need to remove redundant constraints from the descrip-
tion of a polyhedron. We here present an efficient ray-tracing minimization
method based on [19]. Their approach used rational computations, while ours
uses floating-point arithmetic. The use of floating-point numbers here will not
cause a soundness problem: in the worst case, we will eliminate constraints that
should not be removed. In other words, when the floating-point algorithm can-
not determine the redundancy, the corresponding constraints will be reported as
redundant.

There are two phases in ray-tracing minimization. In the first phase we
launch rays to the constraints, and the first hit constraints are irredundant. The
remaining constraints will be determined in the second phase: if we can find the
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irredundancy witness point, then the constraint is irredundant. The algorithm
is shown in Algorithm 1.

Definition 2 (Irredundancy Witness). The irredundancy witness of a con-
straint Ci is a point that violates Ci but satisfies the other constraints.

Algorithm 1. Ray-tracing minimization algorithm.
Input: polyF: the polyhedron to be minimized
Output: the index of the irredundant constraints
Function Minimize(polyF)

pF = GetInternalPoint(polyF)
raysF = LaunchRays(polyF, pF)
foreach rayF in raysF do

constraintIdx = FirstHitConstraint(polyF, rayF, pF)
SetAsIrredundant(polyF, constraintIdx)

foreach constraint idx in undetermined constraints do
if cannot determine then

SetAsRedundant(polyF, idx)
else

if found irredundancy witness point then

SetAsIrredundant(polyF, idx)
else

SetAsRedundant(polyF, idx)

return the irredundant constraints

3.3 Parametric Linear Programming Solver

The algorithm is shown in Algorithm2. Firstly we construct the PLP problem,
and then we solve it by solving a set of LP problems via floating-point LP
solver. Then the rational solution will be reconstructed based on the information
obtained from the LP solver. We will explain each step in the following sections.
Our focus will be on the cooperation of rational and floating-point numbers, and
the tricks for dealing with floating-point arithmetic.

Constructing PLP for Projection. The polyhedron to be projected is P:
Ax + b ≥ 0. To perform projection, we can construct a PLP problem shown
in Problem 1. In this problem, x are parameters, and λ are decision variables,
where x = [x1, · · · , xm]T, λ = [λ0, · · · , λn]T. Assume that we wish to eliminate
xp, · · · , xq, where 1 ≤ p ≤ q ≤ m.
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Algorithm 2. Parametric linear programming algorithm.
Input: polyQ: the polyhedron to be projected

[xp, ..., xq]: the variables to be eliminated
n: number of initial points

Output: optimumsQ the set of optimal function
regionsQ×F the corresponding regions

Function Plp(polyQ, [xp, ..., xq], n)

plpQ×F = ConstructPlp(polyQ, [xp, ..., xq])
worklistF = GetInitialPoints(polyQ, n)
optimumsQ = none
regionsQ×F = none
while worklistF �= none do

(wF, Rfrom
Q, Ffrom) = getTask(worklistF)

Rcurr
Q = CheckCovered(regionsF, wF)

if Rcurr
Q == none then

(basicIndices, nonbasicIndices) = GlpkSolveLp(wF, plpF)
reconstructMatrixQ = Reconstruct(plpQ, basicIndices)
(newOptimumQ, newRegionQ×F) =
ExtractResult(reconstructMatrixQ, nonbasicIndices)
(activeIndices, witnessListF) = Minimize(newRegionF)
minimizedRQ = GetRational(newRegionQ, activeIndices)
Insert(optimumsQ, newOptimumQ)
Insert(regionsQ, newRegionQ)
AddWitnessPoints(witnessListF, worklist)
Rcurr

Q=minimizedRQ

if Adjacent(Rcurr
Q, Rfrom

Q, Ffrom) then

Fcurr = GetCrossFrontier(Rcurr
Q, Rfrom

Q, Ffrom)
StoreAdjacencyInfo(Rfrom

Q, Ffrom, Rcurr
Q, Fcurr)

else

AddExtraPoint(worklist, Rcurr
Q, Rfrom

Q)

minimize
n∑

i=1

(ai•x + bi)λi + λ0

subject to
n∑

i=1

(ai•p + bi)λi + λ0 = 1 (*)

n∑

i=1

aijλi = 0 (∀j ∈ {p, · · · , q}) (**)

and λi ≥ 0 (∀i ∈ {0, · · · , n})

(1)

where p = [p1, · · · , pm] is a point inside P. The constraint (∗) is called normal-
ization constraint. To compute the convex hull of P and P ′: A′x+b′ ≥ 0, we just
replace the constraints (∗∗) with ATλ − A′Tλ′ = 0, bTλ + λ0 − b′Tλ′ − λ′

0 = 0.
For more details about constructing the PLP problem of projection, please refer
to [14,18].
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Solving PLP. The PLP problem represents a set of LP problems, whose con-
straints are the same and objective function varies with the instantiation of the
parameters. Here is a brief sketch of our solver. We maintain a working set of
tasks yet to be performed. At the beginning, a random vector of parameters (or
a fixed one) is chosen as the initial task to trigger the algorithm. Then, as long as
the working set is not empty, a vector of parameters w is taken from the working
set. We solve the (non-parametric) linear programming problem for this vector
of parameters, using an off-the-shelf floating-point solver. From the information
of the final basis reached, we obtain a polyhedral region R of parameters, to
which w belongs, that all share the same optimum and the same basis, as it
will be explained below. In general, this region is obtained with redundant con-
straints, so we minimize its representation. The witness points w1, . . . ,wm of
the irredundant constraints lie outside of R, and are inserted into the working
set. We also maintain a set of already created regions: a vector w of parameters
is ignored if it lies inside one of them. The algorithm stops when the working set
is empty, meaning that the full set of parameters is covered by regions.

Here is how we process a vector w from the working set. We solve the LP
problem:

minimize
n∑

i=1

(ai•w + bi)λi + λ0

subject to
n∑

i=1

(ai•p + bi)λi + λ0 = 1 (*)

n∑

i=1

aijλi = 0 (∀j ∈ {p, · · · , q})

and λi ≥ 0 (∀i ∈ {0, · · · , n})

(2)

Obtaining Rational Solution. We solve this LP problem in floating-point
using GLPK. Had the solving been done in exact arithmetic, one could retain
the optimal point λ∗, but here we cannot use it directly. Instead, we obtain the
final partition of the variables into basic and non-basic variables, and from this
partition we can recompute exactly, in rational numbers, the optimum λ∗, as
well as a certificate that it is feasible.

Let M denote the matrix of constraints and O that of the PLP objective
function. The last column of the each matrix represents the constant.

M =

⎡

⎢
⎢
⎢
⎣

(Ap + b)T 1 1
(a•p)T 0 0

...
...

...
(a•q )T 0 0

⎤

⎥
⎥
⎥
⎦

O =
[
AT 0 0
bT 1 0

]

(3)

To generate the result of PLP, we need to reconstruct the matrices M and O
to make sure the objective function of PLP contains the same basis as the final
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tableau of the simplex algorithm: the coefficients of the basic variables in the
objective function should be 0. We extract the indices of the basic variables from
that tableau; MB and OB denote the sub-matrices from M and B containing only
the columns corresponding to the basic variables. By linear algebra in rational
arithmetic5 we compute a matrix Θ, representing the substitution performed by
the simplex algorithm. Then we apply this substitution to the objective matrix
O to get the new objective function O′: Θ = OBM−1

B , O′ = O − ΘM , where
M−1

B denotes the inverse of MB (actually, we do not inverse that matrix but
instead call a solver for systems of linear equations).

In our LP problem 2, the variables λ have lower bound 0, which means
that when the objective function reaches the optimal, all the non-basic variables
should reach their lower bound and their coefficients should be non-negative,
otherwise the optimal value can decrease furthermore. The same applies to the
parametric linear problems, except that the coefficients of the objective func-
tion may contain parameters; thus the sign conditions on these coefficients is
translated to linear inequalities on these parameters. Each non-zero column in
O′ represents a function in x, which is the coefficient of a non-basic variable.
The conjunction of constraints (O′

•j)
Tx ≥ 0 constitute the region of x where

j belongs to the indices of non-basic variables. This conjunction of constraints
may be redundant: we thus call the minimization procedure over it.

4 Overlapping Regions and Degeneracy

Ideally, the parametric linear programming outputs a quasi-partition of the space
of parameters, meaning that the produced regions do not have overlap except
at their boundary (we shall from now on say “do not overlap” for short) and
cover the full space of parameters. This may not be the case due to two reasons:
geometric degeneracy, leading to overlapping regions, and imprecision due to
floating-point arithmetic, leading to insufficient coverage. The latter will be dealt
with by rational checker, which will be explained in Sect. 5.

If regions do not overlap, it is possible to verify that the space of parameters
is fully covered by checking that each boundary of a region is also a boundary of
an adjacent region (proof in Sect. 5.4); otherwise, this means we have a boundary
with nothing on the other side, thus the space is not fully covered. This simple
test does not work if regions overlap. Furthermore, overlapping regions may be
needlessly more numerous than those in a quasi-partition. We thus have two
reasons to modify our algorithm to get rid of overlapping regions.

Let us see how overlapping regions occur. In a non-degenerate parametric
linear program, for a given optimization function, there is only one optimal
vertex (no dual degeneracy), and this optimal vertex is described by only one
optimal basis (no primal degeneracy), i.e., there is a single optimal partition of
variables into basic and non-basic. Thus, in a non-degenerate parametric linear
program, for a given vector of parameters there is one single optimal basis (except
5 We use Flint, which provides exact rational scalar, vector and matrix computations,

including solving of linear systems. http://www.flintlib.org/.

http://www.flintlib.org/
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at boundaries), meaning that each optimal function corresponds to one region.
However when there is degeneracy, there will be multiple bases corresponding to
one optimal function, and each of them computes a region. These regions may
be overlapping. We call the regions corresponds to the same optimal function
degeneracy regions.

Theorem 2. There will be no overlapping regions if there is no degeneracy.

Proof. In parametric linear programming, the regions are yielded by the parti-
tion of variables into basic and non-basic, i.e., each region corresponds to one
basis. The parameters within one region lead the PLP problem to the same par-
tition of variables. If there are overlapping regions, say Ri and Rj , the PLP
problem will be optimized by multiple bases when the parameters belong to
Ri ∩ Rj . In this case there must be degeneracy: these multiple bases may lead
to multiple optimal vertex when we have dual degeneracy, or the same optimal
vertex when we have primal degeneracy. By transposition, we know that if there
is no degeneracy the PLP problem will always obtain a unique basis with given
parameters, and there will be no overlapping regions. �	

We thus need to get rid of degeneracy. We shall first prove that there is no
dual degeneracy in our PLP algorithm, and then deal with the primal degeneracy.

4.1 Dual Degeneracy

Theorem 3. For projection and convex hull, the parametric linear program
exhibits no dual degeneracy.

Proof. We shall see that the normalization constraint (the constraint (∗) in
Problem 1) present in the parametric linear programs defining projection and
convex hull prevents dual degeneracy.

Assume that at the optimum Z∗(x) we have the simplex tableau in Table 1.
λk denote the decision variables: λk ≥ 0. In the current dictionary, the parametric
coefficients of the objective function is fk = a′

i•x + b′
i. Assuming the variable

leaving the basis is λr, and the entering variable is λq. Then λr is defined by the
jth row as

∑
j mjpλp + λr = cj , where λp are nonbasic variables. That means

λr = cj when the nonbasic variables reach their lower bound, which is 0 here.
Now we look for another optimum by doing one pivoting. As the current

dictionary is feasible, we must have cj ≥ 0. To maintain the feasibility, we must
choose λq such that mjq > 0. As we only choose the non-basic variable whose
coefficient is negative to enter the basis, then we know fq < 0. By pivoting we
obtain the new objective function Z ′(λ,x) = Z(λ,x)− fq

cj
mjq

. The new optimal
function is:

Z∗′
(x) = Z∗(x) − fq

cj
mjq

(4)

Let us assume that a dual degeneracy occurs, which means that we obtain
the same objective function after the pivoting, i.e., Z∗′

(x) = tZ∗(x), where t is a
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positive constant. Due to the normalization constraint at the point x0 enforcing
Z∗′

(x0) = Z∗(x0) = 1, we have t = 1. Hence we will obtain

Z∗′
(x) = Z∗(x) (5)

Considering the Eqs. 4 and 5 we obtain

fq
cj

mjq
= 0 (6)

Since fq 
= 0, cj must equal to 0, which means that we in fact faced a primal
degeneracy.

Let D1 = fq
cj
mjq

, where the subscript of D1 denotes the first pivoting. As
cj ≥ 0, fq < 0 and mjq > 0, we know D1 ≤ 0. Similarly in each pivoting we have
Di ≤ 0.

If we generalize the situation above to N rounds of pivoting, we will obtain:

Z∗′
(x) = Z∗(x) −

N∑

i=1

Di (7)

If there is dual degeneracy Z∗′
(x) = Z∗(x), and then

N∑

i=1

Di = 0 (8)

As ∀i,Di ≤ 0, Eq. 8 implies ∀i,Di = 0, which is possible if and only if all the cj
equal to 0. For the same reason as above, in this case we can only have primal
degeneracy. �	

4.2 Primal Degeneracy

Many methods to deal with primal degeneracy in non-parametric linear pro-
gramming are known [3,8,10]; fewer in parametric linear programming [13]. We
implemented an approach to avoid overlapping regions based on the work of

Table 1. Simplex tableau.

non-basic variables basic variables
constants

λ1 · · · λq · · · · · · λr · · · λs · · · λn

objective f1 · · · fq · · · · · · 0 · · · 0 · · · 0 Z∗(x)
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

row j . . . . . . . . . . . . . mjq · · · · · · 1 · · · 0 · · · 0 cj
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

row k . . . . . . . . . . . . . mkq · · · · · · 0 · · · 1 · · · 0 ck
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Jones et al. [13], which used the perturbation method [10]. The algorithm is
shown in Algorithm 3. Once entering a new region, we check if there is primal
degeneracy: it occurs when one or several basic variables equal zero. In this case
we will explore all degeneracy regions for the same optimum, using, as explained
below, a method avoiding overlaps.

Let us consider a projected polyhedra in 3 dimensions with primal degener-
acy, because of which there are multiple regions corresponding to the same face.
Figure 2 shows the 2D view of the face. The yellow and red triangles represent
the intersection of the regions with their face. Figure 2a shows the disappoint
case where the regions are overlapping. The reason is that when the parameters
locate in the orange part, two different bases will lead the constructed LP prob-
lem to optimum. We aim to avoid the overlap and obtain the result either in
Fig. 2b or in Fig. 2c.

Fig. 2. Example of overlapping regions.

Our solution against overlaps is to make the optimal basis unique for given
parameters of the objective function by adding perturbation terms to the right
side of the constraints [13]. These perturbation terms are “infinitesimal”, mean-
ing that the right-hand side, instead of being a vector of rational scalars, becomes
a matrix where the first column corresponds to the original vector, the second
column corresponds to the first infinitesimal, the third column to the second
infinitesimal, etc. The same applies to λ. Instead of comparing scalar coordi-
nates using the usual ordering on rational numbers, we compare line vectors
of rationals with the lexicographic ordering. After the perturbation, there will
be no primal degeneracy as all the right-hand side of the constraints cannot be
equal.

The initial perturbation matrix is a k ∗k identity matrix: Mp = I, where k is
the number of constraints. Then the perturbation matrix will be updated as the
reconstruction of the constraint matrix. After adding this perturbation matrix,
the right-hand side becomes B = [b|Mp]. The new constants are vectors in the
form of vi = [bi 0 · · · 1 · · · 0]. We compare the vectors by lexico-order: vi > vj

if the first non-zero element of vi is larger than that of vj .
To obtain a new basis, in contrast to working with non-degeneracy regions, we

do not solve the problem using floating point solver. Instead, we pivot directly
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on the perturbed rational matrix. Each non-basic variable will be chosen as
entering variable. Then from all the constraints in which bi = 0, we select the
basic variable λl in Ci whose ratio vi

aij
is smallest as the leaving variable, where j

is the index of the entering variable. If such a leaving variable exist, we will obtain
a degeneracy region: as bi = 0, the new optimal function will remain the same.
Otherwise it means that a new optimal function will be obtained by crossing
the corresponding frontier. The latter will not be treated by this algorithm, but
will be computed with a task point by Algorithm2. We maintain a list of bases
which have been explored. The algorithm terminates when all the degeneracy
regions of the same optimal function are found.

5 Checkers and Rational Solvers

We compared our results with those from NewPolka. We tested about 1.75 mil-
lion polyhedra in our benchmarks. In only 3 cases, round-off errors caused 1
face being missed. In this section, we explain how we modified our algorithm to
work around this difficulty. The resulting implementation then computes exactly
solutions to parametric linear programs, and thus exactly the same polyhedra
as NewPolka.

5.1 Verifying Feasibility of the Result from GLPK

GLPK uses a threshold (10−7 by default) to check feasibility, that is, if the
solution it proposes truly is a solution. It may report a feasible result when
the problem is in fact infeasible. Assume that we have an LP problem whose
constraints are C1 : λ1 ≥ 0, C2 : λ2 ≥ 0, C3 : λ1 + λ2 ≤ 10−8, GLPK will return
(0, 0) as a solution, whereas it is not.

We use flint to compute the row echelon form of the rational matrix of
constraints, so that the pivots are the coefficients of basic variables. We obtain
[I A′] = [b]6, where A′ are the coefficients of the non-basic variables. When
the LP problem reaches an optimum, the non-basic variables are at their lower
bound 0, so the value of the basic variables are just the value of b. As we have
the constraints that the variables are non-negative, we thus just need to verify
that all coordinates in b are non-negative. If it is not in this case, it means that
GLPK does not have enough precision, which is likely due to an ill-conditioned
subproblem. In this case, we start a textbook implementation of the simplex
algorithm in rational arithmetic.

GLPK may also report an optimal solution which is in fact not optimized. We
did not provide a checker for this situation, as even if the solution is not optimized
in the required region, it is optimized in anther region which is probably adjacent
to the expected one. We keep the obtained solution, and add extra task points
between the regions if they are not adjacent. Besides the adjacency checker
guarantees there will be no missed face.

6 There may be rows of all zeros in the bottom of the matrix.
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Algorithm 3. Algorithm to avoid overlapping regions.
Input: wF: the task point

plpQ: the PLP problem to be solved
Output: degeneracy regions correspond to the same optimal solution
Function DiscoverNewRegion(wF, plpF)

basicIdx = GlpkSolveLp(wF, plpF)
if degenerate then

size = GetSize(basicIdx)
perturbMQ = GetIdentityMatrix(size, size)
basisList = none
Insert(basisList, basicIdx)
degBasic = none
foreach basic variable v do

if v == 0 then
Insert(degBasic, GetIdx(v))

while basisList �= none do
currBasis = GetBasis(basisList)
if currBasis has been found then

continue
nonBasicIdx = GetNonBasic(currBasis)
(reconstructMQ, perturbMQ) = Reconstruct(plpQ, basicIdx,
perturbMQ)
(newOptimumQ, newRegionQ×F) = ExtractResult(reconstructMQ,
nonbasicIdx)
activeIdx=Minimize(newRegionF)
minimizedRQ = GetRational(newRegionQ, avtiveIdx)
Insert(optimumsQ, newOptimumQ)
Insert(regionsQ, newRegionQ)
foreach constraint i in minimizedRQ do

enteringV = GetIdx(i)
leavingV = SearchLeaving(degBasic, perturbMQ)
if leavingV �= none then

newBasis = GetNewBasis(basicIdx, enteringV, leavingV )
Insert(basisList, newBasis)

5.2 Flat Regions

Our regions are obtained from the rational matrix, and then they are converted
into floating-point representation. As the regions are normalized and intersect
at the same point, they are in the shape of cones. During the conversion, the
constrains will lose accuracy, and thus a cone could be misjudged as flat, meaning
it has empty interior. For instance, we have a cone {C1 : − 100000001

10000000 x1 + x2 ≤
0, C2 : 100000000

10000000 x1 − x2 ≤ 0}, which is not flat. After conversion, C1 and C2

will be represented in floating-point numbers as {C1 : −10.0x1 + x2 ≤ 0, C2 :
10.0x1 − x2 ≤ 0}, and the floating-point cone is flat.
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In this case we invoke a rational simplex solver to check the region by shift-
ing all the constraints to the interior direction. If the region becomes infeasible
after shifting, then the region is really flat; otherwise we launch a rational min-
imization algorithm, which is implemented using Farkas’ Lemma, to obtain the
minimized region.

5.3 Computing an Irredundancy Witness Point

In the minimization algorithm, the checker makes sure that the constraints which
cannot be determined by floating-point algorithm will be regarded as redundant
constraints. In the meantime these constraints are marked as uncertainty. If the
polyhedron to be minimized is also represented by rational numbers, a rational
solver will be launched to determine the uncertain constraints. As in our PLP
algorithm all the regions are represented by both floating-point and rational
numbers, the rational solver can always be executed when there are uncertain
constrains.

Consider the case of computing the irredundant witness point of the con-
straint Ci, we need to solve a feasibility problem: Ci : aix < bi and Cj : ajx ≤
bj ,∀j 
= i. For efficiency, we solve this problem in floating point. However, GLPK
does not support strict inequalities, thus we need tricks to deal with them.

One method is to shift the inequality constraint a little and obtain a non-
strict inequality C′

1 : a1x ≤ b1 − ε, where ε is a positive constant. This method
is however difficult to apply properly because of the need to find a suitable ε.
If ε is small, we are likely to obtain a point too close to the constraint C1; if
ε is too large, perhaps we cannot find any point. One exception is that when
the polyhedron is a cone, we can always find a satisfiable point by shifting the
constraints, no matter how large ε is.

We thus adopted another method for non-conic polyhedra. Instead of solving
a satisfiability problem, we solve an optimization problem:

maximize − aix

subject to ajx ≤ bj ∀j 
= i

aix ≤ bi

(9)

The found optimal vertex is the solution we are looking for.
Assuming we have the polyhedron: −x1+x2 ≤ 0, x1+x2 ≤ 7,−2x2 < −3. The

two methods are shown in Fig. 3. If we compute the optimum in the direction x2

with constraints −x1 + x2 ≤ 0, x1 + x2 ≤ 7, we obtain a feasible point (3.5, 3.5).
However the floating-point solver could misjudge, thus the found optimal

vertex p could be infeasible. Hence we need to test aip ≤ bi − t, where t is
the GLPK threshold. If the test fails, we will use the rational simplex algorithm
to compute the Farkas combination: the constraint is really irredundant if the
combination does not exist.
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Fig. 3. Solving an optimization problem instead of a feasibility problem.

5.4 Adjacency Checker

We shall now prove that no face is missed if and only if for each region and each
boundary of this region, another region is found which shares that boundary.

Assuming we have a situation shown in Fig. 4: the four regions correspond to
different optimal functions. R1,R2 and R3 all found their adjacencies, but R4

is missed. In this case there exist two adjacent regions for some boundaries. We
here show that this situation will not happen.

Theorem 4. No face will be missed if each region finds all the adjacent regions.

Proof. Assume that we cross the boundary F of the region Ri, and the adjacent
regions are Rj and Rk. The corresponding optimal functions are Zj and Zk,
and Zj 
= Zk (otherwise no face will be missed). From Ri to its adjacency, we
need to do one pivoting. Consider the simplex tableau in Table 1. Assuming
the entering variable is λq. If there are two adjacent regions, there will be two
possible leaving variables, say λr and λs. In the simplex algorithm we always
choose the variable with the smallest ratio of the constant and the coefficient as
the leaving variable. When there are two possible leaving variables, the value of
these two ratios must be equal, that is bj

ajq
= bk

akq
. In this case we face the primal

degeneracy, and f∗(x) − bj
ajq

fq = f∗(x) − bk
akq

fq. This is a contradictory to the
assumption Zj 
= Zk. Hence the situation will not happen. �	

Fig. 4. Example of missing faces.
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To find out all the faces, we just need to ensure that all the regions have their
adjacencies. Although we tried to add task points between the regions which are
not adjacent, there may be still missed region because of floating-point arith-
metic. Hence we invoke an adjacency checker at the end of the algorithm. The
information of adjacency has been saved in Algorithm2: if the regions Ri and
Rj are adjacent by crossing the boundaries Fm and Fn, we set true to (Ri,Fm)
and (Rj ,Fn) in the adjacency table. The checker will find out the pair (Rk,Fp)
whose flag of adjacency is false. Then we cross the boundary Fp and use Algo-
rithm3 to compute the missed region and the corresponding optimal function.
The adjacencies of the new obtained region will be checked then, and the algo-
rithm terminates when all the obtained regions have complete adjacencies.

6 Experiments

In this section, we analyze the performance of our parametric linear programming
solver on projection operations. We compare its performance with that of the
NewPolka library of Apron7 and ELINA library [21]. Since NewPolka and ELINA
do not exploit parallelism, we compare it to our library running with only one
thread.

We used three libraries in our implementation:

– Eigen 3.3.2 for floating-point vector and matrix operations;
– FLINT 2.5.2 for rational arithmetic, vector and matrix operations;
– GLPK 4.6.4 for solving linear programs in floating-point.

The experiments are carried out on 2.30 GHz Intel Core i5-6200U CPU.

6.1 Experiments on Random Polyhedra

Benchmarks. The benchmark contains randomly-generated polyhedra, in
which the coefficients of constraints are in the range of −50 to 50. Each polyhe-
dron has 4 parameters: number of constraints (CN), number of variables (VN),
projection ratio(PR) and density (D). The projection ratio is the proportion of
eliminated variables: for example if we eliminate 6 variables out of 10, the pro-
jection ratio is 60%. Density represents the ratio of zero coefficients: if there are
2 zeros in 10 coefficients, density is 20%. In each experiment, we project 10 poly-
hedra generated with the same parameters. To smooth out experimental noise,
we do each experiment 5 times, i.e., 50 executions for each set of parameters.
Then we calculate the average execution time of the 50 executions.

Experimental Results. We illustrate the execution time (in seconds) by line
charts. The blue line is the performance of NewPolka library of Apron, and
the red line is that of our serial PLP algorithm. To illustrate the performance
benefits from the floating-point arithmetic, we turned off GLPK and always use
7 https://github.com/antoinemine/apron.

https://github.com/antoinemine/apron
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the rational LP solver, and the execution time is shown by the orange lines8. It is
shown that solving the LP problems in floating-point numbers and reconstructing
the rational simplex tableau leads to significant improvement of performance.

By a mount of experiments, we found that when the parameters CN =
19, V N = 8, PR = 62.5% and D = 37.5%, the execution time of PLP and
Apron are similar, so we maintain three of them and vary the other to analyze
the variation of performance.

Recall that in order to give a constraint description of the projection of a
convex polyhedron P in constraint description, Apron (and all libraries based
on the same approach, including PPL) computes a generator description of P ,
projects it and then computes a minimized constraint description.

Projection Ratio. In Fig. 5a we can see that execution time of PLP is almost the
same for all the cases, whereas that of Apron changes significantly. Apron incurs
a large cost when it computes the generator representation of each polyhedron.
We plot the execution time of PLP (Fig. 5c) and the number of regions (Fig. 5d),
which vary with the same trend. That means the cost of our approach depends
mostly on the number of regions to be explored. To illustrate it more clearly, the
zoomed figure is shown in Fig. 5b.

The more variables are eliminated, the lower dimension the projected polyhe-
dron has. Then the cost of chernikova’s algorithm to convert from the generators
into the constraints will be less. This explains why Apron is slow when the pro-
jection ratio is low, and becomes faster when the number of eliminated variable
is larger.

Number of Constraints. Keep the other parameters, we increase the number of
constraints from 12 to 30. The result is shown in Fig. 6. We can see that Apron is
faster than PLP when constraints are fewer than 19; beyond that, its execution
time increases significantly. In contrast, the execution time of PLP grows much
more slowly.

Number of Variables. Here the range of variables is 3 to 15. Figure 7a shows that
the performance are similar for Apron and PLP when variables are fewer than
11, but after that the execution time of Apron explodes as the variable number
increases. The zoomed figure is shown in Fig. 7b.

Our understanding is that the execution time of Apron is dominated by the
conversion to the generator description, which is exponential in the number of
constraints for polyhedra resembling hypercubes—likely for a nonempty polyhe-
dron built from m random constraints in a space of dimension less than m.

Density. The Fig. 8 shows the effect of density. The execution time varies for
both Apron and PLP with the increase of density, with the same trend.

8 The minimization is still computed in floating-point numbers.
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(a) (b)

(c) (d)

Fig. 5. CN= 19, VN= 8, D = 37.5%, PR= [25%, 87.5%]

Fig. 6. CN= [12, 30], VN= 8, D = 37.5%, PR= 62.5%

6.2 Experiments on SV-COMP Benchmarks

In this experiment we used the analyzer Pagai [12] and SV-COMP benchmarks
[2]. We randomly selected C programs from the category of Concurrency Safety,
Software System and Reach Safety. The result is compared with NewPolka and
ELINA. In Table 2, we show the name of programs, the number of polyhedra
to be projected (Num), the total and average time (AveT) spent on projection,
the average constraint number (ACN) and the average variable number (AVN).
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(a) (b)

Fig. 7. CN= 19, VN= [3, 15], D = 37.5%, PR = 62.5%

Fig. 8. CN= 19,VN= 8, D = [12.5%,75%], PR= 62.5%

The time is in milliseconds. As it is shown, our algorithm has advantage over
Apron when the polyhedra contain more constraints and/or in higher dimension,
e.g, polyhedra in ldv-linux-3.0-module-loop and ldv-linux-3.0-bluetooth, as we
get rid of maintaining double description. ELINA is the most efficient.

6.3 Analysis

We conclude that our approach has remarkable advantage over Apron for pro-
jecting polyhedra in large dimension (large number of constraints or/and vari-
ables); it is not good choice for solving problems with few constraints in small
dimension.

Our serial algorithm is less efficient than ELINA, but our approach is paral-
lelable and is able to speed up with multiple threads.
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Table 2. Performance on SV-COMP benchmarks.

Program Num Apron AveT ELINA AveT PLP AveT ACN AVN

pthread-complex-buffer 405 116.03 0.29 71.46 0.18 128.56 0.32 3.25 3.06

ldv-linux-3.0-module-loop 10745 6148.74 0.57 2346.16 0.22 3969.44 0.37 3.16 16.19

ssh-clnt-01.csv 17655 5081.45 0.29 3123.7 0.18 5664.97 0.32 3.53 2.61

ldv-consumption-firewire 30650 13763.71 0.45 8574.01 0.28 21493.57 0.7 7.19 6.14

busybox-1.22.0-head3 18340 13686.23 0.75 6930.74 0.38 23971.92 1.31 10.94 6.14

ldv-linux-3.0-magicmouse 20 6.6 0.33 4.24 0.21 10.3 0.52 5 5

ldv-linux-3.0-usb-input 1230 327.22 0.27 198.0 0.16 356.71 0.29 3 2

bitvector-gcd 240 78.14 0.33 46.06 0.19 174.55 0.73 5 3

array-example-sorting 5395 1769.75 0.33 1081.45 0.2 3413.21 0.63 4.78 3.67

ldv-linux-3.0-bluetooth 15250 3898819.28 255.66 37477.14 2.46 190001.11 12.46 20.62 17.66

ssh-srvr-01 82500 35806.67 0.43 20170.35 0.24 98763.8 1.2 5.91 4.68

7 Conclusion and Future Work

We have presented an algorithm to project convex polyhedra via parametric
linear programming. It internally uses floating-point numbers, and then the exact
result is constructed over the rationals. Due to floating-point round-off errors,
some faces may be missed by the main pass of our algorithm. However, we can
detect this situation and recover the missing faces using an exact solver.

We currently store the regions that have been explored into an unstructured
array; checking whether an optimization direction is covered by an existing region
is done by linear search. This could be improved in two ways: (i) regions cor-
responding to the same optimum (primal degeneracy) could be merged into a
single region; (ii) regions could be stored in a structure allowing fast search. For
instance, we could use a binary tree where each node is labeled with a hyper-
plane, and each path from the root corresponds to a conjunction of half-spaces;
then each region is stored only in the paths such that the associated half-spaces
intersects the region.
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Abstract. We present a static analysis for software patches. Given two
syntactically close versions of a program, our analysis can infer a seman-
tic difference, and prove that both programs compute the same outputs
when run on the same inputs. Our method is based on abstract inter-
pretation, and parametric in the choice of an abstract domain. We focus
on numeric properties only. Our method is able to deal with unbounded
executions of infinite-state programs, reading from infinite input streams.
Yet, it is limited to comparing terminating executions, ignoring non ter-
minating ones.

We first present a novel concrete collecting semantics, expressing the
behaviors of both programs at the same time. Then, we propose an
abstraction of infinite input streams able to prove that programs that
read from the same stream compute equal output values. We then show
how to leverage classic numeric abstract domains, such as polyhedra or
octagons, to build an effective static analysis. We also introduce a novel
numeric domain to bound differences between the values of the variables
in the two programs, which has linear cost, and the right amount of rela-
tionality to express useful properties of software patches.

We implemented a prototype and experimented on a few small exam-
ples from the literature. Our prototype operates on a toy language, and
assumes a joint syntactic representation of two versions of a program
given, which distinguishes between common and distinctive parts.

1 Introduction

The problem of proving the functional equivalence of programs, or program parts,
is fundamental [7]. It aims at comparing the behaviors of two programs running
in the same environment, i.e. their input-output relationships. In this paper, we
describe a static analysis which aims at inferring that two syntactically close
versions of a program compute equal outputs, when run on equal inputs.
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Fig. 1. Patch on remove.c of Coreutils (between v6.10 and v6.11)

The main application of this analysis is regression verification [8]: prove that
a program change does not add any undesirable behavior. Take, for instance, the
commit shown on Fig. 1, extracted from a revision control repository of the GNU
core utilities. It describes a change in a library implementing core functions for
removing files and directories, and used by the POSIX rm command. The main
function of this library uses the POSIX fstatat function to read information on
the file to delete. As the same status information is needed in several contexts,
the library implements a caching mechanism. At initialization, the main func-
tion calls a cache stat init function, which initializes the st size field of the stat
structure *st to −1. Then, it calls the cache fstatat function shown on Fig. 1
repeatedly, whenever status information is needed. Indeed, cache fstatat caches
the results of the fstatat function. In revision v6.10 of Coreutils, this function
used the st size field of the stat structure *st to store information on the error
value returned by fstatat upon the first call. It did it in a way that ensures that
st size<0 whenever errno > 0, so as to use the sign of st size upon subsequent
calls, to distinguish between successful and erroneous executions. This scheme
works for operating systems where errno is always set to positive values. However,
some systems, such as BeOS [1] and Haiku [2], allow for negative errno values.
The fix displayed on Fig. 1 aims at accommodating such systems. It consists in
storing errno directly in the st ino field of the stat structure.

On this example, non regression verification amounts to proving that the
behavior of the main function of the library is unchanged on systems with only
positive error values. This is, indeed, validated by our analysis. The analyzed
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1 for (c=0; c<n; c++) cache stat init (&file [c ]. st) ;
2
3 while ((c=getchar()) >= 0 && c < n)
4 r = cache fstatat (AT FDCWD, file[c].name, &file[c].st,

AT SYMLINK NOFOLLOW);

Fig. 2. Execution environments for cache fstatat

source code includes a stub variable for errno, and stub code for the fstatat func-
tion. The stub for fstatat updates errno with a non-deterministic value, ranging
over positive integers. Note that a separate analysis of the cache fstatat function,
as opposed to an analysis of the whole library, makes it necessary to model its
possible execution environments with an unbounded loop, calling cache fstatat
an arbitrary number of times, with parameters taken from an arbitrary sequence
of file names and stat structures. This unbounded sequence is modeled, in prac-
tice, using an unbounded number of reads from an input stream. Figure 2 shows
an example for n files, where n may be unbounded.

More generally, we are interested in analyzing patches of programs reading
an unbounded number of input values, e.g. programs reading from file or I/O
streams, and embedded reactive software with internal state, which no related
work addresses. Or goal is to prove that the original and patched versions of such
programs compute equal outputs, when run with the same sequence of inputs.
We therefore model streams directly in the semantics on which our analysis is
based (see Sect. 2).

Running Example. In the following, we sketch our approach to the analysis
of semantic differences between two syntactically similar programs P1 and P2.
We are interested in proving that P1 and P2 compute equal outputs when run
on equal inputs. P1 and P2 are represented together in the syntax of a so-called
double program P . Simple programs P1 and P2 are referred to as the left and
right projections of P . Figure 3 shows the Unchloop example, taken from [24], and
translated into our syntax of double programs. The ‖ symbol is used to represent
syntactic difference. It is available at expression, condition, and statement levels
in our syntax for double programs. For instance at line 3, c ← 1 ‖ 0 means c ← 1
for P1, and c ← 0 for P2. In contrast, line 4 means i ← 0 for both P1 and P2.

Let us describe the example program. Both versions P1 and P2 read inputs
in the range [−1000, 1000] into a and b at lines 1 and 2. At line 3, the counter
c is being initialised with value 1 for program P1, and value 0 for program P2.
Then, both programs add a times the value of b to c in a loop. Finally, they
both store the result into r at line 9: c for P1, c+1 for P2. The assertion at line
10 expresses the property we would like to check: if both programs reach it, then
they should have computed equal values for r.

We assume here that both programs read the same input value in a, and the
same input value in b. More generally, the semantics of P is parameterized by
a (possibly infinite) sequence of input values, and we wish to prove that, given
the same sequence of input values, P1 and P2 have the same result in r.
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1 : a ← input(−1000, 1000);
2 : b ← input(−1000, 1000);
3 : c ← 1 ‖ 0;
4 : i ← 0;
5 : while (i < a) {
6 : c ← c + b;
7 : i ← i + 1;
8 : }
9 : r ← c ‖ c + 1;
10 : assert sync(r);

Fig. 3. Unchloop example

1 : x ← input(−100, 100);
2 : if (x < 0) x ← −1;
3 : else {
4 : if (x ≥ 2 ‖ x ≥ 4) {} // x > 4 in original paper
5 : else {
6 : while (i = 2) x ← 2;
7 : x ← 3;
8 : }
9 : }
10 : assert sync(x); // x = 2 ignored

Fig. 4. Modified [24, Fig. 2] example.

The assertion at line 10 of our example is thus valid. It is, indeed, validated
by our analysis.

Limitations. Our analysis is based on abstractions of a concrete collecting
semantics which will be presented in Sect. 2. This semantics relates pairs of ter-
minating executions of projections of a double program. It is suitable to prove
a number of properties, including that two terminating programs starting from
equal initial states will produce equal outputs, a notion called partial equiva-
lence in [8]. In contrast, an analysis based on this collecting semantics will fail to
report differences between pairs of executions where at least one of the programs
does not terminate. For instance, in the example on Fig. 4, our analysis does not
report any difference between P1 and P2, although P1 terminates on input x = 2,
and P2 does not.

As opposed to [21,22], which develop algorithms to automate the construction
of a correlating program P1 �� P2, on which to run the static analysis, we assume
for now the joint representation of P1 and P2 given, as part of a double program
in our toy language.

Related Work. [11] pioneered the field of semantic differencing between two
versions of a procedure by comparing dependencies between input and out-
put variables. Symbolic execution methods [19,23,24] have proposed analysis
techniques for programs with small state space and bounded loops, which may
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support modular regression verification. On the contrary, we can handle pro-
grams with unbounded loops and an infinite number of execution paths, like the
example of Figs. 1 and 2. Some approaches [16] combine symbolic execution and
program analysis techniques to improve the coverage of patches with tests suites,
but such testing coverage criteria bring no formal guarantee of correctness, unlike
our method.

RVT [8] and SymDiff [14,15] combine two versions of the same program,
with equality constraints on their inputs, and compile equivalence properties
into verification conditions to be checked by SMT solvers. On the contrary, we
rely on abstract domains to infer equivalence properties.

The DIZY [21,22] tool leverages numerical abstract interpretation to estab-
lish equivalence under abstraction. In particular, the authors give a semi-formal
description of an operational concrete trace semantics. This semantics is not
defined by induction on the syntax, and does not support streams. Our main
contribution, with respect to this work, is a novel, fully formalized, denota-
tional concrete collecting semantics by induction on the syntax, which can deal
with programs reading from infinite input streams, and a novel numeric domain
to bound differences between the values of the variables in the two programs.
Another difference is that [21,22] rely on program transformations to build a
correlating program, which they analyze according to simple program seman-
tics, while our semantics is defined for double programs directly.

The Fluctuat [9,17] static analyser compares the real and floating-point
semantics of numeric programs to bound errors in floating-point computations.
The authors use the zonotope abstract domain to bound the difference between
real and floating-point values. Like in our concrete semantics, they also address
unstable test analysis [10].

Contributions. The main contributions of this work are:

– We present a novel concrete collecting semantics, expressing the behaviors
of two versions of a program at the same time. This semantics deals with
programs reading from unbounded input streams.

– We propose an abstraction of infinite input streams able to prove that pro-
grams that read from the same stream compute equal output values.

– We introduce a novel numeric domain to bound differences between the values
of the variables in the two programs, which has linear cost, and the right
amount of relationality to express useful properties of software patches.

– We implemented a prototype static analyzer which exhibits significant
speedups with respect to previous works.

We build on previous work [6]. The main contributions of the current paper,
with respect to this work, is a formal treatment of infinite input streams, in the
concrete and abstract semantics.

The paper is organised as follows. Section 2 formalizes the concrete collect-
ing semantics, and illustrates it on the example from Fig. 3. Section 3 describes
the abstract semantics, discusses the choice of numeric abstract domains, and
introduces a novel numeric domain. Section 4 presents experimental results with
a prototype implementation. Section 5 concludes.
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stat ::= V ← expr V ∈ V
| V ← input(a, b) a, b ∈
| if cond then stat else stat
| while cond do stat
| stat; stat
| skip

(a) Simple statements

expr ::= V V ∈ V
| c c ∈
| −expr
| expr � expr � ∈ {+, −, ×, /}
| rand(a, b) a, b ∈

cond ::= expr �� expr �� ∈ {≤, ≥,=, �=, <, >}
| ¬cond
| cond � cond � ∈ {∧, ∨}

(b) Simple expressions and conditions

dstat ::= stat
| stat ‖ stat
| V ← dexpr V ∈ V
| assert sync(V )
| dstat; dstat
| if dcond then dstat else dstat
| while dcond do dstat

(c) Double statements

dexpr ::= expr
| expr ‖ expr

dcond ::= cond
| cond ‖ cond

(d) Double expressions and conditions

Fig. 5. Syntax of simple and double programs

2 Syntax and Concrete Semantics

Following the standard approach to abstract interpretation [4], we developed a
concrete collecting semantics for a toy While language for double programs. The
‖ operator may occur anywhere in the parse tree, to denote syntactic differences
between the left and right projections of a double program. However, ‖ operators
cannot be nested: a double program only describes a pair of programs.

Given double program P with variables in V, consider its left (resp. right)
projection P1 = π1(P ) (resp. P2 = π2(P )), where π1 (resp. π2) is a projection
operator defined by induction on the syntax, keeping only the left (resp. right)
side of ‖ symbols. For instance, π1(c ← 1 ‖ 0) = c ← 1, and π2(c ← 1 ‖ 0) =
c ← 0, while π1(i ← 0) = i ← 0 = π2(i ← 0).

2.1 Simple Programs

P1 and P2 are simple programs, with concrete memory states in E � V → R.
Let k ∈ {1; 2}. The syntax of simple program Pk is standard. Statements stat
are presented in Fig. 5(a). They are built on top of numeric expressions expr and
Boolean conditions cond , defined in Fig. 5(b). To define the semantics of simple
program Pk, we leverage standard, relational, input-output semantics, defined
by induction on the syntax, in denotational style. Given E� e � ∈ E → P(R)
for non-deterministic expression e ∈ expr , and C� c � ∈ E → P({true, false})
for condition c ∈ cond , we let S� s � describe the relation between input and
output states of statement s ∈ stat . Because of the input command, which
reads some input stream, S� s � is parameterised by a sequence of values, and
program states record the current index in this sequence. Note that this sequence
has to be infinite: indeed, due to non-determinism, the concrete semantics maps
every input stream to a (possibly infinite) set of executions, which can execute
an unbounded number of input statements. Therefore S� s � ∈ Rω → P(E ′ ×E ′),
where E ′ � E × N, and:
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S�V ← input(a, b) �σ � { ((ρ, n), (ρ[V �→ σn], n + 1)) | (ρ, n) ∈ E ′ ∧ a ≤ σn ≤ b }

Note that we model one input stream only, but the generalization to several input
streams is obvious. We do not display the semantics for other commands, as
the semantics for assignments and tests are standard for memory environments,
and leave indexes unchanged. For instance, S�V ← e �σ � { ((ρ, n), (ρ[V �→
v], n)) | (ρ, n) ∈ E ′ ∧ v ∈ E� e �ρ }.

2.2 Double Programs

We then lift the semantics S to double programs. As P1 and P2 have concrete
states in E ′, P has concrete states in D′ � E ′ × E ′. The syntax of double state-
ments dstat is shown in Fig. 5(c). They are built on top of double expressions
dexpr and double conditions dcond , defined in Fig. 5(d). The semantics of a
double statement s ∈ dstat , denoted D� s � ∈ Rω → P(D′ × D′), describes the
relation between input and output states of s, which are pairs of states of simple
programs, for a given shared sequence of input values. The definition for D� s �
is shown on Fig. 6, in relational style. It is defined by induction on the syntax,
so as to allow for modular, joint analyses of double programs that maintain
input-output relations on the variables. Note that D is parametric in S.

The semantics for the empty program is the diagonal, identity relation ΔD′ .
The semantics D� s1 ‖ s2 � for the composition of two syntactically different
statements reverts to the pairing of the simple program semantics of individual
simple statements s1 and s2. Note that D� s1 ‖ s2 �σ = D� s1 ‖ skip �σ �D� skip ‖
s2 �σ for any σ ∈ Rω, where we use the symbol � to denote the left composition
of relations: R1 �R2 � { (x, z) | ∃y : (x, y) ∈ R1 ∧ (y, z) ∈ R2 }. The semantics for
assignments of double expressions D�V ← e1 ‖ e2 � (different expressions to the
same variable) is defined using this construct. The interest of double expressions
in the syntax is to allow for simple symbolic simplifications in later abstraction
steps, when computing differences between expressions assigned to a variable.
The semantics of assert sync(V ) statements asserts that the left and right
projections of a double program agree on the value of variable V . The semantics
for the sequential composition of statements boils down to the composition of the
semantics of individual statements. The semantics for selection statements relies
on the filter F � c1 ‖ c2 � to distinguish between cases where both projections agree
on the value of the controlling expression, and cases where they do not (a.k.a.
unstable tests). There are two stable and two unstable test cases, according
to the evaluations of the two conditions. The semantics for stable test cases is
standard. The semantics for unstable test cases is defined by composing the left
restriction of the left projection π1(s) ‖ skip and the right restriction of the
right projection skip ‖ π2(t) of the then s and else t branches. Intuitively,
π1(s) ‖ skip means that the left projection of the double program executes s,
while the right projection of the double program does nothing. The semantics
for (possibly unbounded) iteration statements is defined using the least fixpoint
of a function defined similarly.
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Fig. 6. Denotational concrete semantics of double programs

Note that the semantics D�V ← input(a, b) � of input statements is different
from the semantics D�V ← rand(a, b) � of non-deterministic assignments. The
latter entails no relationship between the values read by the two projections of
a double program, besides the fact that they range in the same interval. On
the contrary, the former reads from a shared input stream σ, hence the left
and right projections P1 and P2 read equal values if their input indexes n1

and n2 are equal. This is the case when P1 and P2 have called input equal
numbers of times. On the contrary, if one projection, say P1, has called input
more often than the other, then P1 is ahead of P2 in the stream, and the two
projections are desynchronized. Nonetheless, they may resynchronize later if P2

catches up with P1, hence read equal values again. Also, owing to the semantics
S�V ← input(a, b) � of simple input statements, input(a, b) returns only if the
input value at the current index is in the range [a, b]. Therefore, it should be
considered a semantic error if P1 and P2 use different ranges [a1, b1] 
= [a2, b2]
to read the input at the same index. For the sake of simplicity, we do not check
this in our semantics (altough our implementation performs this check).

The presence of both input and rand primitives makes the semantics very
expressive, and useful for modeling many practical problems. Non-determinism
allows to abstract unknown parts of a program: for instance, rand(0, 10) is a
sound stub for f(), when function f is only known to return values between
0 and 10. Also, combining input and rand allows to model information flow
problems. For instance, the D semantics distinguishes the two programs (a) and
(b) shown on Fig. 21, and presented in Sect. 5.
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2.3 Properties of Interest

We wish to prove the functional equivalence of the left and right projec-
tions of a given double program P ∈ dstat , restricted to a set of distin-
guished variables V0 ∈ P(V), specified with the assert sync primitive. Let
I0 � {((λV. 0, 0), (λV. 0, 0))} be the singleton state with all variables and input
indexes initialized to zero. The set of states reachable by P from I0 with input
stream σ is (D�P �σ)I0. Therefore the property of interest may be formalized as:

∀σ ∈ Rω : ∀V ∈ V0 : ∀((ρ1, n1), (ρ2, n2)) ∈ (D�P �σ)I0 : ρ1(V ) = ρ2(V )

Coming back to our running example Unchloop on Fig. 3, the concrete seman-
tics of the program from line 3 to 9 is displayed on Fig. 7, for any sequence of
inputs σ ∈ Rω. With the additional assumption that both program projections
compute with equal inputs (a1 = a2 = σ0 ∧ b1 = b2 = σ1), ensured by the
semantics of line 1 and 2, and the initial environment I0, the two projections can
be proved to compute equal values for r.

Unchloop3..9 σ =
{ s0, ((a1, b1, 1, 0, 1, n1), (a2, b2, 0, 0, 1, n2)) | a1 ≤ 0 ∧ a2 ≤ 0 ∧ H0 }

∪ { s0, ((a1, b1, 1 + a1 × b1, a1, 1 + a1 × b1, n1), (a2, b2, 0, 0, 1, n2)) | a1 > 0 ∧ a2 ≤ 0 ∧ H0 }
∪ { s0, ((a1, b1, 1, 0, 1, n1), (a2, b2, a2 × b2, a2, 1 + a2 × b2, n2)) | a1 ≤ 0 ∧ a2 > 0 ∧ H0 }
∪ { s0, ((a1, b1, 1 + a1 × b1, a1, 1 + a1 × b1, n1), (a2, b2, a2 × b2, a2, 1 + a2 × b2, n2)) | a1 > 0 ∧ a2 > 0 ∧ H0 }

where s0 � ((ak, bk, ck, ik, rk), nk)k∈{1,2}
and H0 � s0 ∈ 4 ×

Fig. 7. Concrete semantics of the Unchloop example from Fig. 3

Unfortunately, our concrete collecting semantics D is not computable in gen-
eral. A particular difficulty of the Unchloop example is that the input-ouptut
relation is non linear: (a ≤ 0 ⇒ r = 1) ∧ (a ≥ 0 ⇒ r = 1 + a × b). Hence, infer-
ring such information is beyond classic numeric domains, such as polyhedra.
We will provide a new analysis method which avoids resorting to more complex,
non-linear numeric domains. An additional difficulty, not shown in the Unchloop
example, is that the programs can read an unbounded number of values from
their input stream.

3 Abstract Semantics

We therefore tailor an abstract semantics suitable for the analysis of program
differences.
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( ω → P(D′ × D′), ⊆̇) →−→−−−− −−−−−←←
αF

γF
(P(D̂ × D̂), ⊆)

αF(f) � { (βσ(s), βσ(s′)) | (s, s′) ∈ f(σ) ∧ σ ∈ ω }
(γF(R))(σ) � { (s, s′) | (βσ(s), βσ(s′)) ∈ R }

where ∀ σ ∈ ω : βσ ∈ D′ → D̂
βσ(((ρ1, n1), (ρ2, n2))) � (ρ1, ρ2, δ, q)

with δ = n2 − n1 ∧ |q| = |δ| ∧ ∀ 0 ≤ n < |δ| : qn = σmax{n1,n2}−n−1

Fig. 8. Abstraction of shared input sequences with unbounded FIFO queues

3.1 Wrapping up Infinite Input Sequences

A first observation is that we do not need to recall the whole input sequence
σ ∈ Rω shared by the left and right projections P1 and P2 of a double program
P . Indeed, we only aim at inferring equalities between the input values read by P1

and P2. We therefore only need to record, at any point in the analysis, the input
subsequence that has been read by one program, but not the other one yet. This
ensures that, when a program that has read less values than the other catches up
with it, it reads the same values. Values read by both programs can be discarded,
and values not read by any program do not need to be known in advance, as they
can be chosen non-deterministically. This subsequence of input values read by
one program only forms an (unbounded) FIFO queue, as inputs are read in order.
We therefore abstract the input sequence σ, and indexes n1 and n2 of P1 and P2

in this sequence, defined in D′, as the difference δ � n2 − n1, and a FIFO queue
of length |δ| in D̂ � E ×E ×N×R�. This abstraction does not lose information. A
formalization of this abstraction is shown on Fig. 8. Note that we use the symbol
⊆̇ to denote the pointwise lifting of ⊆: f⊆̇f ′ ≡ ∀σ ∈ Rω : f(σ) ⊆ f ′(σ).

Proposition 1. The pair (αF, γF) defined in Fig. 8 is a Galois isomorphism.

Note that this abstraction includes some redundancy: indeed, it would be
enough to record only the sign of δ, instead of its value, as its absolute value is
given by the length of the queue. However, keeping the value simplifies subse-
quent abstraction steps.

Simple Programs. Starting from the concrete semantics D, let us now for-
malize the semantics resulting from this first abstraction step. To start with,
we first define the simple program semantics. The behaviors of the left and
right projections P1 and P2 of a double program P depend on which is ahead
in the input sequence, and which is behind. P1 is ahead if δ < 0, and P2 is
ahead if δ > 0. Therefore, we need to particularize the simple program seman-
tics Ŝk� s � ∈ P(Ê × Ê), where Ê � E × N × R�, and k ∈ {1, 2}. Figure 9 shows
the semantics for Ŝk�V ← input(a, b) � . Note that we write q · q′ to denote con-
catenation of queues q and q′. Intuitively, this semantics distinguishes between
two cases:
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ˆ
k s ∈ P(Ê × Ê) ; k ∈ {1, 2}

ˆ1 V ← input(a, b) �
{ ((ρ, δ, q), (ρ[V �→ ν], δ − 1, ν · q)) | (ρ, δ, q) ∈ Ê ∧ δ ≤ 0 ∧ a ≤ ν ≤ b }

∪ { ((ρ, δ, q · v), (ρ[V �→ v], δ − 1, q)) | (ρ, δ, q) ∈ Ê ∧ δ > 0 ∧ a ≤ v ≤ b }
ˆ2 V ← input(a, b) �

{ ((ρ, δ, q), (ρ[V �→ ν], δ + 1, ν · q)) | (ρ, δ, q) ∈ Ê ∧ δ ≥ 0 ∧ a ≤ ν ≤ b }
∪ { ((ρ, δ, q · v), (ρ[V �→ v], δ + 1, q)) | (ρ, δ, q) ∈ Ê ∧ δ < 0 ∧ a ≤ v ≤ b }

Fig. 9. Abstract semantics of simple programs P1 and P2 with unbounded queues

1. If program Pk is ahead of the other program in the input sequence, or at
the same point, then a new successful input read operation produces a fresh
input value, and adds it at the head of the queue.

2. If program Pk is behind the other program in the input sequence, then a new
successful input read operation retrieves the value at the tail of the queue.

In both cases, an input read operation is only successful if the value read matches
the bounds specified for the input statement. We do not display the semantics
for other commands, as the semantics for assignments and tests are standard for
memory environments, and leave input index differences and queues unchanged.
For instance, Ŝk�V ← e � � { ((ρ, δ, q), (ρ[V �→ v], δ, q)) | (ρ, δ, q) ∈ Ê ∧ v ∈
E� e �ρ }.

Double Programs. We then lift the semantics Ŝ1� s � and Ŝ2� s � to double
programs. The definition of D̂� s � ∈ P(D̂×D̂) is very similar to that of D� s �. It
can be obtained by removing σ parameters from Fig. 6, except for the composi-
tion of syntactically different statements D̂� s1 ‖ s2 � and conditions F̂ � c1 ‖ c2 �
We thus only show the definitions of these relations on Fig. 10. Following the
particularization of simple statement semantics, the semantics for double state-
ments and conditions compose the semantics of their left and right projections
D̂k� sk � and F̂k� ck � , where D̂k and F̂k operate on simple statements and condi-
tions only. Note that the order of the composition is arbitrary, and not significant,
as D̂1� s � � D̂2� t � = D̂2� t � � D̂1� s � , and likewise for F̂1� c � and F̂2� d � . Finally,
we formalize the relation between the abstract semantics D̂ and the concrete
collecting semantics D.

Proposition 2. D̂ is a sound and complete abstraction of D: D̂ = αF(D).

3.2 Bounding Input Queues

The abstract semantics D̂ features unbounded queues. We aim at abstracting
the concrete collecting semantics D in numeric domains, so we need to deal with
a bounded number of variables. As it is also simpler to deal with a fixed number
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ˆ s ∈ P(D̂ × D̂)

ˆ s1 ‖ s2 � ˆ 1 s1 ˆ 2 s2
ˆ 1 s � { ((ρ1, ρ2, δ, q), (ρ′

1, ρ2, δ
′, q′)) | ((ρ1, δ, q), (ρ′

1, δ
′, q′)) ∈ ˆ1 s ∧ ρ2 ∈ E }

ˆ 2 s � { ((ρ1, ρ2, δ, q), (ρ1, ρ
′
2, δ

′, q′)) | ((ρ2, δ, q), (ρ′
2, δ

′, q′)) ∈ ˆ2 s ∧ ρ1 ∈ E }
ˆ c1 ‖ c2 � ˆ1 c1 ˆ2 c2
ˆ

k c � { ((ρ1, ρ2, δ, q), (ρ1, ρ2, δ, q)) | (ρ1, ρ2, δ, q) ∈ D̂ ∧ true ∈ c ρk } ; k ∈ {1; 2}

Fig. 10. Abstract semantics of double programs with unbounded queues

(P(D̂ × D̂), ⊆) →−→−−−←−−−−−
αp

γp

(P(D̂p × D̂p), ⊆)

αp(R) � { (βp(s), βp(s′)) | (s, s′) ∈ R }
γp(R) � { (s, s′) | (βp(s), βp(s′)) ∈ R }

where βp ∈ D̂ → D̂p

βp((ρ1, ρ2, δ, q))� (ρ1, ρ2, δ, q̃) with q̃n =

{
qn if 0 ≤ n < |δ|
0 if |δ| ≤ n < p

Fig. 11. Abstraction of FIFO queues to fixed length p ≥ 1

of variables, we parameterize our abstract semantics with some predetermined
integer p ≥ 1, used to define the lengths of abstract FIFO queues in domain
D̂p � E × E × N × Rp. Queues from D̂ are truncated whenever |δ| > p, and
padded with zeros whenever |δ| < p. A formalization of this abstraction is shown
on Fig. 11.

Proposition 3. For all p ≥ 1, the pair (αp, γp) defined in Fig. 11 is a Galois
embedding.

Let p ≥ 1. Starting from semantics D̂, we now give a formal definition for
the abstract double program semantics D̂p resulting from this second abstraction
step.

Simple Programs. To this aim, we first define the semantics Ŝp
k� s � ∈ P(Êp ×

Êp) of simple programs, where Êp � E ×N×Rp, and k ∈ {1, 2}. Figure 12 shows
the semantics of Ŝ

p
1�V ← input(a, b) � . Mutatis mutandis, the case of Ŝ

p
2 is

similar. Intuitively, this semantics distinguishes between three cases:

1. If program Pk is ahead of the other program in the input sequence, or at
the same point, then a new successful input read operation produces a fresh
input value, and adds it on top of the queue, discarding the value at the
bottom at the queue.

2. If program Pk is behind the other program in the input sequence, and the
delay is less than the size of the input queue, then a new successful input
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ˆp
1 s ∈ P(Êp × Êp)

ˆp
1 V ← input(a, b) �{

((ρ1, δ, q · v), (ρ1[V1 �→ ν], δ − 1, ν · q))
∣∣ (ρ1, δ, q) ∈ Ep−1 ∧ δ ≤ 0 ∧ a ≤ ν ≤ b ∧ v ∈ }

∪
{
((ρ1, δ, q · v · r), (ρ1[V1 �→ v], δ − 1, q · 0 · r))

∣∣∣∣ (ρ1, δ, q) ∈ E|δ|−1 ∧ 0 < δ ≤ p ∧ a ≤ v ≤ b
r ∈ p−2 ∧ ∀ 0 ≤ n < p − 2 : rn = 0

}
∪ {

((ρ1, δ, q), (ρ1[V1 �→ ν], δ − 1, q))
∣∣ (ρ1, δ, q) ∈ Ep ∧ δ > p ∧ a ≤ ν ≤ b

}

Fig. 12. Abstract semantics of simple program P1 with queues of length p ≥ 1. The
case of P2 is similar.

read operation retrieves the value in the queue indexed by this delay, and
resets this value to zero.

3. If program Pk is behind the other program in the input sequence, and the
delay is more than the size of the input queue, then a new successful input
read operation produces a fresh input value, and leaves the queue unchanged.

In any case, an input read operation is only successful if the value read matches
the bounds specified for the input statement. We do not display the semantics
for other commands, as the semantics for assignments and tests are standard for
memory environments, and leave input index differences and queues unchanged.
For instance, Ŝ

p
k�V ← e � � { ((ρ, δ, q), (ρ[V �→ v], δ, q)) | (ρ, δ, q) ∈ Ep ∧ v ∈

E� e �ρ }.

Double Programs. We then lift the semantics Ŝ
p
1� s � and Ŝ

p
2� s � to double

programs. The definition of D̂p� s � ∈ P(D̂p×D̂p) is very similar to that of D̂� s � .
The main change is that D̂p

k� s � is defined with Ŝ
p
k� s � , where D̂k� s � is defined

with Ŝk� s � . We thus only show the definitions of some relations on Fig. 13. These
definitions are very similar to those of D̂� s � on Fig. 10. The semantics for double
statements and conditions compose the semantics of their left and right projec-
tions. The order of the composition is arbitrary, but significant for statements, as
D̂

p
1� s � � D̂p

2� t � 
= D̂
p
2� t � � D̂p

1� s � . Both composition orders, however, are sound.
A way to make the analyse precise and independent on the order would be to
compute the intersection of the compositions with the two orders. The order is
in constrast not significant for conditions, as F̂

p
1 � c � � F̂ p

2 � d � = F̂
p
2 � d � � F̂ p

1 � c � .
Finally, we formalize the relation between the abstract semantics D̂p and the

previous abstraction D̂ of the concrete collecting semantics.

Proposition 4. For all p ≥ 1, D̂p is a sound and optimal abstraction of D̂:
D̂p = αp(D̂).

3.3 Numerical Abstraction

We now rely on numeric abstractions to abstract further D̂p� s � into a com-
putable abstract semantics D̂�p� s � , resulting in an effective static analysis.
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ˆ p s ∈ P(D̂p × D̂p)

ˆ p s1 ‖ s2 � ˆ p
1 s1 ˆ p

2 s2
ˆ p
1 s � { ((ρ1, ρ2, δ, q), (ρ′

1, ρ2, δ
′, q′)) | ((ρ1, δ, q), (ρ′

1, δ
′, q′)) ∈ ˆp

1 s ∧ ρ2 ∈ E }
ˆ p
2 s � { ((ρ1, ρ2, δ, q), (ρ1, ρ

′
2, δ

′, q′)) | ((ρ2, δ, q), (ρ′
2, δ

′, q′)) ∈ ˆp
2 s ∧ ρ1 ∈ E }

ˆp c1 ‖ c2 � ˆp
1 c1 ˆp

2 c2
ˆp

k c � { ((ρ1, ρ2, δ, q), (ρ1, ρ2, δ, q)) | (ρ1, ρ2, δ, q) ∈ D̂p ∧ true ∈ c ρk } ; k ∈ {1; 2}

Fig. 13. Abstract semantics of double programs with queues of length p ≥ 1

Connecting to Numeric Domains. As D̂p ≈ R2|V|+p+1, any numeric abstract
domain with 2|V|+p+1 dimensions may be used, such as polyhedra [5]. Let N be
such an abstract domain, with values in D�, order ��, concretization γN ∈ D� →
P(R2|V|+p+1), and operators Ŝ�p� s � , Ĉ�p� c � ∈ D� → D� for assignments and
tests of simple programs over variables in V1 ∪V2 ∪Q, where Vk � {xk |x ∈ V },
and Q � {δ, (qn)0≤n<p}. Let ∪� and ∩� be the abstractions of set union and
intersection of domain N , and � be its widening operator.

We abstract D̂p� s � ∈ P(D̂p×D̂p) by D̂�p� s � ∈ D� → D�, with the soundness
condition ∀X� ∈ D� : D̂p� s � (γN (X�)) ⊆ γN (D̂�p� s � (X�)). As D̂p� s � is defined
by induction on the syntax, the definition for D̂�p� s � is straightforward: the
abstract semantics needs only be defined for the composition of syntactically
different statements s1 ‖ s2 and conditions c1 ‖ c2. Figure 14 shows definitions
for associate transfer functions, as well as the transfer functions for some of the
other syntactic constructs. We use the syntactic renaming operator τ1 (resp.
τ2), defined by induction on the syntax, to distinguish the variables of the left
(resp. right) projection of a double program, with suffix 1 (resp. 2). For instance,
D̂�p� c ← 1 ‖ 0 � = Ŝ�p� c2 ← 0 � ◦ Ŝ�p� c1 ← 1 � .

Leveraging Standard Numeric Domains. Coming back to the example
Unchloop from Fig. 3, recall that the relation between c and i is non linear:
c1 = i1 × b1 + 1 and c2 = i2 × b2 from line 4 to line 9. Thus, a separate analysis
of programs P1 and P2 would require a non linear abstract domain to compare
r1 and r2. In contrast, our joint analysis of P1 and P2 will be sufficiently precise,
even when using linear numeric domains, because the difference between the
values of the variables in P1 and in P2 remains linear. For instance, the polyhedra
domain [5] is able to infer that the invariant −c1 + c2 + 1 = 0 holds from line 3
to 9, hence r1 = r2 at line 9, although it is not able to discover any interval for
r1 or r2. The octagon domain [18] is also able to express these invariants, but
its transfer function for assignment is not precise enough to infer them. Indeed,
x ← a − b cannot be exactly abstracted by the domain, and currently proposed
transfer functions fall back to plain interval arithmetics in that case, so that
the domain cannot exploit the bound it infers on a − b to bound x, for efficiency
reasons. The interval domain is not able to express the invariants, hence it cannot
be used directly for a conclusive analysis.
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ˆ �p s ∈ D� → D�

ˆ �p s1 ‖ s2 � ˆ �p
2 s2 ◦ ˆ �p

1 s1

ˆ �p
k s � ˆ�p τk(s) ; k ∈ {1; 2}

ˆ�p c1 ‖ c2 � ˆ�p
2 c2 ◦ ˆ�p

1 c1
ˆ�p

k c � ˆ�p τk(c) ; k ∈ {1; 2}
ˆ �p V ← e1 ‖ e2 � ˆ�p V2 ← τ2(e2) ◦ ˆ�p V1 ← τ1(e1)

ˆ �p
1 V ← input(a, b) � ˆ�p δ ← δ − 1 ◦( ˆ�p V1 ← q0 ◦ ˆ�p q0 ← rand(a, b) ◦ ˆ�p q1 ← q0 ◦ · · · ◦ ˆ�p qp−1 ← qp−2 ◦ ˆ�p δ ≤ 0 ∪� )

ˆ�p qδ−1 ← 0 ◦ ˆ�p V1 ← qδ−1 ◦ ˆ�p qδ−1 ≤ b ◦ ˆ�p qδ−1 ≥ a ◦ ˆ�p δ ≤ p ◦ ˆ�p δ > 0 ∪�

ˆ�p V1 ← rand(a, b) ◦ ˆ�p δ > p

ˆ �p
2 V ← input(a, b) � ˆ�p δ ← δ + 1 ◦( ˆ�p V2 ← q0 ◦ ˆ�p q0 ← rand(a, b) ◦ ˆ�p q1 ← q0 ◦ · · · ◦ ˆ�p qp−1 ← qp−2 ◦ ˆ�p δ ≥ 0 ∪� )

ˆ�p q−δ−1 ← 0 ◦ ˆ�p V2 ← q−δ−1 ◦ ˆ�p q−δ−1 ≤ b ◦ ˆ�p q−δ−1 ≥ a ◦ ˆ�p δ ≥ −p ◦ ˆ�p δ < 0 ∪�

ˆ�p V2 ← rand(a, b) ◦ ˆ�p δ < −p

where τk(x) �
{

xk if x ∈ V
x if x ∈ Q

Fig. 14. Abstract semantics of double programs with a standard numeric domain

(P(D̂p × D̂p), ⊆) →−→−−−− −−−−−←←
α−

γ−
(P(D̂p × D̂p), ⊆)

α−(R) � ((ρ1, ρ2 − ρ1, δ
�, q), (ρ′

1, ρ
′
2 − ρ′

1, δ
�′, q′)) ((ρ1, ρ2, δ

�, q), (ρ′
1, ρ

′
2, δ

�′, q′)) ∈ R

γ−(Δ) � ((ρ1, ρ1 + δρ, δ�, q), (ρ′
1, ρ

′
1 + δ′

ρ, δ�′, q′)) ((ρ1, δρ, δ�, q), (ρ′
1, δ

′
ρ, δ�′, q′)) ∈ Δ

Fig. 15. Abstraction of double environments with environment differences

3.4 Introducing a Dedicated Numeric Domain

However, we remark that it is sufficient to bound the difference x2 − x1 for any
variable x to express the necessary invariants, where x1 (resp. x2) represents the
value of x for the left (resp. right) projection P1 (resp. P2) of a double program P .
Thus, we now design an abstract domain that is specialized to infer these bounds.
We abstract the values x1 and x2 by the pair (x1, δx), where δx � x2 − x1. This
abstraction amounts to changing the representation of states of double program
P . It does not lose information. A formalization of this abstraction is shown on
Fig. 15. Note that we extend operators + and − to functions (pointwise lifting).

Proposition 5. The pair (α−, γ−) defined in Fig. 15 is a Galois isomorphism.

Let p � α (ˆ p). p is able to represent two-variable equalities x1 = x2 ⇔
δx = 0, even after numeric abstraction using non relational domains, such as
intervals. Transfer functions rely on symbolic simplifications to let such equalities
propagate through linear expressions. The semantics p of statements 6 and 9
of the UnchLoop example are shown for instance on Fig. 16, before and after
simple symbolic simplifications of affine expressions.

Like for D̂p, any numeric domain over variables in V1 ∪ Vδ ∪ Q, where
Vδ � { δx |x ∈ V }, can be used to abstract p . Therefore the definition for 	p is
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p c ← c + b
= { (s1, (((a1, b1, c1 + b1, i1, r1), ((a1 + δa) − a1, (b1 + δb) − b1,

((c1 + δc) + (b1 + δb)) − (c1 + b1), (i1 + δi) − i1, (r1 + δr) − r1), δ, q)) | H1 }
= { (s1, ((a1, b1, c1 + b1, i1, r1), (δa, δb, δc + δb, δi, δr), δ, q)) | H1 }
p r ← c ‖ c + 1
= { (s1, ((a1, b1, c1, i1, c1), ((a1 + δa) − a1, (b1 + δb) − b1, ((c1 + δc) − c1,

(i1 + δi) − i1, (c1 + δc + 1) − c1)), δ, q) | H1 }
= { (s1, ((a1, b1, c1, i1, c1), (δa, δb, δc, δi, δc + 1), δ, q)) | H1 }

where s1 � ((a1, b1, c1, i1, r1), (δa, δb, δc, δi, δr), δ, q)
and H1 � s1 ∈ 10 × × p

Fig. 16. Examples of p semantics

	p V ← input(a, b) �( ˆ 	p δV ← 0 ◦ ˆ 	p V1 ← q0 ◦ ˆ 	p q0 ← rand(a, b) ◦p−2
i=0

ˆ 	p qi+1 ← qi ◦ ˆ 	p δ� = 0 ∪	 )
	p
2 V ← input(a, b) ◦ 	p

1 V ← input(a, b) ◦ ˆ 	p δ� �= 0

	p V ← e � 	p
2 V ← e ◦ ˆ 	p V1 ← (τ1 ◦ π1)(e)

where

	p
2 V ← e �

⎧⎪⎨
⎪⎩

ˆ 	p δV ← 0 if is deterministic(e) ∧ ∀x ∈ Vars(e) : δx = 0
ˆ 	p δV ← ∑

x∈V λxδx if ∃(μ, (λx)x∈V) ∈ |V|+1 : e = μ +
∑

x∈V λxx
ˆ 	p δV ← (τ ′

2 ◦ π2)(e) − (τ1 ◦ π1)(e) otherwise

τ ′
2(x) �

{
x1 + δx if x ∈ V
x if x ∈ Q

Fig. 17. Symbolic simplifications in 	p

straightforward, by induction on the syntax of double programs. We also define
the semantics for the s1 ‖ s2 construct as �p s1 s2 � �p

2 s2
�p
1 s1 ,

where p
1 s � p s skip , and p

2 s � p skip s , for simple state-
ment s. Nonetheless, we add some particular cases, to gain both efficiency and
precision on δV , for all variables V , through simple symbolic simplifications.
These particular cases are displayed on Fig. 17. Note that we use the syntactic
renaming operator τ ′

2, defined by induction on the syntax, to replace variables
V2 of the right projection of a double program by their abstraction V1 + δV .

The first particular case is that of input statements V ← input(a, b) for both
programs, in environments such that both programs have read the same number
of input values, i.e. δ� = 0, where δ� represents the difference between input
indexes. In this case, we may assign δV ← 0 directly, and leave δ� unchanged.
For instance, after statement a ← input(−1000, 1000) at line 1 of the Unchloop
example on Fig. 3, we have a ∈ [−1000, 1000], and δa = 0. The second particular
case is that of affine assignments V ← e, where e = μ +

∑
x∈V λx × x. We

call such expressions “differentiable”, as it is easy to compute δV directly as
a function of all the δx variables. A third particular case is that of arbitrary
(non necessarily affine) assignments V ← e, when e is deterministic, and all
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the occurring variables x satisfy δx = 0. Then δV = 0, as we know that both
expressions always evaluate to equal values in P1 and P2.

To further enhance precision on some examples, we slightly generalize
these particular cases to double assignments V ← e1 ‖ e2, when expressions
e1 and e2 are found syntactically equal, modulo some semantics preserving
transformations, such as associativity, commutativity, and distributivity. We
also generalize symbolic simplifications based on expression differentiation to
some double assignments V ← e ‖ e + e′, in particular when e′ is a con-
stant. For instance, for line 9 of the Unchloop example on Fig. 3, we have

�p
2 r c c+1 = ˆ �p δr δc + 1 .

As a consequence, the interval domain is able to infer the invariant δr = 0
for semantics 	p at line 10 of this example, resulting a conclusive analysis with
linear cost, which is much more efficient than using polyhedra with D̂�p.

4 Evaluation

We implemented a prototype abstract interpreter for the semantics D̂�p and 	p

of the toy language introduced in this paper. It is about 2,500 lines of OCaml
source code. It uses the Apron [12] library to experiment with the polyhedra
and octagon abstract domains, and the BddApron [13] library to implement
state partitioning.

4.1 Benchmarking

We compare results on small examples selected from other authors’ bench-
marks [21,22,24]. Note that some of these benchmarks originate from real patches
in GNU core utilities. We added a larger benchmark (also from a Coreutils
patch), to evaluate scalability. For most benchmarks, patches preserve most of
the loop and branching structure, except for the seq benchmark from [21,22],
which features deep modifications of the control structure. The related works
do not address streams. As a consequence, these benchmarks do not feature
unbounded reads into input streams, except for the remove benchmark, which
we presented in the introduction: see Fig. 1 and Fig. 2. Note that we simplified
this benchmark to fstatat caching for a single file, in order to compare with [21].

[21,22,24] deal with C programs directly, while we encode their benchmarks
in our toy language. In addition, these references not only prove equivalences, but
also characterize differences, while we focus on equivalence for now. We there-
fore selected benchmarks relevant to equivalence only, except for the so-called
the [24, Fig. 2] example, which we modified slightly to restore equivalence of ter-
minating executions: see Fig. 4. On the other hand, [24] gives several versions of
their benchmarks, depending on the maximum numbers of loop iterations of the
examples. Indeed, the symbolic execution technique they use is very sensitive to
this parameter. We do not have this constraint, as we use widening instead of
fully unrolling loops, so that we handle directly unbounded loops in a sound way.
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Figure 18 summarises the results of our analysis. It shows the analysis tim-
ings and results of our prototype, as well as timings of the analyses the related
work, when they are available (their analyses are all successful). All experiments
were conducted on a Intel R© Core-i7TM processor. Our results are comparable
with those of the original authors, with speedups of one order of magnitude or
more. Some timing differences, of the order of milliseconds, cannot be consid-
ered significant, especially as the experiments are not performed on the same
machines. A significant point, however, is that benchmark LoopMult takes 49
seconds in [24], which is 2 orders of magnitude slower than benchmark Const,
while, with our method, both Const and LoopMult are analyzed at roughly
the same speed. This difference in behaviors can be explained as a benefit of
widening over unrolling loops. Hence, our timing comparison proves that our
method can achieve at worst a similar speed, and it is also much more scalable
for problems difficult in previous work. Note that [24] compared their method to
well-established tools, such as Symdiff [14] and RVT [8], and observed speedups
of one order of magnitude and more with respect to them. Therefore, it is not
useful to compare our prototype with these tools on these benchmarks.

Most benchmarks are analyzed successfully with the polyhedra domain, with-
out partitioning. The seq benchmark, for instance, is analyzed precisely despite
significant changes in the control structure, as the matching of statements is
established as part of the syntax of double programs. Only the remove bench-
mark requires partitioning for a successful analysis with the polyhedra domain.
Four other benchmarks are analyzed very efficiently with the non relational inter-
val domain, thanks to the 	p semantics. Partitioning improves the precision on
three other, but reduces efficiency. Nonetheless, some benchmarks, such as Loop-
Sub, cannot be analysed conclusively using a non relational numeric domain
with semantics D̂�p or p Indeed, related patches exchange the roles of two
variables a and b, so that the challenge is not to infer a1 = a2 ∧ b1 = b2, but
a1 = b2 ∧ b1 = a2. We therefore developed a dedicated abstract domain, to
refine D̂�p with automatically inferred variable equalities. This domain is based
on union-find data structure that maintains a partitioning of the set V1 ∪V2 ∪Q
of program variables. Two variables are part of the same equivalence class if
they are guaranteed to be equal. The associate abstract lattice is the dual of the
standard geometric lattice of partitions of a finite set: a � b means that partition
b refines partition a, i.e. every equivalence class of a is a union of classes of b;
� is the set of singleton variables; and the smallest non ⊥ element is the whole
set of variables. This abstract lattice has finite height, so we use union in place
of widening. The LoopSub benchmark is analysed successfully using a reduced
product between intervals and this domain.

4.2 Handling Streams

All benchmarks of Fig. 18 were analyzed using fixed-length queues of length 1,
as the related works do not handle input streams. Note that abstracting infinite
input streams with fixed-length queues of length 1 is also enough to analyze
some patches of infinite-state programs with unbounded loops reading from a
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	1(polyhedra) 	1(octagon) 	1(interval)
Related Benchmark LOC Related Partitioning Partitioning Partitioning
origin time No Yes No Yes No Yes

[24]

Comp 13 539 ms 14 ms 18 ms 2 ms
Const 9 541 ms 7 ms 17 ms 1 ms
Fig. 2 14 – 4 ms 5 ms 1 ms
LoopMult 14 492 s 20 ms 56 ms 1 ms
LoopSub 15 1.2 s 19 ms 53 ms 2 ms
UnchLoop 13 2.83 s 15 ms 36 ms 2 ms

[21]

sign 12 – 6 ms 8 ms 420 ms 2 ms 400 ms
sum 14 4 s 14 ms 30 ms 6 ms 3.2 s 4

copy1 37 7 s 102 ms 60 ms 2 ms 430 ms
remove1 19 1 s 31.6 s 481 ms 42 ms 322 ms 7 ms

[21,22] seq1 41 11 s 75 ms 500 ms 2 ms
test1 158 – 96 ms 521 ms 4 ms

Fig. 18. Benchmarks

1 s = input(−5,5);
2 b = input(0,1);
3 { x = input(0,10); } ‖ {/∗ skip ∗/}
4 while ( b == 1 ) {
5 {/∗ skip ∗/} ‖ { x = input(0,10); }
6 s = s + x;
7 b = input(0,1);
8 { x = input(0,10); } ‖ {/∗ skip ∗/}
9 }

10 assert sync(s) ;

Fig. 19. Reordering reads from an input stream

stream (e.g. a file), even when patches reorder input statements across the body
of unbounded loops.

Figure 19 shows an example. This patch reorders input statements in the loop,
and changes the number of input statements in terminating executions. The loop
is unbounded, and the program is infinite-state. Terminating executions of the
left and right projections compute equal values for s, though possibly not for
x. This double program is analyzed successfully with D�1, using any relational
numerical domain: 33 ms for polyhedra, 43 ms for octagon, and 18 ms for the
reduced product between the domains of intervals and variable equalities. To
the best of our knowledge, no previous work has sound and precise automatic
analyses for patches of this type.

In the bounded abstraction of streams, the unbounded FIFO queue represents
the subsequence of input values read by the program ahead in the sequence, and
not yet read by the program behind. Though we are bounding this queue in the
abstract, we retain precise information on executions reading arbitrary long input
sequences. The bounded queue allows retaining relational information between
all input values read with delays less or equal to the bound, while non relational
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1 { a = input(0,5); a = input(−5,0); } ‖ {/∗ skip ∗/}
2 x = input(0,5);
3 x = input(−5,0);
4 s = a ‖ x;
5 assert(−5 <= s && s <= 0); // inferred with with a queue of length p ≥ 1
6 assert sync(s) ; // inferred with a queue of length p ≥ 2

Fig. 20. Relational and non relational information versus lengths of queues

(interval) information is retained for values read with larger delays. Figure 20
shows a simple example. Using a queue of length 1 is enough to infer the range
of variable s in both projections of the double program. On the contrary, a
queue of length at least 2 is necessary to prove that both programs compute
equal values for s.

5 Conclusion

We presented a static analysis for software patches. Our method is based on
abstract interpretation, and parametric in the choice of an abstract domain. We
presented a novel concrete collecting semantics, expressing the behaviors of two
syntactically close versions of a program at the same time. This semantics deals
with programs reading from unbounded input streams. We also introduced a
novel numeric domain to bound differences between the values of the variables
in the two programs, which has linear cost. We implemented a prototype and
experimented on a few small examples from the literature.

In future work, we will consider extensions to larger, and non purely numeric
programs, towards the analysis of realistic patches. We will also extend our
method to characterize the semantic differences between two non equivalent ver-
sions of program. We will also investigate to what extend our approach could
generalize to portability analysis, a dual problem where we wish to compare the
semantics of the same program in two different environments. We plan to exper-
iment with other abstract domains for our analysis, such as zonotopes. Finally,
we will investigate the connections between our semantics and information flow
problems. Indeed, as a side-effect of our method, our analysis is able to prove
that two sets of executions of the same program compute equal values for some
outputs. This is useful for proving some information flow properties, such as
secrecy. For instance, Fig. 21 shows two programs with public variable pub and
secret variable sec. These programs read pub as an input value, and choose sec
non-deterministically, For all pairs of executions reading equal values in pub,
but possibly different values in sec, Program 21(a) computes equal values for
pub. hence ensuring secrecy. On the contrary, Program 21(b) leaks the sign of
sec. Our analysis is able to distinguish these two programs. Indeed, it compares
the semantics of two versions of each program. In this case, both versions have
exactly the same code, which is a form of self-composition [3,20].
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1 pub = input(−10,10);
2 sec = rand(−5,5);
3 if (sec < 0) pub = 1;
4 pub = 0;
5 assert sync(pub); // OK

(a) secure program

1 pub = input(−10,10);
2 sec = rand(−5,5);
3 if (sec < 0) pub = 1;
4 pub = pub + 1;
5 assert sync(pub); // failed

(b) insecure program

Fig. 21. Proving information flow properties

Data Availability Statements. The datasets/code generated during and/or anal-
ysed during the current study are available in the Figshare repository: https://doi.org/
10.6084/m9.figshare.9860972.v1
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Abstract. When applying abstract interpretation to verification, it may
suffer from the problem of getting too conservative over-approximations
to verify a given target property, and being hardly able to generate
counter-examples when the property does not hold. In this paper, we
propose iterative abstract testing, to create a property-oriented verifica-
tion approach based on abstract interpretation. Abstract testing employs
forward abstract executions (i.e., forward analysis) together with prop-
erty checking to mimic (regular) testing, and utilizes backward abstract
executions (i.e., backward analysis) to derive necessary preconditions
that may falsify the target property, and be useful for reducing the input
space that needs further exploration. To verify a property, we conduct
abstract testing in an iterative manner by utilizing dynamic partitioning
to split the input space into sub-spaces such that each sub-space involves
fewer program behaviors and may be easier to verify. Moreover, we lever-
age bounded exhaustive testing to verify bounded small sub-spaces, as
a means to complement abstract testing based verification. The exper-
imental results show that our approach has comparable strength with
several state-of-the-art verification tools.

Keywords: Program verification · Abstract interpretation · Abstract
testing · Input space partitioning

1 Introduction

Abstract interpretation [18] has been successfully applied to static analysis, due
to its soundness guarantee and scalability. It can automatically handle loops
generally in a terminate and sound way, compared to other approaches such as
bounded model checking and symbolic execution. And it allows the use of infinite
abstract domains of program properties. In this paper, we focus on applying
abstract interpretation to verify properties in numerical programs.

However, in the context of verification, there still exist several limitations
over current abstract interpretation based approaches [25]. One limitation is
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that the generated invariants may be not precise enough to prove the target
property, due to the too conservative over-approximation of the concrete seman-
tics of the program. More clearly, the major sources of imprecision of abstract
interpretation come from the following aspects: (1) Most widely used abstract
domains (such as intervals [18], octagons [41] and polyhedra [22]) have limi-
tations in expressing disjunctive or non-linear properties, which are common in
programs, for instance, at the joins of control-flows; (2) The widening operator in
abstract interpretation which ensures the convergence of fixpoint iteration may
bring severe precision loss, because widening often aggressively weakens unstable
predicates in each iteration. Moreover, when one pass of the analysis does not
provide precise enough invariants to prove the target property, it lacks a system-
atic approach (like counterexample-guided refinement) to refine the abstractions.
Another limitation of most current abstract interpretation based approaches is
that it can hardly generate counter-examples when a property does not hold.

In this paper, we propose an iterative approach to verify properties of numer-
ical programs by exploiting iterative abstract testing based on abstract interpre-
tation. We leverage the notion of “abstract testing” [19] to denote the process of
abstract execution (i.e., forward analysis) of a program with an given abstract
input (which represents a set of concrete inputs) and the checking of whether
the abstract output satisfies the target property. The key idea of our approach
is to perform abstract testing iteratively in a top-down manner, by refining the
abstract input via partitioning, wherein the refinement process also makes use
of the computed necessary precondition of violating the target assertion via the
“inverse” abstract execution (i.e., backward analysis [21]). When the property
has been checked to hold for all abstract sub-inputs in the partition, the iter-
ative process stops and gives a proof. Another benefit of partitioning is that it
enables to conduct verification via bounded exhaustive testing [11,38] over an
abstract sub-input of small size. The use of bounded exhaustive testing allows
our approach to generate counter-examples when the target property does not
hold. Overall, our approach not only can give a proof when the property holds,
but also can supply a concrete counter-example when the property does not
hold.

This paper makes the following contributions.

– We propose an iterative abstract testing based program verification algorithm
with dynamic input partitioning. The partitioning enables our analysis to
focus on smaller input spaces in each of which the program may involve fewer
disjunctive or non-linear behaviors and thus may be easier to verify.

– We propose to use bounded exhaustive testing to complement abstract testing
based verification. When the considered input space after partitioning is of
small enough size, we could utilize bounded exhaustive testing to replace
abstract testing. Bounded exhaustive testing can completely verify the target
program even when it involves very complicated behaviors (which may be
out of the verification capability of abstract interpretation), and can supply
a concrete counterexample when the property does not hold.
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– We have implemented the proposed approach in a tool called VATer and con-
ducted experimental comparison between VATer and other available state-of-
the-art verification tools. Our experiments on a set of verification benchmarks
show that our approach is promising.

The rest of this paper is organized as follow: Sect. 2 gives an overview of
our approach. Section 3 presents the main approach based on iterative abstract
testing. Section 4 presents how to utilize bounded exhaustive testing. Section 5
provides the experimental results on the benchmarks. Section 6 discusses related
work. Finally, the conclusions as well as future work are given in Sect. 7.

2 Overview

2.1 The Framework

First, we give an overview of our verification framework, namely Verification
based on Abstract Testing (VAT), as shown in Fig. 1. Overall, given a numerical
program P (in which each variable is of machine-bounded numerical type) and
a property represented as an assertion ψ, VAT gives a proof when the assertion
holds or generates concrete counter-examples when the assertion does not hold.
In detail, VAT involves the iteration of the following phases.

Dynamic 
Input Space Partitioning

P,X #
Proof or CE

[Refined Input Space]

Bounded
Exhaustive

Testing

[X1'#] [X2'#] [Xn'#]...

Abstract Testing
Forward Abstract 

Execution

Backward Abstract 
Execution

[Invariants]

[Negation of Property]

...

Property Checking

X '#

Fig. 1. The main framework of our approach.

Forward Abstract Execution. It acts as the abstract execution engine of abstract
testing, which takes (one pass) forward abstract interpretation to generate pro-
gram invariants under the given abstract input X�. Forward abstract execution
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“executes” a program in the sense of an abstract semantics instead of a con-
crete one, thus has the ability to consider several (possibly unbounded) concrete
executions at a time.

Property Checking. It mimics the oracle of abstract testing. It checks the logic
relation between the invariants generated by forward abstract execution and the
assertion ψ. In concrete testing, the verifying result can be only “True” or “False”
for each test case. However, in abstract testing, three possible verifying results
may be returned: “True”, “False” or “Unknown”. If the result is “Unknown”,
we need further exploration on X�.

Backward Abstract Execution. It performs a backward analysis based on abstract
interpretation for X� that needs further exploration, starting from the assertion
location and assuming that the negation of the target assertion holds. It essen-
tially computes the necessary precondition for the failure of the target assertion,
which results in a refined abstract input X ′� ⊆ X� at the program entry. If X ′�

is the empty set, it means that the assertion holds true for the abstract input
X�. Otherwise, we need continue to explore X ′�.

Input Space Partitioning. To further explore the abstract input case X ′�, VAT
partitions X ′� into a set of sub-inputs {X ′�

1 ,X ′�
2 , ...,X ′�

n }. Then VAT checks fur-
ther for each sub-input X ′�

i separately. For a sub-input X ′�
i , if its size is small

enough, VAT uses bounded exhaustive testing, otherwise it uses abstract testing
(on top of forward and backward abstract execution and property checking).
This phase mimics the abstract test case generation of abstract testing.

Bounded Exhaustive Testing. When the number of concrete inputs in the consid-
ered abstract input X ′�

i is small, VAT uses bounded exhaustive testing to check
the assertion for all possible concrete inputs. The rationale behind bounded
exhaustive testing is that the failure of assertions can be mainly revealed within
small bounds, and exhaustively testing within the bounds ensures that no “cor-
ner case” is missed [33].

When this whole verification process terminates, VAT will find a concrete
counter-example, or provide a complete proof, or a resource limit is reached.

2.2 An Illustrating Example

Now we illustrate our approach by verifying the assertion ψ (i.e., y != 1225 )
in the example P shown in Fig. 2(a). P implements the mathematical function
shown in Fig. 2(b). From the mathematical function, one could know that when
the input is n = 49 and flag = 1, the program will result in y = 1225 at Line 10
(while all other inputs will satisfy the assertion ψ). Thus the assertion ψ actually
does not hold in program P.

Verifying ψ (whether it holds or not) in P automatically and completely is
challenging for the following reasons. First, there is no restriction given on the
input variables n and flag. Thus, without considering any mathematical back-
ground behind the program, 232 ∗ 232 cases of possible values of the input vari-
ables need to be considered if they are 32-bit integers. Directly using exhaustive
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Fig. 2. An illustrating example.

testing to verify ψ in P would cause too much overhead. Second, the loop condi-
tion at Line 3 (i.e., x < n) depends on the symbolic input variable n. Symbolically
executing all feasible program paths (through unrolling) is not possible, owing
to the potentially infinite number of paths. Thus symbolic execution or bounded
model checking can hardly verify ψ in P automatically and completely. Third, P
involves disjunctive and non-linear behaviors, which is out of the expressiveness
of most widely used numerical abstract domains [40]. And the non-linear behav-
iors also make most SMT solvers hard or even unable to verify the assertion.
Hence, it is also difficult to verify the assertion by using abstraction and SMT
based techniques, such as CEGAR based software model checking [17].

We now illustrate step by step how VAT verifies the assertion ψ in P. First,
since there is no constraint over the input variables n and flag, VAT starts from
the initial abstract input X� = �. Suppose we use here the octagon abstract
domain [41] to perform abstract interpretation. Abstract execution with abstract
input X� = � will result in the following invariant (namely InvX�

) at the
assertion location (at Line 10): n − x ≤ 0 ∧ x ≥ 0. Then our analysis performs
property checking and finds that this invariant is not strong enough to prove
ψ or ¬ψ. Thus we perform a backward analysis starting from the assertion
location assuming that y == 1225 (that is the negation of the original assertion).
However, this round of backward analysis results in � at program entry and does
not help in refining the necessary precondition to falsify the assertion. Then we
partition the current abstract input � into several sub-inputs. Here, we use a
predicate based partitioning strategy (which will be described in Sect. 3.3) to
partition � into the following 6 abstract sub-inputs: {X�

1 : n ≤ 0 ∧ flag ≤
0;X�

2 : n ≤ 0 ∧ flag == 1;X�
3 : n ≤ 0 ∧ flag ≥ 2;X�

4 : n ≥ 1 ∧ flag ≤ 0;X�
5 :

n ≥ 1 ∧ flag == 1;X�
6 : n ≥ 1 ∧ flag ≥ 2}. Then verifying ψ on abstract input

X� boils down to verifying ψ on each abstract sub-input.
For X�

1, we perform forward abstract execution and get the invariant {InvX�
1 :

y == 0 ∧ . . . } at the assertion location. After performing property checking, we
find that InvX�

1 ⇒ ψ, which imply that ψ holds for the abstract input X�
1. Simi-

larly, for the other abstract inputs X�
2, X�

3, X�
4 and X�

6, the invariants generated
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by abstract execution at the assertion location are respectively {InvX�
2 : y ==

0∧ . . . ; InvX�
3 : y == 0∧ . . . ; InvX�

4 : y ≤ −1∧ . . . ; InvX�
6 : y ≤ −1∧ . . . }, which

implies that ψ holds for all these abstract sub-inputs.
Now we consider the more complicated case, i.e., the abstract sub-input X�

5.
We perform abstract execution on X�

5 and get invariant InvX�
5 : {n − 1 ≥ 0 ∧

−n + y ≥ 0 ∧ x − 1 ≥ 0 ∧ −x + y ≥ 0}. Unfortunately, InvX�
5 is not precise

enough to prove ψ or ¬ψ. Then we perform backward analysis assuming that
y == 1225 at the assertion location and get a refined abstract input X�

51 : {n ≥
1 ∧ n ≤ 1225 ∧ flag == 1}. In other words, inside X�

5, only those inputs in X�
51

may cause the assertion ψ to fail, thus we only need to check X�
51 for the case

X�
5. Since now the abstract sub-input X�

51 contains only 1225 concrete inputs,
we employ the bounded exhaustive testing to check the case X�

51. Then we will
find the concrete counter-example input n = 49, f lag = 1 in X�

51 that falsifies
the assertion ψ.

To summarize, for the illustrating example shown in Fig. 2(a), we totally
partition the whole input space X� into 6 abstract sub-inputs such that X� =
X�

1 ∪ . . . ∪ X�
6, where X�

1,X
�
2,X

�
3,X

�
4,X

�
6 are verified by abstract testing and we

use bounded exhaustive testing to find a concrete counter-example in X�
51 which

is a refinement substitution of X�
5.

3 Property-Oriented Iterative Abstract Testing

In this section, we formalize the main idea of iterative abstract testing.
Section 3.1 gives the background of abstract testing. Section 3.2 introduces our
framework of iterative abstract testing. Section 3.3 presents the algorithm of
partitioning on abstract input.

3.1 Abstract Testing

With the abstract semantics, sound program invariants can be computed auto-
matically in finite steps by forward abstract interpretation [18] (denoted as For-
ward AI) and backward abstract interpretation [21] (denoted as Backward AI)
respectively. The computation with abstract interpretation is parameterized by
abstract domains specifying the considered approximated properties. Note that
backward abstract execution also makes use of the invariants generated by the
aforementioned forward abstract execution. In this paper, we combine forward
and backward abstract execution to generate for each program location those
constraints that describe states which are reachable from the abstract input and
may cause the target assertion fail.

The process of Abstract testing (denoted as AbstractTesting()) is built on
top of Forward AI and Backward AI, as defined in Algorithm 1. Abstract testing
takes a program P, a target property ψ to verify, a chosen abstract domain D and
an abstract input X�. Abstract testing first calls Forward AI (at Line 1), which
computes the invariants (denoted as InvX�

) on program P with initial state X�.
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Algorithm 1. Abstract Testing Algorithm
Input: program P , property ψ, abstract input X�, abstract domain D

Output: result res, refined abstract input X′�, program invariant InvX�

b

1: InvX� ← Forward AI(P, X�, D)

2: InvX�

b ← InvX�

3: if InvX�
(lψ) ⇒ ψ then

4: res ← True
5: X′� ← ⊥
6: else
7: if InvX�

(lψ) ⇒ ¬ψ then
8: res ← False
9: X′� ← ⊥
10: else
11: InvX�

b ← Backward AI(P, InvX�
(lψ) � ¬ψ, D)

12: if X� � InvX�

b (lent) ==⊥ then
13: res ← True
14: X′� ← ⊥
15: else
16: res ← Unknown

17: X′� ← X� � InvX�

b (lent)
18: end if
19: end if
20: end if
21: return res, X′�, InvX�

b

To check whether the property ψ holds, abstract testing extracts InvX�

(lψ) of
InvX�

at the location (i.e., lψ) before the assertion assert(ψ). Three cases may
arise after the checking: (a) the property ψ is surely true (Line 3 in Algorithm 1);
(b) the property ψ is surely false (Line 7); (c) whether the property ψ holds or
not can not be determinated yet by InvX�

(lψ) (Line 10). In the third case,
a backward abstract execution Backward AI is launched to refine the abstract
input X�. Backward AI takes the program and the error state InvX�

(lψ) 
 ¬ψ

as input and computes backward the necessary pre-condition InvX�

b that may
cause the property to fail. If X� 
InvX�

b (lent) (where lent is the entry location of
P ) is ⊥ (which means there is no concrete input in X� that violates ψ), ψ must
be true (Lines 12). Otherwise, whether ψ holds is still unknown (Line 15) within
X�, and in this case a refined input X ′� is generated as a refinement substitution
of X� (Line 17).

3.2 Algorithm of Iterative Abstract Testing

One iteration of abstract testing may fail to verify the given property due to the
over-approximation. In this paper, we propose to partition the input space to
refine the computed invariants on demand.
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Definition 1 (Partition of abstract input). A partition of an abstract input X�

is a set of sub-inputs {X�
1,X

�
2, . . . , X

�
n} such that

⎧
⎪⎨

⎪⎩

∀i ∈ {1, 2, ..., n},X�
i �=⊥

∀i, j ∈ {1, 2, ..., n}, i �= j ⇒ X�
i 
 X�

j =⊥
�i∈{1,2,...,n}X

�
i = X�.

Let P (X�) denote the program P , whose initial state of input variables are
constrained by X�. Then we have the following proposition.

Proposition 1 (Soundness of verification by partitioning). Let
{
X�

1,

X�
2, . . . , X

�
n

}
be a partition of abstract input X�. If for any i ∈ {1, 2, ..., n},

assertion ψ is proved to be true in program P(X�
i ), then ψ must be true in

P(X�).

Proof. We assume ψ is false in P (X�), then there must exists a concrete input
x that satisfies the constraint of X�, but makes ψ false. From Definition 1, we
know �i∈{1,2,...,n}X

�
i = X�, thus there exists k ∈ {1, 2, ..., n} such that x ∈ X�

k,
which means ψ is false in P (X�

k). This conflicts with the assumption. Thus ψ is
true in P(X�). 
�

Algorithm 2. Iterative Abstract Testing Algorithm
Input: program P , property ψ, abstract domain D
Output: True or False or Timeout
1: worklist L ← {	}
2: while L 
= ∅ do
3: X� ← Remove(L) //get and remove an element from L

4: (res, X′�, InvX�

b ) ← AbstractTesting(P, ψ, X�, D)
5: if res == False then
6: Terminate with counter-example in X�

7: else
8: if res == True then
9: skip
10: else
11: X list ← Partition(X′�, InvX�

b )
12: L ← Insert(L, X list)
13: end if
14: end if
15: if Timeout then
16: Terminate with Timeout
17: end if
18: end while
19: Terminate with ψ proved

Intuitively, our framework partitions an abstract input X� when one itera-
tion of abstract testing cannot prove whether the property holds or not, and
then applies abstract testing further on the partitioned sub-inputs separately.
The overall iterative algorithm is shown in Algorithm 2, which fits into a con-
ventional worklist algorithm. In the beginning, the only element in the worklist
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L is the initial input space I. For the sake of simplicity, in this paper we assume
I = � (which means there is no restriction over the input). Then the algo-
rithm copes with the abstract inputs in the worklist L one by one (in Lines
2–18). For each abstract input X� in the worklist L (Line 3), the algorithm calls
AbstractTesting(), which is detailed in Algorithm 1, trying to prove the prop-
erty ψ with respect to the abstract input X�. If it fails, AbstractTesting() will
return a refined abstract input X ′�. Then Algorithm 2 partitions X ′� at Line
11 (where the Partition() procedure will be detailed in Algorithm 3), and puts
all the newly split abstract sub-inputs into the worklist and repeats the process
again (starting from Line 2). Until a counter-example is found or the property
is proved true over all abstract inputs in the worklist, or a time limit is reached,
the algorithm terminates.

Algorithm 3. Partitioning Algorithm
Input: abstract input X�, program invariant InvX�

b
Output: abstract input list X list
1: PS0 ← ∅;X list = {X�}
2: for each l ∈ Lc(P ) do

3: PS0 ← PS0
⋃

Project(InvX�

b , l)
4: end for
5: for each p0 ∈ PS0 do
6: p ← Rename(p0)
7: for each X ∈ X list do
8: X list ← (X list \ X) ∪ {X ∧ p, X ∧ ¬p}
9: end for
10: end for
11: if X list = {X�} then
12: Itvs ← Interval Hull(X�)
13: v ← Var of Largest Range(Itvs)

14: X list ← {X� ∧ vinf ≤ v ≤ vinf +vsup

2 , X� ∧ vinf +vsup

2 < v ≤ vsup}
15: end if
16: return X list

3.3 Partitioning

Input partitioning plays an important role in the iterative abstract testing.
Depending on the target programs, we employ two strategies for dynamic input
partitioning as shown in Algorithm 3: predicate based strategy (from Lines 2 to
10) and dichotomy strategy (from Lines 11 to 15).

Predicate-Based Strategy. The main idea of this strategy is to first derive a set
of predicates over the symbolic initial values of the input variables and then to
partition the input space X� into a set of sub-inputs based on these predicates.
To this end, first, as a preprocessing step, for every input parameter (e.g., x) in
the program P , we introduce a symbolic input variable (e.g., x0) and insert an
assignment statement (e.g., x0 = x;) to symbolically record its initial value.

AbstractTesting() (at Line 4 of Algorithm 2) analyzes the instrumented pro-
gram and returns the program invariant InvX�

b , which records all the constraints
between the original variables of P and the introduced symbolic input variables.
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In Algorithm 3, to derive interesting predicates, we only consider predicates at
those program locations after conditional tests (which are represented as Lc(P)
at Line 2). Moreover, we are only interested in predicates over symbolic input
variables, the set of which is denoted as PS0. Then for each program location l in
Lc(P), we project out all other variables (except symbolic input variables) from
the computed invariants InvX�

b by function Project() at Line 3. Project() returns
a set of predicates over symbolic input variables, which are all collected into PS0.
Note that the projection operator is a default operator in each abstract domain
and implemented efficiently using algorithms tailored to the specific constraint
representation of the abstract domain. Then for each predicate p0 in PS0, we
rename all the symbolic input variables (e.g., x0) as the original input variables
(e.g., x) by function Rename() at Line 6. It returns a splitting predicate p on
input variables, which is used to split all the abstract inputs in X list (from
Lines 7 to 9). For each X in X list, our algorithm first deletes X from X list,
then splits X into two abstract inputs (i.e., X ∧ p, X ∧ ¬p), and adds them into
X list at Line 8. Note that, in the worst case, 2n abstract inputs can be gen-
erated based on n predicates. To prevent partition explosion, we need to bound
the number of predicates used for partitioning. Our immediate idea chooses a
limited number of those predicates that emerge early in the forward AI analysis.

Take our illustrating program in Fig. 2(a) for example. First, as shown in
Fig. 3, at Line 2, our preprocess defines two symbolic input variables for the
input parameters n and flag, and assigns them with the initial values of n and
flag. Then abstract testing generates invariants as well as necessary precondition
of property violation for the program using the Octagon abstract domain. After
projecting out other variables, the invariants on n0 and flag0 are derived, which
is shown as annotations in Fig. 3 at Lines 4, 6 and 11. After renaming, our
analysis collects two meaningful atomic predicates {n ≥ 1, f lag = 1}. Based on
them, the following 6 abstract sub-inputs are generated: {X�

1 : n ≤ 0 ∧ flag ≤
0;X�

2 : n ≤ 0 ∧ flag = 1;X�
3 : n ≤ 0 ∧ flag ≥ 2;X�

4 : n ≥ 1 ∧ flag ≤ 0;X�
5 : n ≥

1 ∧ flag = 1;X�
6 : n ≥ 1 ∧ flag ≥ 2}.

Fig. 3. The illustrating example with predicates annotated.

Given an abstract input X�, if no useful predicate on the symbolic input vari-
ables can be found, predicate based partitioning would fail (i.e., the condition
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at Line 11 in Algorithm 3 holds). In this case, our framework employs the
dichotomy strategy (from Lines 12 to 14).

Dichotomy Strategy. This strategy projects every input variable in the abstract
input X� into an interval (e.g., we treat � as [-max int,max int-1] for Integer
type) by function Interval Hull() at Line 12, which returns interval hulls of all
input variables. Then it chooses the variable of the largest range as the variable
(i.e., v) to be split, which is done by function Var of Largest Range() at Line
13. After that, it conducts splitting evenly on the interval range of v, and X� is
split into two abstract sub-inputs at Line 14, where vinf and vsup represent the
lower bound and upper bound of v respectively.

3.4 Sorting of Abstract Inputs

This subsection elaborates the sorting of the elements in the worklist L in Algo-
rithm 2 in the framework of iterative abstract testing. This operation is necessary
in the sense that, if an abstract input that violates the property ψ can be put
in the front of the worklist, then the verification process can terminate earlier.

To perform sorting, we define a fitness function for each abstract input

X� as fit(X�) =
|γ(InvX�

lψ
�¬ψ)|

|γ(InvX�

lψ
�ψ)| , where InvX�

lψ
is the invariant at the asser-

tion location computed by Forward AI, and γ is a concrete function mapping
abstract states to concrete states soundly. Here we assume that if the value
returned by fit(X�) is larger, then it is more likely to find a property violation
within X�. Since |γ(InvX�

lψ

 ¬ψ)| and |γ(InvX�

lψ

 ψ)| are usually too costly

to compute, in practice, we use fit′(X�) =
|γ(Interval Hull(InvX�

lψ
�¬ψ))|

|γ(Interval Hull(InvX�

lψ
�ψ))| , where

|γ(Interval Hull(Y �))| represents the number of points in the interval hull of
Y �. The value of |γ(Interval Hull(Y �))| is computed by projecting each input
variable y into its interval bound [ay, by], and multiplying the widths of all these
intervals. In other words, the value of |γ(Interval Hull(Y �))| is computed as the
volume of the interval hull of Y �.

In iterative abstract testing, our algorithm computes fit′(X�) for each gener-
ated abstract input X�, and adds them into the worklist satisfying the decreasing
order according to their fitness values (in Line 12 of Algorithm 2).

4 Combination with Bounded Exhaustive Testing

When the considered abstract input X� is bounded and of small size (which
means that the number of concrete inputs inside X� is small), a good alter-
ative of verifying the program on such an abstract input X� is to use bounded
exhaustive testing (BET) [11,38], which is complete, sound, and able to find
counter-examples if they exist. In this section, we extend our framework by
combining with bounded exhaustive testing.
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4.1 Synergic Verification Framework

Our synergic verification framework (denoted by SynergicVerification()) is based
on Algorithm 2, while the only change is replacing function AbstractTesting() (at
Line 4 in Algorithm 2) with SynergicTesting() described in Algorithm 4. Com-
pared with Algorithm 2 that uses solely abstract testing, the key difference in
Algorithm 4 is that we add a decision module SizeChecking() to decide whether
to take abstract testing or bounded exhaustive testing (at Line 1) and a module
BETesting() to conduct bounded exhaustive testing (at Line 2).

Algorithm 4. Synergic Testing Algorithm
Input: program P , property ψ, abstract input X�, abstract domain D

Output: result res, refined abstract input X′�, program invariant InvX�

b

1: if SizeChecking(X�) then
2: res = BETesting(P, X#)

3: X′# ← ⊥
4: InvX�

b ← ⊥
5: else
6: 〈res, X′#, InvX�

b 〉 = AbstractTesting(P, ψ, X#, D)
7: end if
8: return res, X′#, InvX�

b

Decision Module. Function SizeChecking() is implemented by just checking
the size of the abstract input (i.e., |γ(X�)|): If the size is under a threshold,
we adopt bounded exhaustive testing, otherwise we use abstract testing. In
practice, |γ(X�)| could be hard to be precisely computed, and hence we uti-
lize |γ(Interval Hull(X�))| as a compromise.

Bounded Exhaustive Testing Module. Bounded exhaustive testing aims
to achieve exhaustive coverage of all the concrete inputs in the given abstract
input X�. We exhaustively generate concrete input cases not directly from X�,
but from its interval hull, and then filter out those that are not in γ(X�) by
checking whether they satisfy the constraints representing X�. During bounded
exhaustive testing, once a concrete input is found as a counter-example that
violates the target property, we will terminate the whole verification process.

4.2 Soundness Discussion

Theorem 1 (Soundness of the synergic verification). Suppose that we use the
synergic verification algorithm (i.e., Algorithm2 wherein Line 4 is replaced with
SynergicTesting()) to verify whether an assertion ψ holds in program P. If
the algorithm terminates with ψ proved (or terminates with a counter-example
found), then ψ must be true (or false) in program P with any (or some) inputs.
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Proof. First, we consider the case that Algorithm 2 combined with bounded
exhaustive testing terminates with a counter-example found in abstract input
X�. Since the counter-example must belong to the initial input space (i.e., �),
thus it is also a counter-example input to make P violate ψ.

The more complicated case is when Algorithm 2 terminates with ψ proved.
To prove ψ must be true in P, we first briefly explain the soundness of abstract
testing and bounded exhaustive testing. (1) The soundness of abstract testing
(Algorithm 1) is guaranteed by the soundness of abstract interpretation [18],
since it applies forward and backward abstract interpretation, which essentially
compute over-approximations of the concrete reachable states. (2) The soundness
of bounded exhaustive testing is obvious since BET has tested all the possible
input cases (within the given bounded abstract input space) under the most
precise (i.e., concrete) semantics. In Algorithm 2, the initial input space is parti-
tioned into a set of sub-inputs, and each sub-input is proved by abstract testing
or BET, or further partitioned into smaller sub-inputs, which are further coped
with by Algorithm 2. According to Proposition 1 and the soundness of abstract
testing and BET, we can conclude that ψ is true in P. 
�

Note that in this paper, as normal abstract interpretation-based verifica-
tion [28,32], we assume the absence of undefined behaviors and runtime errors
in statements before the assertion location. The unsoundness of verification due
to undefined behaviors and runtime errors has been handled in [16], which is
orthogonal to our work. Moreover, in this paper, a non-deterministic variable is
treated as an interval of its whole valid input range (e.g., [−∞, +∞]) in abstract
testing and a fresh random value in concrete testing. For non-deterministic pro-
grams, bounded exhaustive testing is used to verify false assertions only when it
finds a counter-examples (but not used to provide proof for true assertions).

5 Experiments and Evaluation

We have implemented a prototype tool, namely VATer, based on our verification
approach utilizing both iterative abstract testing (IAT) and bounded exhaustive
testing (BET). We will evaluate VATer along the following three experimental
questions (EQs). VATer can verify programs through refining abstract interpre-
tation by dynamic input partitioning. We want to know whether VATer can
prove more true assertions than abstract interpretation based tools (which may
use other refinement techniques) (EQ1). We also hope to know the performance
of VATer comparing with other widely used verification techniques in practice
(EQ2). VATer utilizes bounded exhaustive testing to help abstract interpretation
to prove “corner cases” or generate counter-examples. We should know whether
the use of bounded exhaustive testing can help verify more assertions in practice
(EQ3).

5.1 Experimental Setup

VATer is constructed based on the APRON numerical abstract domain
library [36] (which includes the abstract domains of intervals [18], octagons [41],
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polyhedra [22], and linear congruence abstract domain [27]), and the Fixpoint
Solver Library [1]. Moreover, VATer syntactically supports both C programs
(by using the front-end CIL [42]) and the SPL language (by using the static
analyzer Interproc [35] as the front-end). The upper bound of the number of
splitting predicates chosen each time is 10, and the threshold for BET is set as
2500, which are both set according to our timeout bound empirically.

To address these experimental questions, we run our tool VATer, abstract
interpretation involved tools (e.g., Interproc [35], SeaHorn [32]) and three tools
participating in SV-COMP’18 [2] (i.e., VeriAbs [14], ULTIMATE Taipan [28]
(which obtained the highest scores in the ReachSafety-Loops category),
CPAchecker [9] (which won the gold medal overall in SV-COMP’18)). We use
three numerical loop benchmark sets: (1) all the 46 programs from HOLA [24];
(2) all the 35 programs from C4B [13]. (3) all the 152 programs from the veri-
fication tasks of six folders in ReachSafety-Loops category of SV-COMP’18 [2].
Note that we used the version of HOLA and C4B from [23].

Different sets of benchmarks and tools are chosen to answer different experi-
mental questions (EQ). To answer EQ1, benchmarks (C4B and Hola) with only
true assertions and tools involving abstract interpretation technique (i.e., Inter-
proc, SeaHorn, ULTIMATE Taipan) are used. To answer EQ2 and EQ3, bench-
marks from SV-COMP’18 (which contain both true and false assertions) are
more suitable, and we chose to compare with three state-of-the-art tools (i.e.,
ULTIMATE Taipan, VeriAbs, CPAchecker) for EQ2.

All the experiments are carried out with a timeout limit of 900 s for each
benchmark program on a machine with Ubuntu 16.04 which has 16GB RAM
and a 3.6 GHz octa-core Intel� CoreTM i7-7700U host CPU.

5.2 EQ1: Does VATer Strengthen the Ability of Proving True
Assertions over Abstract Interpretation Based Techniques?

Table 1 shows the verification results on the HOLA and C4B benchmarks. It lists
the number of verified programs (sub-column “#V”) together with the total time
for verified programs in seconds (column “#T(s)”) for each tool. For VATer, it
also lists the number of times using abstract testing (sub-column “#AT”) and
bounded exhaustive testing (sub-column “#BET”) for the verified programs.
We compare VATer with three available abstract interpretation based verifica-
tion tools, i.e., Interproc (based on pure abstract interpretation), SeaHorn (com-
bining Horn-clause solving and abstract interpretation) and ULTIMATE Taipan
(combining CEGAR based software model checking and abstract interpretation).

All the specified assertions hold in the programs from HOLA and C4B.
Table 1 shows that VATer can correctly verify 76 programs out of 81 with total
16.4 s consumed (0.22 s per program on average). Comparing with Interproc (one
pass forward analysis), which can verify 19 programs with average 0.16 s, VATer
achieves significant improvements on proving true assertions without too much
extra time overhead. It indicates that our technique strengthens the ability of
proving true assertions over standard abstract interpretation. And considering
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Table 1. Comparison results with abstract interpretation involved tools.

Benchmark Interproc SeaHorn UTaipan VATer

#V T(s) #V T(s) #V T(s) #V T(s) #AT #BET

HOLA(46) 17 2.9 34 298.5 38 805.2 44 14.1 64 1

C4B(35) 2 0.1 24 274.9 17 1277.4 32 2.3 85 0

Total(81) 19 3.0 58 573.4 51 2082.6 76 16.4 149 1

the iterations of abstract testing and BET, we find that this strengthening mainly
comes from the iterative abstract testing through dynamic input partitioning.

VATer can verify 18 (31%) and 25 (49%) more programs than SeaHorn
and ULTIMATE Taipan, respectively. Concerning timing, for those verified pro-
grams, VATer (on average 0.22 s) has an average 46X, 190X speedups over Sea-
Horn (on average 9.9 s) and ULTIMATE Taipan (on average 40.8 s) respectively.
This improvement is achieved since most of the programs in HOLA and C4B
have complex input-data dependent loops with disjunctive or non-linear prop-
erties. They are difficult to verify as a whole. While VATer utilizes partition-
ing techniques to simplify the program behaviors for each abstract input. This
result reflects that VATer performs more effectively and efficiently than abstract
interpretation based tools that use forward analysis only (e.g., SeaHorn and
ULTIMATE Taipan) on these benchmarks.

Table 2. Comparison results with state-of-the-art verification tools.

Folder P IAT VATer(IAT+BET) VeriAbs UTaipan CPAChecker

#V T(s) #V T(s) #AT #BET #V T(s) #V T(s) #V T(s)

Loops(67) T(35) 21 4.2 23 5.0 23 2 26 749.9 25 400.3 27 1281.6

F(32) 7 2.4 18 55.0 145 11 24 416.4 25 1080.7 29 550.3

Loop-new(8) T(8) 4 4.7 7 5.8 7 3 2 21.9 4 187.1 2 710

F(0) 0 0 0 0 0 0 0 0 0 0 0 0

Loop-lit(16) T(15) 9 2.3 13 2.7 15 4 12 304.9 14 388.5 6 27.1

F(1) 0 0 1 0.2 1 1 1 13.4 1 4.5 1 3.9

Loop-inv(19) T(18) 15 32.6 15 32.6 16 0 8 144.7 10 253.4 5 440.6

F(1) 0 0 1 11.9 86 1 1 17.1 1 7.7 1 5.4

Loop-craft(7) T(6) 2 0.2 4 0.6 4 2 3 33.7 2 9.2 3 520.5

F(1) 0 0 0 0 0 0 1 555.8 1 4.5 1 4.2

Loop-acc(35) T(19) 9 0.9 16 96.2 78 38 12 132.9 13 510.7 10 663.9

F(16) 1 0.1 16 9.0 43 15 13 290.1 6 84.2 8 946.8

Total(152) T(101) 60 44.9 78 142.9 143 49 63 1388 68 1749.2 53 3643.7

F(51) 8 2.5 36 76.1 275 28 40 1292.8 34 1181.6 40 1510.6
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5.3 EQ2 – How Does VATer Work Comparing with Other
Verification Techniques

We compare VATer with three state-of-the-art verification tools participating
in SV-COMP’18: VeriAbs, ULTIMATE Taipan, CPAchecker. Table 2 shows the
comparison result. The column “Folder” shows the names of all the folders and
the number of programs included in each folder. The column “Property” distin-
guishes the programs with true assertions and false assertions in each folder.

For the programs with true assertions (totally 101 programs), VATer can ver-
ify 15 (24%), 10 (15%) and 25 (47%) more programs than VeriAbs, ULTIMATE
Taipan and CPAchecker respectively. This improvement is achieved mainly due
to the fact that most of these programs have input-data dependent loops and
loop-result dependent branches. These program characteristics may result in infi-
nite number of program states and make the precise (enough) loop invariants
difficult to find by software model checking based tools. However, for these pro-
grams, VATer can always utilize input partitioning to get refined abstract inputs
to help forward and backward abstract interpretation to generate sound invari-
ants and necessary preconditions, which may be precise enough to prove the
assertions finally. For the programs with false assertions (totally 51 programs),
VATer finds counter-examples for 36 programs, which is less than VeriAbs
(40 programs), CPAchecker (40 programs) but more than ULTIMATE Taipan
(33 programs). We have further investigated those false-assertion programs for
which other tools succeed but VATer fails. We found that for false-assertion pro-
grams we rely on bounded exhaustive testing to ensure the soundness of VATer,
but if iterative abstract testing cannot reduce the search space into a small-
size region then bounded exhaustive testing may take too much overhead to
do dynamic testing exhaustively. For all the programs with true or false asser-
tions (totally 152 programs), compared with these alternatives, VATer achieves
11%, 13%, 22% improvement respectively. Concerning timing, for those veri-
fied programs, VATer (on average 1.9 s) at least has an average 13.6X, 15.2X,
and 29.2X speedups over VeriAbs (on average 26.0 s), ULTIMATE Taipan (on
average 28.8 s), CPAChecker (on average 55.4 s) respectively. The results indi-
cate that VATer also significantly outperforms other three tools on efficiency for
these benchmarks.

5.4 EQ3: Does BET Help VATer Generate Counter-Examples over
Abstract Testing?

In Table 2, the column “IAT” gives results where only iterative abstract test-
ing is used. Comparing IAT and VATer, we can see that: (1) Considering the
101 programs with true assertions, IAT can verify 60, while VATer can success-
fully verify 78 programs, achieving a 30% improvement. We have inspected those
programs with true assertions that only VATer successfully verified, and found
that all of them have “corner cases” that cannot be verified by abstract test-
ing solely, while testing can handle them quickly. (2) Considering 51 programs
with false assertions, IAT finds counter-examples for 8 programs, while VATer
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generates counter-examples for 36 programs. The result indicates that bounded
exhaustive testing makes significant contribution to generate counter-examples
for programs with false assertions. (3) Overall, VATer can verify 114 programs
with the average time of 1.9 s, while IAT can verify 68 programs with average
time of 0.7 s. Hence, VATer achieves 68% improvement on IAT without much
extra time overhead. This achievement mainly owes to the fact that VATer com-
bines the advantages of both iterative abstract testing and bounded exhaustive
testing. Considering the “#AT” and “#BET” column, VATer can verify 46 pro-
grams more than IAT with 77 (average 1.7) times of BET used. It indicates that,
for these programs, iterative abstract testing has restricted the unverified input
spaces into small sizes, thus only a few numbers of BET are conducted to prove
the true assertions or generate counter-examples for false assertions.

6 Related Work

Abstract interpretation based verification. Many efforts [6,30,31,37] have been
devoted to combine the strengths of over and under approximation. They mainly
used model checking based techniques as over approximation engines. While this
paper has used abstract interpretation, which can handles loops automatically
in a terminate and sound way. Abstract interpretation is one of the fundamental
techniques for automatic program verification [20,25]. Many recent approaches
and tools for program verification use abstract interpretation. SeaHorn [32] com-
bines Horn-clause solving techniques with abstract interpretation based analyzer
IKOS [12], where IKOS is mainly used to supply program invariants to other
techniques. ULTIMATE Taipan [28] is a CEGAR-based software model checker
for verifying C programs, where abstract interpretation is used to derive loop
invariants for the path program corresponding to a given spurious counterexam-
ple. A series of works have used interpolation technique to recover the impre-
cision due to widening and improved the verification ability of abstract inter-
pretation based techniques, such as DAGGER [29], VINTA [4], UFO [5]. Unlike
the above works, we use input space partitioning to refine abstract interpreta-
tion on-demand iteratively, and use bounded exhaustive testing to complement
abstract interpretation.

Recently, combining abstract interpretation with dynamic analysis has
received increasing attention. Most of these works combine abstract interpre-
tation with symbolic execution [3,15,16,26], which mainly combine them in a
two-stage manner and use (non-iterative) abstract interpretation as a black-box.
While our work aims at program verification by performing abstract interpre-
tation in an iterative way and makes use of the results of dynamic testing to
complement abstract interpretation. Quite interestingly, Toman et al. [43] have
recently presented the Concerto system for analyzing framework-based applica-
tions by combining concrete and abstract interpretation, which analyzes frame-
work implementations using concrete interpretation and analyzes application
code using abstract interpretation. Compared with their work, our work uses
dynamic testing and abstract interpretation to verify the same code, rather than
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different parts of the target program. The closest work to ours is [19], in which
Cousot and Cousot propose first the notion of “abstract testing”, and compare
abstract testing with classical program debugging and model checking. Our work
is inspired by this work [19], but we further propose to conduct abstract test-
ing iteratively with respect to the target property with the help of dynamic
input partitioning. Moreover, we also propose to combine abstract testing with
bounded exhaustive testing.

Partitioning Techniques. There exist several partitioning techniques in the con-
text of abstract interpretation. Bourdoncle [10] presents a partitioning method
in the context of analyzing recursive functions, to allow the dynamic determi-
nation of interesting abstract domains using data structures built over simpler
domains. Jeannet [34] proposes a method to dynamically select a suitable par-
titioning according to the property to be proved, which relies on the use of a
new abstract lattice combining Boolean and numerical properties. These parti-
tioning techniques belong to state partitioning, while this paper only partitions
input and then conducts abstract interpretation separately for each partition.
Mauborgne and Rival [39] propose a systematic framework to utilize trace par-
titioning for managing disjunctions. Their trace partitioning techniques rely on
heuristics or annotations to specify partition creation and merge points, while
our approach only chooses program entries as the partitioning points, which
makes our partitioning strategy fully automatic and easier to deploy. Another
benefit of input space partitioning lies in that it can help to recover the pre-
cision loss as early as possible during generating invariants. Thus it can gener-
ate more precise invariants than partitioning intermediate states. Conditional
model checking [7,8] combines the verification abilities of several different model
checkers. Each model checker generates a condition to describe the successfully
verified state space. Thus, utilizing this condition, the later verifiers only focus
on verifying the yet unverified state space. These conditions generated by model
checkers can be considered as a partition of state space. Compared with their
work, we perform partitioning dynamically and iteratively according to the need
of the current verification task and we only consider partitioning the inputs at
the entry point of a program.

7 Conclusion

We have presented a property-oriented verification approach based on iterative
abstract testing, to verify properties of numerical programs. Our approach iter-
ates forward abstract execution (to compute invariants) and backward abstract
execution (to compute necessary pre-condition for property violation) to ver-
ify the target property. The key point behind our iterative mechanism is the
utilization of dynamic input space partitioning to split an abstract input that
needs further exploration into sub-inputs such that each sub-input involves less
program behaviors and may be easier to verify. The partitioning is conducted
dynamically (on demand) according to the needs of the sub-goal of the veri-
fication. Moreover, the partitioning enables the verification to be achieved via
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bounded exhaustive testing over an abstract sub-input of small size, which com-
plements the abstract testing and is able to generate counter-examples when the
property does not hold. Finally, we have shown promising experimental results
comparing against several state-of-the-art program verification tools.

For future work, we plan to investigate other dynamic analysis techniques to
complement our abstract testing, especially for the cases that the property to
be checked does not hold. Also, our approach is highly parallelizable by nature
thanks to the partitioning, and thus we plan to develop a parallel version for
speedup.
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framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

33. Jagannath, V., Lee, Y.Y., Daniel, B., Marinov, D.: Reducing the costs of bounded-
exhaustive testing. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol.
5503, pp. 171–185. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00593-0 12

34. Jeannet, B.: Dynamic partitioning in linear relation analysis: application to the
verification of reactive systems. Form. Methods Syst. Des. 23(1), 5–37 (2003)

35. Jeannet, B.: Interproc analyzer for recursive programs with numerical variables.
INRIA, software and documentation are available at the following, pp. 06-11
(2010). http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
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41. Miné, A.: The octagon abstract domain. High.-Order Symb. Comput. 19(1), 31–
100 (2006)

42. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 16

43. Toman, J., Grossman, D.: Concerto: a framework for combined concrete and
abstract interpretation. Proc. ACM Program. Lang. 3(POPL), 43 (2019)

https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1007/978-3-540-78800-3_33
https://doi.org/10.1007/978-3-540-78800-3_33
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-642-00593-0_12
https://doi.org/10.1007/978-3-642-00593-0_12
http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-540-30482-1_23
https://doi.org/10.1007/978-3-540-30482-1_23
https://doi.org/10.1007/978-3-540-31987-0_2
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16


Trends: Assuring Machine Learning



Robustness Verification of Support
Vector Machines

Francesco Ranzato(B) and Marco Zanella

Dipartimento di Matematica, University of Padova, Padova, Italy
ranzato@math.unipd.it

Abstract. We study the problem of formally verifying the robustness
to adversarial examples of support vector machines (SVMs), a major
machine learning model for classification and regression tasks. Following
a recent stream of works on formal robustness verification of (deep) neu-
ral networks, our approach relies on a sound abstract version of a given
SVM classifier to be used for checking its robustness. This methodol-
ogy is parametric on a given numerical abstraction of real values and,
analogously to the case of neural networks, needs neither abstract least
upper bounds nor widening operators on this abstraction. The stan-
dard interval domain provides a simple instantiation of our abstraction
technique, which is enhanced with the domain of reduced affine forms,
an efficient abstraction of the zonotope abstract domain. This robust-
ness verification technique has been fully implemented and experimen-
tally evaluated on SVMs based on linear and nonlinear (polynomial and
radial basis function) kernels, which have been trained on the popu-
lar MNIST dataset of images and on the recent and more challenging
Fashion-MNIST dataset. The experimental results of our prototype SVM
robustness verifier appear to be encouraging: this automated verifica-
tion is fast, scalable and shows significantly high percentages of provable
robustness on the test set of MNIST, in particular compared to the anal-
ogous provable robustness of neural networks.

1 Introduction

Adversarial machine learning [10,17,38] is an emerging hot topic studying vul-
nerabilities of machine learning (ML) techniques in adversarial scenarios and
whose main objective is to design methodologies for making learning tools robust
to adversarial attacks. Adversarial examples have been found in diverse appli-
cation fields of ML such as image classification, speech recognition and malware
detection [10]. Current defense techniques include adversarial model training,
input validation, testing and automatic verification of learning algorithms (see
the recent survey [10]). In particular, formal verification of ML classifiers started
to be an active field of investigation [1,8,9,12,15,16,19,23,26,27,31,32,39,40]
within the verification and static analysis community. Robustness to adversarial
inputs is an important safety property of ML classifiers whose formal verification
has been investigated for (deep) neural networks [1,9,26,31,32,40]. A classifier
c© Springer Nature Switzerland AG 2019
B.-Y. E. Chang (Ed.): SAS 2019, LNCS 11822, pp. 271–295, 2019.
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is robust to some (typically small) perturbation of its input objects representing
an adversarial attack when it assigns the same class to all the objects within
that perturbation. Thus, slight malicious alterations of input objects should not
deceive a robust classifier. Pulina and Tacchella [26] first put forward the idea
of a formal robustness verification of neural network classifiers by leveraging
interval-based abstract interpretation for designing a sound abstract classifier.
This abstraction-based verification approach has been pushed forward by Vechev
et al. [9,31,32], who designed a scalable robustness verification technique which
relies on abstract interpretation of deep neural networks based on a specifically
tailored abstract domain [32].

While all the aforementioned verification techniques consider (deep) neu-
ral networks as ML model, in this work we focus on support vector machines
(SVMs), which is a major learning model extensively and successfully used for
both classification and regression tasks [7]. SVMs are widely applied in different
fields where adversarial attacks must be taken into account, notably image clas-
sification, malware detection, intrusion detection and spam filtering [2]. Adver-
sarial attacks and robustness issues of SVMs have been defined and studied by
some authors [2,3,24,37,41,43,46], in particular investigating robust training
and experimental robustness evaluation of SVMs. To the best of our knowledge,
no formal and automatic robustness certification technique for SVMs has been
studied.

Contributions. A simple and standard model of adversarial region for a ML
classifier C : X → L, where X ⊆ R

n is the input space and L is the set of classes
(or labels), is based on a set of perturbations P (x) ⊆ X of an input x ∈ X for
C, which typically exploits some metric on R

n to quantify a similarity to x. A
classifier C is robust on an input x for a perturbation P when for all x′ ∈ P (x),
C(x′) = C(x) holds, meaning that the adversary cannot attack the classification
of x made by C by selecting input objects from P (x) [4]. We consider the most
effective SVM classifiers based on common linear and nonlinear kernels, in partic-
ular polynomial and Gaussian radial basis function (RBFs) [7]. Our technique for
formally verifying the robustness of C is quite standard: by leveraging a numer-
ical abstraction A of sets of real vectors in ℘(Rn), we define a sound abstract
classifier C� : A → ℘(L) and a sound abstract perturbation P � : X → A, in such
a way that if C�(P �(x)) = {C(x)} holds then C is proved to be robust on the
input x for the adversarial region P . As usual in static analysis, scalability and
precision are the main issues in SVM verification. A robustness verifier has to
scale with the number of support vectors of the SVM classifier C, which in turn
depends on the size of the training dataset for C, which may be huge (easily
tens/hundreds of thousands of samples). Moreover, the precision of a verifier
may crucially depend on the relational information between the components,
called features in ML, of input vectors in R

n, whose number may be quite large
(easily hundreds/thousands of features). For our robustness verifier, we used an
abstraction which is a product of the standard nonrelational interval domain [6]
and of the so-called reduced affine form (RAF) abstraction, a relational domain
representing the dependencies from the components of input vectors. A RAF for
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vectors in R
n is given by a0 +

∑n
i=1 aiεi +arεr, where εi’s are symbolic variables

ranging in [−1, 1] and representing a dependence from the i-th component of
the vector, while εr is a further symbolic variable in [−1, 1] which accumulates
all the approximations introduced by nonlinear operations such as multiplica-
tion and exponential. RAFs can be viewed as a restriction to a given length
(here the dimension n of R

n) of the zonotope domain used in static program
analysis [13], which features an optimal abstract multiplication [33], the crucial
operation of abstract nonlinear SVMs. We implemented our robustness verifica-
tion method for SVMs in a tool called SAVer (Svm Abstract Ver ifier), written
in C. Our experimental evaluation of SAVer employed the popular MNIST [18]
image dataset and the recent and more challenging alternative Fashion-MNIST
dataset [42]. Our benchmarks provide the percentage of samples of the full test
sets for which a SVM is proved to be robust (and, dually, vulnerable) for a given
perturbation, the average verification times per sample, and the scalability of
the robustness verifier w.r.t. the number of support vectors. We also compared
SAVer to DeepPoly [32], a robustness verification tool for deep neural networks
based on abstract interpretation. Our experimental results indicate that SAVer
is fast and scalable and that the percentage of robustness provable by SAVer
for SVMs is higher than the robustness provable by DeepPoly for deep neural
networks.

Illustrative Example. The figure below shows a toy binary SVM classifier for
input vectors in R

2, with four support vectors sv1 = (8, 7), sv2 = (10,−4),
sv3 = (8, 1), sv4 = (9,−5) for a polynomial kernel of degree 2. The correspond-
ing binary classifier C : R

2 → {−1,+1} is the following function:

C(x) = sign(
∑4

i=1 αiyi(svi · x)2 + b)

= sign(α1(8x1+7x2)
2−α2(10x1−4x2)

2−α3(8x1+x2)
2+α4(9x1−5x2)

2 + b)

where yi and αi are, resp., the classes (±1) and weights of the support vectors svi,
with: α1 ≈ 5.36 × 10−4, α2 ≈ −3.78 × 10−3, α3 ≈
−9.23 × 10−4, α4 ≈ 4.17 × 10−3, b ≈ 3.33. The set
of vectors x ∈ R

2 such that C(x) = 0 defines the
decision curve between labels −1 and +1. We consider
a point p = (5, 1) and an adversarial region P1(p) =
{x ∈ R

2 | max(|x1 − p1|, |x2 − p2|) ≤ 1}, which is the
L∞ ball of radius 1 centered in p and can be exactly
represented by the interval in R

2 (i.e., box) P1(p) =
(x1 ∈ [4, 6], x2 ∈ [0, 2]). As shown by the figure, this
classifier C is robust on p for this perturbation because for all x ∈ P1(p),
C(x) = C(p) = +1. However, it turns out that the interval abstraction C�

Int of
this classifier cannot prove the robustness of C:

C�
Int(P1(p)) = sign(

∑4
i=1 αiyi((svi)1[4, 6] + (svi)2[0, 2])

2 + b)

= sign(α1y1[1024, 3844] + α2y2[1024, 3600] + α3y3[1024, 2500] + α4y4[676, 2916] + b)

= sign([−9.231596, 12.735958]) = �
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Instead, the reduced affine form abstraction C�
RAF2

allows us to prove the robust-
ness of C on p. Here, the perturbation P1(p) is exactly represented by the RAF
(x̃1 = 5 + ε1, x̃2 = 1 + ε2), where ε1, ε2, εr ∈ [−1, 1], and the abstract compu-
tation is as follows:

C�
RAF2

(P1(p)) = sign(
∑4

i=1 αiyi[(svi)1(5 + ε1) + (svi)2(1 + ε2)]2 + b)

= sign(α1y1(47 + 8ε1 + 7ε2)
2 + α2y2(46 + 10ε1 − 4ε2)

2

+ α3y3(41 + 8ε1 + ε2)
2 + α4y4(40 + 9ε1 − 5ε2)

2 + b)

= sign(α1y1(2322 + 752ε1 + 658ε2 + 112εr) + α2y2(2232 + 920ε1 − 368ε2 + 80εr)

+ α3y3(1746 + 656ε1 + 82ε2 + 16εr) + α4y4(1706 + 720ε1 − 400ε2 + 90εr) + b)

= sign(1.635264 − 0.680779ε1 + 0.001047ε2 + 0.753025εr) = +1

Hence, the RAF analysis is able to prove that C is robust on p for P1, since
the final RAF has an interval range [0.200413, 3.070115] consisting of positive
numbers.

2 Background

Notation. If x,y ∈ R
n, z ∈ R and i ∈ [1, n] then xi = πi(x) ∈ R,

x · y �
∑

i xiyi ∈ R, x + y ∈ R
n, zx ∈ R

n, ‖x‖2 � √
x · x ∈ R, ‖x‖∞ �

max{|xi| | i ∈ [1, n]} ∈ R, denote, resp., i-th component, dot product, vector
addition, scalar multiplication, L2 (i.e., Euclidean) and L∞ (i.e., maximum)
norms in R

n. If h : X → Y is any function then hc : ℘(X) → ℘(Y ) defined
by hc(S) � {h(x) | x ∈ S} denotes the standard collecting lifting of h, and,
when clear from the context, we slightly abuse notation by using h(S) instead
of hc(S).

Classifiers and Robustness. Consider a training dataset T = {(x1, y1), ...,
(xN , yN )} ⊆ X × L, where X ⊆ R

n is the input space, xi ∈ X is called feature
(or attribute) vector and yi is its label (or class) ranging into the output space
L. A supervised learning algorithm SL : ℘(X × L) → (X → L) (also called
trainer) computes a classifier function SL(T ) : X → L ranging in some function
subspace (also called hypothesis space). The learned classifier SL(T ) is a function
that best fits the training dataset T according to a principle of empirical risk
minimization. The machine learning algorithm SL computes a classifier SL(T )
by solving a complex optimization problem. The output space is assumed to be
represented by real numbers, i.e., L ⊆ R, and for binary classifiers with |L| = 2,
the standard assumption is that L = {−1,+1}.

The standard threat model [4,10] of untargeted adversarial examples for a
generic classifier C : X → L is as follows. Given a valid input object x ∈ X
whose correct label is C(x), an adversarial example for x is a legal input x′ ∈ X
such that x′ is a small perturbation of (i.e., is similar to) x and C(x′) 	= C(x).
An adversarial region is the set of perturbations P (x) ⊆ X that the adversary
is allowed to make to x, meaning that a function P : X → ℘(X) models an
adversarial region. A perturbation P (x) is typically modeled by some distance
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metric to quantify a similarity to x, usually a p-norm, and the most general
model of perturbation simply requires that for all x ∈ X, x ∈ P (x). A classifier
C is defined to be robust on an input vector x for an adversarial region P when
for all x′ ∈ P (x), C(x′) = C(x) holds, denoted by Rob(C,x, P ) �⇔ {C(x′) | x′ ∈
P (x)} = {C(x)}. This means that the adversary cannot attack the classification
of x made by C by selecting input objects from the region P (x).

Support Vector Machines. Several strategies and optimization techniques are
available to train a SVM, but they are not relevant for our purposes ([7] is a pop-
ular standard reference for SVMs). A SVM classifier partitions the input space
X into regions, each representing a class of the output space L. In its simplest
formulation, the learning algorithm produces a linear SVM binary classifier with
L = {−1,+1} which relies on a hyperplane of R

n that separates training vectors
labeled by −1 from vectors labeled +1. The training phase consists in finding
(i.e., learning) this hyperplane. While many separating hyperplanes may exist,
the SVM separating hyperplane has the maximum distance (called margin) with
the closest vectors in the training dataset, because a maximum-margin learning
algorithm statistically reduces the generalization error. This SVM hyperplane is
univocally represented by its normal vector w ∈ R

n and by a displacement scalar
b ∈ R, so that the hyperplane equation is w ·x = b. The classification of an input
vector x ∈ X therefore boils down to determining the half-space containing x,
namely, the linear binary classifier is the decision function C(x) = sign(w ·x−b),
where the case sign(0) = 0 is negligible (e.g. sign(0) may assign the class +1).
This linear classifier sign(w · x − b) is in so-called primal form, while nonlinear
classifiers are instead in dual form and based on a so-called kernel function.

When the training set T cannot be linearly separated in a satisfactory
way, T is projected into a much higher dimensional space through a projec-
tion map ϕ : R

n → R
k, with k > n, where ϕ(T ) may become linearly sep-

arable. Training a SVM classifier boils down to a high-dimensional quadratic
programming problem which can be solved either in its primal or dual form.
When solving the dual problem, the projection function ϕ is only involved in
dot products ϕ(x) · ϕ(y) in R

k, so that this projection is not actually needed
if these dot products in R

k can be equivalently formulated through a function
k : R

n ×R
n → R, called kernel function, such that k(x,y) = ϕ(x) ·ϕ(y). Given a

dataset T = {(x1, y1), ..., (xN , yN )}, with yi ∈ {−1,+1}, solving the dual prob-
lem for training the SVM classifier means finding a set {αi}N

i=1 ⊆ R, called set
of weights, which maximizes the following function f : R

N → R:

max f(α1, ..., αN ) �
∑N

i=1 αi − 1
2

∑N
i,j=1 αiαjyiyjk(xi,xj)

subject to: for all i, 0 ≤ αi ≤ c, where c ∈ R>0 is a tuning parameter, and∑N
i=1 αiyi = 0. This set of weights defines the following SVM binary classifier

C: for all input x ∈ X ⊆ R
n,

C(x) � sign([
∑N

i=1 αiyik(xi,x)] − b) (1)

for some offset parameter b ∈ R. By defining Dk(x) �
∑N

i=1 αiyik(xi,x), this
classifier will be also denoted by C(x) = sign(Dk(x) − b). In practice most
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weights αi are 0, hence only a subset of the training vectors xi is actually used
by the SVM classifier C, and these are called support vectors. By a slight abuse
of notation, we will assume that αi 	= 0 for all i ∈ [1, N ], namely {xi}N

i=1 ⊆
R

n denotes the set of support vectors extracted from the training set by the
SVM learning algorithm for some kernel function. We will consider the most
common and effective kernel functions used in SVM training: (i) linear kernel:
k(x,y) = x · y; (ii) d-polynomial kernel: k(x,y) = (x · y + c)d (common powers
are d = 2, 3, 9); (iii) Gaussian radial basis function (RBF): k(x,y) = e−γ‖x−y‖2

2 ,
for some γ > 0.

SVM Multiclass Classification. Multiclass datasets have a finite set of labels
L = {y1, ..., ym} with m > 2. The standard approach to multiclass classification
problems consists in a reduction into multiple binary classification problems
using one of the following two simple strategies [14]. In the “one-versus-rest”
(ovr) strategy, m binary classifiers are trained, where each binary classifier Ci,̄i

determines whether an input vector x belongs to the class yi ∈ L or not by
assigning a real confidence score for its decision rather than just a label, so that
the class yj with the highest-output confidence score is the class assigned to x.
Multiclass SVMs using this ovr approach might not work satisfactorily because
the ovr approach often leads to unbalanced datasets already for a few classes
due to unbalanced partitions into yi and L � {yi}.

The most common solution [14] is to follow a “one-versus-one” (ovo) app-
roach, where m(m − 1)/2 binary classifiers C{i,j} are trained on the restriction
of the original training set to vectors with labels in {yi, yj}, with i 	= j, so
that each C{i,j} determines whether an input vector belongs (more) to the class
yi or (more to) yj . Given an input vector x ∈ X each of these m(m − 1)/2
binary classifiers C{i,j}(x) assigns a “vote” to one class in {yi, yj}, and at
the end the class with the most votes wins, i.e., the argmax of the function
votes(x, yi) � |{j ∈ {1, ...,m} | j 	= i, C{i,j}(x) = yi}| is the winning class of x.
Draw is a downside of the ovo strategy because it may well be the case that for
some (regions of) input vectors multiple classes collect the same number of votes
and therefore no classification can be done. In case of draw, a common strategy
[14] is to output any of the winning classes (e.g., the one with the smaller index).
However, since our primary focus is on soundness of abstract classifiers, we need
to model an ovo multiclass classifier by a function Movo : X → ℘(L) defined by
Movo(x) � {yk ∈ L | k ∈ argmaxi∈{1,...,m}votes(x, yi)}, so that |Movo(x)| > 1
models a draw in the ovo voting.

Numerical Abstractions. According to the most general definition, a numer-
ical abstract domain is a tuple 〈A,≤A, γ〉 where 〈A,≤A〉 is at least a preordered
set and the concretization function γ : A → ℘(Rn), with n ≥ 1, preserves the
relation ≤A, namely, a ≤A a′ implies γ(a) ⊆ γ(a′) (i.e., γ is monotone). Thus,
A plays the usual role of set of symbolic representations for sets of vectors of
R

n. Well-known examples of numerical abstract domains include intervals, zono-
topes, octagons, convex polyhedra (we refer to the tutorial [22]). Some numer-
ical domains just form preorders (e.g., standard representations of octagons by
DBMs allow multiple representations) while other domains give rise to posets
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(e.g., intervals). While a monotone concretization γ is enough for reasoning about
soundness of static analyses on numerical domains, the notion of best correct
approximation of concrete sets relies on the existence of an abstraction func-
tion α : ℘(Rn) → A which requires that 〈A,≤A〉 is (at least) a poset and that
the pair (α, γ) forms a Galois connection/insertion. Consider a concrete k-ary
real operation f : ℘(Rn)k → ℘(Rn), for some k ∈ N>0, and a corresponding
abstract map f � : Ak → A. Then, f � is a correct (or sound) approximation
of f when f ◦ 〈γ, ..., γ〉 ⊆ γ ◦ f � holds, while f � is exact (or γ-complete) when
f ◦ 〈γ, ..., γ〉 = γ ◦ f � holds. When a Galois connection (α, γ) for A exists, if f �

is exact then it coincides with the best correct approximation (bca) of f on A,
which is the abstract function α◦f ◦〈γ, ..., γ〉 : Ak → A [28]. The abstract domain
Int of numerical intervals on the poset of real numbers 〈R ∪ {–∞,+∞},≤〉 is
defined as usual [6]:

Int � {⊥, [–∞, +∞]} ∪ {[l, u] | l, u ∈ R, l ≤ u} ∪ {[–∞, u] | u ∈ R} ∪ {[l, +∞] | l ∈ R}.

The concretization map γ : Int → ℘(R) is standard. Intervals admit an abstrac-
tion map α : ℘(R) → Int such that α(X) is the least interval containing X, so
that (α, γ) defines a Galois insertion between 〈Int,�〉 and 〈℘(R),⊆〉.

3 Abstract Robustness Verification Framework

Let us describe a sound abstract robustness verification framework for binary
and multiclass SVM classifiers. We consider a general classifier C : X → L,
where L is a set of labels, and an adversarial region P : X → ℘(X) for C.
Consider a numerical abstract domain 〈A,≤A〉 whose abstract values represent
sets of input vectors for a binary classifier C, namely γ : A → ℘(X), where X is
the input space of C. We use An to emphasize that A is used as an abstraction
of properties of n-dimensional vectors in R

n, so that A1 denotes that A is used
as an abstraction of sets of scalars in ℘(R).

Definition 3.1 (Sound Abstract Classifier). A sound abstract classifier on
A is an algorithm C� : A → ℘(L) such that, for all a ∈ A, {C(x) ∈ L | x ∈
γ(a)} ⊆ C�(a) holds. ��

Thus, C� is a sound abstraction of a classifier C when, given an abstract
value a ∈ A representing a set of concrete inputs, C�(a) computes a superset of
the labels computed by C on inputs ranging in γ(a). In particular, the output
C�(a) = L plays the role of a “don’t know” answer, while if |C�(a)| = 1 then
every sample in γ(a) must necessarily be classified by C with a same label C�(a).

Definition 3.2 (Sound Abstract Perturbation). A sound abstract pertur-
bation is a function P � : X → A which is sound for P , i.e., for all x ∈ X,P (x) ⊆
γ(P �(x)). ��

A sound abstract classifier and a sound abstract perturbation 〈C�, P �〉 allows
us to define a robustness verifier as follows.
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Theorem 3.3 (Robustness Verifier). If C� and P � are sound then 〈C�, P �〉
is a sound robustness verifier, namely, for all x ∈ X, |C�(P �(x))| = 1 ⇒
Rob(C,x, P ).

As multiclass SVMs combine the outputs of a number of binary classifiers, let
us focus on binary classifiers C : X → {−1,+1}, where C(x) = sign(D(x) − b)
and D : X → R has been trained for some kernel function k. For the sake of
clarity we will use a slightly different notation for C� : X → {−1,+1,�}, where
� is an abstract “don’t know” value representing {−1,+1}. Of course, the key
step for defining an abstract robustness verifier is to design a sound abstract
version of the trained function D : X → R on some abstraction A, namely an
algorithm D� : An → A1 such that, for all a ∈ An, Dc(γ(a)) ⊆ γ(D�(a)). We
also need that the abstraction A is endowed with a sound approximation of the
Boolean test signb(·) : R → {−1,+1} for any bias b ∈ R, where signb(x) �
if x ≥ b then +1 else −1. Hence, we require a computable abstract function
sign�

b : A1 → {−1,+1,�} which is sound for signb, that is, for all a ∈ A1,
sign�

b(a) 	= � ⇒ ∀x ∈ γ(a).signb(x) = sign�
b(a). These hypotheses therefore

provide a straightforward sound abstract classifier C� : A → {−1,+1,�} defined
as follows: C�(a) � sign�

b(D
�(a)). It turns out that these hypotheses entail the

soundness of the robustness verifier.

Lemma 3.4. If P � is a sound abstract perturbation then 〈C�, P �〉 is a sound
robustness verifier.

If T is a test set for the classifier C then we may correctly assert that C is
provably q%-robust on T for the perturbation P when a sound abstract robust-
ness verifier is able to check that C is robust on q% of the test samples in T .
Of course, by soundness, this means that C is certainly robust on at least q% of
the inputs in T , while on the remaining (100 − q)% of T we do not know: these
could be spurious or real unrobust input vectors.

In order to design a sound abstract version of D(x) =
∑N

i=1 αiyik(xi,x) we
surely need sound approximations on A1 of scalar multiplication and addition.
We thus require a sound abstract scalar multiplication λa.za : A1 → A1, for
any z ∈ R, such that for all a ∈ A1, zγ(a) ⊆ γ(za), and a sound addition
+� : A1 × A1 → A1 such that for all a, a′ ∈ A1, γ(a) + γ(a′) ⊆ γ(a +� a′), and
we use

∑�
i∈I ai to denote an indexed abstract summation.

Linear Classifiers. Sound approximations of scalar multiplication and addi-
tion are enough for designing a sound robustness verifier for a linear classifier. As
a preprocessing step, for a binary classifier C(x) = sign([

∑N
i=1 αiyi(xi · x)] − b)

which has been trained for the linear kernel, we preliminarly compute the
hyperplane normal vector w ∈ R

n: for all j ∈ [1, n], wj �
∑N

i=1 αiyixij ,
so that for all x ∈ R

n, w · x =
∑n

j=1 wjxj =
∑N

i=1 αiyi(xi · x). Thus,
C(x) = sign([

∑n
j=1 wjxj ] − b) is the linear classifier in primal form, whose

robustness can be abstractly verified by resorting to just sound abstract scalar
multiplication and addition on A1. The noteworthy advantage of abstracting a
classifier in primal form is that each component of the input vector x occurs just
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once in sign([
∑n

j=1 wjxj ]−b), while in the dual form sign([
∑N

i=1αiyi(xi ·x)]−b)
each component xj occurs exactly N times (one for each support vector), so
that a precise abstraction of this latter dual form should be able to represent
the correlation between (the many) multiple occurrences of each xj .

Nonlinear Classifiers. Let us consider a nonlinear kernel binary classifier
C(x) = sign(D(x) − b), where D(x) =

∑N
i=1 αiyik(xi,x) and {xi}N

i=1 ⊆ R
n is

the set of support vectors for the kernel function k. Thus, what we additionally
need here is a sound abstract kernel function k� : R

n × An → A1 such that for
any support vector xi and a ∈ An, {k(xi,x) | x ∈ γ(a)} ⊆ γ(k�(xi, a)). Let us
consider the polynomial and RBF kernels.

For a d-polynomial kernel k(x,y) = (x·y+c)d, we need sound approximations
of the unary dot product λy.x · y : R

n → R, for any given x ∈ R
n, and of the

d-power function (·)d : R → R. Of course, a sound nonrelational approximation
of λy.x · y =

∑n
j=1 xjyj can be obtained simply by using sound abstract scalar

multiplication and addition on A1. Moreover, a sound abstract binary multipli-
cation provides a straightforward definition of a sound abstract d-power function
(·)d�

: A1 → A1. If ∗� : A1 × A1 → A1 is a sound abstract multiplication such
that for all a, a′ ∈ A1, γ(a) ∗ γ(a′) ⊆ γ(a ∗� a′), then a sound abstract d-power
procedure can be defined simply by iterating the abstract multiplication ∗�.

For the RBF kernel k(x,y) = e−γ‖x−y‖2
2 = e−γ(x−y)·(x−y), for some γ >

0, we need sound approximations of the self-dot product λx.x · x : R
n → R,

which is the squared Euclidean distance, and of the exponential ex : R → R.
Let us observe that sound abstract addition and multiplication induce a sound
nonrelational approximation of the self-dot product: for all 〈a1, ..., an〉 ∈ An,
〈a1, ..., an〉 ·� 〈a1, ..., an〉 �

∑�n
j=1 aj ∗� aj . Finally, we require a sound abstract

exponential e�(·) : A1 → A1 such that for all a ∈ A1, {ex | x ∈ γ(a)} ⊆ γ(e�a).

Abstract Multi-classification. Let us consider multiclass classification for
a set of labels L = {y1, ..., ym}, with m > 2. It turns out that the multi-
classification approaches based on a reduction to multiple binary classifications
such as ovr and ovo introduce a further approximation in the abstraction process,
because these reduction strategies need to be soundly approximated.

Let us first consider the ovr strategy and, for all j ∈ [1,m], let Cj,j̄ : X → R

denote the binary scoring classifier of yj-versus-rest where Cj,j̄(x) � Dj(x) −
bj . In order to have a sound approximation of ovr multi-classification, besides
having m sound abstract classifiers C�

j,j̄
: An → A1 such that for all a ∈ An,

{Cj,j̄(x) ∈ R | x ∈ γ(a)} ⊆ γ(C�
j,j̄

(a)), we need an abstract maximum function
max� : (A1)m → {1, ...,m,�} which is sound, namely, if (a1, ..., am) ∈ (A1)m and
(z1, ..., zm) ∈ γ(a1)× ...×γ(am) then max�(a1, ..., am) 	= � ⇒ max(z1, ..., zm) ∈
γ(amax�(a1,...,am)) holds. Clearly, as soon as the abstract function max� outputs
�, this abstract multi-classification scheme is inconclusive.

Example 3.5. Let m = 3 and assume that an ovr multi-classifier Movr is robust
on x for some adversarial region P as a consequence of the following ranges of
scores: for all x′ ∈ P (x), −0.5 ≤ C1,1̄(x′) ≤ −0.2, 3.5 ≤ C2,2̄(x′) ≤ 4 and
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2 ≤ C3,3̄(x′) ≤ 3.2. In fact, since the least score of C2,2̄ on the region P (x) is
greater than the greatest scores of C1,1̄ and C3,3̄ on P (x), these ranges imply that
for all x′ ∈ P (x), Movr(x′) = y2. However, even in this advantageous scenario, on
the abstract side we could not be able to infer that C2,2̄ always prevails over C1,1̄

and C3,3̄. For example, for the interval abstraction, some interval binary classi-
fiers for a sound perturbation P �(x) could output the following sound intervals:
C�

1,1̄
(P �(x)) = [−1,−0.1], C�

2,2̄
(P �(x)) = [3.4, 4.2] and C�

3,3̄
(P �(x)) = [1.5, 3.5].

In this case, despite that each abstract binary classifier C�
i,̄i

is able to prove that
Ci,̄i is robust on x for P (because the output intervals do not include 0), the ovr
strategy here does not allow to conclude that the multi-classifier Movr is robust
on x, because the lower bound 3.4 of the interval approximation provided by C�

2,2̄
is not above the interval upper bound 3.5 of C�

3,3̄
. In such a case, a sound abstract

multi-classifier based on ovr cannot prove the robustness of Movr for P (x). ��
Let us turn to the ovo approach which relies on m(m−1)/2 binary classifiers

C{i,j} : X → {i, j}. Let us assume that for all the pairs i 	= j, a sound abstract
binary classifier C�

{i,j} : A → {yi, yj ,�} is defined. Then, an abstract ovo multi-
classifier M �

ovo : A → ℘(L) can be defined as follows. For all i ∈ {1, ...,m} and
a ∈ A, let votes�(a, yi) ∈ IntN be an interval of nonnegative integers used by the
following abstract voting procedure AV, where +Int denotes standard interval
addition:

forall i ∈ [1, m] do votes�(a, yi) := [0, 0];

forall i, j ∈ [1, m] s.t. i �= j do

if C�
{i,j}(a) = yi then votes�(a, yi) := votes�(a, yi) +Int [1, 1]; (2)

elseif C�
{i,j}(a) = yj then votes�(a, yj) := votes�(a, yj) +Int [1, 1];

else votes�(a, yi) := votes�(a, yi) +Int [0, 1]; votes�(a, yj) := votes�(a, yj) +Int [0, 1];

Let us notice that the last else branch is taken when C�
{i,j}(a) = �, meaning

that the abstract classifier C�
{i,j}(a) is not able to decide between yi and yj ,

so that in order to preserve the soundness of the abstract voting procedure, we
need to increment just the upper bounds of the interval ranges of votes for both
classes yi and yj while their lower bounds are left unchanged. Let us denote
votes�(a, yi) = [vmin

i , vmax
i ]. Hence, at the end of the AV procedure, [vmin

i , vmax
i ]

provides an interval approximation of concrete votes as follows:

|{j 	= i | ∀x ∈ γ(a). C{i,j}(x) = i}| ≥ vmin
i ,

|{j 	= i | ∃x ∈ γ(a). C{i,j}(x) = i}| ≤ vmax
i .

The corresponding abstract multi-classifier is then defined as follows:

M �
ovo(a) � {yi ∈ L | ∀j 	= i. vmin

j ≤ vmax
i }.

Hence, one may have an intuition for this definition by considering that a class yi

is not in M �
ovo(a) when there exists a different class yk whose lower bound of votes

is certainly strictly greater than the upper bound of votes for yi. For example,
for m = 4, if votes�(a, y1) = [4, 4], votes�(a, y2) = [0, 2], votes�(a, y3) = [4, 5],
votes�(a, y4) = [1, 3] then M �

ovo(a) = {y1, y3}.
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Example 3.6. Assume that m = 3 and for all x′ ∈ P (x), Movo(x′) = {y3}
because we have that argmaxi=1,2,3votes(x′, yi) = {3}. This means that a
draw never happens for Movo, so that for all x′ ∈ P (x), C{1,3}(x′) = y3 and
C{2,3}(x′) = y3 certainly hold (because m = 3). Let us also assume that
{C{1,2}(x′) | x′ ∈ P (x)} = {y1, y2}. Then, for a sound abstract perturba-
tion P �(x), we necessarily have that C�

{1,2}(P
�(x)) = �. If we assume that

C�
{1,3}(P

�(x)) = y3 and C�
{2,3}(P

�(x)) = � then we have that M �
ovo(P

�(x)) =

{y1, y2, y3} because votes(P �(x), y1) = [0, 1], votes(P �(x), y2) = [0, 2] and
votes(P �(x), y3) = [1, 2]. Therefore, in this case, M �

ovo is not able to prove
the robustness of Movo on x. Let us notice that the source of imprecision in
this multi-classification is confined to the binary classifier C�

{2,3} rather than
the abstract voting AV strategy. In fact, if we have that C�

{1,3}(P
�(x)) = {y3}

and C�
{2,3}(P

�(x)) = {y3} then M �
ovo(P

�(x)) = {y3}, thus proving the robust-

ness of M . ��
Lemma 3.7. Let Movo be an ovo multi-classifier based on binary classifiers
C{i,j}. If the abstract ovo multi-classifier M �

ovo is based on sound abstract binary
classifiers C�

{i,j} then M �
ovo is sound for Movo.

In our experimental evaluation we will follow the ovo approach for concrete
multi-classification, which is standard for SVMs [14], and consequently we will
use this abstract ovo multi-classifier for robustness verification.

On Completeness. Let C : X → {−1,+1} be a binary classifier, P : X →
℘(X) a perturbation and C� : A → {−1,+1,�}, P � : X → A be a corresponding
sound abstract binary classifier and perturbation on some abstraction A.

Definition 3.8 (Complete Abstract Classifiers and Robustness Veri-
fiers). C� is complete for C when for all a ∈ A, C�(a) = � ⇒ ∃x,x′ ∈
γ(a). C(x) 	= C(x′).
〈C�, P �〉 is a (sound and) complete robustness verifier for C w.r.t. P when for
all x ∈ X, C�(P �(x)) = C(x) iff Rob(C,x, P ). ��

Complete abstract classifiers can be obtained for linear binary classifiers
once these linear classifiers are in primal form and the abstract operations
are exact. We therefore consider a linear binary classifier in primal form
Cpr(x) � signb(

∑n
j=1 wjπj(x)) and an abstraction A of ℘(X) with concretiza-

tion γ : A → ℘(X). Let us consider the following exactness conditions for the
abstract functions on A needed for abstracting Cpr and the perturbation P :

(E1) Exact projection π�
j : For all j ∈ [1, n] and a ∈ An, γ(π�

j(a)) = πj(γ(a));
(E2) Exact scalar multiplication: For all z ∈ R and a ∈ A1, γ(za) = zγ(a);
(E3) Exact scalar addition +�: For all a, a′ ∈ A1, γ(a +� a′) = γ(a) + γ(a′);
(E4) Exact sign�

b: For all b ∈ R, a ∈ A1, (∀x ∈ γ(a).signb(x) = s) ⇒ sign�
b(a) = s;

(E5) Exact perturbation P �: For all x ∈ X, γ(P �(x)) = P (x).

Then, it turns out that the abstract classifier C�
pr(a) � sign�

b(
∑�n

j=1 wjπ
�
j(a)) is

complete and induces a complete robustness verifier.
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Lemma 3.9. Under hypotheses (E1)–(E5), C�
pr is (sound and) complete for Cpr

and 〈C�
pr, P

�〉 is a complete robustness verifier for Cpr w.r.t. P .

Let us now focus on multi-classification. It turns out that completeness does
not scale from binary to multi-classification, that is, even if all the abstract
binary classifiers are assumed to be complete, the corresponding abstract multi-
classification could lose the completeness. This loss is not due to the abstraction
of the binary classifiers, but it is an intrinsic issue of a multi-classification app-
roach based on binary classification. Let us show how this loss for ovr and ovo
can happen through some examples.

Example 3.10 Consider L = {y1, y2, y3} and assume that for two different
inputs x,x′ ∈ X, the scoring ovr binary classifiers Ci,i are as follows: C1,1(x) = 3,
C2,2(x) = −1, C3,3(x) = 2, C1,1(x

′) = 1, C2,2(x
′) = −1, C3,3(x) = 0.5.

Hence, Movr(x) = Movr(x′) = {y1}, meaning that Movr is robust on x for
a perturbation P (x) = {x,x′}. However, it turns out that the mere col-
lecting abstraction of binary classifiers Ci,i, although being trivially complete
according to Definition 3.8, may well lead to a (sound but) incomplete multi-
classification. In fact, even if we consider no abstraction of sets of vectors/scalars
and an abstract binary classifier is simply defined by a collecting abstraction
C�

i,i
(Y ) � {Ci,i(x) ∈ R | x ∈ Y }, then we have that while each C�

i,i
is complete

the corresponding abstract ovr multi-classifier turns out to be sound but not com-
plete. In our example, we have that: C�

1,1
(P (x)) = {1, 3}, C�

2,2
(P (x)) = {−1},

C�

3,3
(P (x)) = {0.5, 2}. Hence, the ovr strategy can only derive that both y1 and

y2 are feasible classes for P (x), namely, M �
ovr({x,x′}) = {y1, y2}, meaning that

M �
ovr cannot prove the robustness of M . ��
The above example shows that the loss of relational information between

input vectors and corresponding scores is an unavoidable source of incomplete-
ness when abstracting ovr multi-classification. An analogous incompleteness hap-
pens in ovo multi-classification.

Example 3.11 Consider L = {y1, y2, y3, y4, y5} and assume that for some
x,x′ ∈ X, the ovo binary classifiers C{i,j} give the following outputs:

C{1,2} C{1,3} C{1,4} C{1,5} C{2,3} C{2,4} C{2,5} C{3,4} C{3,5} C{4,5}
x y1 y1 y1 y5 y2 y2 y5 y3 y3 y4

x′ y1 y1 y4 y1 y2 y4 y2 y3 y5 y5

so that Movo(x) = Movo(x′) = {y1}, meaning that Movo is robust on x for the
perturbation P (x) = {x,x′}. Similarly to Example 3.10, the collecting abstrac-
tions of binary classifiers C{i,j} are trivially complete but define a (sound but)
incomplete multi-classification. In fact, even with no numerical abstraction, if we
consider the abstract collecting binary classifiers C�

{i,j}(Y ) � {C{i,j}(x) | x ∈ Y }
then we have that:

C{1,2} C{1,3} C{1,4} C{1,5} C{2,3} C{2,4} C{2,5} C{3,4} C{3,5} C{4,5}
P (x) {y1} {y1} {y1, y4} {y1, y5} {y2} {y2, y4} {y2, y5} {y3} {y3, y5} {y4, y5}
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Thus, the ovo voting for P (x) in order to be sound necessarily has to assign
4 votes to both classes y1 and y5, meaning that M �

ovo(P (x)) = {y1, y5}. As a
consequence, M �

ovr cannot prove the robustness of Movo. Here again, this is a
consequence of the collecting abstraction which looses the relational information
between input vectors and corresponding classes, and therefore is an ineluctable
source of incompleteness when abstracting ovo multi-classification. ��

Let us observe that when all the abstract binary classifiers C�
{i,j} are

complete, then in the abstract voting procedure AV defined by (2), for all
votes�(a, yi) = [vmin

i , vmax
i ], we have that |{j 	= i | ∃x ∈ γ(a). C{i,j}(x) = i}| =

vmax
i holds, meaning that the hypothesis of completeness of abstract binary clas-

sifiers strengthens the upper bound vmax
i to a precise equality, although this is

not enough for preserving the completeness.

4 Numerical Abstractions for Classifiers

Interval Abstraction. The n-dimensional interval abstraction domain Intn is
simply defined as a nonrelational product of Int, i.e., Intn � Intn (with Int1 =
Int), where γIntn

: Intn → ℘(Rn) is defined by γIntn
(I1, ..., In) � ×n

i=1γInt(Ii),
and, by a slight abuse of notation, this concretization map will be denoted simply
by γ. In order to abstract linear and nonlinear classifiers, we will use the following
standard interval operations based on real arithmetic operations.

– Projection πj : Intn → Int defined by πj(I1, ..., In) � Ij , which is trivially
exact because Intn is nonrelational.

– Scalar multiplication λI.zI : Intn → Intn, with z ∈ R, is defined as com-
ponentwise extension of scalar multiplication λI.zI : Int1 → Int1 given by:
z⊥ = ⊥ and z[l, u] � [zl, zu], where z(±∞) = ±∞ for z 	= 0 and 0(±∞) = 0.
This is an exact abstract scalar multiplication, i.e., {zx | x ∈ γ(I)} = γ(zI)
holds.

– Addition +� : Intn × Intn → Intn is defined as componentwise extension of
standard interval addition, that is, ⊥ +� I = ⊥ = I +� ⊥, [l1, u1] +� [l2, u2] =
[l1 + l2, u1 + u2]. This abstract interval addition is exact, i.e., {x1 + x2 | xi ∈
γ(Ii)} = γ(I1 +� I2) holds.

– One-dimensional multiplication ∗� : Int1 × Int1 → Int1 is enough for our pur-
poses, whose definition is standard: ⊥ ∗� I = ⊥ = I ∗� ⊥, [l1, u1] ∗� [l2, u2] =
[min(l1l2, l1u2, u1l2, u1u2), max(l1l2, l1u2, u1l2, u1u2)]. As a consequence of
the completeness of real numbers, this abstract interval multiplication is
exact, i.e., {x1x2 | xi ∈ γ(Ii)} = γ(I1 ∗� I2).

It is worth remarking that since all these abstract functions on real intervals
are exact and real intervals have the abstraction map, it turns out that all
these abstract functions are the best correct approximations on intervals of the
corresponding concrete functions.

For the exponential function ex : R → R used by RBF kernels, let us consider
a generic real function f : R → R which is assumed to be continuous and
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monotonically either increasing (x ≤ y ⇒ f(x) ≤ f(y)) or decreasing (x ≤ y ⇒
f(x) ≥ f(y)). Its collecting lifting fc : ℘(R) → ℘(R) is approximated on the
interval abstraction by the abstract function f � : Int1 → Int1 defined as follows:
for all possibly unbounded intervals [l, u] with l, u ∈ R ∪ {–∞,+∞},

fi([l, u]) � inf{f(x) ∈ R | x ∈ γ([l, u])} ∈ R ∪ {–∞}
fs([l, u]) � sup{f(x) ∈ R | x ∈ γ([l, u])} ∈ R ∪ {+∞}
f �([l, u]) � [min(fi([l, u]), fs([l, u])),max(fi([l, u]), fs([l, u])] f �(⊥) � ⊥

Therefore, for bounded intervals [l, u] with l, u ∈ R, f �([l, u]) = [min(f(l), f(u)),
max(f(l), f(u))]. As a consequence of the hypotheses of continuity and mono-
tonicity of f , it turns out that this abstract function f � is exact, i.e., {f(x) ∈
R | x ∈ γ([l, u])} = γ(f �([l, u])) holds, and it is the best correct approximation
on intervals of fc.

Reduced Affine Arithmetic Abstraction. Even if all the abstract functions
of the interval abstraction are exact, it is well known that the compositional
abstract evaluation of an inductively defined expression exp on Int can be impre-
cise due to the so-called dependency problem, meaning that if the syntactic
expression exp includes multiple occurrences of a variable x and the abstract
evaluation of exp is performed by structural induction on exp, then each occur-
rence of x in exp is taken independently from the others and this can lead to a
significant loss of precision in the output interval. This loss of precision may hap-
pen both for addition and multiplication of intervals. For example, the abstract
compositional evaluations of the simple expressions x − x and x ∗ x on an input
interval [−c, c], with c ∈ R>0, yield, resp., [−2c, 2c] and [−c2, c2], rather than
the exact results [0, 0] and [0, c2]. This dependency problem can be a significant
source of imprecision for the interval abstraction of a polynomial SVM classifier
C(x) = sign([

∑N
i=1 αiyi(

∑n
j=1(yi)jxj + c)d] − b), where each attribute xj of an

input vector x occurs for each support vector yi. The classifiers based on RBF
kernels suffer from an analogous issue.

Affine Forms. Affine arithmetic [35,36] mitigates this dependency problem of
the nonrelational interval abstraction. An interval [l, u] ∈ Int which approximates
the range of some variable x is represented by an affine form (AF) x̂ = a0+a1εx,
where a0 = (l + u)/2, a1 = (u − l)/2 and εx is a symbolic (or “noise”) real
variable ranging in [−1, 1] ∈ Int which explicitly represents a dependence from
the parameter x. This solves the dependency problem for a linear expression
such as x − x because the interval [−c, c] for x is represented by 0 + cεx so that
the compositional evaluation of x−x for 0+cεx becomes (0+cεx)−(0+cεx) = 0,
while for nonlinear expressions such as x ∗ x, an approximation is still needed.

In general, the domain AFk of affine forms with k ≥ 1 noise variables con-
sists of affine forms â = a0 +

∑k
i=1 aiεi, where ai ∈ R and each εi represents

either an external dependence from some input variable or an internal approxi-
mation dependence due to a nonlinear operation. An affine form â ∈ AFk can be
abstracted to a real interval in Int, as given by a map αInt : AFk → Int defined
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as follows: for all â = a0 +
∑k

i=1 aiεi ∈ AFk, αInt(â) � [câ − rad(â), câ + rad(â)],
where câ � a0 and rad(ê) �

∑k
i=1 |ai| are called, resp., center and radius of the

affine form â. This, in turn, defines the interval concretization γAFk
: AFk → R

given by γAFk
(â) � γInt�R(αInt(â)). Vectors of affine forms may be used to rep-

resent zonotopes, which are center-symmetric convex polytopes and have been
used to design an abstract domain for static program analysis [13] endowed with
abstract functions, joins and widening.

Reduced Affine Forms. It turns out that affine forms are exact for linear
operations, namely additions and scalar multiplications. If â, b̂ ∈ AFk and c ∈ R

then abstract additions and scalar multiplications are defined as follows: â+� b̂ �
(a0 + b0)+

∑k
j=1(aj + bj)εj and câ � ca0 +

∑k
j=1 cajεj . They are exact, namely,

{x+y ∈ R | x ∈ γAFk
(â), y ∈ γAFk

(b̂)} = γAFk
(â+� b̂) and cγAFk

(â) = γAFk
(câ).

For nonlinear operations, in particular multiplication, in general the result
cannot be represented exactly by an affine form. Then, the standard strategy for
defining the multiplication of affine forms is to approximate the precise result by
adding a fresh noise symbol whose coefficient is typically computed by a Taylor
or Chebyshev approximation of the nonlinear part of the multiplication (cf. [13,
Section 2.1.5]). Similarly, for the exponential function used in RBF kernels, an
algorithm for computing an affine approximation of the exponential ex evalu-
ated on an affine form x̂ for the exponent x is given in [35, Section 3.11] and
is based on an optimal Chebyshev approximation (that is, w.r.t. L∞ distance)
of the exponential which introduces a fresh noise symbol. However, the need
of injecting a fresh noise symbol for each nonlinear operation raises a critical
space and time complexity issue for abstracting polynomial and RBF classifiers,
because this would imply that a new but useless noise symbol should be added
for each support vector. For example, for a 2-polynomial classifier, we need to
approximate a square operation x ∗ x for each of the N support vectors, and
a blind usage of abstract multiplication for affine forms would add N different
and useless noise symbols. This drawback would be even worse for d-polynomial
classifers with d > 2, while an analogous critical issue would happen for RBF
classifiers. This motivates the use of so-called reduced affine forms (RAFs), which
have been introduced in [20] as a remedy for the increase of noise symbols due
to nonlinear operations and still allow us to keep track of correlations between
the components of the input vectors of classifiers.

A reduced affine form ã ∈ RAFk of length k ≥ 1 is defined as a sum of
a standard affine form in AFk with a specific rounding noise εa which accu-
mulates all the errors introduced by nonlinear operations. Thus, RAFk �
{a0 +

∑k
j=1 ajεj + arεa | a0, a1, ..., ak ∈ R, ar ∈ R≥0}. The key point is that

the length of ã ∈ RAFk remains unchanged during the whole abstract computa-
tion and ar ∈ R≥0 is the radius of the accumulative error of approximating all
nonlinear operations during abstract computations. Of course, each ã ∈ RAFk

can be viewed as a standard affine form in AFk+1 and this allows us to define the
interval concretization γRAFk

(ã) and the linear abstract operations of addition
and scalar multiplication of RAFs simply by considering them as standard affine
forms. In particular, linear abstract operations in RAFk are exact w.r.t. interval
concretization γRAFk

.
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Nonlinear abstract operations, such as multiplication, must necessarily be
approximated for RAFs. Several algorithms of abstract multiplication of RAFs
are available, which differ in precision, approximation principle and time com-
plexity, ranging from linear to quadratic complexities [33, Section 3]. Given
ã, b̃ ∈ RAFk, we need to define an abstract multiplication ã∗� b̃ ∈ RAFk which is
sound, namely, {xy ∈ R | x ∈ γRAFk

(ã), y ∈ γRAFk
(b̃)} ⊆ γRAFk

(ã∗� b̃), where it
is worth pointing out that this soundness condition is given w.r.t. interval con-
cretization γRAFk

and scalar multiplication. Time complexity is a crucial issue
for using ∗� in abstract polynomial and RBF kernels, because in these abstract
classifiers at least an abstract multiplication must be used for each support vec-
tor, so that quadratic time algorithms in O(k2) cannot scale when the number
of support vectors grows, as expected for realistic training datasets. We there-
fore selected a recent linear time algorithm by Skalna and Hlad́ık [33] which is
optimal in the following sense. Given ã, b̃ ∈ RAFk, we have that their concrete
symbolic multiplication is as follows:

ã ∗ b̃ = (a0 +
∑k

j=1 ajεj + arεa) ∗ (b0 +
∑k

j=1 bjεj + brεb)

= a0b0 +
∑k

j=1(a0bj + b0aj)εj + (a0brεb + b0arεa) + fã,b̃(ε1, ..., εk, εa, εb)

where fã,b̃(ε1, ..., εk, εa, εb) � (
∑k

j=1 ajεj + arεa)(
∑k

j=1 bjεj + brεb). An abstract
multiplication ∗�

e on RAFk can be defined as follows: if Rmax, Rmin ∈ R are,
resp., the minimum and maximum of {fã,b̃(e) ∈ R | e ∈ [−1, 1]k+2} then

ã ∗�
e b̃ � a0b0 + 0.5(Rmax + Rmin) +

∑k
j=1(a0bj + b0aj)εj +

(|a0|br + |b0|ar + 0.5(Rmax − Rmin))εa∗b

where 0.5(Rmax+Rmin) and 0.5(Rmax−Rmin) are, resp., the center and the radius
of the interval range of fã,b̃(ε1, ..., εk, εa, εb). As argued in [33, Proposition 3], this
defines an optimal abstract multiplication of RAFs. Skalna and Hlad́ık [33] put
forward two algorithms for computing Rmax and Rmin, one with O(k) time bound
and one in O(k log k): the O(k) bound is obtained by relying on a linear time
algorithm to find a median of a sequence of real numbers, while the O(k log k)
algorithm is based on (quick)sorting that sequence of numbers. The details of
these algorithms are here omitted and can be found in [33, Section 4]. In abstract
interpretation terms, it turns out that this abstract multiplication algorithm
∗�

e of RAFs provides the best approximation among the RAFs which correctly
approximate the multiplication with the same coefficients for ε1,...,εk of ã ∗�

e b̃.
Finally, let us consider the exponential function ex used in RBF kernels. The

algorithm in [35, Section 3.11] for computing the affine form approximation of
ex and based on Chebyshev approximation of ex can be also applied when the
exponent is represented by a RAF x̃ = x0 +

∑k
j=1 xjεj +xrεx ∈ RAFk, provided

that the radius of the fresh noise symbol produced by computing ex̃ is added to
the coefficient of the rounding noise εx of x̃.

Floating Point Soundness. The interval and RAF abstractions and the cor-
responding abstract functions described above rely on precise real arithmetic on
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R, in particular soundness and exactness of abstract functions depend on real
arithmetic. These abstract functions may yield unsound results for floating point
arithmetic such as the standard IEEE 754 [34]. These domains therefore need
some suitable adjustments to make them “floating-point” sound [21], which are
described in the full version of this paper [29].

5 Verifying SVM Classifiers

Perturbations. We consider robustness of SVM classifiers against a standard
adversarial region defined by the L∞ norm, as considered in Carlini and Wag-
ner’s robustness model [4] and used by Vechev et al. [9,31,32] in their ver-
ification framework. Given a generic classifier C : X → L and a constant
δ ∈ R>0, a L∞ δ-perturbation of an input vector x ∈ R

n is defined by
P∞

δ (x) � {x′ ∈ X | ‖x′ − x‖∞ ≤ δ}. Thus, if the space X consists of n-
dimensional real vectors normalized in [0, 1] (our datasets follow this standard)
and δ ∈ (0, 1] then P∞

δ (x) = {x′ ∈ R
n | ∀i. x′

i ∈ [xi − ε,xi + ε] ∩ [0, 1]}. Let us
observe that, for all x, P∞

δ (x) is an exact perturbation for intervals and there-
fore for RAFs as well (cf. (E5)). The datasets of our experiments consist of h×w
grayscale images (with 8 bits per pixel, i.e., the pixel depth allows 256 different
gray intensities) where each image is represented as a normalized real vector in
[0, 1]hw whose components encode the light values of pixels. Increasing (decreas-
ing) the value of a vector component means brightening (darkening) that pixel,
so that a brightening of +0.01 means +2.55 pixel depth. Hence, a perturbation
P∞

δ (x) of an image x represents all the images where every possible subset of
pixels is brightened or darkened up to δ.

We also consider robustness of image classifiers for the so-called adversarial
framing on the border of images, which has been recently shown to represent
an effective attack for deep convolutional networks [44]. Consider an image rep-
resented as a h × w matrix M ∈ Rh,w with normalized real values in [0, 1].
Given an integer framing thickness t ∈ [1,min(h,w)/2], the “occlude” t-framing
perturbation of M is defined by

P frm
t (M) � {M ′ ∈ Rh,w | ∀i ∈ [t + 1, h − t], j ∈ [w + 1, w − t].M ′

i,j = Mi,j ,

∀i 	∈ [t + 1, h − t], j 	∈ [w + 1, w − t].M ′
i,j ∈ [0, 1]}.

This framing perturbation models the uniformly distributed random noise attack
in [44]. Also in this case P frm

t (M) is a perturbation which can be exactly repre-
sented by intervals and consequently by RAFs.

Linear Classifiers. As observed in Sect. 4, for the interval abstraction it turns
out that all the abstract functions which are used in abstract linear binary
classifiers in primal form are exact, so that, by Lemma 3.9, these abstract lin-
ear binary classifiers are complete. This completeness implies that there is no
need to resort to the RAF abstraction for linear binary classifiers. However, as
argued in Sect. 3, this completeness for binary classifiers does not scale to multi-
classification. Nevertheless, it is worth pointing out that for each binary clas-
sifier C{i,j} used in ovo multi-classification, since L∞ and frame perturbations
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are exact for intervals, we have a complete robustness verifier for each C{i,j}. As
a consequence, this makes feasible to find adversarial examples of linear binary
classifiers as follows. Let us consider a linear binary classifier in primal form
C(x) = sign([

∑n
j=1 wjxj ]− b) and a perturbation P which is exact on intervals,

i.e., for all x, P (x) = γIntn
(P �(x)), where P �(x) = 〈[l1, u1], ..., [ln, un]〉) ∈ Intn.

Completeness of robustness linear verification means that if the interval abstrac-
tion

∑�n
j=1 wj [lj , uj ] outputs an interval [l, u] ∈ Int1 such that 0 ∈ [l, u], then

C is surely not robust on x for P . It is then easy to find two input vectors
y, z ∈ P (x) which provide a concrete counterexample to the robustness, namely
such that C(y) 	= C(z). For all i ∈ [1, n], if yi � if sign(wi) ≥ 0 then ui else li
and zi � if sign(wi) ≥ 0 then li else ui then we have defined y, z ∈ P (x) such
that

∑n
j=1 wjyj = u and

∑n
j=1 wjzj = l, so that C(y) = +1 and C(z) = −1.

This pair of inputs (y, z) therefore represents the strongest adversarial example
to the robustness of C on x.

Nonlinear Classifiers. Let us first point out through an example that interval
and RAF abstractions are incomparable for nonlinear operations.

Example 5.1 Consider the 2-polynomial in two variables f(x1, x2) � (1+2x1−
x2)2 − 1

4 (2 + x1 + x2)2, which could be thought of as a 2-polynomial classifier in
R

2. Assume that x1 and x2 range in the interval [−1, 1]. The abstract evaluation
of f on the intervals Ix1 = [−1, 1] = Ix2 is as follows:

f �
Int(Ix1 , Ix2) = (1 + 2[−1, 1] − [−1, 1])2 − 1

4 (2 + [−1, 1] + [−1, 1])2

= [−2, 4]2 − 1
4 [0, 4]2 = [0, 16] + [−4, 0] = [−4, 16]

On the other hand, for the RAF2 abstraction we have that x̃1 = ε1, x̃2 = ε2 and
the abstract evaluation of f is as follows:

f �
RAF2

(x̃1, x̃2) = (1 + 2ε1 − ε2)
2 − 1

4 (2 + ε1 + ε2)
2

= [1 + 0.5(R1max + R1min) + 4ε1 − 2ε2 + 0.5(R1max − R1min)εr]

− 1
4 [4 + 0.5(R2max + R2min) + 4ε1 + 4ε2 + 0.5(R2max − R2min)εr]

where R1max = max((2ε1 − ε2)
2) = 9, R1min = min((2ε1 − ε2)

2) = 0,

R2max = max((ε1 + ε2)
2) = 4, R2min = min((ε1 + ε2)

2) = 0

= [5.5 + 4ε1 − 2ε2 + 4.5εr] − 1
4 [6 + 4ε1 + 4ε2 + 2εr]

= [5.5 + 4ε1 − 2ε2 + 4.5εr] + [−1.5 − ε1 − ε2 − 0.5εr]

= 4 + 3ε1 − 3ε2 + 4εr

Thus, it turns out that γRAF2(f
�
RAF2

(x̃1, x̃2)) = [4− 10, 4+10] = [−6, 14], which
is incomparable with γInt(f

�
Int(Ix1 , Ix2)) = [−4, 16]. ��

In view of Example 5.1, for a nonlinear binary classifier C(x) = sign(D(x) −
b), with D(x) =

∑N
i=1 αiyik(xi,x), we will use both the interval and RAF

abstractions of C in order to combine their final abstract results. More precisely,
if D�

Intn
and D�

RAFn
are, resp., the interval and RAF abstractions of D, assume

that P : X → ℘(X) is a perturbation for C which is soundly approximated by
P �
Int : X → Intn on intervals and by P �

RAF : X → RAFn on RAFs, so that
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P � : X → Intn ×RAFn is defined by P �(x) � 〈P �
Int(x), P �

RAF(x)〉. Then, for each
input vector x ∈ X, our combined verifier first will run both D�

Intn
(P �

Int(x)) and
D�

RAFn
(P �

RAF(x)). Next, the output D�
RAFn

(P �
RAF(x)) = â ∈ RAFn is abstracted

to the interval [câ − rad(â), câ +rad(â)] which is then intersected with the inter-
val D�

Intn
(P �

Int(x)) = [l, u]. Summing up, our combined abstract binary classifier
C� : Intn × RAFn → {−1,+1,�} is defined as follows:

C�(P �(x)) �

⎧
⎨

⎩

+1 if max(l, câ − rad(â)) ≥ 0
−1 if min(u, câ + rad(â)) < 0
� otherwise

As shown in Sect. 4, it turns out that all the linear and nonlinear abstract oper-
ations for polynomial and RBF kernels are sound, so that by Lemma 3.4, this
combined abstract classifier C� induces a sound robustness verifer for C. Finally,
for multi-classification, in both linear and nonlinear cases, we will use the sound
abstract ovo multi-classifier defined in Lemma 3.7.

6 Experimental Results

We implemented our robustness verification method for SVM classifiers in a tool
called SAVer (Svm Abstract Ver ifier), which has been written in C (approxi-
mately 2.5k LOC) and whose source code together with all the datasets, trained
SVMs and results is available on GitHub [30]. We assessed the percentage of
samples of the full test sets for which a SVM classifier is proved to be robust
(and, dually, vulnerable) for a given perturbation, as well as the average veri-
fication time per sample. We also evaluated the impact of using subsets of the
training set on the robustness of the corresponding classifiers and on verification
times. We compared SAVer to DeepPoly [32], a robustness verification tool for
convolutional deep neural networks based on abstract interpretation. Our exper-
imental results indicate that SAVer is fast and scalable and that the percentage
of robustness provable by SAVer for SVMs on MNIST is higher than the robust-
ness provable by DeepPoly for deep neural networks. Our experiments were run
on a AMD Ryzen 7 1700X 3.0 GHz CPU.

Datasets and Classifiers. For our experimental evaluation of SAVer we used
the standard and widespread MNIST [18] image dataset together with the recent
alternative Fashion-MNIST (F-MNIST) image dataset [42]. They both contain
grayscale images of 28×28=784 pixels (of depth 256) which are represented as
normalized vectors of floating-point numbers in [0, 1]784 (0 is black, 1 is white).
MNIST contains images of handwritten digits, while F-MNIST comprises profes-
sional images of fashion dress products from 10 categories taken from the popu-
lar Zalando’s e-commerce website. F-MNIST has been recently put forward as a
more challenging alternative for the original MNIST dataset for benchmarking
machine learning algorithms, since the extensive experimental results reported
in [42] showed that the test accuracy of most machine learning classifiers sig-
nificantly decreases (a rough average is about 10%) from MNIST to F-MNIST.
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In particular, [42] reports that the average test accuracy (on the whole test set)
of linear, polynomial and RBF SVMs on MNIST is 95.4% while for F-MNIST
drops to 87.4%, where RBF SVMs are reportedly the most precise classifiers
on F-MNIST with an accuracy of 89.7%. Both datasets include a training set
of 60000 images and a test set of 10000 images, with no overlap. Our tests are
run on the whole test set, where, following [32], these 10000 images of MNIST
and F-MNIST have been filtered out of those misclassified by the SVMs (rang-
ing from 3% of RBF and polynomial kernels to 7% for linear kernel), while the
experiments comparing SAVer with DeepPoly are conducted on the same small
test subset of MNIST used in [32]. We trained a number of SVM classifiers using
different subsets of the training sets and different kernel functions. We trained
our SVMs with linear, RBF and (2, 3 and 9◦) polynomial kernels, and in order
to benchmark the scalability of the verifiers we used the first 1k, 2k, 4k, 8k,
16k, 30k, 60k samples of the training set (training times never exceeded 3 ). For
training we used Scikit-learn [25], a popular machine learning library for Python,
which relies on the standard Libsvm C library [5].

Results. The results of our experimental evaluation are summarized by the
following tables and charts.

Table (a) compares the provable robustness to a P∞
δ adversarial region of

SVMs which have been trained with different kernels. It turns out that the RBF
classifier is the most provably robust: even with δ = 0.03, meaning a perturbation
of pixel depth of ±7, SAVer can prove that more than 99% of the full test set of
MNIST is robust. The RBF classifier is therefore taken as reference classifier for
the successive experiments. Table (b) compares the relative precisions of robust-
ness verification which can be obtained by changing the abstraction of the RBF
classifier. As expected, the relational information of the RAF abstraction makes
it significantly more precise than interval abstraction, although in a few cases
(which do not affect the reported percentages) intervals can help in refining RAF
analysis, and this justifies their combined use. Table (c) shows how the provable
robustness depends on the size of the training subset. We may observe here that
using more samples for training a SVM classifier tends to overfit the model,
making it more sensitive to perturbations, i.e. less robust. Table (d) shows what
we call provable vulnerability of a classifier C: we first consider all the samples
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(x, y) in the test set which are misclassified by C, i.e., C(x) = y′ 	= y holds,
then our robustness verifier is run on the perturbations P∞

δ (x) of these samples
for checking whether the region P∞

δ (x) can be proved to be consistently mis-
classified by C to y′. Provable vulnerability is significantly lower than provable
robustness, meaning that when the classifier is wrong on an input vector, it is
more likely to assign different labels to similar inputs, rather than assigning the
same (wrong) class. Charts (g) and (h) show the average verification time per
image, in milliseconds, with respect to the size of the classifier, given by the
number of support vectors, and compared for different abstractions. Let N and
n denote, resp., the number of support vectors and the size of input vectors.
The interval-based abstract d-polynomial classifier is in O(dN) time, while the
RBF classifier is in O(N), because the interval multiplication is constant-time.
Hence, interval analysis is very fast, just a few milliseconds per image. On the
other hand, the RAF-based abstract d-polynomial and RBF classifiers are, resp.,
in O(dNn log n) and O(Nn log n), since RAF multiplication is in O(n log n), so
that RAF-based verification is slower although it never takes more than 0.5 s.
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The same experiments have been replicated on the F-MNIST dataset and
Table (d) shows a comparison of the results between MNIST and F-MNIST.
As expected, robustness is harder to prove (and very likely to achieve) on F-
MNIST than on MNIST, while SAVer proved that F-MNIST is less vulnerable
than MNIST. Moreover, Table (e) shows the percentage of provable robustness
for MNIST and F-MNIST for the frame adversarial region defined in Sect. 5,
for some widths of the frame. F-MNIST is significantly harder to prove robust
under this attack than MNIST: this is due to the fact that the borders of MNIST
images do not contain as much information as their centers so that classifiers
can tolerate some perturbation in the border. By contrast, F-MNIST images
often carry information on their borders, making them less robust to adversarial
framing. Finally, Table (f) compares SAVer with DeepPoly, a robustness verifier
for feedforward neural networks [32]. This comparison used the same test set
of DeepPoly, consisting of the first 100 images of the MNIST test set, and the
same perturbations P∞

δ . Although a strict comparison is not possible, as SAVer
and DeepPoly operates on different ML models, we argue that percentages of
provable robustness achieved by SAVer are competitive with respect to other
state-of-the-art tools. Moreover, we point out the fact that a verification of a
single image by DeepPoly can take as long as 10s [32], while the maximum ver-
ification time per image on SAVer is 0.5s. Among the benchmarks reported in
[32, Section 6], we selected the FFNNSmall and FFNNSigmoid deep neural net-
works, denoted, resp., by DeepPoly Small and Sigmoid. FFNNSmall has been
trained using a standard technique and achieved the best accuracies in [32],
while FFNNSigmoid was trained using PGD-based adversarial training, a tech-
nique explicitly developed to make a classifier more robust. It turns out that the
percentages of robustness provable by SAVer are higher than those provable by
DeepPoly (precise percentages are not provided in [32], we extrapolated them
from the charts). In particular, both 9-polynomial and RBF SVMs can be proved
more robust that FFNNSigmoid networks, despite the fact that these classifiers
are defended by a specific adversarial training.

7 Future Work

We believe that this work represents a first step in applying formal analysis and
verification techniques to machine learning based on support vector machines.
We envisage a number of challenging research topics as subject for future work.
Generating adversarial examples to machine learning methods is important for
designing more robust classifiers [11,41,45] and we think that the completeness of
robustness verification of linear binary classifiers (cf. Sect. 3) could be exploited
for automatically detecting adversarial examples in linear multiclass SVM clas-
sifiers. The main challenge here is to design more precise, ideally complete, tech-
niques for abstracting multi-classification based on binary classification. Adver-
sarial SVM training is a further stimulating research challenge. Mirman et al.
[23] put forward an abstraction-based technique for adversarial training of robust
neural networks. A similar approach could also work for SVMs, namely applying
abstract interpretation to SVM training models rather than to SVM classifiers.
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22. Miné, A.: Tutorial on static inference of numeric invariants by abstract interpre-
tation. Found. Trends Program. Lang. 4(3–4), 120–372 (2017)

23. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: Proceedings of the International Conference on
Machine Learning (ICML2018), pp. 3575–3583 (2018)

24. Nam, G.P., Kang, B.J., Park, K.R.: Robustness of face recognition to variations
of illumination on mobile devices based on SVM. KSII Trans. Internet Inf. Syst.
4(1), 25–44 (2010)

25. Pedregosa, F.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830 (2011)

26. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

27. Pulina, L., Tacchella, A.: Challenging SMT solvers to verify neural networks. AI
Commun. 25(2), 117–135 (2012)

28. Ranzato, F.: Complete abstractions everywhere (invited paper). In: Giacobazzi,
R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 15–26.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9 3

29. Ranzato, F., Zanella, M.: Robustness verification of support vector machines.
http://arxiv.org/abs/1904.11803, CoRR arXiv, April 2019

https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-49130-1_39
https://doi.org/10.1007/978-3-540-24725-8_2
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-35873-9_3
http://arxiv.org/abs/1904.11803


Robustness Verification of Support Vector Machines 295

30. Ranzato, F., Zanella, M.: SAVer GitHub Repository (2019). https://github.com/
svm-abstract-verifier
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Abstract. Deep neural networks (DNNs) have been shown lack of
robustness, as they are vulnerable to small perturbations on the inputs,
which has led to safety concerns on applying DNNs to safety-critical
domains. Several verification approaches have been developed to auto-
matically prove or disprove safety properties for DNNs. However, these
approaches suffer from either the scalability problem, i.e., only small
DNNs can be handled, or the precision problem, i.e., the obtained bounds
are loose. This paper improves on a recent proposal of analyzing DNNs
through the classic abstract interpretation technique, by a novel sym-
bolic propagation technique. More specifically, the activation values of
neurons are represented symbolically and propagated forwardly from the
input layer to the output layer, on top of abstract domains. We show
that our approach can achieve significantly higher precision and thus
can prove more properties than using only abstract domains. Moreover,
we show that the bounds derived from our approach on the hidden neu-
rons, when applied to a state-of-the-art SMT based verification tool, can
improve its performance. We implement our approach into a software
tool and validate it over a few DNNs trained on benchmark datasets
such as MNIST, etc.

1 Introduction

During the last few years, deep neural networks (DNNs) have been broadly
applied in various domains including nature language processing [1], image clas-
sification [15], game playing [26], etc. The performance of these DNNs, when
measured with the prediction precision over a test dataset, is comparable to,
or even better than, that of manually crafted software. However, for safety-
critical applications, it is required that the DNNs are certified against properties
related to its safety. Unfortunately, DNNs have been found lack of robustness.
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Specifically, [29] discovers that it is possible to add a small, or even impercepti-
ble, perturbation to a correctly classified input and make it misclassified. Such
adversarial examples have raised serious concerns on the safety of DNNs. Con-
sider a self-driving system controlled by a DNN. A failure on the recognization
of a traffic light may lead to a serious consequence because human lives are at
stake.

Algorithms used to find adversarial examples are based on either gradient
descent, see e.g., [2,29], or saliency maps, see e.g., [22], or evolutionary algorithm,
see e.g., [21], etc. Roughly speaking, these are heuristic search algorithms with-
out the guarantees to find the optimal values, i.e., the bound on the gap between
an obtained value and its ground truth is unknown. However, the certification
of a DNN needs provable guarantees. Thus, techniques based on formal verifi-
cation have been developed. Up to now, DNN verification includes constraint-
solving [5,7,14,17,19,23,33], layer-by-layer exhaustive search [11,31,32], global
optimization [24], abstract interpretation [9,27,28], etc. Abstract interpretation
is a theory in static analysis which verifies a program by using sound approxi-
mation of its semantics [3]. Its basic idea is to use an abstract domain to over-
approximate the computation on inputs. In [9], this idea has first been developed
for verifying DNNs. However, abstract interpretation can be imprecise, due to
the non-linearity in DNNs. [27] implements a faster Zonotope domain for DNN
verification. [28] puts forward a new abstract domain specially for DNN verifi-
cation and it is more efficient and precise than Zonotope.

The first contribution of this paper is to propose a novel symbolic propaga-
tion technique to enhance the precision of abstract interpretation based DNN
verification. For every neuron, we symbolically represent, with an expression,
how its activation value can be determined by the activation values of neurons
in previous layers. By both illustrative examples and experimental results, we
show that, comparing with using only abstract domains, our new approach can
find significantly tighter constraints over the neurons’ activation values. Because
abstract interpretation is a sound approximation, with tighter constraints, we
may prove properties that cannot be proven by using only abstract domains. For
example, we may prove a greater lower bound on the robustness of the DNNs.

Another contribution of this paper is to apply the value bounds derived from
our approach on hidden neurons to improve the performance of a state-of-the-art
SMT based DNN verifier Reluplex [14].

Finally, we implement our approach into a software tool and validate it with
a few DNNs trained on benchmark datasets such as MNIST, etc.

2 Preliminaries

We recall some basic notions on deep neural networks and abstract interpre-
tation. For a vector x̄ ∈ R

n, we use xi to denote its i-th entry. For a matrix
W ∈ R

m×n, Wi,j denotes the entry in its i-th row and j-th column.
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x̄1

x̄2

· · ·

· · ·

x̄m

ȳ1

ȳ2

· · ·

· · ·

ȳn

Hidden
layer

Input
layer

Output
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Fig. 1. A fully connected network: Each layer performs the composition of an affine
transformation Affine(x̄; W, b) and the activated function, where on edges between neu-
rons the coefficients of the matrix W are recorded accordingly.

2.1 Deep Neural Networks

We work with deep feedforward neural networks, or DNNs, which can be repre-
sented as a function f : Rm → R

n, mapping an input x̄ ∈ R
m to its corresponding

output ȳ = f(x̄) ∈ R
n. A DNN has in its structure a sequence of layers, including

an input layer at the beginning, followed by several hidden layers, and an output
layer in the end. Basically the output of a layer is the input of the next layer.
To unify the representation, we denote the activation values at each layer as a
vector. Thus the transformation between layers can also be seen as a function
in R

m′ → R
n′

. The DNN f is the composition of the transformations between
layers, which is typically composed of an affine transformation followed by a
non-linear activation function. In this paper we only consider one of the most
commonly used activation function – the rectified linear unit (ReLU) activation
function, defined as

ReLU(x) = max(x, 0)

for x ∈ R and ReLU(x̄) = (ReLU(x1), . . . ,ReLU(xn)) for x̄ ∈ R
n.

Typically an affine transformation is of the form Affine(x̄;W, b) = Wx̄ + b :
R

m → R
n, where W ∈ R

n×m and b ∈ R
n. Mostly in DNNs we use a fully

connected layer to describe the composition of an affine transformation
Affine(x̄;W, b) and the activation function, if the coefficient matrix W is not
sparse and does not have shared parameters. We call a DNN with only fully
connected layers a fully connected neural network (FNN). Figure 1 gives an intu-
itive description of fully connected layers and fully connected networks. Apart
from fully connected layers, we also have affine transformations whose coefficient
matrix is sparse and has many shared parameters, like convolutional layers.
Readers can refer to e.g. [9] for its formal definition. In our paper, we do not
special deal with convolutional layers, because they can be regarded as common
affine transformations. In the architecture of DNNs, a convolutional layer is often
followed by a non-linear max pooling layer, which takes as an input a three
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dimensional vector x̄ ∈ R
m×n×r with two parameters p and q which divides m

and n respectively, defined as

MaxPoolp,q(x̄)i,j,k = max{xi′,j′,k | i′ ∈ (p · (i − 1), p · i] ∧ j′ ∈ (q · (i − 1), q · i]}.

We call a DNN with only fully connected, convolutional, and max pooling layers
a convolutional neural network (CNN).

In the following of the paper, we let the DNN f have N layers, each of which
has mk neurons, for 0 ≤ k < N . Therefore, m0 = m and mN−1 = n.

2.2 Abstract Interpretation

Abstract interpretation is a theory in static analysis which verifies a program
by using sound approximation of its semantics [3]. Its basic idea is to use an
abstract domain to over-approximate the computation on inputs and propagate
it through the program. In the following, we describe its adaptation to work with
DNNs.

Generally, on the input layer, we have a concrete domain C, which includes
a set of inputs X as one of its elements. To enable an efficient computation, we
choose an abstract domain A to infer the relation of variables in C. We assume
that there is a partial order ≤ on C as well as A, which in our settings is the
subset relation ⊆.

Definition 2.1. A pair of functions α : C → A and γ : A → C is a Galois
connection, if for any a ∈ A and c ∈ C, we have α(c) ≤ a ⇔ c ≤ γ(a).

Intuitively, a Galois connection (α, γ) expresses abstraction and concretization
relations between domains, respectively. Note that, a ∈ A is a sound abstraction
of c ∈ C if and only if c ≤ γ(a).

In abstract interpretation, it is important to choose a suitable abstract
domain because it determines the efficiency and precision of the abstract inter-
pretation. In practice, we use a certain type of constraints to represent the
abstract elements. Geometrically, a certain type of constraints correspond to
a special shape. E.g., the conjunction of a set of arbitrary linear constraints cor-
respond to a polyhedron. Abstract domains that fit for verifying DNN include
Intervals, Zonotopes, and Polyhedra, etc.

– Box. A box B contains bound constraints in the form of a ≤ xi ≤ b. The
conjunction of bound constraints express a box in the Euclid space. The form
of the constraint for each dimension is an interval, and thus it is also named
the Interval abstract domain.

– Zonotope. A zonotope Z consists of constraints in the form of zi =
ai +

∑m
j=1 bijεj , where ai, bij are real constants and εj is bounded by a con-

stant interval [lj , uj ]. The conjunction of these constraints express a center-
symmetric polyhedra in the Euclid space.

– Polyhedra. A Polyhedron P has constraints in the form of linear inequalities,
i.e.

∑n
i=1 aixi + b ≤ 0 and it gives a closed convex polyhedron in the Euclid

space.
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The following example shows intuitively how these three abstract domains
work:

Example 2.2. Let x̄ ∈ R
2, and the range of x̄ be X = {(1, 0), (0, 2), (1, 2), (2, 1)}.

With Box, we can abstract the inputs X as [0, 2] × [0, 2], and with Zono-
tope, X can be abstracted as

{
x1 = 1 − 1

2ε1 − 1
2ε3, x2 = 1 + 1

2ε1 + 1
2ε2

}
. where

ε1, ε2, ε3 ∈ [−1, 1]. With Polyhedra, X can be abstracted as {x2 ≤ 2, x2 ≤
−x1 +3, x2 ≥ x1 −1, x2 ≥ −2x1 +2}. Figure 2 (left) gives an intuitive descrip-
tion for the three abstractions.

0 1 2

1

2

0 6

Box
Zonotope
Polyhedra

3

-1
1 5

f

Fig. 2. An illustration of Examples 2.2 and 3.4, where on the right the dashed lines
gives the abstraction region before the ReLU operation and the full lines gives the final
abstraction f �(X�).

3 Symbolic Propagation for Abstract Interpretation
Based DNN Verification

In this section, we first describe how to use abstract interpretation to verify
DNNs. Then we present a symbolic propagation method to enhance its precision.

3.1 Abstract Interpretation Based DNN Verification

The DNN Verification Problem. The problem of verifying DNNs over a
property can be stated formally as follows.

Definition 3.1. Given a function f : Rm → R
n which expresses a DNN, a set

of the inputs X0 ⊆ R
m, and a property C ⊆ R

n, verifying the property is to
determine whether f(X0) ⊆ C holds, where f(X0) = {f(x̄) | x̄ ∈ X0}.
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Local robustness property can be obtained by letting X0 be a robustness
region and C be Cl := {ȳ ∈ R

n | arg max1≤i≤n yi = l}. where y denotes an
output vector and l denotes a label.

A common way of defining robustness region is with norm distance. We use
‖x̄ − x̄0‖p with p ∈ [1,∞] to denote the Lp norm distance between two vectors
x̄ and x̄0. In this paper, we use L∞ norm defined as follows.

‖x̄‖∞ = max
1≤i≤n

|xi|.

Given an input x̄0 ∈ R
m and a perturbation tolerance δ > 0, a local robustness

region X0 can be defined as B(x̄0, δ) := {x̄ | ‖x̄ − x̄0‖p ≤ δ}.

Verifying DNNs via Abstract Interpretation. Under the framework of
abstract interpretation, to conduct verification of DNNs, we first need to choose
an abstract domain A. Then we represent the set of inputs of a DNN as an
abstract element (value) X�

0 in A. After that, we pass it through the DNN layers
by applying abstract transformers of the abstract domain. Recall that N is the
number of layers in a DNN and mk is the number of nodes in the k-th layer. Let
fk (where 1 ≤ k < N) be the layer function mapping from R

mk−1 to R
mk . We

can lift fk to Tfk
: P(Rmk−1) → P(Rmk) such that Tfk

(X) = {fk(x̄) | x̄ ∈ X}.

Definition 3.2. An abstract transformer T �
fk

is a function mapping an abstract
element X�

k−1 in the abstract domain A to another abstract element X�
k. More-

over, T �
fk

is sound if Tfk
◦ γ ⊆ γ ◦ T �

fk
.

Intuitively, a sound abstract transformer T �
fk

maintains a sound relation
between the abstract post-state and the abstract pre-state of a transformer in
DNN (such as linear transformation, ReLU operation, etc.).

Let Xk = fk(...(f1(X0))) be the exact set of resulting vectors in R
mk

(i.e., the k-th layer) computed over the concrete inputs X0, and X�
k =

Tfk
�(...(Tf1

�(X�
0))) be the corresponding abstract value of the k-th layer when

using an abstract domain A. Note that X0 ⊆ γ(X�
0). We have the following

conclusion.

Proposition 1. If Xk−1 ⊆ γ(X�
k−1), then we have Xk ⊆ γ(X�

k) = γ ◦
T �

fk
(X�

k−1).

Therefore, when performing abstract interpretation over the transformations
in a DNN, the abstract pre-state X�

k−1 is transformed into abstract post-state
X�

k by applying the abstract transformer T �
fk

which is built on top of an abstract
domain. This procedure starts from k = 1 and continues until reaching the
output layer (and getting X�

N−1). Finally, we use X�
N−1 to check the property

C as follows:
γ(X�

N−1) ⊆ C. (1)

The following theorem states that this verification procedure based on
abstract interpretation is sound for the DNN verification problem.
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Theorem 3.3. If Eq. (1) holds, then f(X0) ⊆ C.

It’s not hard to see that the other direction does not necessarily hold due
to the potential incompleteness caused by the over-approximation made in both
the abstract elements and the abstract transformers T �

fk
in an abstract domain.

Example 3.4. Suppose that x̄ takes the value in X given in Example 2.2, and

we consider the transformation f(x̄) = ReLU
((

1 2
1 −1

)

x̄ +
(

0
1

))

. Now we use

the three abstract domains to calculate the resulting abstraction f �(X�)

– Box. The abstraction after the affine transformation is [0, 6] × [−1, 3], and
thus the final result is [0, 6] × [0, 3].

– Zonotope. After the affine transformation, the zonotope abstraction can be
obtained straightforward:
{

y1 = 3 +
1
2
ε1 + ε2 − 1

2
ε3, y2 = 1 − ε1 − 1

2
ε2 − 1

2
ε3 | ε1, ε2, ε3 ∈ [−1, 1]

}

.

The first dimension y1 is definitely positive, so it remains the same after
the ReLU operation. The second dimension y2 can be either negative or non-
negative, so its abstraction after ReLU will become a box which only preserves
the range in the non-negative part, i.e. [0, 3], so the final abstraction is

{

y1 = 3 +
1
2
ε1 + ε2 − 1

2
ε3, y2 =

3
2

+
3
2
η1 | ε1, ε2, ε3, η1 ∈ [−1, 1]

}

,

whose concretization is [1, 5] × [0, 3].
– Polyhedra. It is easy to obtain the polyhedron before P1 = ReLU {y2 ≤

2, y2 ≥ −y1 +3, y2 ≥ y1 − 5, y2 ≤ −2y1 +10}. Similarly, the first dimension is
definitely positive, and the second dimension can be either negative or non-
negative, so the resulting abstraction is (P1 ∧ (y2 ≥ 0)) ∨ (P1 ∧ (y2 = 0)), i.e.
{y2 ≤ 2, y2 ≥ −y1 + 3, y2 ≥ 0, y2 ≤ −2y1 + 10}.

Figure 2 (the right part) gives an illustration for the abstract interpretation with
the three abstract domains in this example.

The abstract value computed via abstract interpretation can be directly
used to verify properties. Take the local robustness property, which expresses
an invariance on the classification of f over a region B(x̄0, δ), as an example.
Let li(x̄) be the confidence of x̄ being labeled as i, and l(x̄) = argmaxili(x̄)
be the label. It has been shown in [24,29] that DNNs are Lipschitz continu-
ous. Therefore, when δ is small, we have that |li(x̄) − li(x̄0)| is also small for
all labels i. That is, if li(x̄0) is significantly greater than lj(x̄0) for j = i, it is
highly likely that li(x̄) is also significantly greater than lj(x̄). It is not hard to
see that the more precise the relations among li(x̄0), li(x̄), lj(x̄0), lj(x̄) computed
via abstract interpretation, the more likely we can prove the robustness. Based
on this reason, this paper aims to derive techniques to enhance the precision of
abstract interpretation such that it can prove some more properties that cannot
be proven by the original abstract interpretation.
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3.2 Symbolic Propagation for DNN Verification

Symbolic propagation can ensure soundness while providing more precise results.
In [30], a technique called symbolic interval propagation is present and we extend
it to our abstraction interpretation framework so that it works on all abstract
domains. First, we use the following example to show that using only abstract
transformations in an abstract domain may lead to precision loss, while using
symbolic propagation could enhance the precision.

Example 3.5. Assume that we have a two-dimensional input (x1, x2) ∈ [0, 1] ×
[0, 1] and a few transformations y1 := x1 + x2, y2 := x1 − x2, and z := y1 + y2.
Suppose we use the Box abstract domain to analyze the transformations.

– When using only the Box abstract domain, we have y1 ∈ [0, 2], y2 ∈ [−1, 1],
and thus z ∈ [−1, 3] (i.e., [0, 2] + [−1, 1]).

– By symbolic propagation, we record y1 = x1 + x2 and y2 = x1 − x2 on the
neurons y1 and y2 respectively, and then get z = 2x1 ∈ [0, 2]. This result is
more precise than that given by using only the Box abstract domain.

Non-relational (e.g., intervals) and weakly-relational abstract domains (e.g.,
zones, octagons, zonotopes, etc.) [18] may lose precision on the application of
the transformations from DNNs. The transformations include affine transfor-
mations, ReLU, and max pooling operations. Moreover, it is often the case for
weakly-relational abstract domains that the composition of the optimal abstract
transformers of individual statements in a sequence does not result in the optimal
abstract transformer for the whole sequence, which has been shown in Example 3
when using only the Box abstract domain. A choice to precisely handle general
linear transformations is to use the Polyhedra abstract domain which uses a
conjunction of linear constraints as domain representation. However, the Poly-
hedra domain has the worst-case exponential space and time complexity when
handling the ReLU operation (via the join operation in the abstract domain).
As a consequence, DNN verification with the Polyhedra domain is impractical
for large scale DNNs, which has been also confirmed in [9].

In this paper, we leverage symbolic propagation technique to enhance the
precision for abstract interpretation based DNN verification. The insight behind
is that affine transformations account for a large portion of the transforma-
tions in a DNN. Furthermore, when we verify properties such as robustness, the
activation of a neuron can often be deterministic for inputs around an input
with small perturbation. Hence, there should be a large number of linear equal-
ity relations that can be derived from the composition of a sequence of linear
transformations via symbolic propagation. And we can use such linear equality
relations to improve the precision of the results given by abstract domains. In
Sect. 6, our experimental results confirm that, when the perturbation tolerance
δ is small, there is a significant proportion of neurons whose ReLU activations
are consistent.

First, given X0, a ReLU neuron y := ReLU(
∑n

i=1 wixi +b) can be classi-
fied into one of the following 3 categories (according to its range information):
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(1) definitely-activated, if the range of
∑n

i=1 wixi + b is a subset of [0,∞), (2)
definitely-deactivated, if the range of

∑n
i=1 wixi + b is a subset of (−∞, 0], and

(3) uncertain, otherwise.
Now we detail our symbolic propagation technique. We first introduce a sym-

bolic variable si for each node i in the input layer, to denote the initial value of
that node. For a ReLU neuron d := ReLU(

∑n
i=1 wici + b) where ci is a symbolic

variable, we make use of the resulting abstract value of abstract domain at this
node to determine whether the value of this node is definitely greater than 0
or definitely less than 0. If it is a definitely-activated neuron, we record for this
neuron the linear combination

∑n
i=1 wici + b as its symbolic representation (i.e.,

the value of symbolic propagation). If it is a definitely-deactivated neuron, we
record for this neuron the value 0 as its symbolic representation. Otherwise, we
cannot have a linear combination as the symbolic representation and thus a fresh
symbolic variable sd is introduced to denote the output of this ReLU neuron.
We also record the bounds for sd, such that the lower bound for sd is set to
0 (since the output of a ReLU neuron is always non-negative) and the upper
bound keeps the one obtained by abstract interpretation.

To formalize the algorithm for ReLU node, we first define the abstract states
in the analysis and three transfer functions for linear assignments, condition
tests and joins respectively. An abstract state in our analysis is composed of
an abstract element for a numeric domain (e.g., Box) n# ∈ N#, a set of
free symbolic variables C (those not equal to any linear expressions), a set
of constrained symbolic variables S (those equal to a certain linear expres-
sion), and a map from constrained symbolic variables to linear expressions
ξ ::= S ⇒ {∑n

i=1 aixi + b | xi ∈ C}. Note that we only allow free variables
in the linear expressions in ξ. In the beginning, all input variables are taken as
free symbolic variables. In Algorithm 1, we show the transfer functions for linear
assignments [[y :=

∑n
i=1 wixi + b]]� which over-approximates the behaviors of

y :=
∑n

i=1 wixi + b. If n > 0 (i.e., the right value expression is not a constant),
variable y is added to the constrained variable set S. All constrained variables
in expr =

∑n
i=1 wixi + b are replaced by their corresponding expressions in ξ,

and the map from y to the new expr is recorded in ξ. Abstract numeric element
n# is updated by the transfer function for assignments in the numeric domain
[[y := expr]]�N# . If n ≤ 0, the right-value expression is a constant, then y is
added to C, and is removed from S and ξ.

The abstract transfer function for condition test is defined as

[[expr ≤ 0]]�(n#,C,S, ξ) ::= ([[expr ≤ 0]]�N#(n#),C,S, ξ),

which only updates the abstract element n# by the transfer function in the
numeric domain N#.

The join algorithm in our analysis is defined in Algorithm2. Only the con-
strained variables arising in both input S0 and S1 are with the same correspond-
ing linear expressions are taken as constrained variables. The abstract element in
the result is obtained by applying the join operator in the numeric domain �N# .
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Algorithm 1. Transfer function for linear assignments [[y :=
∑n

i=1 wixi+b]]�

Input: abstract numeric element n# ∈ N#, free variables C, constrained
variables S, symbolic map ξ

1 expr ← ∑n
i=1 wixi + b

2 When the right value expression is not a constant
3 if n > 0 then
4 for i ∈ [1, n] do
5 if xi ∈ S then
6 expr = expr|xi←ξ(xi)

7 end

8 end

9 ξ = ξ ∪ {y �→ expr} S = S ∪ {y} C = C/{y} n# = [[y := expr]]�
N#

10 else

11 ξ = ξ/(y �→ ∗) C = C ∪ {y} S = S/{y} n# = [[y := expr]]�
N#

12 end

13 return (n#,C,S, ξ)

The transfer function for a ReLU node is defined as

[[y := ReLU(
n∑

i=1

wixi + b)]]�(n#,C,S, ξ) ::= join([[y > 0]]�(ψ), [[y := 0]]�([[y < 0]]�)(ψ)),

where ψ = [[y :=
∑n

i=1 wixi + b]]�(n#,C,S, ξ).

Algorithm 2. Join algorithm join

Input: (n#
0 ,C0,S0, ξ0) and (n#

1 ,C1,S1, ξ1)
1 n# = n#

0 	N# n#
1

2 ξ = ξ0 ∩ ξ1
3 S = {x | ∃expr, x → expr ∈ ξ}
4 C = C0 ∪ (S0/S)

5 return (n#,C,S, ξ)

For a max pooling node d := max1≤i≤k ci, if there exists some cj whose lower
bound is larger than the upper bound of ci for all i = j, we set cj as the symbolic
representation for d. Otherwise, we introduce a fresh symbolic variable sd for d
and record its bounds wherein its lower (upper) bound is the maximum of the
lower (upper) bounds of ci’s. Note that the lower (upper) bound of each ci can
be derived from the abstract value for this neuron given by abstract domain.

The algorithm for max-pooling layer can be defined with the three aforemen-
tioned transfer functions as follows:

join(φ1, join(φ2, . . . , join(φk−1, φk))),
where φi = [[d := ci]]�[[ci ≥ c1]]� . . . [[ci ≥ ck]]�(n#,C,S, ξ)
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Example 3.6. For the DNN shown in Fig. 3(a), there are two input nodes denoted
by symbolic variables x and y, two hidden nodes, and one output node. The ini-
tial ranges of the input symbolic variables x and y are given, i.e., [4, 6] and [3, 4]
respectively. The weights are labeled on the edges. It is not hard to see that,
when using the Interval abstract domain, (the inputs of) the two hidden nodes
have bounds [17, 24] and [0, 3] respectively. For the hidden node with [17, 24],
we know that this ReLU node is definitely activated, and thus we use symbolic
propagation to get a symbolic expression 2x + 3y to symbolically represent the
output value of this node. Similarly, for the hidden node with [0, 3], we get a sym-
bolic expression x − y. Then for the output node, symbolic propagation results
in x + 4y, which implies that the output range of the whole DNN is [16, 22]. If
we use only the Interval abstract domain without symbolic propagation, we will
get the output range [14, 24], which is less precise than [16, 22].

For the DNN shown in Fig. 3(b), we change the initial range of the input
variable y to be [4.5, 5]. For the hidden ReLU node with [−1, 1.5], it is neither
definitely activated nor definitely deactivated, and thus we introduce a fresh
symbolic variable s to denote the output of this node, and set its bound to
[0, 1.5]. For the output node, symbolic propagation results in 2x + 3y − s, which
implies that the output range of the whole DNN is [20, 27].

x
[4, 6]

y

[3, 4]

[17, 24]
2x+ 3y
[17, 24]

[0, 3]
x− y
[0, 3]

x+ 4y
[16, 22]

2

1 3

−1

1 −1

.

. ,

x
[4, 6]

y

[4.5, 5]

[21.5, 27]
2x+ 3y
[21.5, 27]

[−1, 1.5]
s

[0, 1.5]

2x+ 3y − s
[20, 27]

2

1 3

−1

1 −1

)b()a(

Fig. 3. An illustrative example of symbolic propagation

For a definitely-activated neuron, we utilize its symbolic representation
to enhance the precision of abstract domains. We add the linear constraint
d ==

∑n
i=1 wici + b into the abstract value at (the input of) this node, via

the meet operation (which is used to deal with conditional test in a program)
in the abstract domain [3]. If the precision of the abstract value for the current
neuron is improved, we may find more definitely-activated neurons in the sub-
sequent layers. In other words, the analysis based on abstract domain and our
symbolic propagation mutually improves the precision of each other on-the-fly.

After obtaining symbolic representation for all the neurons in a layer k, the
computation proceeds to layer k+1. The computation terminates after complet-
ing the computation for the output layer. All symbolic representations in the
output layer are evaluated to obtain value bounds.

The following theorem shows some results on precision of our symbolic prop-
agation technique.
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Theorem 3.7.(1) For an FNN f : Rm → R
n and a box region X ⊆ R

m, the Box
abstract domain with symbolic propagation can give a more precise abstraction
for f(X) than the Zonotope abstract domain without symbolic propagation.

(2) For an FNN f : R
m → R

n and a box region X ⊆ R
m, the Box abstract

domain with symbolic propagation and the Zonotope abstract domain with
symbolic propagation gives the same abstraction for f(X).

(3) There exists a CNN g : Rm → R
n and a box region X ⊆ R

m s.t. the Zonotope
abstract domain with symbolic propagation give a more precise abstraction
for g(X) than the Box abstract domain with symbolic propagation.

Proof. (1) Since an FNN only contains fully connected layers, we just need
to prove that, Box with symbolic propagation (i.e., BoxSymb) is always
more precise than Zonotope in the transformations on each RELU neuron
y := ReLU(

∑n
i=1 wixi +b). Assume that before the transformation, BoxSymb

is more precise or as precise as Zonotope. Since the input is a Box region,
the assumption is valid in the beginning. Then we consider three cases: (a) in
BoxSymb, the sign of

∑n
i=1 wixi + b is uncertain, then it must also be uncer-

tain in Zonotope. In both domains, a constant interval with upper bound
computed by

∑n
i=1 wixi + b and lower bound as 0 is assigned to y (this can

be inferred from our aforementioned algorithms and [10]). With our assump-
tion, the upper bound computed by BoxSymb is more precise than that in
Zonotope; (b) in BoxSymb, the sign of

∑n
i=1 wixi + b is always positive, then

it must be always positive or uncertain in Zonotope. In the former condi-
tion, BoxSymb is more precise because it loses no precision, while Zonotope
can lose precision because of its limited expressiveness. In the later condition,
BoxSymb is more precise obviously; (c) in BoxSymb, the sign of

∑n
i=1 wixi+b

is always negative, then it must be always negative or uncertain in Zonotope.
Similar to case (b), BoxSymb is also more precise in this case.

(2) Assume that before each transformation on a ReLU neuron y := ReLU(
∑n

i=1

wixi +b), BoxSymb and ZonoSymb (Zonotope with symbolic propagation)
are with same precision. This assumption is also valid when the input is a
Box region. Then the evaluation of

∑n
i=1 wixi + b is same in BoxSymb and

ZonoSymb, thus in the three cases:(a) the sign of
∑n

i=1 wixi +b is uncertain,
they both compute a same constant interval for y; (b) and (c)

∑n
i=1 wixi + b

is always positive or negative, they both lose no precision.
(3) It is easy to know that, ZonoSymb is more precise or as precise as BoxSymb

in all transformations. In CNN, with Max-Pooling layer, we just need to
give an example that ZonoSymb can be more precise. Let the Zonotope
X ′ = {x1 = 2 + ε1 + ε2, x2 = 2 + ε1 − ε2 | ε1, ε2 ∈ [−1, 1]} and the
max pooling node y = max{x1, x2}. Obviously X ′ can be obtained through
a linear transformation on some box region X. With Box with symbolic
propagation, the abstraction of y is [0, 4], while Zonotope with symbolic
propagation gives the abstraction is [1, 4].

Theorem 3.7 gives us some insights: Symbolic propagation technique has a
very strong power (even stronger than Zonotope) in dealing with ReLU nodes,
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while Zonotope gives a more precise abstraction on max pooling nodes. It also
provides a useful instruction: When we work with FNNs with the input range
being a box, we should use Box with symbolic propagation rather than Zonotope
with symbolic propagation since it does not improve the precision but takes more
time. Results in Theorem 3.7 will also be illustrated in our experiments.

4 Abstract Interpretation as an Accelerator
for SMT-Based DNN Verification

In this section we briefly recall DNN verification based on SMT solvers, and then
describe how to utilize the results by abstract interpretation with our symbolic
propagation to improve its performance.

4.1 SMT Based DNN Verification

In [7,14], two SMT solvers Reluplex and Planet were presented to verify DNNs.
Typically an SMT solver is the combination of a SAT solver with the specialized
decision procedures for other theories. The verification of DNNs uses linear arith-
metic over real numbers, in which an atom may have the form of

∑n
i=1 wixi ≤ b,

where wi and b are real numbers. Both Reluplex and Planet use the DPLL algo-
rithm to split cases and rule out conflict clauses. They are different in dealing
with the intersection. For Reluplex, it inherits rules from the Simplex algorithm
and adds a few rules dedicated to ReLU operation. Through the classical pivot
operation, it searches for a solution to the linear constraints, and then apply the
rules for ReLU to ensure the ReLU relation for every node. Differently, Planet
uses linear approximation to over-approximate the DNN, and manage the con-
ditions of ReLU and max pooling nodes with logic formulas.

4.2 Abstract Interpretation with Symbolic Propagation
as an Accelerator

SMT-based DNN verification approaches are often not efficient, e.g., relying on
case splitting for ReLU operation. In the worst case, case splitting is needed
for each ReLU operation in a DNN, which leads to an exponential blow-up.
In particular, when analyzing large-scale DNNs, SMT-based DNN verification
approaches may suffer from the scalability problem and account time out, which
is also confirmed experimentally in [9].

In this paper, we utilize the results of abstract interpretation (with sym-
bolic propagation) to accelerate SMT-based DNN verification approaches. More
specifically, we use the bound information of each ReLU node (obtained
by abstract interpretation) to reduce the number of case-splitting, and thus
accelerate SMT-based DNN verification. For example, on a neuron d :=
ReLU(

∑n
i=1 wici + b), if we know that this node is a definitely-activated node

according to the bounds given by abstract interpretation, we only consider the
case d :=

∑n
i=1 wici + b and thus no split is applied. We remark that, this does

not compromise the precision of SMT-based DNN verification while improving
their efficiency.
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5 Discussion

In this section, we discuss the soundness guarantee of our approach. Soundness
is an essential property of formal verification.

Abstract interpretation is known for its soundness guarantee for analysis
and verification [18], since it conducts over-approximation to enclose all the
possible behaviors of the original system. Computing over-approximations for a
DNN is thus our soundness guarantee in this paper. As shown in Theorem 3.3,
if the results of abstract interpretation show that the property C holds (i.e.,
γ(X�

N ) ⊆ C in Eq. 1), then the property also holds for the set of actual execu-
tions of the DNN (i.e., f(X0) ⊆ C). If the results of abstract interpretation can
not prove that the property C holds, however, the verification is inconclusive.
In this case, the results of the chosen abstract domain are not precise enough to
prove the property, and thus more powerful abstract domains are needed. More-
over, our symbolic propagation also preserves soundness, since it uses symbolic
substitution to compute the composition of linear transformations.

On the other hand, many existing DNN verification tools do not guarantee
soundness. For example, Reluplex [14] (using GLPK), Planet [7] (using GLPK),
and Sherlock [4] (using Gurobi) all rely on the floating point implementation
of linear programming solvers, which is unsound. Actually, most state-of-the-art
linear programming solvers use floating-point arithmetic and only give approx-
imate solutions which may not be the actual optimum solution or may even lie
outside the feasible space [20]. It may happen that a linear programming solver
implemented via floating point arithmetic wrongly claims that a feasible linear
system is infeasible or the other way round. In fact, [4] reports several false pos-
itive results in Reluplex, and mentions that this comes from unsound floating
point implementation.

6 Experimental Evaluation

We present the design and results of our experiments.

6.1 Experimental Setup

Implementation. AI2 [9] is the first to utilize abstract interpretation to ver-
ify DNNs, and has implemented all the transformers mentioned in Sect. 3.1.
Since the implementation of AI2 is not available, we have re-implemented these
transformers and refer to them as AI2-r. We then implemented our symbolic
propagation technique based on AI2-r and use AI2-r as the baseline comparison
in the experiments. Both implementations use general frameworks and thus can
run on various abstract domains. In this paper, we chose Box (from Apron1),
T-Zonotope (Zonotope from Apron (see Footnote 6)) and E-Zonotope (Elina
Zonotope with the join operator2) as the underlying domains.
1 https://github.com/ljlin/Apron Elina fork.
2 https://github.com/eth-sri/ELINA/commit/152910bf35ff037671c99ab019c1915e93

dde57f.

https://github.com/ljlin/Apron_Elina_fork
https://github.com/eth-sri/ELINA/commit/152910bf35ff037671c99ab019c1915e93dde57f
https://github.com/eth-sri/ELINA/commit/152910bf35ff037671c99ab019c1915e93dde57f
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Datasets and DNNs. We use MNIST [16] and ACAS Xu [8,12] as the datasets
in our experiments. MNIST contains 60, 000 28 × 28 grayscale handwritten dig-
its. We can train DNNs to classify the pictures by the written digits on them.
The ACAS Xu system is aimed to avoid airborne collisions and it uses an obser-
vation table to make decisions for the aircraft. In [13], the observation table can
be realized by training a DNN instead of storing it.

On MNIST, we train seven FNNs and two CNNs. The seven FNNs are of
the size 3 × 20, 6 × 20, 3 × 50, 3 × 100, 6 × 100, and 9 × 200, where m × n refers
to m hidden layers with n neurons in each hidden layer. The CNN1 consists
of 2 convolutional, 1 max-pooling, 2 convolutional, 1 max-pooling, and 3 fully
connected layers in sequence, for a total of 12,412 neurons. The CNN2 has 4
convolutional and 3 fully connected layers (89572 neurons). On ACAS Xu, we
use the same networks as those in [14].

Properties. We consider the local robustness property with respect to the input
region defined as follows:

Xx̄,δ = {x̄′ ∈ R
m | ∀i.1 − δ ≤ xi ≤ x′

i ≤ 1 ∨ xi = x′
i}.

In the experiments, the optional robustness bounds are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.
All the experiments are conducted on an openSUSE Leap 15.0 machine with
Intel i7 CPU@3.60 GHz and 16 GB memory.

6.2 Experimental Results

We compare seven approaches: AI2-r with Box, T-Zonotope and E-zonotope
as underlying domains and Symb (i.e., our enhanced abstract interpretation
with symbolic propagation) with Box, T-Zonotope and E-zonotope as underlying
domains, and Planet [7], which serves as the benchmark verification approach
(for its ability to compute bounds).

Improvement on Bounds. To see the improvement on bounds, we compare the
output ranges of the above seven approaches on different inputs x̄ and dif-
ferent tolerances δ. Table 1(a) reports the results on three inputs x̄ (No.767,
No.1955 and No.2090 in the MNIST training dataset) and six tolerances δ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. In all our experiments, we set TIMEOUT as one hour
for each FNN and eight hours for each CNN for a single run with an input, and
a tolerance δ. In the table, TZono and EZono are shorts for T-Zonotope and
E-Zonotope.

For each running we get a gap with an upper and lower bound for each
neuron. Here we define the the bound proportion to statistically describe how
precise the range an approach gives. Basically given an approach (like Symb with
Box domain), the bound proportion of this approach is the average of the ratio of
the gap length of the neurons on the output layer and that obtained using AI2-r
with Box. Naturally AI2-r with Box always has the bound proportion 1, and
the smaller the bound proportion is, the more precise the ranges the approach
gives are.
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Table 1. Experimental results of abstract interpretation for MNIST DNNs with dif-
ferent approaches

In Table 1(a), every entry is the average bound proportion over three different
inputs and six different tolerances. OOM stands for out-of-memory, 1h TIME-
OUT for the one-hour timeout, and 8h TIMEOUT for the eight-hour timeout.
We can see that, in general, Symb with Box, T-Zonotope and E-zonotope can
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achieve much better bounds than AI2-r with Box, T-Zonotope and E-zonotope
do. These bounds are closer to what Planet gives, except for FNN5 and FNN6.
E-zonotope is slightly more precise than T-Zonotope. On the other hand, while
Symb can return in a reasonable time in most cases, Planet cannot terminate
in an hour (resp. eight hours) for FNN7 (resp. CNN1 and CNN2), which have
1, 800, 12, 412 and 89, 572 hidden neurons, respectively. Also we can see that
results in Theorem 3.7 are illustrated here. More specifically, (1) Symb with Box
domain is more precise than AI2-r with T-Zonotope and E-Zonotope on FNNs;
(2) Symb with Box, T-Zonotope and E-Zonotope are with the same precision on
FNNs; (3) Symb with T-Zonotope and E-Zonotope are more precise than Symb
with Box on CNNs.

According to memory footprint, both AI2-r and Symb with T-Zonotope or
E-Zonotope need more memory than them with Box do, and will crash on large
networks, such as CNN2, because of running out of memory. Figure 4 shows how
CPU and resident memory usage change over time. The horizontal axis in the
figure is the time, in seconds, the vertical axis corresponding to the red line is
the CPU usage percentage, and the vertical axis corresponding to the blue line
is the memory usage, in MB.

Greater Verifiable Robustness Bounds. Table 1(b) shows the results of using the
obtained bounds to help verify the robustness property. We consider a few thresh-
olds for robustness tolerance, i.e., {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, and find that Symb
can verify many more cases than AI2-r do with comparable time consumption
(less than 2x in most cases, and sometimes even faster).

Proportion of Activated/Deactivated ReLU Nodes. Table 1(c) reports the number
of hidden neurons whose ReLU behaviour (i.e., activated or deactivated) has
been consistent within the tolerance δ. Compared to AI2-r, our Symb can decide
the ReLU behaviour with a much higher percentage.

We remark that, although the experimental results presented above are based
on 3 fixed inputs, more extensive experiments have already been conducted to
confirm that the conclusions are general. We randomly sample 1000 pictures (100
pictures per label) from the MNIST dataset, and compute the bound proportion
for each of the pair (m, δ) where m refers to the seven approaches in Table 1 and
δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} on FNN1. Each entry corresponding to (m, δ) in
Table 2 is the average of bound proportions of approach m over 1000 pictures
and fixed tolerance δ. Then we get the average of the bound proportion of AI2-r
with TZono/EZono, Symb with Box/TZono/EZono, and Planet over six differ-
ent tolerances are 27.98623%, 27.44977%, 11.02104%, 11.02104%, 11.02104%,
7.08377%, respectively, which are very close to the first row of Table 1(a).

Comparison with the Bounded Powerset Domain. In AI2 [9], the bounded power-
set domains are used to improve the precision. In AI2-r, we also implemented such
bounded powerset domains instantiated by Box, T-Zonotope and E-Zonotope
domains, with 32 as the bound of the number of the abstract elements in a dis-
junction. The comparison of the performance on the powerset domains with our
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(a) Box (b) SymBox

(c) TZono (d) SymTZono

(e) EZono (f) SymEZono

Fig. 4. CPU and memory usage

symbolic propagation technique (with underlying domains rather than power-
set domains) is shown in Table 3. We can see that our technique is much more
precise than the powerset domains. The time and memory consumptions of the
powerset domains are both around 32 times as much as the underlying domains,
which are more than those of our technique.

Faster Verification. In this part we use the networks of ACAS Xu. To eval-
uate the benefits of tighter bounds for SMT-based tools, we give the bounds
obtained by abstract interpretation (on Box domain with symbolic propaga-
tion) to Reluplex [14] and observe the performance difference. The results are
shown in Table 4. Each cell shows the satisfiability (i.e., SAT if an adversarial
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Table 2. Bound proportions (smaller is better) for 1000 randomly sampled pictures
from MNIST testing set on FNN1 with δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

δ AI2-r Symb Planet

TZono EZono Box TZono EZono

0.1 7.13046% 7.08137% 6.15622% 6.15622% 6.15622% 5.84974%

0.2 11.09230% 10.88775% 6.92011% 6.92011% 6.92011% 6.11095%

0.3 18.75853% 18.32059% 8.21241% 8.21241% 8.21241% 6.50692%

0.4 30.11872% 29.27580% 10.31225% 10.31225% 10.31225% 7.04413%

0.5 45.13963% 44.25026% 14.49276% 14.49276% 14.49276% 7.96402%

0.6 55.67772% 54.88288% 20.03251% 20.03251% 20.03251% 9.02688%

Table 3. Bound proportions (smaller is better) of different abstract interpretation
approaches with the robustness bound δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, and the fixed
input pictures 767, 1955, and 2090. Note that each entry gives the average bound
proportion over six different tolerance and three pictures.

AI2-r Symb Planet

Box32 TZono32 EZono32 Box TZono EZono

FNN1 89.65790% 20.68675% 15.87726% 9.69327% 9.69327% 9.69327% 7.05553%

FNN2 89.42070% 16.27651% 8.18317% 1.76704% 1.76704% 1.76704% 0.89089%

FNN3 89.43396% 21.98109% 12.42840% 6.88656% 6.88656% 6.88656% 4.51223%

FNN4 89.44806% 25.97855% 13.05969% 5.13645% 5.13645% 5.13645% 2.71537%

FNN5 89.16034% 29.61022% 17.88676% 3.34578% 3.34578% 3.34578% 0.14836%

FNN6 89.30790% OOM 22.60030% 7.12480% 7.12480% 7.12480% 1.94230%

FNN7 88.62267% OOM 1h TIMEOUT 5.52267% 5.52267% 5.52267% 1h TIMEOUT

example is found) and the running time without or with given bounds. The
experiments are conducted on different δ values (as in [14]) and a fixed net-
work (nnet1 1 [14]) and 5 fixed points (Point 1 to 5 in [14]). The running time
our technique spends on deriving the bounds are all less than 1 second. Table 4
shows that tighter initial bounds bring significant benefits to Reluplex with an
overall ( 1

5076 − 1
32992 )/ 1

32992 = 549.43% speedup (9.16 h compared to 1.41 h).
However, it should be noted that, on one specific case (i.e., δ = 0.1 at Point 1
and δ = 0.075 at point 4), the tighter initial bounds slow Reluplex, which means
that the speedup is not guaranteed on all cases. For the case δ = 0.05 at point
4, Reluplex gives SAT and Reluplex+ABS gives UNSAT. This may result from
a floating point arithmetic error.
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Table 4. The satisfiability on given δ, and the time (in second) with and without
bounds generated by abstract interpretation with symbolic propagation on the Box
domain.

δ = 0.1 δ = 0.075 δ = 0.05 δ = 0.025 δ = 0.01 Total

Time

Result Time Result Time Result Time Result Time Result Time

Point 1 Reluplex SAT 39 SAT 123 SAT 14 UNSAT 638 UNSAT 64 879

Reluplex + ABS SAT 45 SAT 36 SAT 14 UNSAT 237 UNSAT 36 368

Point 2 Reluplex UNSAT 6513 UNSAT 1559 UNSAT 319 UNSAT 49 UNSAT 11 8451

Reluplex + ABS UNSAT 141 UNSAT 156 UNSAT 75 UNSAT 40 UNSAT 0 412

Point 3 Reluplex UNSAT 1013 UNSAT 422 UNSAT 95 UNSAT 79 UNSAT 6 1615

Reluplex + ABS UNSAT 44 UNSAT 71 UNSAT 0 UNSAT 0 UNSAT 0 115

Point 4 Reluplex SAT 3 SAT 5 SAT 1236 UNSAT 579 UNSAT 8 1831

Reluplex + ABS SAT 3 SAT 7 UNSAT 442 UNSAT 31 UNSAT 0 483

Point 5 Reluplex UNSAT 14301 UNSAT 4248 UNSAT 1392 UNSAT 269 UNSAT 6 20216

Reluplex + ABS UNSAT 2002 UNSAT 1402 UNSAT 231 UNSAT 63 UNSAT 0 3698

7 Related Work

Verification of neural networks can be traced back to [23], where the network
is encoded after approximating every sigmoid activation function with a set
of piecewise linear constraints and then solved with an SMT solver. It works
with a network of 6 hidden nodes. More recently, by considering DNNs with
ReLU activation functions, the verification approaches include constraint-solving
[7,14,17,19], layer-by-layer exhaustive search [11], global optimisation [4,24,25],
abstract interpretation [9,27,28], functional approximation [35], and reduction
to two-player game [32,34], etc. More specifically, [14] presents an SMT solver
Reluplex to verify properties on DNNs with fully-connected layers. [7] presents
another SMT solver Planet which combines linear approximation and interval
arithmetic to work with fully connected and max pooling layers. Methods based
on SMT solvers do not scale well, e.g., Reluplex can only work with DNNs with
a few hidden neurons.

The above works are mainly for the verification of local robustness. Research
has been conducted to compute other properties, e.g., the output reachability. An
exact computation of output reachability can be utilised to verify local robust-
ness. In [4], Sherlock, an algorithm based on local and global search and mixed
integer linear programming (MILP), is put forward to calculate the output range
of a given label when the inputs are restricted to a small subspace. [24] presents
another algorithm for output range analysis, and their algorithm is workable
for all Lipschitz continuous DNNs, including all layers and activation functions
mentioned above. In [30], the authors use symbolic interval propagation to cal-
culate output range. Compared with [30], our approach fits for general abstract
domains, while their symbolic interval propagation is designed specifically for
symbolic intervals.

[9] is the first to use abstract interpretation to verify DNNs. They define a
class of functions called conditional affine transformations (CAT) to character-
ize DNNs containing fully connected, convolutional and max pooling layers with



316 J. Li et al.

the ReLU activation function. They use Interval and Zonotope as the abstract
domains and the powerset technique on Zonotope. Compared with AI2, we use
symbolic propagation rather than powerset extension techniques to enhance the
precision of abstract interpretation based DNN verification. Symbolic propaga-
tion is more lightweight than powerset extension. Moreover, we also use the
bounds information given by abstract interpretation to accelerate SMT based
DNN verification. DeepZ [27] and DeepPoly [28] propose two specific abstract
domains tailored to DNN verification, in order to improve the precision of
abstract interpretation on the verification on DNNs. In contrast, our work is
a general approach that can be applied on various domains.

8 Conclusion

In this paper, we have explored more potential of abstract interpretation on
the verification over DNNs. We have proposed to use symbolic propagation on
abstract interpretation to take advantage of the linearity in most part of the
DNNs, which achieved significant improvements in terms of the precision and
memory usage. This is based on a key observation that, for local robustness
verification of DNNs where a small region of the input space is concerned, a con-
siderable percentage of hidden neurons remain active or inactive for all possible
inputs in the region. For these neurons, their ReLU activation function can be
replaced by a linear function. Our symbolic propagation iteratively computes for
each neuron this information and utilize the computed information to improve
the performance.

This paper has presented with formal proofs three somewhat surprising the-
oretical results, which are then affirmed by our experiments. These results have
enhanced our theoretical and practical understanding about the abstract inter-
pretation based DNN verification and symbolic propagation.

This paper has also applied the tighter bounds of variables on hidden neurons
from our approach to improve the performance of the state-of-the-art SMT based
DNN verification tools, like Reluplex. The speed-up rate is up to 549% in our
experiments. We believe this result sheds some light on the potential in improving
the scalability of SMT-based DNN verification: In addition to improving the
performance through enhancing the SMT solver for DNNs, an arguably easier
way is to take an abstract interpretation technique (or other techniques that can
refine the constraints) as a pre-processing.
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27. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, Montréal, Canada, 3–8 December 2018, pp. 10825–10836 (2018).
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification

28. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certify-
ing neural networks. PACMPL 3(POPL), 41:1–41:30 (2019). https://dl.acm.org/
citation.cfm?id=3290354

29. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Con-
ference on Learning Representations (ICLR2014) (2014)

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://arxiv.org/abs/1709.06662
https://doi.org/10.1007/s10107-003-0433-3
https://doi.org/10.1007/s10107-003-0433-3
http://arxiv.org/abs/1511.07528
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.24963/ijcai.2018/368
https://doi.org/10.24963/ijcai.2018/368
https://doi.org/10.1038/nature16961
http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification
https://dl.acm.org/citation.cfm?id=3290354
https://dl.acm.org/citation.cfm?id=3290354


Analyzing Deep Neural Networks with Symbolic Propagation 319

30. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. CoRR abs/1804.10829 (2018). http://
arxiv.org/abs/1804.10829

31. Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Daniel, L., Boning, D.S.,
Dhillon, I.S.: Towards fast computation of certified robustness for relu networks.
In: Dy and Krause [7], pp. 5273–5282. http://proceedings.mlr.press/v80/weng18a.
html

32. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing
of deep neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 408–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2 22

33. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the
convex outer adversarial polytope. In: Dy and Krause [7], pp. 5283–5292. http://
proceedings.mlr.press/v80/wong18a.html

34. Wu, M., matthew Wicker, Ruan, W., Huang, X., Kwiatkowska, M.: A game-based
approximate verification of deep neural networks with provable guarantees. Theor.
Comput. Sci. (2019)

35. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and veri-
fication for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29(11), 5777–5783 (2018). https://doi.org/10.1109/TNNLS.2018.2808470

http://arxiv.org/abs/1804.10829
http://arxiv.org/abs/1804.10829
http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v80/weng18a.html
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22
http://proceedings.mlr.press/v80/wong18a.html
http://proceedings.mlr.press/v80/wong18a.html
https://doi.org/10.1109/TNNLS.2018.2808470


Synthesis and Security



Sorcar: Property-Driven Algorithms
for Learning Conjunctive Invariants

Daniel Neider1(B), Shambwaditya Saha2, Pranav Garg3, and P. Madhusudan2

1 Max Planck Institute for Software Systems, Kaiserslautern, Germany
neider@mpi-sws.org

2 University of Illinois at Urbana-Champaing, Champaign, USA
3 Amazon Web Services, Seattle, USA

Abstract. We present a new learning algorithm Sorcar to synthesize
conjunctive inductive invariants for proving that a program satisfies its
assertions. The salient property of this algorithm is that it is property-
driven, and for a fixed finite set of n predicates, guarantees convergence
in 2n rounds, taking only polynomial time in each round. We implement
and evaluate the algorithm and show that its performance is favorable
to the existing Houdini algorithm (which is not property-driven) for
a class of benchmarks that prove data race freedom of GPU programs
and another class that synthesizes invariants for proving separation logic
properties for heap manipulating programs.

Keywords: Invariant synthesis · Machine learning · Horn-ICE
learning · Conjunctive formulas

1 Introduction

The deductive verification approach for proving imperative programs correct is
one of the most well-established and effective methods, and automating program
verification using this method has been studied extensively. This approach can
be seen as consisting of two parts: (a) writing inductive invariants in terms of
loop invariants, class invariants, and method contracts, and (b) proving that
these annotations are indeed correct using theorem proving. Automation of the
latter has seen tremendous progress in the last two decades through the identifi-
cation of decidable logical theories, theory combinations, heuristics for automati-
cally reasoning with quantified theories, and their realization using efficient SMT
solvers [5,34]. There has also been significant progress on automating the former
problem of discovering inductive invariants [3,7,8,12–20,23,24,27,32,40–43,48],
with varying degrees of success.

In this paper, we are interested in a class of or learning-based techniques for
invariant generation [8,16,20,48]. In this context, the invariant synthesis engine
is split into two components, a learner and a teacher, who work in rounds. In
each round, the teacher examines the invariant produced by the learner and
produces counterexamples that consist of concrete program configurations that
c© Springer Nature Switzerland AG 2019
B.-Y. E. Chang (Ed.): SAS 2019, LNCS 11822, pp. 323–346, 2019.
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show why the proposed formulas are not inductive invariants. The learner then
uses these concrete program configurations to synthesize new proposals for the
invariant, without looking at the program. The teacher, on the other hand, does
look at the program and produces counterexamples based on failed verification
attempts.

The choice to separate the learner and teacher—and not give the learner
access to the program—may seem strange at first. However, a rationale for this
choice has emerged over the years, and the above choice is in fact the de facto
approach for synthesis in various other domains, including program synthesis,
where it is usually called counter-example guided inductive synthesis [1,44,45].

Horn-ICE Learning. In a paper at CAV 2014, Garg et al. [20] studied the
above learning model and identified the precise form of counterexamples needed
for synthesizing invariants. Contrary to usual classification learning where one
is given positive and negative examples only, the authors argued that impli-
cation counterexamples (ICE) are needed, and coined the term ICE learning
for such a learning model. More recently, it has been recognized that program
verification problems can be cast as solving Horn implication constraints [22].
Consequently, the implication counterexamples returned by the teacher are nat-
urally Horn implications (Horn-ICE ), involving concrete program configurations.
New algorithms for learning from such Horn counterexamples have recently been
studied [8,16].

Learning Conjunctions Over a Fixed Set of Predicates. While one can
potentially learn/synthesize invariants in complex logics, one technique that has
been particularly effective and scalable is to fix a finite set of predicates P
over the program configurations and only learn inductive invariants that can
be expressed as a conjunction of predicates over P. For particular domains of
programs and types of specifications, it is possible to identify classes of candidate
predicates that are typically involved in invariants (e.g., based on the code of
the programs and/or the specification), and learning invariants over such a class
of predicates has proven very effective. A prominent example is device drivers,
and Microsoft’s Static Driver Verifier [28,33] (specifically the underlying tool
Corral [29]) is an industry-strength tool that leverages exactly this approach.

In this paper, we are mainly motivated by two other domains where learning
conjunctive invariants is very effective. The first is the class of programs handled
by GPUVerify [6,9], which considers GPU programs, reduces the problem to a
sequential verification problem (by simulating two threads at each parallel fork),
and proceeds to find conjunctive invariants over a fixed set P of predicates to
prove the resulting sequential program correct. The second class is the class of
programs considered by Neider et al. [35], where the authors synthesize invari-
ants in order to prove the correctness of programs that dynamically update heaps
against specifications in separation logic. The verification engine in the former
is an SMT solver that returns concrete Horn-ICE counterexamples. In the lat-
ter, predicates involve inductively defined relations (such as a list-segment, the
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Table 1. Comparison of Houdini [18] and Sorcar

Learning Property Complexity Maximum Final conjunct
algorithm driven? per round # rounds

Houdini No Polynomial |P| Largest set

Sorcar Yes Polynomial 2 · |P|

Bias towards weaker
invariants (smaller
sets of conjunctions)
involving only relevant
predicates

heaplet associated with it, or the set of keys stored in it), and validating veri-
fication conditions is undecidable in general. Hence, the verification engine is a
sound but incomplete verification engine (based on “natural proofs”) that returns
abstract counterexamples that can be interpreted to be Horn-ICE counterexam-
ples. In both domains, the set P consists of hundreds of candidate predicates,
which makes invariant synthesis challenging (as there are 2|P| possible conjunc-
tive invariants).

Houdini and Sorcar. The classical algorithm for learning conjunctive invari-
ants over a finite class of predicates is the Houdini algorithm [18], which mimics
the elimination algorithm for learning conjuncts in classical machine learning [26].
Houdini starts with a conjectured invariant that contains all predicates in P
and, in each round, uses information from a failed verification attempt to remove
predicates. The most salient aspect of the algorithm is that it is guaranteed to
converge to a conjunctive invariant, if one exists, in n = |P| rounds (which is
logarithmic in the number of invariants, as there are 2n of them). However, the
Houdini algorithm has disadvantages as well. Most notably, it is not property-
driven as it does not consider the assertions that occur in the program (which
is a consequence of the fact that it was originally designed to infer invariants of
unannotated programs). In fact, one can view the Houdini algorithm as a way of
computing the least fixed point in the abstract interpretation framework, where
the abstract domain consists of conjunctions over the candidate predicates.

In this paper, we develop a new class of learning algorithms for conjunctions,
named Sorcar1, that is property-driven.

The primary motivation to build a property-driven learning algorithm is to
explore invariant generation techniques that can be potentially more efficient in
proving programs correct. The Sorcar algorithm presented in this paper has the
following design features (also see Table 1). First, it is property-driven—in other
words, the algorithm tries to find conjunctive inductive invariants that are suffi-
cient to prove the assertions in the program. By contrast, Houdini computes the
tightest inductive invariant. Since Sorcar is property-driven, it can find weaker
inductive invariants (i.e., invariants with fewer conjuncts). Our intuition is that
by synthesizing weaker, property-driven invariants, we can verify programs more
efficiently.

1 Houdini and Sorcar were both magicians!
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Second, Sorcar guarantees that the number of rounds of interaction with
the teacher is still linear (2n rounds compared to Houdini’s promise of n rounds).
Third, Sorcar promises to do only polynomial amount of work in each round
(i.e., polynomial in n and in the number of current counterexamples), similar to
Houdini.

The Sorcar algorithm works, intuitively, by finding conjunctive invariants
over a set of relevant predicates R ⊆ P. This set is grown slowly (but monoton-
ically, as monotonic growth is crucial to ensure that the number of rounds of
learning is linear) by adding predicates only when they were found to be relevant
to prove assertions. More specifically, predicates are considered relevant based on
information gained from counterexamples of failed verification conditions that
involve assertions in the program. The precise mechanism of growing the set of
relevant predicates can vary, and we define four variants of Sorcar (e.g., choos-
ing all predicates that show promise of relevance or greedily choosing a minimal
number of relevant predicates). The Sorcar suite of algorithms is hence a new
class of property-driven learning algorithms for conjunctive invariants with dif-
ferent design principles.

Experimental Evaluation. We have implemented Sorcar as a Horn-ICE
learning algorithm on top of the Boogie program verifier [4] and have applied
it to verify both GPU programs for data races [6,9] and heap manipulating
programs against separation logic specifications [35]. To assess the performance
of Sorcar, we have compared it to the current state-of-the-art tools for these
programs, which use the Houdini algorithm. Though Sorcar did not work more
efficiently on every program, our empirical evaluation shows that it is overall
more competitive than Houdini. In summary, we found that (a) Sorcar worked
more efficiently overall in verifying these programs, and (b) Sorcar verified a
larger number of programs than Houdini did (for a suitably large timeout).

Related Work

Invariant synthesis lies at the heart of automated program verification. Over
the years, various techniques have been proposed, including abstract inter-
pretation [13], interpolation [32], IC3 [7], predicate abstraction [3], abductive
inference [14], as well as synthesis algorithms that rely on constraint solv-
ing [12,17,23,24]. Complementing these techniques are data-driven approaches
that are based on machine learning. Examples include Daikon [15] and Hou-
dini [18], the ICE learning framework [20] and its successor Horn-ICE learn-
ing [8,16], as well as numerous other techniques that employ machine learning
to synthesize inductive invariants [19,27,40–43,48].

One potentially interesting question is whether ICE/Horn-ICE algorithms
(and in particular, Houdini and Sorcar) are qualitatively related to algorithms
such as IC3 for synthesizing invariants. For programs with Boolean domains,
Vizel et al. [47] study this question and find that the algorithms are quite differ-
ent. In fact, the authors propose a new framework that generalizes both. In the



Sorcar: Property-Driven Algorithms for Learning Conjunctive Invariants 327

setting of this paper, however, there are too many differences to reconcile with:
(a) IC3 finds invariants by bounded symbolic exploration, forward from initial
configurations and backward from bad configurations (hence inherently unfold-
ing loops), while ICE/Horn-ICE algorithms do not do that, (b) ICE/Horn-ICE
algorithms instead use implication/Horn counterexamples, which can relate con-
figurations arbitrarily far away from initial or bad configurations, and there
seems to be no analog to this in IC3, (c) it is not clear how to restrict IC3
to finding invariants in a particular hypothesis class, such as conjunctions over
a particular set of predicates, (d) IC3 works very closely with a SAT solver,
whereas ICE/Horn-ICE algorithms are essentially independent, communicating
with the SAT/SMT engine only indirectly, and (e) we are not aware of any guar-
antees that IC3 can give in terms of the number of rounds/conjectures, whereas
the ICE/Horn-ICE algorithms Houdini and Sorcar give guarantees that are
linear in the number of predicates. We believe that the algorithms are in fact very
different, though more general algorithms that unify them would be interesting
to study.

Learning of conjunctive formulas has a long history. An early example is the
so-called elimination algorithm [26], which operates in the Probably Approxi-
mately Correct Learning model (PAC). Daikon [15] was the first technique to
apply the elimination algorithm in a software setting, learning likely invariants
from dynamic traces. Later, the popular Houdini [18] algorithm built on top of
the elimination algorithm to compute inductive invariants in a fully automated
manner. In fact, as Garg et al. [21] and later Ezudheen et al. [16] argued, Hou-
dini can be seen as a learning algorithm for conjunctive formulas in both the
ICE and the Horn-ICE learning framework.

Using Houdini to compute conjunctive invariants over a finite set of candi-
date predicates is extremely scalable and has been used with great success in
several practical settings. For example, Corral [29], which uses Houdini inter-
nally, has replaced Slam [2] and Yogi [36], and is currently shipped as part
of Microsoft’s industrial-strength Static Driver Verifier (SDV) [28,33]. GPUVer-
ify [6,9] is another example that uses Houdini with great success to prove race
freedom of GPU programs.

2 Background

In this section, we provide the background on learning-based invariant synthe-
sis. In particular, we briefly recapitulate the Horn-ICE learning framework (in
Sect. 2.1) and discuss the Houdini algorithm (in Sect. 2.2), specifically in the
context of the Horn-ICE framework.

To make the Horn-ICE framework mathematically precise, let P be the pro-
gram (with assertions) under consideration and C the set of all program config-
urations of P . Furthermore, let us fix a finite set P of predicates p : C → B over
the program configurations, where B = {true, false} is the set of Boolean values.
These predicates capture interesting properties of the program and serve as the
basic building blocks for constructing invariants. We assume that the values of
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these predicates can either be obtained directly from the program configurations
or that the program is instrumented with ghost variables that track the values
of the predicates at important places in the program (e.g., at the loop header
and immediately after the loop). As notational convention, we write c |= p if
p(c) = true and c �|= p if p(c) = false. Moreover, we lift this notation to formulas
ϕ over P (i.e., arbitrary Boolean combinations of predicates from P) and use
c |= ϕ (c �|= ϕ) to denote that c satisfies ϕ (c does not satisfy ϕ).

To simplify the presentation in the remainder of this paper, we use conjunc-
tions p1∧· · ·∧pn of predicates over P and the corresponding sets {p1, . . . , pn} ⊆ P
interchangeably. In particular, for a (sub-)set X = {p1, . . . , pn} ⊆ P of predicates
and a program configuration c ∈ C, we write c |= X if and only if c |= p1∧· · ·∧pn.

2.1 The Horn-ICE Learning Framework

The Horn-ICE learning framework [8,16] is a general framework for learning
inductive invariants in a black-box setting. We here assume without loss of gen-
erality that the task is to synthesize a single invariant. In the case of learning
multiple invariants, say at different program locations, one can easily expand
the given predicates to predicates of the form (pc = l) → p where pc refers to
the program counter, l is the location of an invariant in the program, and p ∈ P.
Learning a conjunctive invariant over this extended set of predicates then corre-
sponds to learning multiple conjunctive invariants at the various locations.

As sketched in Fig. 1, the Horn-ICE framework consists of two distinct
entities—the learner and the teacher—and proceeds in rounds. In each round,
the teacher receives a candidate invariant ϕ from the learner and checks whether
ϕ proves the program correct. Should ϕ not be adequate to prove the program
correct, the learner replies with a counterexample, which serves as a means to
correct inadequate invariants and guide the learner towards a correct one. More
precisely, a counterexample takes one of three forms:2

– If the pre-condition α of the program does not imply ϕ, then the teacher
returns a positive counterexample c ∈ C such that c |= α but c �|= ϕ.

– If ϕ does not imply the post-condition β of the program, then the teacher
returns a negative counterexample c ∈ C such that c |= ϕ but c �|= β.

– If ϕ is not inductive, then the teacher returns a Horn counterexample
({c1, . . . , cn}, c) ∈ 2C × C such that ci |= ϕ for each i ∈ {1, . . . , n} but c �|= ϕ.
(We encourage the reader to think of Horn counterexamples as constraints of
the form (c1 ∧ · · · ∧ cn) → c.)

A teacher who returns counterexamples as described above always enables
the learner to make progress in the sense that every counterexample it returns
is inconsistent with the current conjecture (i.e., it violates the current conjec-
ture). Moreover, the Horn-ICE framework requires the teacher to be honest,
meaning that each counterexample needs to be consistent with all inductive
2 By abuse of notation, we write c |= α (c �|= α) to denote that c satisfies (violates)

the formula α even if α contains predicates that do not belong to P.
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Fig. 1. The Horn-ICE learning framework [8,16]

invariants that prove the program correct (i.e., the teacher does not rule out
possible solutions). Finally, note that such a teacher can indeed be built since
program verification can be stated by means of constrained Horn clauses [22].
When the candidate invariant does not make such clauses true, some Horn clause
failed, and the teacher can find a Horn counterexample using a logic solver (pos-
itive counterexamples arise when the left-hand-side of the Horn counterexample
is empty, while negative counterexamples arise when the left-hand-side has one
element and the-right-hand side is false).

The objective of the learner, on the other hand, is to construct a formula
ϕ over P from the counterexamples received thus far. For the sake of simplic-
ity, we assume that the learner collects all counterexamples in a data structure
S = (S+, S−, SH), called Horn-ICE sample, where

1. S+ ⊆ C is a finite set of positive counterexamples;
2. S− ⊆ C is a finite set of negative counterexamples; and
3. SH ⊆ 2C × C is a finite set of Horn counterexamples.

To measure the complexity of a sample, we define its size, denoted by |S|, to be
|S+| + |S−| + ∑

(L,c)∈SH
(|L| + 1).

Given a Horn-ICE sample S = (S+, S−, SH), the learner’s task is then to
construct a formula ϕ over P that is consistent with S in that

1. c |= ϕ for each c ∈ S+;
2. c �|= ϕ for each c ∈ S−; and
3. for each ({c1, . . . , cn}, c) ∈ SH , if ci |= ϕ for all i ∈ {1, . . . , n}, then c |= ϕ.

This task is called passive Horn-ICE learning, while the overall learning setup can
be though of as iterative (or online) Horn-ICE learning. In the special case that
the learner produces conjunctive formulas, we say that a set X ⊆ P is consistent
with S if and only if the corresponding conjunction

∧
p∈X p is consistent with S.

In general, the Horn-ICE learning framework permits arbitrary formulas over
the predicates as candidate invariants. In this paper, however, we exclusively
focus on conjunctive formulas (i.e., conjunctions of predicates from P). In fact,
conjunctive invariants form an important subclass in practice as they are suf-
ficient to prove many programs correct [18,35] (also see our experimental eval-
uation in Sect. 4). Moreover, one can design efficient learning algorithms for
conjunctive Boolean formulas, as we show next.
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2.2 Houdini as a Horn-ICE Learning Algorithm

Houdini [18] is a popular algorithm to synthesize conjunctive invariants in inter-
action with a theorem prover. For our purposes, however, it is helpful to think
of Houdini as an adaptation of the classical elimination algorithm [26] to the
Horn-ICE learning framework that is modified to account for Horn counterexam-
ples. To avoid confusion, we refer to algorithmic component that the Houdini
learning algorithm as the “elimination algorithm” and the implementation of the
elimination algorithm as a learner in the context of the Horn-ICE framework as
Houdini-ICE.

Let us now describe the elimination algorithm as it is used in the design
of Sorcar as well. Given a Horn-ICE sample S = (S+, S−, SH), the elimina-
tion algorithm computes the largest conjunctive formula X ⊆ P in terms of
the number of predicates in X (i.e., the semantically smallest set of program
configurations expressible by a conjunctive formula) that is consistent with S.
Starting with the set X = P of all predicates, the elimination algorithm proceeds
as follows:

1. The elimination algorithm removes all predicates p ∈ X from X that violate
a positive counterexample (i.e., there exists a positive counterexample c ∈ S+

such that c �|= p). The result is the unique largest set X of predicates—
alternatively the largest conjunctive formula—that is consistent with S+

(i.e., c |= X for all c ∈ S+).
2. The elimination algorithm checks whether all Horn counterexamples are sat-

isfied. If a Horn counterexample ({c1, . . . , cn}, c) ∈ SH is not satisfied, it
means that each program configuration ci of the left-hand-side satisfies X,
but the configuration c on the right-hand-side does not. However, X corre-
sponds to the semantically smallest set of program configurations expressible
by a conjunctive formula that is consistent with S+. Moreover, all program
configurations ci on the left-hand-side of the Horn counterexample also sat-
isfy X. Thus, the right-hand-side c necessarily has to satisfy X as well (oth-
erwise X would not satisfy the Horn counterexample). To account for this,
the elimination algorithm adds c as a new positive counterexample to S+.

3. The elimination algorithm repeats Steps 1 and 2 until a fixed point is reached.
Once this happens, X is the unique largest set of predicates that is consistent
with S+ and SH .

Finally, the elimination algorithm checks whether each negative counterexample
violates X (i.e., c �|= X for each c ∈ S−). If this is the case, X is the largest
set of predicates that is consistent with S; otherwise, no consistent conjunctive
formula exists. Note that the elimination algorithm does not learn from negative
counterexamples.

It is not hard to verify that the time the elimination algorithm spends in each
round is polynomial in the number of predicates and the size of the Horn-ICE
sample (provided predicates can be evaluated in constant time). If the elimina-
tion algorithm is employed in the iterative Horn-ICE setting (as Houdini-ICE),
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it is guaranteed to converge in at most |P| rounds, or it reports that no conjunc-
tive invariant over P exists.

The property that Houdini-ICE converges in at most |P| rounds is of great
importance in practice. One can, for instance, in every round learn the smallest
set of conjuncts satisfying the sample, say using a SAT solver. Doing so would not
significantly increase the time taken for learning in each round (thanks to highly-
optimized SAT solvers), but the worst-case number of iterations to converge to
an invariant becomes exponential. An exponential number of rounds, however,
makes learning invariants often intractable in practice (we implemented such a
SAT-based learner, but it performed poorly on our set of benchmarks). Hence,
it is important to keep the number of iterations small when learning invariants.
Note that Houdini-ICE does not use negative examples to learn formulas and,
hence, is not property-driven (negative examples come from configurations that
lead to violating assertions). The Sorcar algorithm, which we describe in the
next section, has this feature and aims for potentially weaker invariants that are
sufficient to prove the assertions in the program. Note, however, that Houdini-
ICE is complete in the sense that it is guaranteed to find an inductive invariant
that proves the program correct against its assertions, if one exists that can be
expressed as a conjunction over the given predicates.

3 The Sorcar Horn-ICE Learning Algorithm

One disadvantage of Houdini-ICE is that it learns in each round the largest set
of conjuncts, independent of negative counterexamples, and, hence, independent
of the assertions and specifications in the program—in fact, it learns the seman-
tically smallest inductive invariant expressible as a set of conjuncts over P. As a
consequence, Houdini-ICE may spend a lot of time finding the tightest invari-
ant (involving many predicates) although a simpler and weaker invariant suffices
to prove the program correct. This motivates the development of our novel Sor-
car Horn-ICE learning algorithm for conjuncts, which is property-driven (i.e.,
it also considers the assertions in the program) and has a bias towards learning
conjunctions with a smaller number of predicates.

The salient feature of Sorcar is that it always learns invariants involving
what we call relevant predicates, which are predicates that have shown some
evidence to affect the assertions in the program. More precisely, we say that a
predicate is relevant if it evaluates to false on some negative counterexample
or on a program configuration appearing on the left-hand-side of a Horn coun-
terexample. This indicates that not assuming this predicate leads to an assertion
violation or the invariant not being inductive, and is hence deemed important
as a candidate predicate in the synthesized invariant. However, naively choosing
relevant predicates does, in general, lead to an exponential number of rounds.
Thus, Sorcar is designed to select relevant predicates carefully and requires at
most 2|P| rounds to converge to an invariant (which is twice the number that
Houdini-ICE guarantees). Moreover, the set of predicates learned by Sorcar
is always a subset of those learned by Houdini-ICE.
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Algorithm 1. The Sorcar Horn-ICE learning algorithm
1 Function Relevant-Predicates (N , H, X, R):
2 return a set of R′ ⊆ P of relevant predicates such that R′ \ R �= ∅;
3 end

4 Procedure Sorcar-Passive S = (S+, S−, SH), R:
5 Run the elimination algorithm to compute the set X = {p1, . . . , pn},

corresponding to the largest conjunctive formula
∧n

i=1 pi over P that is
consistent with S (abort if no such formula exists);

6 while X ∩ R is not consistent with S do
7 N ← ∅; // Stores inconsistent negative counterexamples
8 H ← ∅; // Stores inconsistent Horn counterexamples

9 foreach negative counterexample c ∈ S− not consistent with X ∩ R do
10 N ← N ∪ {c};
11 end
12 foreach Horn counterexample (L, c) ∈ SH not consistent with X ∩ R do
13 H ← H ∪ {(L, c)};
14 end

15 R ← R ∪ Relevant-Predicates (N , H, X, R);
16 end

17 return (X ∩ R, R);
18 end

19 static R ← ∅; // Stores relevant predicates across rounds

20 Procedure Sorcar-IterativeS:
21 (Y, R) ← Sorcar-PassiveS, R;
22 return Y ;
23 end

Algorithm1 presents the Sorcar Horn-ICE learner in pseudo code. In con-
trast to Houdini-ICE, it is not a purely passive learning algorithm but is divided
into a passive part (Sorcar-Passive) and an iterative part (Sorcar-Iterative),
the latter being invoked in every round of the Horn-ICE framework. More pre-
cisely, Sorcar-Iterative maintains a state in form of a set R ⊆ P in the course
of the iterative learning, which is empty in the beginning and used to accumulate
relevant predicates (Line 19). The exact choice of relevant predicates, however, is
delegated to an external function Relevant-Predicates. We treat this function
as a parameter for the Sorcar algorithm and discuss four possible implementa-
tions at the end of this section. Let us now present Sorcar in detail.

3.1 The Passive Sorcar Algorithm

Given a Horn-ICE sample S and a set R ⊆ P, Sorcar-Passive first constructs
the largest conjunction X ⊆ P that is consistent with S (Line 5). This con-
struction follows the elimination algorithm described in Sect. 2.2 and ensures
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that X is consistent with all counterexamples in S. Since X is the largest set of
predicates consistent with S, it represents the smallest consistent set of program
configurations expressible as a conjunction over P. As a consequence, it follows
that X ∩ R—in fact, any subset of X—is consistent with S+. However, X ∩ R
might not be consistent with S− or SH . To fix this problem, Sorcar-Passive
collects all inconsistent negative counterexamples in a set N and all inconsis-
tent Horn counterexamples in a set H (Lines 7 to 14). Based on these two sets,
Sorcar-Passive then computes a set of relevant predicates, which it adds to R
(Line 15). As mentioned above, the exact computation of relevant predicates is
delegated to a function Relevant-Predicates, which we treat as a parameter.
The result of this function is a set R′ ⊆ P of predicates that needs to contain at
least one new predicate that is not yet present in R. Once such a set has been
computed and added to R, the process repeats (R grows monotonically larger)
until a consistent conjunctive formula is found. Then, Sorcar-Passive returns
both the conjunction X ∩R as well as the new set R of relevant predicates. Note
that the resulting conjunction is always a subset of the relevant predicates.

The condition of the loop in Line 6 immediately shows that the set X ∩ R
is consistent with the Horn-ICE sample S once Sorcar-Passive terminates.
The termination argument, however, is less obvious. To argue termination, we
first observe that X is consistent with each positive counterexample in S+ and,
hence, X ∩ R remains consistent with all positive counterexamples during the
run of Sorcar-Passive. Next, we observe that the termination argument is
independent of the exact choice of predicates added to R—in fact, the predicates
need not even be relevant in order to prove termination of Sorcar-Passive.
More precisely, since the function Relevant-Predicates is required to return
a set R′ ⊆ P that contains at least one new (relevant) predicate not currently
present in R, we know that R grows strictly monotonically. In the worst case, the
loop in Lines 6 to 16 repeats |P| times until R = P; then, X ∩ R = X, which is
guaranteed to be consistent with S by construction of X (see Line 5). Depending
on the implementation of Relevant-Predicates, however, Sorcar-Passive can
terminate earlier with a much smaller consistent set X ∩ R � X. Since the time
spent in each iteration of the loop in Lines 6 to 16 is proportional to |P| · |S| +
f(|S|), where f is a function capturing the complexity of Relevant-Predicates,
the overall runtime of Sorcar-Passive is in O(|P|2 · |S| + |P| · f(|S|)). This is
summarized in the following theorem.

Theorem 1 (Passive Sorcar algorithm). Given a Horn-ICE sample S
and a set R ⊆ P of relevant predicates, the passive Sorcar algorithm learns
a consistent set of predicates (i.e., a consistent conjunction over P) in time
O(|P|2 · |S| + |P| · f(|S|)) where f is a function capturing the complexity of the
function Relevant-Predicates.

Before we continue, let us briefly mention that the set of predicates returned
by Sorcar is always a subset of those returned by Houdini-ICE.
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3.2 The Iterative Sorcar Algorithm

Sorcar-Iterative maintains a state in form of a set R ⊆ P of relevant predi-
cates in the course of the learning process (Line 19). In each round of the Horn-
ICE learning framework, the learner invokes Sorcar-Iterative with the current
Horn-ICE sample S as input, which contains all counterexamples that the learner
has received thus far. Internally, Sorcar-Iterative calls Sorcar-Passive,
updates the set R, and returns a new conjunctive formula, which the learner
then proposes as new candidate invariant to the teacher. If Sorcar-Passive
aborts (because no conjunctive formula over P that is consistent with S exists),
so does Sorcar-Iterative.

To ease the presentation in the remainder of this section, let us assume that
the program under consideration can be proven correct using an inductive invari-
ant expressible as a conjunction over P. Under this assumption, the iterative
Sorcar algorithm identifies such an inductive invariant in at most 2|P| rounds,
as stated in the following theorem.

Theorem 2 (Iterative Sorcar algorithm). Let P be a program and P a
finite set of predicates over the configurations of P . When paired with an honest
teacher that enables progress, the iterative Sorcar algorithm learns an inductive
invariant (in the form of a conjunctive formula over P) that proves the program
correct in at most 2|P| rounds, provided that such an invariant exists.

Proof (of Theorem 2). We first observe that the computation of the set X in
Line 5 of Sorcar-Passive always succeeds. This is a direct consequence of the
honesty of the teacher (see Sect. 2.1) and the assumption that at least one induc-
tive invariant exists that is expressible as a conjunction over P. This observation
is essential as it shows that Sorcar-Iterative does not abort.

Next, recall that the teacher enables progress in the sense that every coun-
terexample is inconsistent with the current conjecture (see Sect. 2.1). We use this
property to argue that the number of iterations of Sorcar-Iterative has an
upper bound of at most 2|P|, which can be verified by carefully examining the
updates of X and R as counterexamples are added to the Horn-ICE sample S:

– If a positive counterexample c is added to S, then it is added because c �|=
X ∩ R (as the teacher enforces progress). This implies c �|= X, which in turn
means that there exists a predicate p ∈ X with c �|= p. In the subsequent
round of the passive Sorcar algorithm, p is no longer present in X (see
Line 5) and |X| decreases by at least one as a result.

– If a negative counterexample c is added to S, then it is added because c |=
X ∩ R (as the teacher enforces progress). This means that the set X remains
unchanged in the next iteration but at least one relevant predicate is added
to R in order to account for the new negative counterexample (Line 15). This
increases |R| by at least one.

– If a Horn counterexample ({c1, . . . , cn}, c) is added to S, then it is added
because ci |= X ∩ R for each i ∈ {1, . . . , n} but c �|= X ∩ R (as the teacher
enforces progress). In this situation, two distinct cases can arise:
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1. If ({c1, . . . , cn}, c) is not consistent with X (i.e., ci |= X for each i ∈
{1, . . . , n} but c �|= X), the computation in Line 5 identifies and removes
a predicate p ∈ X with c �|= X in order to make X consistent with S.
This means that |X| decreases by at least one.

2. If ({c1, . . . , cn}, c) is consistent with X but not with X ∩ R, then X
remains unchanged. However, at least one new relevant predicate is added
to R in order to account for the new Horn counterexample (Line 15). This
means that |R| increases by at least one.

Thus, either |X| decreases or |R| increases by at least one.

In the worst case, Sorcar-Iterative arrives at a state with X = ∅ and R = P
(if it does not find an inductive invariant earlier). Since the algorithm starts with
X = P and R = ∅, this worst-case situation occurs after at most 2|P| iterations.

Let us now assume that Sorcar-Iterative indeed arrives at a state with
X = ∅ and R = P. Then, we claim that the result of Sorcar-Iterative, namely
X ∩ R = ∅, is an inductive invariant. To prove this claim, first recall that Theo-
rem 1 shows that Sorcar-Passive always learns a set of predicates that is consis-
tent with the given Horn-ICE sample S. In particular, Line 5 of Sorcar-Passive
computes the (unique) largest set X ⊆ P that is consistent with S. Second, we
know that every inductive invariant X� is consistent with S because the teacher
is honest. Thus, we obtain X� ⊆ X = ∅ and, hence, X� = X because both X
and X� are consistent with S and X is the largest consistent set. This means
that X is an inductive invariant because X� is one.

Note, however, that Sorcar-Iterative might terminate earlier, in which
case the current conjecture is an inductive invariant by definition of the Horn-
ICE framework. In summary, we have shown that Sorcar-Iterative terminates
in at most 2|P| iterations with an inductive invariant (if one is expressible as an
conjunctive formula over P). 	


Finally, let us note that Sorcar-Iterative can also detect if no inductive
invariant exists that is expressible as a conjunction over P. In this case, the
computation of X in Line 5 of Sorcar-Passive fails and the algorithm aborts.

3.3 Computing Relevant Predicates

In the following, we develop four different implementations of the function
Relevant-Predicates. All of these functions share the property that the search
for relevant predicates is limited to the set X \R because only predicates in this
set can help making X ∩ R consistent with negative and Horn counterexamples
(cf. Line 6 of Algorithm 1). Moreover, recall that we define a predicate to be rel-
evant if it evaluates to false on some negative counterexample or on a program
configuration appearing on the left-hand-side of a Horn counterexample. Intu-
itively, these are predicates in P that have shown some relevancy in the sense
that they can be used to establish consistency with the Horn-ICE sample.

Relevant-Predicates-Max. The function Relevant-Predicates-Max, shown
as Algorithm 2, computes the maximal set of relevant predicates from X \ R
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Algorithm 2. Computing the maximal set of relevant predicates
1 Function Relevant-Predicates-Max (N , H, X, R):
2 R′ ← ∅;
3 foreach negative counterexample c ∈ N do
4 R′ ← R′ ∪ {p ∈ X \ R | c �|= p};
5 end
6 foreach Horn counterexample ({c1, . . . , cn}, c) ∈ H do
7 R′ ← R′ ∪ ⋃n

i=1{p ∈ X \ R | ci �|= p};
8 end
9 return R′;

10 end

with respect to the negative counterexamples in N and the Horn counterex-
amples in H. To this end, it accumulates all predicates that evaluate to false
on a negative counterexample in N or on a program configuration appearing
on the left-hand-side of a Horn counterexample in H. The resulting set R′ can
be large, but X ∩ R′ is guaranteed to be consistent with N and H (because
each negative counterexample and each program configuration on the left-hand-
side of a Horn counterexample violates at least one predicates in R′, the latter
causing each Horn counterexample to be violated). Since X ∩ R was neither
consistent with N nor with H, and since R′ ⊆ X \ R, it follows that R′ must
contain at least one relevant predicate not in R, thus satisfying the requirement
of Relevant-Predicates. Finally, the runtime of Relevant-Predicates-Max is
in O(|P| · |S|) since X \ R ⊆ P, N ⊆ S−, and H ⊆ SH .

Relevant-Predicates-First. The function Relevant-Predicates-First is
shown as Algorithm 3. Its goal is to select a smaller set of relevant predicates
than Relevant-Predicates-Max, while giving the user some control over which
predicates to choose. More precisely, Relevant-Predicates-First selects for
each negative counterexample and each Horn counterexample only one relevant
predicate p ∈ X \ R. The exact choice is determined by a total ordering <P
over the predicates, which reflects a preference among predicates and which we
assume to be a priori given by the user. Using the same arguments as for the
function Relevant-Predicates-Max, it is not hard to verify that the resulting
set R′ contains at least one additional relevant predicate not in R and that
X ∩ R′ is consistent with N and H. Moreover, R′ clearly contains only a subset
of the predicates returned by Relevant-Predicates-Max. Again, the runtime is
in O(|P| · |S|).
Relevant-Predicates-Min. The function Relevant-Predicates-Min, shown
as Algorithm 4, takes the idea of Relevant-Predicates-First one step further
and computes a (not necessarily unique) minimum set of relevant predicates
with respect to N and H. It does so by means of a reduction to a well-known
optimization problem called minimum hitting set [25].3 For a collection

3 Note that the corresponding decision problem is NP-complete.
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Algorithm 3. Computing relevant predicates based on a preference order-
ing
1 Function Relevant-Predicates-First (N , H, X, R):
2 Define a total order <P over P;
3 R′ ← ∅;
4 foreach negative counterexample c ∈ N do
5 R′ ← R′ ∪ {p} where p is the <P -smallest predicate with p ∈ X \ R and

c �|= p;
6 end
7 foreach Horn counterexample ({c1, . . . , cn}, c) ∈ H do
8 R′ ← R′ ∪ {p} where p is the <P -smallest predicate from the set⋃n

i=1{p ∈ X \ R | ci �|= p};
9 end

10 return R′;
11 end

Algorithm 4. Computing a minimal set of relevant predicates
1 Function Relevant-Predicates-Min (N , H, X, R):
2 For each c ∈ N , construct Ac := {p ∈ X \ R | c �|= p};
3 For each (L, c) ∈ H, construct A(L,c) := {p ∈ X \ R | ∃c′ ∈ L : c′ �|= p};

4 Compute a minimal hitting set R′ for the instance
Q := {Ac | c ∈ N} ∪ {A(L,c) | (L, c) ∈ H} (e.g., using a SAT solver);

5 return R′;
6 end

{A1, . . . , A�} of finite sets, a set B is a hitting set if B ∩ Ai �= ∅ for all
i ∈ {1, . . . , �}, and the minimum hitting set problem asks to compute a hit-
ting set of minimum cardinality. In the first step of the reduction, the function
Relevant-Predicates-Min constructs for each negative counterexample c ∈ N
the set Ac of all predicates p ∈ X \ R violating c and for each Horn counterex-
ample (L, c) ∈ H the set A(L,c) of all predicates p ∈ X \ R violating some
program configuration c′ ∈ L. In a second step, it uses an exact algorithm
(e.g., a SAT solver) to find a minimum hitting set R′ for the problem instance
Q := {Ac | c ∈ N} ∪ {A(L,c) | (L, c) ∈ H}. By construction of the sets Ac and
A(L,c), the resulting minimum hitting set R′ then is a minimum set of relevant
predicates guaranteeing that X ∩ R′ is consistent with N and H. Moreover, R′

contains at least one relevant predicate not in R. However, the downside of app-
roach is that it is not a polynomial time algorithm as the underlying decision
problem is NP-complete.

Relevant-Predicates-Greedy. The key idea underlying the function Relevant-
Predicates-Greedy, which is shown as Algorithm 5, is to replace the exact
computation of a minimum hitting set with a polynomial-time approxima-
tion algorithm. More precisely, Relevant-Predicates-Greedy implements a
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Algorithm 5. Greedily computing a “small” set of relevant predicates
1 Function Relevant-Predicates-Greedy (N , H, X, R):
2 For each c ∈ N , construct Ac := {p ∈ X \ R | c �|= p};
3 For each (L, c) ∈ H, construct A(L,c) := {p ∈ X \ R | ∃c′ ∈ L : c′ �|= p};

4 R′ ← ∅;
5 Q ← {Ac | c ∈ N} ∪ {A(L,c) | (L, c) ∈ H};

6 while Q �= ∅ do
7 Pick p ∈ X \ (R ∪ R′) such that |{A ∈ Q | p ∈ A}| is maximal;
8 R′ ← R′ ∪ {p};
9 Q ← Q \ {A ∈ Q | p ∈ A};

10 end

11 return R′;
12 end

straightforward greedy heuristic that successively chooses predicates p ∈ X \ R
that have the largest number of a non-empty intersections with sets in Q. This
heuristic is essentially the dual of the well-known greedy algorithm for the min-
imum set cover problem [10] and guarantees to find a solution that is at most
logarithmically larger than the optimal one. Apart from being an approximation
of the minimal set, choosing relevant predicates greedily based on the number
of sets it hits also has a statistical bias (choosing predicates more commonly
occurring in the sets). Otherwise, except for a runtime in O(|P| · |S|2) and an
approximation factor of log |S|, Relevant-Predicates-Greedy shares the same
properties as the function Relevant-Predicates-Min.

4 Experimental Evaluation

To evaluate the performance of Sorcar, we implement a prototype, featuring
all four variants of Sorcar (as well as more heuristics, which we do not discuss
here).4 This prototype is built on top of the program verifier Boogie [4], which
natively supports Houdini and provides a so-called “Abstract-Houdini frame-
work” [46] on top of which we have implemented ICE/Horn-ICE algorithms,
including Sorcar. Consequently, Sorcar can easily be integrated into existing,
Boogie-based verification tool chains.

We compared Sorcar with two Houdini-based tools: GPUVerify [6,9], a
tool for checking data race freedom in GPU kernels, and a tool by Neider et
al. [35] for verifying programs that dynamically manipulate heaps against spec-
ifications in separation logic. Since separation logic is undecidable in general,
the latter tool is designed to work in tandem with a sound-but-incomplete ver-
ification engine rather than a complete decision procedure. To the best of our
knowledge, both tools are the best ones available for their respective domains.

4 The sources of Sorcar are publicly available at https://github.com/horn-ice/sorcar.

https://github.com/horn-ice/sorcar
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We have evaluated our implementation on two benchmarks suites: the first
suite is shipped with GPUVerify, while the second is included in Neider et al.’s
tool. As both of these tools use Houdini, all benchmarks were already equipped
with a large number of predicates (often several hundred). We describe each
benchmark suite in more detail shortly.

The goal of our experimental evaluation was twofold: (a) to determine
whether Sorcar can prove programs correct that the Houdini-based tools can-
not (and vice versa) as well as (b) to assess the performance of Sorcar in
comparison to these two tools. Since one of the key design principles of Sor-
car is to improve verification by constructing weaker invariant (smaller sets of
conjuncts), we also report on the size of the invariants (number of conjuncts)
inferred by Sorcar and compare to the other tools.

Benchmarks and Compared Tools. The first benchmark suite originates
from GPUVerify [6,9] and was obtained from GPU kernels written in OpenCL
and CUDA. GPUVerify processes such programs automatically by means of a
complex process, involving sequentialization and compilation to the Boogie
programming language. After removing all programs that did not have loops or
recursion, this benchmark suite contained 287 programs.

GPUVerify proceeds in three stages. The first stage compiles an OpenCL
or CUDA program into a Boogie program. The second stage uses Houdini in
a custom version of Boogie to infer an inductive invariant; in this phase, the
assertions are in fact removed as Houdini is anyway agnostic to the property
being verified. Finally, the third phase substitutes the synthesized invariants,
inserts the assertions back into the Boogie program, and verifies it.

The second benchmark suite is taken from Neider et al. [35]. It consists of
62 heap manipulating programs, written in C and are equipped with specifica-
tions in Dryad, a dialect of separation logic that allows expressing second order
properties using recursive functions and predicates.

Neider et al.’s tool uses the following verification tool chain. First, an exten-
sion of VCC [11], called VCDryad [37], compiles the C code into a Boogie
program by unfolding recursive definitions, modeling heaplets as sets, and apply-
ing frame reasoning using a technique called natural proofs [31,37,38]. The tool
then poses the verification problem as an invariant synthesis problem over a class
of predicates that express complex properties of the heap (such as whether the
heaplets of two data structures are disjoint, whether a list is sorted, and so on).
Finally, Neider et al.’s tool uses Houdini to infer a loop invariant.

Note that the final phase of both tools is to synthesize a conjunctive invari-
ant over a fixed set of predicates using Houdini. In our experiments, we have
replaced Houdini with Sorcar.

Evaluation. All experiments were conducted on an Intel Xeon E7-8857 v2
CPU at 3, 6GHz, running Debian GNU/Linux 9.5. The timeout limit was
1200 s. So as to not clutter the following presentation too much, we only
report on the version of Sorcar that performed best: Sorcar-Max (using
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Relevant-Predicates-Max). Additionally, we briefly compare Sorcar-Max to
Sorcar-Greedy, the latter using Relevant-Predicates-Greedy.

Figures 2a and 2b compare Sorcar-Max and GPUVerify on the first bench-
mark suite consisting of GPU kernels. Figure 2a compares the time taken to
verify a program, while Fig. 2b compares the number of predicates in the final
invariant (there is only one loop invariant in these programs). As can be seen
from the figures, Sorcar-Max compares highly favorably in efficiency. Specifi-
cally, Sorcar-Max was able to verify 15 programs that GPUVerify could not
verify, whereas GPUVerify verified only 2 programs that Sorcar-Max could
not verify. Sorcar-Max was also able to show 9 programs to not have a con-
junctive invariant that GPUVerify could not (GPUVerify was not able to show
this for any program that Sorcar-Max could not). On programs that both
tools were able to verify (216 programs in total), Sorcar-Max took on average
34 s per program (and synthesized invariants with an average number of 12 pred-
icates). GPUVerify, on the other hand, took on average 89 s per program (and
synthesized invariants with an average number of 23 predicates).

Additionally (not depicted in the scatter plots), we increased the time limit
for programs that only one tool could verify from 1200 s to 3600 s. GPUVerify was
able to verify 8 additional programs within this time limit. Sorcar, on the other
hand, verified both programs that it had timed out on previously. Thus, with
this larger timeout, Sorcar was able to verify a proper superset of programs
that GPUVerify verified.

Figures 2c and 2d compare Sorcar-Max to the tool of Neider et al. [35]
on the second benchmark suite of programs with Dryad specifications. Again,
Sorcar-Max outperformed the Houdini-based tool. Specifically, Sorcar-
Max was able to verify 3 programs that Neider et al.’s tool could not verify,
whereas Neider et al.’s tool verified 2 programs that Sorcar-Max could not
verify. On programs that both tools were able to verify (57 programs in total),
Sorcar-Max took on average 20 s per program (and synthesized invariants with
an average number of 19 predicates). On the other hand, Neider et al.’s tool took
on average 45 s per program (and synthesized invariants with an average number
of 37 predicates).

Figures 2e and 2f compare Sorcar-Max and Sorcar-Greedy on both
benchmark suits. The latter was slightly slower overall, but synthesized invari-
ants with fewer predicates.

Comparison of Sorcar and Houdini-ICE. Close to the time of writing
the final version of this paper, we performed further experiments with Houdini-
ICE (i.e., an implementation of Houdini as a Horn-ICE learning algorithm
based on the elimination algorithm), as suggested by the reviewers. This allowed
us to force the number of counterexamples returned by Boogie in each round
to be the same for Sorcar and Houdini-ICE (a parameter over which we do
not have control in Boogie’s implementation of Houdini).

On the GPUVerify benchmark suite, Sorcar-Max verified 5 programs that
Houdini-ICE could not, whereas Houdini-ICE was able to verify 1 program
that Sorcar-Max could not. Houdini-ICE was also able to show 2 programs to
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Fig. 2. Comparison of the time taken to verify a benchmark and the number of pred-
icates in the final invariant. Subfigures (a) and (b) compare Sorcar-Max and GPU-
Verify on the first benchmark suite. Subfigures (c) and (d) compare Sorcar-Max and
Neider et al.’s tool on the second benchmark suite. Subfigures (e) and (f) compare
Sorcar-Max and Sorcar-Greedy on both benchmark suites.
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not have a conjunctive invariant, which Sorcar-Max could not. On programs
that both were able to verify (233 programs in total), both algorithms performed
with similar times.

On the Dryad benchmark suite, Sorcar-Max was able to solve 1 more
program than Houdini-ICE (and verified all programs that Houdini-ICE ver-
ified). On the 59 programs that both could verify, Sorcar-Max was roughly
twice as fast (averaging 24 s per program for Sorcar-MAX vs. 51 s per program
for Houdini-ICE).

While Sorcar-Max still emerges better overall than Houdini-ICE, we are
not entirely sure why implementing Houdini as an external Horn-ICE learning
algorithm makes it perform much better than the internal implementation of
Houdini in Boogie (the internal Houdini algorithm within Boogie is embed-
ded deep and is very hard to configure or control). For the GPUVerify bench-
marks, the tool GPUVerify does invariant synthesis without assertions and then
inserts assertions to verify the program, and this could be one difference. We
leave answering this question for future work.

5 Conclusion

In this paper, we have developed a new class of learning algorithms for con-
junctions, named Sorcar, which are biased towards the simplest conjunctive
invariant that can prove the assertions correct. Sorcar is parameterized by
functions to identify relevant predicates and guarantees to learn an invariant in
a linear number of rounds (if one exists). We have shown that Sorcar proves
programs correct significantly faster than state-of-the-art Houdini-based tools.

There are several future directions to pursue. First, we believe that further
algorithms for learning conjunctions need to be explored. For instance, the Win-
now algorithm [30] learns from positive and negative samples in time O(r log n),
where r is the size of the final formula and n is the number of predicates. Finding
Horn-ICE learning algorithms that have such sublinear round guarantees can be
very interesting as r is often much smaller than n in verification examples. Sec-
ond, we would like to use the new Sorcar algorithms in specification mining
settings where smaller invariants are valuable as they are read by humans. Third,
there are several types of inference algorithms similar to Houdini (see [39]), and
it would be interesting to explore how well Sorcar performs in such settings.
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that helped improve this paper. This material is based upon work supported by the
National Science Foundation under Grant No. 1527395.
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Abstract. Direct manipulation is a programming paradigm in which
the programmer conveys the intended program behavior by modifying
program values at runtime. The programming environment then finds a
modification of the original program that yields the manipulated values.
In this paper, we propose the first framework for direct manipulation
of imperative programs. First, we introduce direct state manipulation,
which allows programmers to visualize the trace of a buggy program on
an input, and modify variable values at a location. Second, we propose a
synthesis technique based on program sketching and quantitative objec-
tives to efficiently find the “closest” program to the original one that is
consistent with the manipulated values. We formalize the problem and
build a tool JDial based on the Sketch synthesizer. We investigate
the effectiveness of direct manipulation by using JDial to fix bench-
marks from introductory programming assignments. In our evaluation,
we observe that direct state manipulations are an effective specification
mechanism: even when provided with a single state manipulation, JDial
can produce desired program modifications for 66% of our benchmarks
while techniques based only on test cases always fail.

1 Introduction

Direct manipulation [1–4] is a programming paradigm in which the programmer
conveys the intended program behavior by modifying program values at runtime.
The programming environment then finds a modification of the original program
that yields the manipulated values. This paradigm has been successfully applied
to drawing editors [5,6] to provide programming capabilities that allow users to
interact directly with the displayed graphics.

In this paper, we propose the first framework for direct manipulation of
imperative programs. We start by introducing direct state manipulation, a spec-
ification mechanism in which users can describe the intended program behavior
by directly manipulating intermediate variable values in buggy program traces.
We propose a workflow in which the user traverses the step-by-step visualization
of the execution of the buggy program on a certain input to identify a loca-
tion where the values of the program variables do not correspond to the ones
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she expects. At this point, we allow the user to manipulate the variable values
at the identified location and modify them. We then treat this manipulation
as a specification and use it to synthesize a program that, on the same input,
can reach the location identified by the user with the new variable values she
provided.

We formalize our synthesis problem and present a constraint-based synthesis
technique for computing programs consistent with direct state manipulations.
Solving this problem requires addressing two key challenges. First, the execu-
tion step manipulated by the user in the buggy trace might appear at a different
point in the trace of the synthesized program—e.g., when the modified program
uses more/fewer loop iterations than the original one. Second, since a single pro-
gram execution under-specifies the overall program behavior, there can be many
possible programs that agree with the manipulated trace. To address the first
challenge, given a manipulated location �, we design an encoding that “guesses”
in what occurrence of the location � in the trace of the synthesized program the
desired variable values are produced. To address the second challenge, we aug-
ment our synthesis problem with quantitative objectives [7] to prefer programs
that produce execution traces similar to those of the original program—i.e., the
goal is to compute a modified program that on the input provided by the user
produces an execution trace similar to the one in the original program.

We implemented our synthesis technique in a tool called JDial, which is built
on top of the Sketch [8] synthesizer. JDial supports several program trans-
formation models—i.e., descriptions of how the program can be modified—and
program distances, and can handle Java programs containing loops, arrays, and
recursion. To handle programs containing library functions such as Math.pow,
JDial introduces a synthesis algorithm that uses concrete program executions
to “discover” partial interpretations of external functions and uses such interpre-
tations to synthesize modifications to the whole program. For the common case
in which producing a new program only requires modification of a single state-
ment, JDial uses a data flow analysis based on program slicing to summarize
and reduce parts of the program for which the corresponding traces will not be
affected by the code modification.

We evaluate JDial on a set of representative program repair benchmarks. We
observe that direct state manipulations are an effective specification mechanism:
even when provided with a single manipulation, JDial can produce desired
program modifications for 66% of our benchmarks while techniques based only
on test cases always fail and produce undesirable programs.

Contributions. We make the following key contributions.

– We introduce the specification mechanism of direct state manipulation and
a corresponding synthesis problem in which the goal is to find a program
that produces the variable values specified by the user at a certain point in
the program execution trace and that has minimal distance from the original
program according to some metric (Sect. 3).

– We propose a framework based on program sketching for synthesizing pro-
grams using direct state manipulations (Sect. 4).
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– We instantiate our framework in JDial, a tool that supports direct state
manipulations for simple Java programs (Sect. 5).

– We evaluate JDial on 17 representative benchmarks and show JDial com-
putes good program modifications in cases where specifications based on test
cases produce undesirable ones (Sect. 6).

Fig. 1. Examples of synthesis using direct manipulation in JDial.

2 Illustrative Example

In this section, we illustrate our direct manipulation framework using an exam-
ple student attempt to an introductory programming exercise. In this domain,
automatic program repair—i.e., finding program transformations that fix the
program—has been used to provide personalized feedback to students [9–11].
We show how direct state manipulations can be used an alternative to test-cases
for program repair in this domain.

Consider the example in Fig. 1(a) where a student is trying to write a program
largestGap for finding the largest gap in a non-empty array of integers—i.e.,
the difference between the maximum and minimum values in the array. In the
following, we assume that the student has discovered that the program behavior
on test [9,5,4] is incorrect and is trying to get a suggestion from the tool on
how she could fix the program.

Specification via Test Cases. Several tools support test cases as a way to express
the correct behaviour of the program. In this case, the student can specify that
on the input [9,5,4], the correct output should be 5. However, even the tool
Qlose [7], which can often find correct program modifications using a small
number of test cases, will return the following wrong modification to line 11:

int res = max - min; −→ int res = max - min + 4;
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For this example, Qlose requires two additional carefully selected test cases to
find the correct program transformation.

Specification via Direct State Manipulation. Direct state manipulations allow
programmers to convey more information about the behavior of a test case, rather
than only its final output. Our proposal to use direct state manipulations in this
domain is inspired by Guo’s observation [12] that students find it beneficial to
visualize concrete program executions and observe discrepancies between the
variable values they observe and those they expect. For example, while debug-
ging the largestGap program, the student notices that in the first iteration of
the loop, right before executing line 8, variable max has value 5 instead of the
expected value 9. While visualizing the trace, the student can directly modify
the value of max as shown in the figure and JDial will synthesize the program
largestGapFix consistent with the manipulation (Fig. 1(b))—i.e., when running
largestGapFix with input [9,5,4], there is a point in the execution where the
variable max contains value 9 right before executing line 8. Why does this new
specification mechanism lead to the desired program? First, by modifying the
program’s trace and its value at line 8, the student implicitly states that certain
lines do not need modification—e.g., lines 11 and 12. Second, the modification
provides information about an intermediate state of the program that a tool
cannot access through just an input/output example. Besides the variable max,
the student can modify the value of i from 1 to 0 or the values of both i and
max at the same position and JDial will produce the same program.

Remarkably, direct state manipulation can also help debug partial implemen-
tations. Consider, for example, an incomplete version of the program largestGap
in which lines 8–9 are missing because the student has not implemented the logic
for min yet. The test case in Fig. 1(a) is essentially useless. On the other hand,
the same direct manipulation shown in Fig. 1(a) will yield a good program.

3 Problem Definition

In this section, we define the class of programs we consider, the notion of direct
state manipulation, and our synthesis problem.

3.1 Programs and Traces

We consider a simple imperative language in which a program P consists of
a function definition f(i1, . . . , iq) : o with input variables I = {i1, . . . , iq} and
output variable o (NULL for void functions), a set of program variables V such
that V ∩ I = ∅, and a sequence of labeled statements σ = s1 . . . sn. A statement
is one of the following: return, assignment, conditional or loop statement. Each
statement in σ is labeled with a unique location identifier from the set L =
{�0, �1, . . . , �p, exit}. We assume a universe U of values. We also assume variables
are associated with types and assignments are consistent with these types.

Without loss of generality, we assume that executing a return statement
assigns a value to the output variable and transfers control to a designated
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location exit. A program configuration η is a pair (�, ν) where � ∈ L is a location
and ν : I ∪ {o} ∪ V �→ U ∪ {⊥} is a valuation function that assigns values to all
variables. The element ⊥ indicates that a variable has not been assigned a value
yet or is out of scope. We write (�, ν) → (�′, ν′) if executing the statement at
location � under variable valuation ν transfers control to location �′ with variable
valuation ν′. The execution trace πP (ν0) of the program P on an initial valuation
ν0 is a sequence of configurations η0, η1, . . . , where η0 = (�0, ν0) and for each h,
we have ηh → ηh+1. An execution terminates once the location exit is reached
and we only consider programs that terminate on all inputs. We use πP (ν0)l = ηl
to denote the configuration at index l and πP (ν0)[l,h] to denote the subsequence
of configurations between index l and h—e.g., πP (ν0)[3,5] = η3η4η5.

Consider the program largestGap in Fig. 1. The input variable set I is {x}
and the output variable is res. The set of program variables is {i,max,min}.
Let ν0 be the initial valuation such that ν0(x) = [9, 5, 4] and ν0(w) = ⊥ for every
other variable w. The execution of largestGap on ν0 is shown in Fig. 2.

Fig. 2. Execution of largestGap on ν0. We omit valuations of the input variable x as
νh(x) = ν0(x) for all h.

3.2 Synthesis for Direct State Manipulation

We define the notion of direct state manipulation, which allows users to express
their intent by modifying variable values in intermediate configurations. We
assume a fixed program P . A direct state manipulation M is a tuple (ν0, k, ν′)
where ν0 is an initial valuation, k is an index s.t. k ≤ |πP (ν0)|, and ν′ : V ∪{o} �→
U ∪{?} is a new partial variable valuation. Intuitively, the manipulation replaces
the configuration πP (ν0)k = (�, ν) at location � with the new partial configura-
tion (�, ν′). Notice that a partial configuration cannot change the values of the
variables in I and it can assign a special value ? to certain variables. This value
is used to denote that the manipulation “does not care” about the specific values
of certain variables. We say that a valuation ν satisfies a partial valuation ν′,
denoted ν 
 ν′, iff for every variable x ∈ V ∪ {o}, if ν(x) �= ? then ν(x) = ν′(x).

Example 1. The direct state manipulation in Fig. 1(a) is formally defined as the
pair (ν0, 6, ν′) where ν0 is the same as at the end of Sect. 3.1, ν′(max) = 9 and
ν′(i) = ν′(min) = ν′(o) = ?. This manipulation, which modifies η6, only sets
the value of max to 9 at location 8 and leaves all other variables unconstrained.
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Given a program P , a direct state manipulation M = (ν0, k, ν′) such that
πP (ν0)k = (�, ν), we say that a program P ′ satisfies the manipulation M, if
there exists an index j such that πP ′(ν0)j = (�, νj) and νj 
 ν′—i.e., a program
P ′ satisfies a direct state manipulation if there exists some configuration in the
execution trace of P ′ satisfying the manipulated valuation ν′ at location �.

The synthesis problem is to find a program that satisfies a given manipula-
tion. In what follows, we fix a transformation model, which is a function RM
that assigns to a program a corresponding synthesis space P. The synthesis space
represents a set of programs from which we can draw candidate programs.

Definition 1 (Synthesis for Direct State Manipulation). Given a pro-
gram P and a direct state manipulation M = (ν0, k, ν′), the synthesis for direct
state manipulation problem is to find a program P ′ ∈ RM(P ) that satisfies the
manipulation M.

Informally, a direct state manipulation (ν0, k, ν′) at location � is a reachability
specification requiring that a configuration (�, ν′) is eventually reached along an
execution from the initial valuation ν0. This specification mechanism is orthogo-
nal to assertions, which require a property ϕ at location � to be an invariant—i.e.,
each time an execution reaches location �, the property ϕ holds. For instance,
in Fig. 1(a), placing the assertion max = 9 at location 8 would specify that the
value of max should be 9 at location 8 across all loop iterations in an execution.
The astute reader may suggest that for some suitably chosen predicate condition
over the loop counter, an assertion of the form condition ⇒ (max = 9) at loca-
tion 8 could encode the direct state manipulation in Fig. 1. However, a direct
state manipulation does not explicitly indicate what such a predicate condition
should be. In particular, a direct state manipulation does not specify what the
manipulation-satisfying index j should be.

Handling Test Cases. Definition 1 can be generalized to the problem of synthe-
sising a program P given a direct state manipulation and a set of tests. A test t
is a pair (νI , νO) where νI and νO are valuations over the input variables I and
the output variable o, respectively. Let νI

0 denote an initial valuation such that
νI
0 (w) = νI(w) if w ∈ I and ⊥ otherwise. Program P satisfies a test t if the value

of the output variable o at the end of an execution πP (νI
0 ) of P on valuation νI

0

is νO—i.e., if j = |πP (νI
0 )| − 1, ηj = (�, ν) and ν(o) = νO. Program P satisfies a

set of tests T if it satisfies all the tests t ∈ T . The synthesis problem is then to
find a program that satisfies both the direct state manipulation and the tests.

Cost-aware Synthesis. Among the many programs that satisfy a given state
manipulation we would like to pick the “best” one. To define what it means
for a program to be better than another one, we use the notions of program dis-
tances proposed in [7]. We define two types of distances: syntactic and semantic
distances. Given a program P , a syntactic distance is a function fP

syn : P → N

that maps each program in the synthesis space to a quantity capturing its syn-
tactic similarity to the original program P . We define semantic distances using
distance functions over execution traces. Let dist(π, π′) denote a distance func-
tion mapping a pair of traces to a non-negative integer. Intuitively, dist captures
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the similarity between execution traces of P and P ′ on the same initial valu-
ation ν0. Given a program P and a direct state manipulation M = (ν0, k, ν′),
a semantic distance function fP,M

sem : P → N maps a synthesized program P ′

to dist(πP (ν0)[0,k], πP ′(ν0)[0,j]) capturing the similarity between the manipu-
lated trace πP (ν0)[0,k] of P and the corresponding manipulation-satisfying trace
πP ′(ν0)[0,j] of P ′ with manipulation-satisfying index j. An aggregation function
Aggr : N × N → N is used to combine the two distance functions.

Example 2. An example of syntactic distance between two programs P and P ′

is the number of node edits needed to transform the abstract syntax tree P
into the one P ′. According to this distance, the change from i=1 to i=0 showed
in Fig. 1 has syntactic distance 1. An example semantic distance is the sum of
the differences in variable valuations in program configurations of the execution
traces πP (ν0)[0,k] and πP ′(ν0)[0,j] (with j as defined above).

For a program P and direct state manipulation M, we can define the cost of a
synthesized program P ′ as cost(P ′) = Aggr(fP

syn(P
′), fP,M

sem (P ′)). The following
definition can be generalized to incorporate a set of tests.

Definition 2 (Cost-aware Synthesis for Direct State Manipulation).
Given a program P and a direct state manipulation M, the Cost-aware synthesis
for direct state manipulation problem is to find a program P ′ ∈ RM(P ) that
satisfies the manipulation M and such that, for every P ′′ ∈ RM(P ) that satisfies
the manipulation M, we have cost(P ′) ≤ cost(P ′′).

4 JDial’s Architecture

In this section, we describe the architecture of JDial and the sketching-based
approach JDial employs to synthesize programs (Fig. 3).

JDial takes as input a buggy program, a direct state manipulation on an
input trace, and (optionally) a set of test cases (left of Fig. 3). As described in
Sect. 3, the synthesis problem is defined using four components: a transforma-
tion model, a syntactic distance function, a semantic distance function, and a
cost-aggregation function. In JDial, these components are modular and defined
independently from the underlying synthesis engine (grey boxes at the top of
Fig. 3). The transformation model is given as a program GetSynthesisSpace that,
given a program, returns a sketched version of it—i.e., a program with unknown
holes of the form ??. In Fig. 3, this program simply replaces each constant with
a hole. By instantiating the holes in the sketched program with concrete values
we obtain a program in the synthesis space. The syntactic distance is given as a
program that computes a non-negative integer based on the values of the holes in
the sketched program—e.g., how many constants were changed or by how much
they were changed. The semantic distance is given as a program that computes
a non-negative integer based on the value of two traces—e.g., the Hamming
distance.
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4.1 Synthesis via Sketching

To solve the synthesis problem, JDial computes a sketched program together
with a set of assertions (blue box in Fig. 3). The solution to this sketched
program—i.e., values for the holes that satisfy the assertions and minimize the
given objective function—is the solution to our synthesis problem.

Test cases
Trace + 
Manipulation

JDial Backend

input: 9
--
--
--
 --
 --
 --
-->

Specification

TraceDistance(t1, t2){
   // computes semantic    
   // distance between
   // traces t1 and t2
   return Hamming(t1, t2)
}

SyntacticDistance( ){
   // computes syntactic 
   // distance from original 
   // program based on holes
   if (??1 != 1) dist += ??1;
   …
}

input
   2
   4
  ...

output
   12
   42
    ...

Sketch

Buggy Program

Aggregate(d1, d2){
   // combines the 
   // two distances
   return d1+ d2;
}

Synthesized Program

line 16
x: 0 -> 3
y: 2 -> ? 

// Instrumentation variables
counter, line[], valx[], valy[], ret_val

// Instrumented program
SkProg(input) {
// Adds holes to encode synthesis 

  // space and to compute traces
  ...  
  counter++;
  y = ??1 x + ??2 y + ??3;
  line[counter] = 20;
  valx[counter] = x;
  …
}

// Functional assertions + distance computations

// Direct manipulation
SkProg(9);
assert(line[...]=16);
assert(valx[...]=3);
semDist += TraceDistance(..., ...)
// Test Cases
assert(SkProg(2)=12);
semDist += TraceDistance(..., ...)
assert(SkProg(4)=42);
semDist += TraceDistance(..., ...)
...
synDist = SyntacticDistance()
minimize(Aggregate(synDist, semDist));

1. Prog(input) {
            …
            …
16.   x = 5y+2;
            …
20.   y = y+2
            …
    }

1. Prog(input) {
              …
              …
16.     x = 5y+2;

    …
20.     y = x-1;
              …
          }

GetSynthesisSpace(){
   // returns a sketched version 
   // of Prog that encodes
   // the synthesis space
   e.g., replace constants with ??
}

Fig. 3. Architecture of JDial. Grey components can be modified without having to
modify the synthesis algorithm. (Color figure online)

Background on Sketching. Program sketching is a technique for specifying a
parametric set of programs. This is done by allowing programs to contain holes
(denoted by ??). When one provides a specification—e.g., test cases, assertions,
minimization objectives—the sketching problem is to find (typically integer)
values of the holes that satisfy the given specification. State-of-the-art sketching
tools support complex program constructs, such as arrays, strings, and recursive
functions, as well as complex specification mechanisms, such as Boolean asser-
tions and quantitative optimization constraints over the values of the holes [8].

Computing Distances and Guessing Trace Lengths. The GetSynthesisSpace com-
ponent, given the buggy program, adds holes to generate a sketched program
encoding the synthesis space—e.g., y = ??_1 * x + ??_2 * y + ??_3 in Fig. 3
(blue-box). JDial then generates a function that uses the values placed in the
holes to compute the syntactic distance (Fig. 3(top)).

To compute the semantic distance JDial symbolically extracts traces by
instrumenting the sketched program with a counter to measure the length of the
trace, an array to record the values of each variable in the original program, and
an array for the line numbers.1 After each instruction, the arrays are updated to

1 We assume that the length of the trace in the synthesized program is at most twice
the length of the original trace and we use this assumption to initialize the length
of the arrays. This constant is parametric and can be modified.
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reflect the current variable values (Fig. 3(blue-box)). JDial then computes the
semantic distance using the traces extracted from such arrays.

The key difficulty in encoding our synthesis problem is that there can be
many ways to “align” the location manipulated by the user with a location in
the sketched program—e.g., the execution of one synthesized program might
reach the desired manipulated value the second time the manipulated location
is visited, while another candidate program might reach the desired value the
tenth time the manipulated location is visited. JDial must be able to consider
all these possibilities.

Example 3. Consider the manipulation described in Fig. 1(a). The execution of
the synthesized program largestGapFix presented in Fig. 1(b) on input [9, 5, 4]
hits the manipulated location with max=9 the first time line 8 is traversed. How-
ever, another correct program which changes the loop in line 5 to i=N-2; i>=0;
i--, hits the manipulated location with max=9 the second time line 8 is traversed.

Fig. 4. Instrumentation to
guess visiting times.

Our key idea is to introduce an existential
variable—i.e., a hole—in our sketched program to
guess at what visit time the manipulated line is
reached with the variable values provided by the
user. Concretely, we define a global variable int
visit_time=?? to guess the number of visits of the
manipulated line and modify the sketched program
right before the sketched version of the manipu-
lated line to interrupt the trace at the correct time
(see Fig. 4). Thus, every time the manipulated line
is reached, visit_time is decremented and, when
the counter hits zero, the execution has reached the
guessed number of visit times.

Finally, JDial adds assertions to guarantee the sketch solution satisfies the
manipulation and a minimization objective to ensure the returned solution is
optimal with respect to the given distances (see right of blue box in Fig. 3).

4.2 Correctness of the Synthesis Procedure

We now state the correctness of our encoding. Given a program P and a direct
state manipulation M, we call sket(P,M) the sketched program computed by
JDial. Recall the definition of cost-aware synthesis for direct state manipulation
in Definition 2. Theorem 1 states that JDial correctly encodes the problem of
cost-aware synthesis for direct state manipulation. We say an algorithm for this
problem is sound if it only produces solutions in RM(P ) that have minimal
cost and satisfy M, and complete if it produces a solution whenever one exists.
Moreover, a program sketching solver is sound and complete if it can correctly
solve all program sketches.

Theorem 1. JDial is sound and complete for the problem of cost-aware syn-
thesis for direct state manipulation iff the program sketching solver it uses is
sound and complete.
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5 Implementation and Optimizations

JDial is composed of a frontend, which allows to visualize program traces and
manipulate intermediate states, and a backend, which synthesizes the trans-
formed programs. JDial can handle Java programs over integers, characters,
Booleans, and arrays over these basic types. In its default mode, JDial only tries
to modify statements in the function in which the manipulated line appears. In
this section, we describe the concrete transformation model and distance func-
tions JDial uses as well as several optimizations employed by JDial.

Fig. 5. JDial’s transformation model.

5.1 Transformation Model and Syntactic Distance

JDial supports complex transformation models—e.g., it can allow statements to
be added to the program. However, overly expressive transformation models will
often lead to undesired programs that overfit to the given manipulation. In fact,
existing tools for automatically fixing introductory programming assignments
typically employ several transformation models, each tailored to a particular
programming assignment [9,13].

Transformation Model. Since in our application domain we do not know a priori
what program the programmer is trying to write, JDial’s default transformation
model only allows to rewrite constants in linear arithmetic expressions. Figure 5
illustrates JDial’s default transformation model and Fig. 6 illustrates an exam-
ple of how the transformation model generates a Sketch from a program.

First, any variable in any expression is multiplied by a hole ??b that only
takes values from the set {−1, 0, 1}. These holes can be used to remove variables
and negate their coefficients. Second, the term

∑
v∈V ??bv+??, where V is the

set of variables, is added to each expression appearing in an assignment or in
a Boolean comparison. These terms can be used to add new variables, further
increase/decrease the coefficients of variables appearing in the expression, or
add new constants—e.g., turn x<0 into x>y. This transformation model permits
modifications of multiple expressions and it subsumes the default error model
of the AutoGrader tool, which, despite its simplicity, was shown to be able
to automatically fix 30%–60% of edX student submissions depending on the
problem type [9].

Syntactic Distance. JDial’s syntactic distance computes the difference between
the synthesized hole values and the original ones. For example, in the expression
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??bx < 0 +
∑

v∈V ??bv+?? (corresponding to original expression x<0), the orig-
inal value of the first hole ??b is 1, while the original value of all the other holes
is 0. The syntactic distance is the sum of the absolute difference between each
hole’s synthesized value and the original one. Intuitively, this distance penal-
izes modifications that introduce new variables and modify constants by large
amounts.

5.2 Semantic Distance over Traces

When computing the distance from the original program traces, JDial ignores
the variables that have been manipulated because they are likely to contain
“incorrect” values that are not necessary to preserve. JDial first computes the
restricted traces where the values of the manipulated variables are omitted and
then uses a modified version of the Hamming distance to compute their distance.
In the following definitions, we assume Boolean tests return 1 when true and 0
when false. Given two configurations η = (l, ν) and η′ = (l′, ν′) over a set of
variables V , the distance between the two configurations is defined as H(η, η′) =
(l �= l′)+

∑
w∈V ν(w) �= ν′(w). Finally, JDial computes the distance between two

traces π = η1 · · · ηs and π′ = η′
1 · · · η′

t, where m = min(s, t) and M = max(s, t)
as the quantity H(η1, η′

1) + · · · + H(ηm, η′
m) + M − m.

Fig. 6. A sketched program obtained from applying the transformation model to a
program. Holes of the form ?? can be instantiated with arbitrary integers. Holes of the
form

∑
v∈V ??bv+?? can only be instantiated with values in {−1, 0, 1}.

Example 4. Consider again the example described in Fig. 1. The restricted trace
of the synthesized program up to the manipulation-satisfying index has distance
3 from the original trace since it only changes the value of the variable i in the
last three steps and it has the same length as the original program trace.

JDial contains other implementations of trace distances—e.g., longest com-
mon subsequences. Since the distance presented above yields good results and
performance in practice, we use it as default and in our experiments. JDial
aggregates the syntactic and semantic distances by taking their sum.

5.3 Handling External Functions

JDial employs a new Counterexample-Guided Inductive Synthesis (CeGIS)
scheme to handle programs that contain external functions for which semantics
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might be unknown or expensive to encode directly in Sketch. Given the input
program with an external function ext and the manipulated trace, JDial creates
a sketched program that assigns a partial interpretation to the external function
using the set of concrete values obtained from the input trace execution—i.e.,
for every call of the function observed in the input trace. JDial then computes
a solution for the sketched program using this partial definition of ext. If syn-
thesizing the program requires knowing the interpretation of ext on inputs that
have not been observed yet, JDial lets Sketch “guess” an interpretation for the
function ext on such inputs. JDial can then execute the function ext and check
whether the guesses were correct. If they are not correct, JDial modifies the
new sketched program to incorporate the partial interpretation to the external
function ext on the newly discovered inputs. The process continues until JDial
finds a program that respects the semantics of ext.

Fig. 7. Given an example with an incorrect for-condition and an input test (a), JDial
uses the execution of sumPow on the test to learn an initial partial interpretation of
the function Math.pow (b). JDial then produces a proposed program and guesses
the interpretation of Math.pow to be such that Math.pow(2,3)=14 (c). After executes
Math.pow in Java, JDial discovers that Math.pow(2,3)=8, and refines the interpreta-
tion of Math.pow for the next round of synthesis (d).

Example 5. Consider the program sumPow in Fig. 7(a), which should compute
the sum of powers of 2 up to x, but instead it only computes the sum up to x-1.
By running the program on the given input 3, JDial can obtain the output of the
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Math.pow function on input values 1 and 2, and constructs a Sketch function
that describes a partial interpretation of Math.pow as shown in Fig. 7(b). To
synthesize the program, JDial needs to change the condition of the for loop,
but this transformation requires knowing the output of the function Math.pow
on arguments (2,3) and our partial interpretation of Math.pow does not contain
this information. JDial synthesizes a transformation for the function sumPow
and, while doing so, it assigns an interpretation to the inputs for which the
behaviour of the function Math.pow is unknown (Fig. 7(c)). JDial then uses the
concrete execution of the function Math.pow to check whether the synthesized
interpretation is incorrect, and in this case it modifies the partial interpretation
of Math.pow in the sketched program.

Fig. 8. Program subLargestGap and its sliced version when the manipulation happens
at line 11 and only line 9 can be modified.

5.4 Additional Features and Optimizations

Specified Transformation Range. Since the programmer might want to prevent
JDial from modifying certain program statements, JDial’s frontend allows the
programmer to specify what statements the tool is allowed to modify.

Single Statement Transformations. Since most synthesized programs only require
transforming a single statement, JDial supports this restricted transformation
model and it uses an optimized solver that, for each line of code, builds a separate
sketched program that is only allowed to modify that line. The separate sketched
programs are solved in parallel and JDial outputs the program of least cost.
For each sketch that can only modify a certain line of code, JDial uses program
slicing [14] to summarize parts of the program that will not be affected by the
line modification. Concretely, let �M be the location at which the manipulation
is performed and �R be the location JDial is allowed to modify. By computing
a backward slice of the manipulated location �M, we obtain the statements that
can affect the values of the manipulated variables. Similarly, only statements
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that are reachable from location �R in the control-flow graph of the program are
affected by modifications to line �R. Finally, the intersection of the two sets gives
us the statements where variable values may vary as a result of a transformation.
All other statements are irrelevant and can be removed or summarized.

Example 6. Consider the program subLargestGap in Fig. 8 that returns a new
array obtained by subtracting the largest gap of the input array from all its
elements. This program contains a mistake in the second for loop. Assume a
student is trying to fix it by manipulating the variable a[0] at location 11
on input [3,2,7] and that the transformation model only allows modification
to location 9. The backward slice of location 11 contains all the statements in
the program except the return statement and the lines 9 to 12 are the only
lines reachable from location 9. Using this information, JDial summarizes all
other statements’ values. For example, the whole computation of the variable
largestGap is replaced by the constant assignment largestGap=5.

Table 1. Effectiveness and performance of JDial. ✗ denotes out of memory.

Problem LOC Vars |Trace| Time [sec] Time single line [sec]
JDial1 JDialo1

Qlose [7] largestGap-1.1 7 4 11 3.8 1.6 1.0
largestGap-1.2 7 4 10 2.2 0.8 0.6
largestGap-2 7 4 15 4.2 1.1 0.5
largestGap-3.1 7 4 10 1.8 1.1 0.5
largestGap-3.2 7 4 10 2.8 1.0 0.6
tcas 10 4 7 0.8 0.4 0.4
max3 5 3 3 0.5 0.3 0.3
iterPower-1 5 3 14 0.4 0.6 0.4
iterPower-2 5 3 14 0.7 0.4 0.3
ePoly-1 6 4 12 4.6 3.7 1.3
ePoly-2 6 4 12 2.5 1.7 0.9
multIA 4 4 9 1.3 0.8 1.1

New ePoly-3 7 4 13 2.9 2.8 2.5
max4 7 4 4 0.3 0.2 0.3
bubbleSort 7 5 12 3.1 1.3 0.6
subLargestGap 13 6 35 ✗ ✗ 0.7
maxMin 13 6 37 ✗ ✗ 0.9
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6 Evaluation

We evaluate the effectiveness of JDial through the following questions.

Q1 Can JDial yield desirable programs more often than test-based techniques?
Q2 Is the optimized version of JDial presented in Sect. 5.4 effective?
Q3 How sensitive is JDial w.r.t. the location of the manipulation?
Q4 Can JDial handle programs that contain external functions?

We perform our evaluation on 17 Java programs: 12 from Qlose [7] and 5
new programs. All benchmarks and the corresponding Sketch files are available
at this url: https://tinyurl.com/yd6bp3dx. The five variants of the largestGap
problem presented in Sect. 2 are taken from the CodeHunt platform [15], The
tcas-semfix program is a toy traffic collision avoidance system from [16]. The
max, iterPower, ePoly, and multIA problems are taken from the Introduction
to Python Programming course taught on edX [17]. Two of the new programs
we consider are variations of Qlose benchmarks. The other three bubbleSort,
subLargestGap, and maxMin are larger programs that contain multiple loops,
which are more complex than the benchmarks considered in [7].

Table 1 shows detailed metrics for each benchmark and the average run-
time of JDial when performing synthesis on five randomly generated failing
inputs. All experiments were performed on an Intel Core i7 4.00GHz CPU with
32GB/RAM.

6.1 Comparison to Test-Based Tools

We compare JDial against the tool Qlose to see if synthesis via direct manipu-
lation can find meaningful programs more often than synthesis via test cases. We
compare against Qlose because it is the only test-based tool that uses semantic
distances and it produces “good” programs when using a small number of test
cases more often than tools that only use syntactic distances [7].

For each benchmark, we randomly generate 5 input tests that result in incor-
rect outputs. For each failing test, we run Qlose using the test as a specification

Fig. 9. Correct transformations out of 5 randomly generated tests for JDial vs Qlose.
Additional test provided in JDial+ and Qlose+.

https://tinyurl.com/yd6bp3dx
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and run JDial by manually constructing a manipulation: we identify the first
location in the execution trace where a variable has the wrong value and modify
it to the correct one. Figure 9 illustrates the results of this comparison (JDial
and Qlose bars). JDial generates the desired transformations in 66% (56/85)
of the cases while Qlose never produces a correct program. When given only
one test case, Qlose always modifies the return statement of the program.

We perform another study where, for each previous experiment, we provide
JDial and Qlose with an additional (failing or passing) test—i.e., we pro-
vide Qlose with two tests and JDial with one test and one manipulation.
Figure 9 illustrates the results of this comparison (cf. JDial+ and Qlose+
bars). JDial generates the intended transformations for 75% (64/85) of the
cases while Qlose produces the intended transformations on 58% (49/85) of
the cases. While Qlose performs better than when given a single test, for every
input on which Qlose produces the correct transformation, JDial also does so.
Remarkably, when given a single manipulation and nothing more, JDial pro-
duces correct transformations more often than Qlose, even when the latter is
provided with 2 tests. To answer Q1, JDial produces meaningful programs
more often than techniques that only use tests.

Before concluding, we explain why both tools performed poorly on some
benchmarks. For the tcas program, the desired fix modifies an expression by
adding a large constant that can only be synthesized from a very specific
test case. Additionally, subLargestGap and maxMin benchmarks are too large.
For the instances for which JDial produces the incorrect program, we eval-
uate whether JDial produces correct transformations if it is allowed further
“attempts”. Whenever an undesired transformation is generated at a location �,
we disallow JDial to transform location � again or reject the proposed trans-
formation and ask for a different one. This approach correctly synthesizes an
additional 6 failing benchmarks with an average of 2.2 user interactions.

6.2 Optimizations for Single-Line Transformations

We repeat the previous experiment using the single-line transformation model
described in Sect. 5.4. We refer to the version of JDial with this restricted
transformation model as JDial1 and its optimized version as JDialo1. All our
benchmarks can be fixed using a single-line transformation so both JDial1 and
JDialo1 find the same transformation. The last two columns of Table 1 show
the running times. JDial1 is generally faster than the version of JDial that
uses the more complex transformation model. However, the optimized version
JDialo1 is on average 1.37x faster than JDial1. Moreover, for subLargestGap
and maxMin, JDialo1 finds transformations in < 1 second while JDial1 times
out. The improvement is due to the slicing-based data-flow analysis, which, can
reduce the number of lines in the sketched program from 25 to 8.

To answer Q2, the optimization from Sect. 5.4 is beneficial for single-
line transformations. This transformation model is very practical and our results
hint that our slicing technique can make JDial scale to larger programs.
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6.3 Sensitivity of Manipulated Location

Fig. 10. Correct transformation if
manipulating k steps after first point
of error.

One of the key aspects of JDial is that
the user has to find a “good” location
to perform the desired transformation. In
this experiment, we evaluate how sensi-
tive JDial is with respect to the loca-
tion choice. We consider the experiment
we performed against test-based tools
and for each test case on which JDial
and JDial+ successfully found a correct
transformation, we then perform the fol-
lowing analysis: if the manipulation was
performed at step i in the program trace,
we measure after how many steps the generated transformation is “lost”—i.e.,
we compute the smallest k for which performing the manipulation at position
i + k would yield a wrong transformation.

Figure 10 shows the results. In 80% of the cases, if JDial is provided only
with a manipulation and the manipulation is performed one step later, JDial
returns an incorrect transformation. However, when provided with one addi-
tional test case JDial returns the correct transformation in 80% of the cases,
even when the manipulation is performed 5 steps after the ideal location. Even
in these extreme conditions, JDial returns correct transformations more often
than Qlose does when provided with two test cases. To answer Q3, JDial is
sensitive with respect to the manipulation location only if no addi-
tional tests are provided, but it is still more precise than Qlose.

6.4 Ability to Handle External Functions

We evaluate if JDial can handle programs with external functions. ePoly-1
and ePoly-2, contain the function Math.pow and JDial is able to produce a
transformation for them using between 2 and 5 iterations (average 4.2), of the
CeGIS algorithm presented in Sect. 5.3.

To better evaluate the algorithm, we design two more families of benchmarks.
The first family of programs tries to compute

∑n
i=0 Math.pow(2, i) for values of

n between 2 and 8. The bug in this benchmark is the one shown in Fig. 7. For
inputs 2 and 3, JDial can find the correct transformation that is compliant
with the external function after 2 CeGIS iterations, while for inputs 4 through
8, JDial requires 3 iterations. The second family of programs computes the
maximum value in an array using the Math.max function for different incorrect
initializations of the variable max. In this case, the size of the initial constant
affects the number of required CeGIS iterations. While incorrectly initializing
max to 2 only requires a couple of iterations to produce the correct transfor-
mation, if we incorrectly initialize max to 100, computing the transformation
requires guessing many new interpretations of the function Math.max that did
not appear in the original trace, resulting in more than 90 iterations.
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To answer Q4, JDial can handle programs that contain external
functions, but in certain pathological cases it requires many CeGIS iterations.

7 Related Work

Direct Manipulation. Direct manipulation has been used in drawing editors
[1–4]. The most relevant work in this space is Sketch-n-Sketch [5,6], which
uses program synthesis to apply direct manipulation to scalable vector graphics
(SVG)—i.e., constants in the program can be modified conforming to the direct
manipulations. Sketch-n-Sketch and JDial tackle different domains. Unlike
JDial, Sketch-n-Sketch can only rename constants defined at the top of the
program and cannot handle complex updates involving changes in the program
structure—e.g., replacing x = y with x = y−z. Finally, Sketch-n-Sketch uses
heuristics to select the “right” fix, while JDial does so using program distances.

In Wolverine [18], the user can modify a graphical abstract representation of
a data structure such as a linked list and the tool will attempt to find a program
modification consistent with the modification. Similar to Sketch-n-Sketch,
Wolverine’s technique is specific to certain families of data structure transfor-
mations and relies on the graphical abstraction used for the manipulation.

CodeHint [19] synthesizes simple Java expressions—e.g., library calls—at
user-set breakpoints using partial specifications—e.g., variable types. It uses
information from the execution to construct expressions of a user-provided type.
CodeHint is different from JDial in two main aspects: (i) CodeHint helps
programmers auto-complete function calls given some expected type at a given
location, whereas JDial transforms the original program using a global analysis.
(ii) CodeHint performs brute-force search while JDial uses constraint-based
search with optimization objectives.

Personalized Education. There are many tools for teaching programming that
help with grading (see [20] for a survey), personalized feedback [7,9,13,21,22],
and visualization [12]. Several works have dealt with transforming synthesis tools
into feedback generators [11]. Here, we discuss tools relevant to our work.

AutoGrader [9] and Qlose [7] repair incorrect student solutions to intro-
ductory programming assignments. These systems require a reference implemen-
tation or a comprehensive set of test cases while JDial also allows students to
discover potential transformations using direct manipulations. JDial extends
Qlose’s technique to compute minimal program transformations. In particular,
JDial encodes the problem of finding good stop points for aligning partial pro-
gram traces, which is a new problem arising from our specification mechanism.

Program Repair. Program repair is the problem of automatically fixing bugs in
large pieces of code. This topic has been studied extensively and researchers have
proposed techniques based on constraint-solving [16,23], abstractions [24], and
genetic algorithms [25]. These tools are mostly interested in fixing particular
types of bugs—e.g., null-pointer exceptions. JDial uses constraint solving, but
it would be interesting to investigate if other techniques work in our domain.
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There are program repair approaches that find repaired programs that are syn-
tactically close [23,26] or semantically close [27] to the original program. It was
demonstrated in [7] that transformations generated using a combination of syn-
tactic and semantic program distances are, in general, more desirable although
more expensive to compute. Hence, JDial chooses this last approach and only
compares against Qlose [7] since other tools rely on high-quality test suites.

Existing tools use test cases [7,16,28], logic specifications [29], or reference
programs [9]. Direct manipulation “augments” a test case by allowing the user to
specify intermediate information about the run of the program on a certain input.
Moreover, direct manipulations can be used to debug incomplete implementa-
tions. Finally, it is important to note that direct manipulation is not directly
expressible using assertions or test cases: while an assertion at a certain location
is valid if every time the location is traversed the predicate in the assertion is
true, a direct manipulation at a certain location only requires that at some point
in the trace the variables evaluate to the manipulated values at that location.

Several tools use fault localization to find likely locations to modify
[30–32]. The work on angelic debugging [33] is particularly relevant, where pos-
sible faulty expressions in a program are inferred by replacing them with an
alternate concrete value (oracle) that makes all the tests pass. However, the
burden on repairing the program with the correct expression still lies with the
programmer.

The CeGIS refinement of external functions in Sect. 5.3 is related to the
notion of Sketch models [34], which allow one to specify certain properties
(such as associativity, idempotence, etc.) to provide richer interpretations to
uninterpreted functions. In contrast, JDial iteratively builds a model of the
auxiliary function directly in the synthesis process.

Acknowledgment. This work was supported by NSF under grants CNS-1763871,
CCF-1704117 and CCF-1846327; and by the UW-Madison OVRGE with funding from
WARF.

References

1. Victor, B.: Drawing dynamic visualizations (2013). http://worrydream.com/
2. Schachman, T.: Apparatus (2015). http://aprt.us/
3. Hottelier, T., Bodik, R., Ryokai, K.: Programming by manipulation for layout. In:

UIST, pp. 231–241 (2014)
4. Shneiderman, B.: Direct manipulation: a step beyond programming languages.

ACM SIGSOC Bullstin, vol. 13, no. 2–3, p. 143 (1982)
5. Chugh, R., Hempel, B., Spradlin, M., Albers, J.: Programmatic and direct manip-

ulation, together at last. In: Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 341–354. ACM (2016)

6. Hempel, B., Chugh, R.: Semi-automated SVG programming via direct manipula-
tion. In: Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, pp. 379–390. ACM (2016)

http://worrydream.com/
http://aprt.us/


366 Q. Hu et al.

7. D’Antoni, L., Samanta, R., Singh, R.: Qlose: program repair with quantitative
objectives. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp.
383–401. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_21

8. Solar-Lezama, A.: Program sketching. Int. J. Softw. Tools Technol. Transfer 15(5–
6), 475–495 (2013)

9. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for intro-
ductory programming assignments. In: ACM SIGPLAN Notices, vol. 48, no. 6, pp.
15–26 (2013)

10. Yi, J., Ahmed, U.Z., Karkare, A., Tan, S.H., Roychoudhury, A.: A feasibility study
of using automated program repair for introductory programming assignments. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineer-
ing, ser. ESEC/FSE 2017, pp. 740–751. ACM (2017)

11. Suzuki, R., et al.: Tracediff: debugging unexpected codebehavior using synthesized
code corrections. In: VL/HCC 2017 (2017)

12. Guo, P.J.: Online python tutor: embeddable web-based program visualization for
CS education. In: Proceeding of the 44th ACM Technical Symposium on Computer
Science Education, pp. 579–584. ACM (2013)

13. Rolim, R., et al.: Learning syntactic program transformations from examples. In:
Proceedings of the 39th International Conference on Software Engineering, ser.
ICSE 2017, pp. 404–415. IEEE Press, Piscataway (2017)

14. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering, pp. 439–449. IEEE Press 1981

15. Tillmann, N., De Halleux, J., Xie, T., Bishop, J.: Code hunt: gamifying teach-
ing and learning of computer science at scale. In: Proceedings of the First ACM
Conference on Learning@ Scale Conference, pp. 221–222. ACM (2014)

16. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: program repair
via semantic analysis. In: Proceedings of the 2013 International Conference on
Software Engineering, pp. 772–781. IEEE Press (2013)

17. edX: Introduction to computer science and programming using python (2017).
https://www.edx.org/course/introduction-computer-science-mitx-6-00-1x-10

18. Verma, S., Roy, S.: Synergistic debug-repair of heap manipulations. In: Proceed-
ings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2017, pp. 163–173. ACM (2017)

19. Galenson, J., Reames, P., Bodik, R., Hartmann, B., Sen, K.: Codehint: dynamic
and interactive synthesis of code snippets. In: Proceedings of the 36th International
Conference on Software Engineering, pp. 653–663. ACM (2014)

20. Striewe, M., Goedicke, M.: A review of static analysis approaches for programming
exercises. In: Kalz, M., Ras, E. (eds.) CAA 2014. CCIS, vol. 439, pp. 100–113.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08657-6_10

21. Gulwani, S., Radiček, I., Zuleger, F.: Automated clustering and program repair for
introductory programming assignments. arXiv preprint arXiv:1603.03165 (2016)

22. Kim, D., et al.: Apex: automatic programming assignment error explanation. In:
ACM SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, ser. OOPSLA 2016, pp. 311–327. ACM (2016)

23. Mechtaev, S., Yi, J., Roychoudhury, A.: Directfix: Looking for simple pro-
gram repairs. In: Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pp. 448–458. IEEE Press (2015)

24. Logozzo, F., Ball, T.: Modular and verified automatic program repair. In: ACM
SIGPLAN Notices, vol. 47, no. 10, pp. 133–146. ACM (2012)

https://doi.org/10.1007/978-3-319-41540-6_21
https://www.edx.org/course/introduction-computer-science-mitx-6-00-1x-10
https://doi.org/10.1007/978-3-319-08657-6_10
http://arxiv.org/abs/1603.03165


Direct Manipulation for Imperative Programs 367

25. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: fixing 55 out of 105 bugs for $8 each. In: International
Conference on Software Engineering (ICSE), pp. 3–13. IEEE Press (2012)

26. Samanta, R., Olivo, O., Emerson, E.A.: Cost-aware automatic program repair. In:
Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS, vol. 8723, pp. 268–284. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10936-7_17

27. Von Essen, C., Jobstmann, B.: Program repair without regret. Formal Meth. Syst.
Des. 47(1), 26–50 (2015)

28. Le, X.-B.D., Chu, D.-H., Lo, D., Le Goues, C., Visser, W.: S3: syntax- and
semantic-guided repair synthesis via programming by examples. In: Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2017, pp. 593–604. ACM (2017)

29. Koukoutos, M., Kneuss, E., Kuncak, V.: An update on deductive synthesis and
repair in the leon tool. arXiv preprint arXiv:1611.07625 (2016)

30. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: ACM SIGPLAN Notices, vol. 38, no. 1, pp. 97–105.
ACM (2003)

31. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: ACM SIGPLAN Notices vol. 46. no. (6), pp. 437–446 (2011)

32. Könighofer, R., Bloem, R.: Automated error localization and correction for imper-
ative programs. In: Formal Methods in Computer-Aided Design (FMCAD), pp.
91–100. IEEE (2011)

33. Chandra, S., Torlak, E., Barman, S., Bodik, R.: Angelic debugging. In: 2011 33rd
International Conference on Software Engineering (ICSE), pp. 121–130. IEEE
(2011)

34. Singh, R., Singh, R., Xu, Z., Krosnick, R., Solar-Lezama, A.: Modular synthesis of
sketches using models. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS,
vol. 8318, pp. 395–414. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54013-4_22

https://doi.org/10.1007/978-3-319-10936-7_17
http://arxiv.org/abs/1611.07625
https://doi.org/10.1007/978-3-642-54013-4_22
https://doi.org/10.1007/978-3-642-54013-4_22


Responsibility Analysis by Abstract
Interpretation

Chaoqiang Deng and Patrick Cousot(B)

Computer Science Department, New York University, New York, USA
{deng,pcousot}@cs.nyu.edu

Abstract. Given a behavior of interest in the program, statically deter-
mining the corresponding responsible entity is a task of critical impor-
tance, especially in program security. Classical static analysis techniques
(e.g. dependency analysis, taint analysis, slicing, etc.) assist program-
mers in narrowing down the scope of responsibility, but none of them
can explicitly identify the responsible entity. Meanwhile, the causality
analysis is generally not pertinent for analyzing programs, and the struc-
tural equations model (SEM) of actual causality misses some informa-
tion inherent in programs, making its analysis on programs imprecise.
In this paper, a novel definition of responsibility based on the abstrac-
tion of event trace semantics is proposed, which can be applied in pro-
gram security and other scientific fields. Briefly speaking, an entity ER

is responsible for behavior B, if and only if ER is free to choose its input
value, and such a choice is the first one that ensures the occurrence of
B in the forthcoming execution. Compared to current analysis methods,
the responsibility analysis is more precise. In addition, our definition of
responsibility takes into account the cognizance of the observer, which, to
the best of our knowledge, is a new innovative idea in program analysis.

Keywords: Responsibility · Abstract interpretation · Static analysis ·
Dependency · Causality · Program security

1 Introduction

For any behavior of interest, especially potentially insecure behaviors in the pro-
gram, it is essential to determine the corresponding responsible entity, or say,
the root cause. Contrary to accountability mechanisms [15,23,40] that track
down perpetrators after the fact, the goal of this paper is to detect the respon-
sible entity and configure its permission before deploying the program, which
is important for safety and security critical systems. Due to the massive scale
of modern software, it is virtually impossible to identify the responsible entity
manually. The only solution is to design a static analysis of responsibility, which
can examine all possible executions of a program without executing them.

The cornerstone of designing such an analysis is to define responsibility in
programming languages. It is surprising to notice that, although the concepts
c© Springer Nature Switzerland AG 2019
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of causality and responsibility have been long studied in various contexts (law
sciences [36], artificial intelligence [30], statistical and quantum mechanics, biol-
ogy, social sciences, etc. [4]), none of these definitions is fully pertinent for pro-
gramming languages. Take the actual cause [19,20] as an example, its structural
equations model (SEM) [10] is not suitable for representing programs: the value
of each endogenous variable in the model is fixed once it is set by the equations
or some external action, while the value of program variables can be assigned
for unbounded number of times during the execution. In addition, the SEM can-
not make use of the temporal information or whether an entity is free to make
choices, which plays an indispensable role in determining responsibility.

There do exist techniques analyzing the influence relationships in programs,
such as dependency analysis [1,7,37], taint analysis [31] and program slicing
[39], which help in narrowing down the scope of possible locations of responsible
entity. However, no matter whether adopting semantic or syntactic methods,
these techniques are not precise enough to explicitly identify responsibility.

To solve the above problems, we propose a novel definition of responsibility
based on the event trace semantics, which is expressive and generic to handle
computer programs and other scientific fields. Roughly speaking, an entity ER is
responsible for a given behavior B in a certain trace, if and only if ER can choose
various values at its discretion (e.g. inputs from external subjects), and such a
choice is the first one that guarantees the occurrence of B in that trace. Such
a definition of responsibility is an abstract interpretation [11,12] of event trace
semantics, taking into account both the temporal ordering of events and the
information regarding whether an entity is free to choose its value. Moreover, an
innovative idea of cognizance is adopted in this definition, which allows analyzing
responsibility from the perspective of various observers. Compared to current
techniques, our definition of responsibility is more generic and precise.

The applications of responsibility analysis are pervasive. Although an imple-
mentation of responsibility analyzer is not provided here, we have demonstrated
its effectiveness by examples including access control, “negative balance” and
information leakage. In addition, due to the page limit, a sound framework of
abstract responsibility analysis is sketched in the extended version of this paper
[13], which is the basis of implementing a responsibility analyzer. It is guaranteed
that the entities that are found definitely responsible in the abstract analysis are
definitely responsible in the concrete, while those not found potentially respon-
sible in the abstract analysis are definitely not responsible in the concrete.

To summarize, the main contributions of this work are: (1) a completely new
definition of responsibility, which is based on the abstract interpretation of event
trace semantics, (2) the adoption of observers’ cognizance in program analysis
for the first time, (3) various examples of responsibility analysis, and (4) a sound
framework for the abstract static analysis of responsibility.

In the following, Sect. 2 discusses the distinctions between responsibility and
current techniques via an example, and sketches the framework of responsibil-
ity analysis. Section 3 formally defines responsibility as an abstraction of event
trace semantics. Section 4 exemplifies the applications of responsibility analysis.
Section 5 summarizes the related work.
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2 A Glance at Responsibility

Given a behavior of interest (e.g. security policy violation), the objective of
responsibility analysis is to automatically determine which entity in the system
has the primary control over that behavior. Then security admins could decide
either to keep or to deny the responsible entity’s permission to perform the
behavior of interest. Take the information leakage in a social network as an
example: if the information’s owner is responsible for the leakage (e.g. a user
shares his picture with friends), then it is safe to keep its permission to perform
such a behavior; otherwise, if anyone else is responsible for the leakage, it could
be a malicious attacker and its permission to do so shall be removed. Such
human decisions can only be done manually and are beyond the scope of this
paper. In addition, it is worthwhile to note that responsibility analysis is not
the same as program debugging, since the analyzed program code is presumed
to be unmodifiable and the only possible change is on the permissions granted
to entities in the system.

In order to give an informal introduction to responsibility, as well as its main
distinctions with dependency, causality and other techniques in detecting causes,
this section starts with a simple example, which is used throughout the paper.

2.1 Discussion of an Access Control Program Example

Example 1 (Access Control). Consider the program in Fig. 1, which essentially
can be interpreted as an access control program for an object o (e.g. a secret file),
such that o can be read if and only if both two admins approve the access and the
permission type of o from system settings is greater than or equal to “read”: the
first two inputs correspond to the decisions of two independent admins, where 1
represents approving the access to o, and 0 represents rejecting the access; the
third input stored in typ represents the permission type of o specified in the
system settings, where 1 represents “read”, 2 represents “read and write” (this
is similar to the file permissions system in Linux, but is simplified for the sake
of clarity); by checking the value of acs at line 10, the assertion can guarantee
both admins approve the access and the permission type of o is at least 1. ��

1: apv = 1; //1: Approval , 0: Rejection

2: i1 = input_1 (); //Input 0 or 1 from 1st admin

3: if (i1 == 0) {

4: apv = 0; }

5: i2 = input_2 (); //Input 0 or 1 from 2nd admin

6: if (apv != 0 && i2 == 0) {

7: apv = 0; }

8: typ = input_3 (); //Input 1 or 2 from system settings

9: acs = apv * typ;

10: assert(acs >= 1); //Check if the read access is granted

11: /* Read an object o here */

Fig. 1. Access control program example
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Here the question we are interested is: when the assertion fails (referred as
“Read Failure” in the following, i.e. the read access to o fails to be granted), which
entity (entities) in the program shall be responsible? The literature has several
possible answers. By the definition of dependency ([1,7,37]), the value of acs
depends on the value of apv and typ, which further depend on all three inputs.
That is to say, the read failure depends on all variables in the program, thus
program slicing techniques (both syntactic slicing [39] and semantic slicing [35])
would take the whole program as the slice related with read failure. Such a slice
is useful in debugging in the sense that it rules out parts of the program that are
completely irrelevant with the failure, and modifying any code left in the slice
may prevent the failure, e.g. replacing “acs=apv*typ” with “acs=2” trivially
fixes the read failure problem. However, this paper presumes the program code to
be unmodifiable, hence a statement like “acs=apv*typ”, which is fully controlled
by others and acts merely as the intermediary between causes and effects, shall
not be treated as responsible. In addition, the third input (i.e. the system setting
of o’s permission type) is also included in the slice. Although it does affect acs’s
value, it is not decisive in this case (i.e. no matter it is 1 or 2, it could not either
enforce or prevent the failure). Therefore, the dependency analysis and slicing
are not precise enough for determining responsibility.

Causation by counterfactual dependency [28] examines the cause in every
single execution and excludes non-decisive factors (e.g. the third input in this
example), but it is too strong in some circumstances. For example, in an execu-
tion where both the first two inputs are 0, neither of them would be determined
as the cause of read failure, because if one input is changed to value 1, the failure
would still occur due to the other input 0.

Actual cause introduced in [19,20] is based on the structural equations model
(SEM) [10], and extends the basic notion of counterfactual dependency to allow
“contingent dependency”. For this example here, it is straightforward to create
a SEM to represent the access control program (although it is not always the
case): three inputs are represented by exogenous variables, and five program
variables are represented by endogenous variables, in which the value of apv is
i1*i2. Consider an execution where both the first two inputs are 0, no matter
what value the third input takes, the actual causes of read failure (i.e. acs<1)
would be determined as “i1=0”, “i2=0”, “apv=0” and “acs=0”, since the failure
counterfactually depends on each of them under certain contingencies. Thus,
both two admins are equally determined as causes of failure, as well as two
intermediary variables. This structural-model method has allowed for a great
progress in causality analysis, and solved many problems of previous approaches.
However, as an abstraction of concrete semantics, the SEM unnecessarily misses
too much information, including the following three important points.

(P1) Time (i.e. the temporal ordering of events) should be taken into account.
For example, the SEM does not keep the temporal ordering of first two inputs (i.e.
the information that “i1=0” occurs before “i2=0” is missed), hence it determines
both of them equally as the cause of assigning 0 to apv, further as the cause of
read failure. However, in the actual execution where first two inputs are 0, the
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first input already decides the value of apv before the second input is entered
and the assignment at line 7 is not even executed, thus it is unnecessary to
take the second input as a cause of assigning 0 to apv or the read failure. To
deal with this difficulty, Pearl’s solution is to modify the model and introduce
new variables [6] to distinguish whether apv is assigned by i1 or i2. However,
a much simpler method is to keep the temporal ordering of events, such that
only the first event that ensures the behavior of interest is counted as the cause.
Therefore, in an execution where both the first two inputs are 0, the first input
ensures the read failure before the second input is entered, hence only the first
input is responsible for failure; meanwhile, in another execution where the first
input is 1 and the second one is 0, the second input is the first and only one that
ensures the failure hence shall take the responsibility.

(P2) The cause must be free to make choices. For example, acs=0 is deter-
mined as an actual cause of read failure, based on the reasoning that if the
endogenous variable acs in SEM is assigned a different value, say 2, then the
read failure would not have occurred. But such a reasoning ignores a simple
fact that acs is not free to choose its value and acts merely as an intermediary
between causes and effects. Thus, only entities that are free to make choices can
possibly be causes, and they include but are not limited to user inputs, sys-
tem settings, files read, parameters of procedures or modules, returned values of
external functions, variable initialization, random number generations and the
parallelism. To be more accurate, it is the external subject (who does the input,
configures the system settings, etc.) that is free to make choices, but we say that
entities like user inputs are free to make choices, as an abuse of language.

(P3) It is necessary to specify “to whose cognizance/knowledge” when iden-
tifying the cause. All the above reasoning on causality is implicitly based on an
omniscient observer’s cognizance (i.e. everything that occurred is known), yet
it is non-trivial to consider the causality to the cognizance of a non-omniscient
observer. Reconsider the access control program example, and suppose we adopt
the cognizance of the second admin who is in charge of the second input. If
she/he is aware that the first input is already 0, she/he would not be responsible
for the failure; otherwise she/he does not know whether the first input is 0 or 1,
then she/he is responsible for ensuring the occurrence of failure. In most cases,
the cognizance of an omniscient observer will be adopted, but not always.

2.2 An Informal Definition of Responsibility

To take the above three points into account and build a more expressive frame-
work, this paper proposes responsibility, whose informal definition is as follows.

Definition 1 (Responsibility, informally). To the cognizance of an
observer, the entity ER is responsible for a behavior B of interest in a cer-
tain execution, if and only if, according to the observer’s observation, ER

is free to choose its value, and such a choice is the first one that guarantees
the occurrence of B in that execution.
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It is worth mentioning that, for the whole system whose semantics is a set
of executions, there may exist more than one entities that are responsible for B.
Nevertheless, in every single execution where B occurs, there is only one entity
that is responsible for B. To decide which entity in an execution is responsi-
ble, the execution alone is not sufficient, and it is necessary to reason on the
whole semantics to exhibit the entity’s “free choice” and guarantee of B. Thus,
responsibility is not a trace property (neither safety nor liveness property).

To put such a definition into effect, our framework of responsibility analysis
is designed as Fig. 2, which essentially consists of three components: (1) System
semantics, i.e. the set of all possible executions, each of which can be analyzed
individually. (2) A lattice of system behaviors of interest, which is ordered such
that the stronger a behavior is, the lower is its position in the lattice. (3) An
observation function for each observer, which maps every (probably unfinished)
execution to a behavior in the lattice that is guaranteed to occur, even though
such a behavior may have not occurred yet. These three components are formally
defined in Sect. 3, and their abstractions are sketched in [13].

 apv=1 

i1=0

i2=0

System Semantics Lattice of System Behaviors
of Interest

Observation1

2

3

4

5

6

(Omniscient)

(Non-omniscient)

i1==0

apv=0

Max = S Max

RS

RF

Max= Ø 

RO RW

Behaviors
RF: Read Failure 
RS: Read Success 
RO: Read Only access 
RW: Read and Write access 

Fig. 2. Framework of responsibility analysis for Example 1

In this framework, if an observer’s observation finds that the guaranteed
behavior grows stronger after extending an execution, then the extension part
of execution must be responsible for ensuring the occurrence of the stronger
behavior. Consider the example in Fig. 2 which sketches the analysis for a cer-
tain execution of the access control program. Suppose �Max in the lattice repre-
sents “not sure if the read access fails or not” and RF represents the behavior of
read failure, whose formal definitions are given in Sect. 3.2. The solid arrow from
executions to the lattice stands for the observation of an omniscient observer,
while the dashed arrow stands for the observation of the second admin who is
unaware of the first input. As illustrated in the figure, the omniscient observer
finds that the execution from point 1 to point 2 can guarantee only �Max,
while the stronger behavior RF is guaranteed if the execution reaches point 3.
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Thus, to the cognizance of the omniscient observer, “i1=0” between point 2
and 3 is responsible for the read failure. Meanwhile, the second admin observes
that all the executions upto point 5 guarantee �Max, and RF is guaranteed only
after point 6 is reached. Hence, to the cognizance of the second admin, “i2=0”
between point 5 and point 6 is responsible for the read failure. For the sake of
completeness, the entire desired analysis result for Example 1 is included in the
following.

Example 2 (Access Control, Continued). To the cognizance of an omniscient
observer: for any execution, if the first input is 0, no matter what the other two
inputs are, only the first admin is responsible for the read failure; if the first
input is 1 and the second one is 0, the second admin is responsible.

To the cognizance of the second admin, two cases need to be considered sepa-
rately. If she/he is aware of the input of first admin, the analysis result is exactly
the same as the omniscient observer. Otherwise, she/he does not know the first
input: in every execution where the second input is 0, the second admin is respon-
sible, no matter what the first and third input are; in every execution where the
second input is 1, nobody shall be responsible for the failure, since whether the
failure occurs or not is uncertain from the second admin’s perspective. ��

After finishing responsibility analysis, it is time for the security admin to
configure permissions granted to each responsible entity at her/his discretion.
If the behavior of interest is desired or the responsible entity is authorized, the
permissions granted to the responsible entity can be kept. On the contrary, if
that behavior is undesired or it is against the policy for the responsible entity to
control it, the permissions granted to the responsible entity shall be confined. For
instance, in the access control program, if the first two inputs are from admins
who are authorized to control the access, their permissions to input 0 and 1 can
be kept; if those two inputs come from ordinary users who have no authorization
to deny other users’ access, their permissions to input 0 shall be removed.

3 Formal Definition of Responsibility

In order to formalize the framework of responsibility analysis, this section intro-
duces event traces to represent the system semantics, builds a lattice of system
behaviors by trace properties, proposes an observation function that derives from
the observer’s cognizance and an inquiry function on system behaviors. Further-
more, this section formally defines responsibility as an abstraction of system
semantics, using the observation function. To strengthen the intuition of respon-
sibility analysis, the analysis of Example 1 will be illustrated step by step.

3.1 System Semantics

Generally speaking, no matter what system we are concerned with and no matter
which programming language is used to implement that system, the system’s
semantics can be represented by event traces.
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Event Trace. In general, an event could be used to represent any action in the
system, such as “input an integer”, “assign a value to a variable”, or even “launch
the program”. Take the classic While programming language as an example,
there are only three types of events: skip, assignment, and Boolean test. In order
to make the definition of responsibility as generic as possible, here we do not
adopt a specific programming language or restrict the range of possible events.

A trace σ is a sequence of events that represents an execution of the system,
and its length |σ| is the number of events in σ. If σ is infinite, then its length
|σ| is denoted as ∞. A special trace is the empty trace ε, whose length is 0. A
trace σ is � - less than or equal to another trace σ′, if and only if, σ is a prefix
of σ′. The concatenation of a finite trace σ and an event e is simply defined by
juxtaposition σ e, and the concatenation of a finite traces σ and another (finite
or infinite) trace σ′ is denoted as σσ′.

e ∈ E event

σ ∈ E+∞ �
⋃

n�1

{[0, n − 1] �→ E} ∪ {N �→ E} nonempty trace

σ ∈ E∗∞ � {ε} ∪ E+∞ empty or nonempty trace

σ � σ′ � |σ| � |σ′| ∧ ∀ 0 � i � |σ| − 1 : σi = σ′
i prefix ordering of traces

The function Pref(P ) returns the prefixes of every trace in the set P of traces.

Pref ∈ ℘(E∗∞) �→ ℘(E∗∞) prefixes of traces

Pref(P ) � {σ′ ∈ E∗∞ | ∃σ ∈ P. σ′ � σ}

Trace Semantics. For any system that we are concerned with, its maximal
trace semantics, denoted as SMax ∈ ℘(E∗∞), is the set of all possible maximal
traces of that system. Especially, the maximal trace semantics of an empty pro-
gram is {ε}. Correspondingly, the prefix trace semantics SPref ∈ ℘(E∗∞) is the
set of all possible prefix traces, which is an abstraction of maximal trace seman-
tics via Pref, i.e. SPref = Pref(SMax). Besides, a trace σ is said to be valid in
the system, if and only if σ ∈ SPref . Obviously, both maximal and prefix trace
semantics do preserve the temporal ordering of events, which is missed by the
SEM.

Example 3 (Access Control, Continued). For the program in Fig. 1, only two
types of events are used: assignment (e.g. apv=1) and Boolean test (e.g. i1==0
and ¬(acs>=1), where ¬ denotes the failure of a Boolean test). To clarify the
boundary among events, the triangle � is used in the following to separate events
in the trace. The access control program has three inputs, each of which has two
possible values, thus its maximal trace semantics SMax consists of 8 traces (T1-
T8), each of which is represented as a path in Fig. 3 starting at the entry point
of program and finishing at the exit point. E.g. T1 = apv=1 � i1=0 � i1==0
�apv=0 � i2=0 � ¬(apv!=0&&i2==0)� typ=1 � acs=0 � ¬(acs>=1) denotes the
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maximal where the first two inputs are 0 and the third input is 1. Meanwhile,
the prefix trace semantics SPref = Pref(SMax) are represented by the paths that
start at the entry point and stop at any point (including the entry point for the
empty trace ε). ��
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Fig. 3. Trace semantics and properties of Example 1

3.2 Lattice of System Behaviors of Interest

Trace Property. A trace property is a set of traces in which a given property
holds. Most behaviors of a given system, if not all, can be represented as a
maximal trace property P ∈ ℘(SMax).

Example 4 (Access Control, Continued). As illustrated in Fig. 3, the behav-
ior “Read Failure” RF is represented as a set of maximal traces such that
the last event is ¬(acs>=1), i.e. RF = {σ ∈ SMax | σ|σ|−1 = ¬(acs>=1)} =
{T1, T2, T3, T4, T5, T6}; the behavior “Read Success” RS (i.e. the read access suc-
ceeds to be granted) is the complement of RF, i.e. RS = SMax\RF = {T7, T8},
whose subset RO = {T7} and RW = {T8} represent stronger properties “Read
Only access is granted” and “Read and Write access is granted”, respectively. ��

Complete Lattice of Maximal Trace Properties of Interest. We build a
complete lattice of maximal trace properties, each of which represents a behavior
of interest. Typically, such a lattice is of form 〈LMax, ⊆, �Max, ⊥Max, ·∪, ·∩〉, where

– LMax ∈ ℘(℘(E∗∞)) is a set of behaviors of interest, each of which is represented
by a maximal trace property;

– �Max = SMax, i.e. the top is the weakest maximal trace property which holds
in every valid maximal trace;
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– ⊥Max = ∅, i.e. the bottom is the strongest property such that no valid trace
has this property, hence it is used to represent the property of invalidity;

– ⊆ is the standard set inclusion operation;
– ·∪ and ·∩ are join and meet operations, which might not be the standard ∪

and ∩, since LMax is a subset of ℘(SMax) but not necessarily a sublattice.

For any given system, there is possibly more than one way to build the
complete lattice of maximal trace properties, depending on which behaviors are
of interest. A special case of lattice is the power set of maximal trace semantics,
i.e. LMax = ℘(SMax), which can be used to examine the responsibility for every
possible behavior in the system. However, in most cases, a single behavior is
of interest, and it is sufficient to adopt a lattice with only four elements: B
representing the behavior of interest, SMax\B representing the complement of
the behavior of interest, as well as the top SMax and bottom ∅. Particularly, if B
is equal to SMax, i.e. every valid maximal trace in the system has this behavior of
interest, then a trivial lattice with only the top and bottom is built, from which
no responsibility can be found, making the corresponding analysis futile.

Example 5 (Access Control, Continued). We assume that “Read Failure” is of
interest, as well as the behavior of granting write access. As illustrated by the
lattice in Fig. 2, regarding whether the read access fails or not, the top �Max is
split into two properties “Read Failure” RF and “Read Success” RS, which are
defined in Example 4 such that RF ·∪ RS = SMax and RF ·∩ RS = ∅. Furthermore,
regarding whether the write access is granted or not, RS is split into “Read Only
access is granted” RO and “Read and Write access is granted” RW. Now every
property of interest corresponds to an element in the lattice, and the bottom
⊥Max = ∅ is the meet ·∩ of RF, RO and RW. In addition, if “Read Failure” is the
only behavior of interest, RO and RW can be removed from the lattice. ��

Prediction Abstraction. Although the maximal trace property is well-suited
to represent system behaviors, it does not reveal the point along the maximal
trace from which a property is guaranteed to hold later in the execution. Thus,
we propose to abstract every maximal trace property P ∈ LMax isomorphically
into a set Q of prefixes of maximal traces in P, excluding those whose maximal
prolongation may not satisfy the property P. This abstraction is called prediction
abstraction, and Q is a prediction trace property corresponding to P. It is easy
to see that Q is a superset of P, and is not necessarily prefix-closed.

αPred�SMax� ∈ ℘(E∗∞) �→ ℘(E∗∞) prediction abstraction

αPred�SMax�(P) � {σ ∈ Pref(P) | ∀σ′ ∈ SMax. σ � σ′ ⇒ σ′ ∈ P}
γPred�SMax� ∈ ℘(E∗∞) �→ ℘(E∗∞) prediction concretization

γPred�SMax�(Q) � {σ ∈ Q | σ ∈ SMax} = Q ∩ SMax

We have a Galois isomorphism between maximal trace properties and pre-
diction trace properties:
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〈℘(SMax), ⊆〉 −−−−−−−−−→−→←←−−−−−−−−−−
αPred�SMax�

γPred�SMax�
〈ᾱPred�SMax�(℘(SMax)), ⊆〉 (1)

where the abstract domain is obtained by a function ᾱPred�SMax� ∈ ℘(℘(E∗∞)) �→
℘(℘(E∗∞)), which is defined as ᾱPred�SMax�(X) � {αPred�SMax�(P) | P ∈ X}. The
following lemma immediately follows from the definition of αPred�SMax�.

Lemma 1. Given a prediction trace property Q that corresponds to a maximal
trace property P, if a prefix trace σ belongs to Q, then σ guarantees the satisfac-
tion of property P (i.e. every valid maximal trace that is greater than or equal
to σ is guaranteed to have property P).

Example 6 (Access Control, Continued). By αPred, each behavior in the lattice
LMax of Example 5 can be abstracted into a prediction trace property:

– αPred�SMax�(�Max) = SPref , i.e. every valid trace in SPref guarantees �Max.
– αPred�SMax�(RF) = {σ ∈ SPref | apv=1 � i1=0 � σ ∨ apv=1 � i1=1 � ¬(i1==0)

� i2=0 � σ }, i.e. for any valid trace, if at least one of first two inputs is 0,
then it guarantees “Read Failure” RF.

– αPred�SMax�(RS) = {σ ∈ SPref | apv=1 � i1=1 � ¬(i1==0) � i2=1 � σ}, i.e.
for any valid trace, if first two inputs are 1, it guarantees “Read Success” RS.

– αPred�SMax�(RO) = {σ ∈ SPref | apv=1 � i1=1 � ¬(i1==0) � i2=1 �
¬(apv!=0&&i2==0) � typ=1 � σ}, i.e. for any valid trace, if first two inputs are
1 and the third input is 1, then it guarantees “Read Only access is granted” RO.

– αPred�SMax�(RW) = {σ ∈ SPref | apv=1 � i1=1 � ¬(i1==0) � i2=1 �
¬(apv!=0&&i2==0) � typ=2 � σ}, i.e. for any valid trace, if first two inputs are
1 and the third is 2, then it guarantees “Read and Write access is granted” RW.

– αPred�SMax�(⊥Max) = ∅, i.e. no valid trace can guarantee ⊥Max. ��

3.3 Observation of System Behaviors

Let SMax be the maximal trace semantics and LMax be the lattice of system
behaviors designed as in Sect. 3.2. Given any prefix trace σ ∈ E∗∞, an observer
can learn some information from it, more precisely, a maximal trace property
P ∈ LMax that is guaranteed by σ from the observer’s perspective. In this section,
an observation function O is proposed to represent such a “property learning
process” of the observer, which is formally defined in the following three steps.

Inquiry Function. First, an inquiry function I is defined to map every trace
σ ∈ E∗∞ to the strongest maximal trace property in LMax that σ can guarantee.
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I ∈ ℘(E∗∞) �→ ℘(℘(E∗∞)) �→ E∗∞ �→ ℘(E∗∞) inquiry (2)

I(SMax,LMax, σ) �
let αPred�S�(P) = {σ ∈ Pref(P) | ∀σ′ ∈ S. σ � σ′ ⇒ σ′ ∈ P} in

·∩{P ∈ LMax | σ ∈ αPred�SMax�(P)}

Specially, for an invalid trace σ �∈ SPref , there does not exist any P ∈ LMax

such that σ ∈ αPred�SMax�(P), therefore I(SMax,LMax, σ) = ∅ = ⊥Max.

Corollary 1. Given the semantics SMax and lattice LMax of system behaviors,
if the inquiry function I maps a trace σ to a maximal trace property P ∈ LMax,
then σ guarantees the satisfaction of P (i.e. every valid maximal trace that is
greater than or equal to σ is guaranteed to have property P).

Lemma 2. The inquiry function I(SMax,LMax) is decreasing on the inquired
trace σ: the greater (longer) σ is, the stronger property it can guarantee.

Example 7 (Access Control, Continued). Using SMax defined in Example 3 and
LMax defined in Example 5, the inquiry function I of definition (2) is such that:

– I(SMax,LMax, apv=1) = �Max, i.e. apv=1 can guarantee only �Max.
– I(SMax,LMax, apv=1 � i1=0) = RF, i.e. after setting the first input as 0, “Read

Failure” RF is guaranteed.
– I(SMax,LMax, apv=1 � i1=1) = I(SMax,LMax, apv=1�i1=1 �¬(i1==0)) = �Max,

i.e. if the first input is 1, only �Max is guaranteed before entering the second
input.

– I(SMax,LMax, apv=1 � i1=1 � ¬(i1==0) � i2=0) = RF, i.e. if the second input
is 0, “Read Failure” RF is guaranteed.

– I(SMax,LMax, apv=1 � i1=1 � ¬(i1==0) � i2=1) = RS, i.e. if first two inputs
are 1, “Read Success” RS is guaranteed.

– I(SMax,LMax, apv=1 � i1=1 � ¬(i1==0) � i2=1 � ¬(i2==0) � typ=2) = RW,
i.e. if first two inputs are 1, after the third input is set to be 2, a stronger
property “Read and Write access is granted” RW is guaranteed. ��

Cognizance Function. As discussed in (P3) of Sect. 2.1, it is necessary to take
the observer’s cognizance into account. Specifically, in program security, the
observer’s cognizance can be used to represent attackers’ capabilities (e.g. what
they can learn from the program execution). Given a trace σ (not necessarily
valid), if the observer cannot distinguish σ from some other traces, then he does
not have an omniscient cognizance of σ, and the cognizance function C(σ) is
defined to include all traces indistinguishable from σ.

C ∈ E∗∞ �→ ℘(E∗∞) cognizance (3)

C(σ) � {σ′ ∈ E∗∞ | observer cannot distinguish σ′ from σ}
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Such a cognizance function is extensive, i.e. ∀σ ∈ E∗∞. σ ∈ C(σ). In particu-
lar, there is an omniscient observer and its corresponding cognizance function is
denoted as Co such that ∀σ ∈ E∗∞. Co(σ) = {σ}, which means that every trace
is unambiguous to the omniscient observer.

To facilitate the proof of some desired properties for the observation function
defined later, two assumptions are made here without loss of generality:

(A1) The cognizance of a trace σσ′ is the concatenation of cognizances of σ and
σ′. I.e. ∀σ, σ′ ∈ E∗∞. C(σσ′) = {ττ ′ | τ ∈ C(σ) ∧ τ ′ ∈ C(σ′)}.

(A2) Given an invalid trace, the cognizance function would not return a valid
trace. I.e. ∀σ ∈ E∗∞. σ �∈ SPref ⇒ C(σ) ∩ SPref = ∅.

To make the assumption (A1) sound, we must have C(ε) = {ε}, because
otherwise, for any non-empty trace σ, C(σ) = C(σε) = {ττ ′ | τ ∈ C(σ) ∧ τ ′ ∈
C(ε)} does not have a fixpoint. In practice, {〈σ, σ′〉 | σ′ ∈ C(σ)} is an equivalence
relation, but the symmetry and transitivity property are not used in the proofs.

Example 8 (Access Control, Continued). Consider two separate observers.

(i) For an omniscient observer: ∀σ ∈ E∗∞. Co(σ) = {σ}.
(ii) For an observer representing the second admin who is unaware of the first

input: C(i1=0 � i1==0 � apv=0) = C(i1=1 � ¬(i1==0)) = {i1=0 � i1==0 �
apv=0, i1=1 � ¬(i1==0)}, i.e. this observer cannot distinguish whether the
first input is 0 or 1. Thus, for a prefix trace in which the first two inputs are
0, C(apv=1 � i1=0 � i1==0 � apv=0 � i2=0) = {apv=1�i1=0�i1==0�apv=0�
i2=0, apv=1 � i1=1 � ¬(i1==0) � i2=0}, where apv=1 and i2=0 are known
by this observer. In the same way, its cognizance on other traces can be
generated. ��

Observation Function. For an observer with cognizance function C, given a
single trace σ, the observer cannot distinguish σ with traces in C(σ). In order
to formalize the information that the observer can learn from σ, we apply the
inquiry function I on each trace in C(σ), and get a set of maximal trace prop-
erties. By joining them together, we get the strongest property in LMax that σ
can guarantee from the observer’s perspective. Such a process is defined as the
observation function O(SMax,LMax, C, σ).

O ∈ ℘(E∗∞) �→ ℘(℘(E∗∞)) �→ (E∗∞ �→ ℘(E∗∞)) �→ E∗∞ �→ ℘(E∗∞)

O(SMax,LMax, C, σ) � observation (4)
let αPred�S�(P) = {σ ∈ Pref(P) | ∀σ′ ∈ S. σ � σ′ ⇒ σ′ ∈ P} in

let I(S,L, σ) = ·∩{P ∈ L | σ ∈ αPred�S�(P)} in

·∪{I(SMax,LMax, σ′) | σ′ ∈ C(σ)}.

From the above definition, it is easy to see that, for every invalid trace σ,
O(SMax,LMax, C, σ) = ⊥Max, since every trace σ′ in C(σ) is invalid by (A2) and
I(SMax,LMax, σ′) = ⊥Max. In addition, for an omniscient observer with cognizance
function Co, its observation O(SMax,LMax, Co, σ) = I(SMax,LMax, σ).
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Corollary 2. For any observer with cognizance C, if the corresponding obser-
vation function maps a trace σ to a maximal trace property P ∈ LMax, then σ
guarantees the satisfaction of property P (i.e. every valid maximal trace that is
greater than or equal to σ is guaranteed to have property P).

Lemma 3. The observation function O(SMax,LMax, C) is decreasing on the
observed trace σ: the greater (longer) σ is, the stronger property it can observe.

Example 9 (Access Control, Continued). For an omniscient observer, the obser-
vation function is identical to the inquire function in Example 7. If the cognizance
of the second admin defined in Example 8 is adopted, we get an observation func-
tion that works exactly the same as the dashed arrows in Fig. 2:

– O(SMax,LMax, C, apv=1 � i1=0) = I(SMax,LMax, apv=1�i1=0) ·∪ I(SMax,LMax,
apv=1 � i1=1) = RF ·∪�Max = �Max, i.e. even if the first input is already 0 in
the trace, no property except �Max can be guaranteed for the second admin.

– O(SMax,LMax, C, apv=1 � i1=0 � i1==0 � apv=0 � i2=1) = I(SMax,LMax, apv=
1 � i1=0 � i1==0 � apv=0 � i2=1) ·∪ I(SMax, LMax, apv=1 � i1=1 � ¬(i1==0) �
i2=1) = RF ·∪ �Max = �Max, i.e. if the second input is 1, only �Max can be
guaranteed.

– O(SMax,LMax, C, apv=1 � i1=0 � i1==0 � apv=0 � i2=0) = I(SMax,LMax, apv=
1 � i1=0 � i1==0 � apv=0 � i2=0) ·∪ I(SMax,LMax, apv=1 � i1=1 � ¬(i1==0) �
i2=0) = RF ·∪ RF = RF, i.e. RF is guaranteed only after the second input is
entered 0. ��

3.4 Formal Definition of Responsibility

Using the three components of responsibility analysis introduced above, respon-
sibility is formally defined as the responsibility abstraction αR in (5). Specifically,
the first parameter is the maximal trace semantics SMax, the second parameter
is the lattice LMax of system behaviors, the third parameter is the cognizance
function of a given observer, the fourth parameter is the behavior B whose
responsibility is of interest, and the last parameter is the analyzed traces T .

Consider every trace σHσRσF ∈ T where H, R and F respectively stand for
History, Responsible part and Future. If ∅ � O(SMax,LMax, C, σHσR) ⊆ B �

O(SMax,LMax, C, σH) holds, then σH does not guarantee the behavior B, while
σHσR guarantees a behavior which is at least as strong as B and is not the inva-
lidity property represented by ⊥Max = ∅. Therefore, σR is said to be responsible
for ensuring behavior B in the trace σHσRσF.

In particular, the length of σR is restricted to be 1 (i.e. |σR| = 1), such that the
responsible entity σR must be a single event and the responsibility analysis could
be as refined as possible. Otherwise, if we do not have such a restriction, then
for every analyzed trace σ ∈ T where the behavior B holds, the responsibility
analysis may split the trace σ into three parts σ = σHσRσF such that σH =
ε, σR = σ and σF = ε. In such a case, ∅ � O(SMax,LMax, C, σHσR) ⊆ B �

O(SMax,LMax, C, σH) holds, and the whole trace σ would be found responsible
for B. This result is trivially correct, but too coarse to be useful in practice.



382 C. Deng and P. Cousot

Responsibility Abstraction αR

αR ∈ ℘(E∗∞) �→ ℘(℘(E∗∞)) �→ (E∗∞ �→ ℘(E∗∞))
�→ ℘(E∗∞) �→ ℘(E∗∞) �→ ℘(E∗∞× E × E∗∞) (5)

αR(SMax,LMax, C,B, T ) �
let αPred�S�(P) = {σ ∈ Pref(P) | ∀σ′ ∈ S. σ � σ′ ⇒ σ′ ∈ P} in

let I(S,L, σ) = ·∩{P ∈ L | σ ∈ αPred�S�(P)} in

let O(S,L, C, σ) = ·∪{I(S,L, σ′) | σ′ ∈ C(σ)} in

{〈σH, σR, σF〉 | σHσRσF ∈ T ∧ |σR| = 1 ∧
∅ � O(SMax,LMax, C, σHσR) ⊆ B � O(SMax,LMax, C, σH)}

Since αR(SMax,LMax, C,B) preserves joins on analyzed traces T , we have a

Galois connection: 〈℘(E∗∞), ⊆〉 −−−−−−−−−−−−−−→←−−−−−−−−−−−−−−
αR(SMax, LMax,C, B)

γR(SMax, LMax,C, B)
〈℘(E∗∞× E × E∗∞), ⊆〉.

Lemma 4. If σR is said to be responsible for a behavior B in a valid trace
σHσRσF, then σHσR guarantees the occurrence of behavior B, and there must
exist another valid prefix trace σHσ′

R such that the behavior B is not guaranteed.

Recall the three desired points (time, free choices and cognizance) for defining
responsibility in Sect. 2.1. It is obvious that αR has taken both the temporal
ordering of events and the observer’s cognizance into account. As for the free
choices, it is easy to find from Lemma 4 that, if σR is determined by its history
trace σH and is not free to make choices (i.e. ∀σHσR, σHσ′

R ∈ SPref . σR = σ′
R),

then σR cannot be responsible for any behavior in the trace σHσRσF.

3.5 Responsibility Analysis

To sum up, the responsibility analysis typically consists of four steps: (I) col-
lect the system’s trace semantics SMax (in Sect. 3.1); (II) build the complete
lattice of maximal trace properties of interest LMax (in Sect. 3.2); (III) derive an
inquiry function I from LMax, define a cognizance function C for each observer,
and create the corresponding observation function O (in Sect. 3.3); (IV) specify
the behavior B of interest and the analyzed traces T , and apply the responsibil-
ity abstraction αR(SMax,LMax, C,B, T ) to get the analysis result (in Sect. 3.4).
Hence, the responsibility analysis is essentially an abstract interpretation of the
event trace semantics.

In the above definition of responsibility, the semantics and lattice of system
behaviors are concrete, and they are explicitly displayed in the access control
example for the sake of clarity. However, they may be uncomputable in practice,
and we do not require programmers to provide them in the implementation
of responsibility analysis. Instead, they are provided in the abstract, using an
abstract interpretation-based static analysis that is sketched in [13].

Example 10 (Access Control, Continued). Using the observation functions cre-
ated in Example 9, the abstraction αR can analyze the responsibility of a certain
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behavior B in the set T of traces. Suppose we want to analyze “Read Failure” in
every possible execution, then B is RF, and T includes all valid maximal traces,
i.e. T = SMax. Thus, αR(SMax,LMax, C, RF,SMax) computes the responsibility
analysis result, which is essential the same as desired in Example 2.

Furthermore, the responsibility of “granting write access” can be analyzed
by setting the behavior B as RW instead, and we get the following result. To the
cognizance of an omniscient observer, in every execution that both the first two
inputs are 1, the third input (i.e. system setting of permission type) is responsible
for RW. Meanwhile, to the cognizance of the second admin who is unaware of the
first input, no one is found responsible for RW, because whether the write access
fails or not is always uncertain, from the second admin’s perspective. ��

4 Examples of Responsibility Analysis

Responsibility is a broad concept, and our definition of responsibility based on
the abstraction of event trace semantics is universally applicable in various sci-
entific fields. We have examined every example supplied in actual cause [19,20]
and found that our definition of responsibility can handle them well, in which
actions like “drop a lit match in the forest” or “throw a rock at the bottle” are
treated as events in the trace. In the following, we will illustrate the responsibility
analysis by two more examples: the “negative balance” problem of a withdrawal
transaction, and the information leakage problem.

4.1 Responsibility Analysis of “Negative Balance” Problem

Example 11 (Negative Balance). Consider the withdrawal transaction program
in Fig. 4 in which the query database() function gets the balance of a cer-
tain bank account before the transaction, and input() specifies the withdrawal
amount that is positive. When the withdrawal transaction completes, if the bal-
ance is negative, which entity in the program shall be responsible for it? ��

It is not hard to see that, the “negative balance” problem can be transformed
into an equivalent buffer overflow problem, where the memory of size balance
is allocated and the index at n-1 is visited. Although this problem has been well
studied, it suffices to demonstrate the advantages of responsibility analysis over
dependency/causality analysis.

1: balance = query_database ();

2: n = input (); // Positive

3: balance -= n;

Fig. 4. Withdrawal transaction program

⊥Max = ∅
NB ¬NB

�Max = SMax

Fig. 5. Lattice of behaviors
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As discussed in Sect. 3.5, the responsibility analysis consists of four steps. For
the sake of simplicity, we consider only the omniscient observer here.

(1) Taking each assignment as an event, each maximal trace in this program
is of length 3, and the program’s maximal trace semantics consists of infi-
nite number of such traces. E.g. balance=0 � n=5 � balance=-5 denotes a
maximal execution, in which the balance before the transaction is 0 and the
withdrawal amount is 5 such that “negative balance” occurs.

(2) Since “negative balance” is the only behavior that we are interested here, a
lattice LMax of maximal trace properties in Fig. 5 with four elements can be
built, where NB (Negative Balance) is the set of maximal traces where the
value of balance is negative at the end, and ¬NB is its complement.

(3) Using the omniscient observer’s cognizance Co, the observation function O

can be easily derived from the lattice LMax, such that:
– O(SMax,LMax, Co, ε) = �Max;
– O(SMax,LMax, Co, balance=i) = NB where i ≤ 0, i.e. if the balance before

the transaction is negative or 0, the occurrence of “negative balance” is
guaranteed before the withdrawal amount n is entered;

– O(SMax,LMax, Co, balance=i) = �Max where i > 0, i.e. if the balance
before the transaction is strictly greater than 0, whether “negative bal-
ance” occurs or not has not been decided;

– O(SMax,LMax, Co, balance=i � n=j) = NB where i > 0 and j > i, i.e.
“negative balance” is guaranteed to occur immediately after input()
returns a value strictly greater than balance;

– O(SMax,LMax, Co, balance=i � n=j) = ¬NB where i > 0 and j ≤ i, i.e.
“negative balance” is guaranteed not to occur immediately after input()
returns a value less than or equal to balance.

(4) Suppose the behavior B = NB and the analyzed traces T = SMax, the
abstraction αR(SMax,LMax, Co,B, T ) gets the following result. If query
database() returns 0 or a negative value, no matter what value input()
returns, the function query database() (i.e. event balance=i) is respon-
sible for “negative balance”, and further responsibility analysis shall
be applied on the previous transactions of the database. Otherwise, if
query database() returns a value strictly greater than 0, the function
input() (i.e. event n=j) takes the responsibility for “negative balance”,
thus “negative balance” can be prevented by configuring the permission
granted to input() such that its permitted return value must be less than
or equal to the returned value of query database().

4.2 Responsibility Analysis of Information Leakage

Essentially, responsibility analysis of information leakage is the same as read
failure or “negative balance” problem, and the only significant distinction is on
defining the behaviors of interest. Here we adopt the notion of non-interference
[16] to represent the behavior of information leakage.
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In the program, the inputs and outputs are classified as either Low (pub-
lic, low sensitivity) or High (private, high sensitivity). For a given trace σ, if
there is another trace σ′ such that they have the same low inputs but differ-
ent low outputs, then the trace σ is said to leak private information. If no
trace in the program leaks private information (i.e. every two traces with the
same low inputs have the same low outputs, regardless of the high inputs), the
program is secure and has the non-interference property. Thus, for any pro-
gram with maximal trace semantics SMax, the behavior of “Information Leak-
age” IL is represented as the set of leaky traces, i.e. IL = {σ ∈ SMax | ∃σ′ ∈
SMax.low inputs(σ) = low inputs(σ′) ∧ low outputs(σ) �= low outputs(σ′)},
where functions low inputs and low outputs collects low inputs and outputs
along the trace, respectively. The behavior of “No information Leakage” NL is
the complement of IL, i.e. NL = {σ ∈ SMax | ∀σ′ ∈ SMax.low inputs(σ) =
low inputs(σ′) ⇒ low outputs(σ) = low outputs(σ′)}. Thus, the lattice LMax

of maximal trace properties regarding information leakage can be built as in
Fig. 6. Further, the corresponding observation function O can be created, and
the analysis result can be obtained by applying the responsibility abstraction.

⊥Max = ∅

IL NL

�Max = SMax Behaviors:
IL : Information Leakage
NL : No information Leakage

Fig. 6. Lattice of behaviors regarding information leakage

Notice that we are interested in analyzing only the insecure programs in
which some traces leak private information while others do not, i.e. IL � �Max.
For the erroneous programs where every trace leaks private information, i.e.
IL = �Max, we need to admit that our responsibility analysis cannot identify
any entity responsible for the leakage, unless “launching the program” is treated
as an event and it would be found responsible for leaking private information.

5 Related Work

Definition of Causality and Responsibility. Hume [22] is the first one to
specify causation by counterfactual dependence [29]. The best known counter-
factual theory of causation is proposed by Lewis [28], which defines causation as
a transitive closure of counterfactual dependencies. Halpern and Pearl [19,20,30]
defines actual causality based on SEM and extends counterfactual dependency
to allow “contingent dependency”. Chockler and Halpern [8] defines responsibil-
ity to have a quantitative measure of the relevance between causes and effects,
and defines blame to consider the epistemic state of an agent. Their application
of actual causality, responsibility and blame is mainly on artificial intelligence.
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Our definition of responsibility also adopts the idea of counterfactual depen-
dence in the sense that, suppose an event σR is said to be responsible for behav-
ior B in the trace σHσR, there must exist another event σ′

R such that, if σR is
replaced by σ′

R, then B is not guaranteed (by Lemma4).

Error Cause Localization. Classic program analysis techniques, e.g. depen-
dency analysis [1,7,37] and program slicing [2,27,38,39], are useful in detecting
the code that may be relevant to errors, but fail to localize the cause of error.

In recent years, there are many papers [3,17,18,24,25,32–34] on fault local-
ization for counterexample traces, and most of them compare multiple traces pro-
duced by a model checker and build a heuristic metric to localize the point from
which error traces separate from correct traces. Other related papers include
error diagnosis by abductive/backward inference [14], tracking down bugs by
dynamic invariant detection [21]. Actual causality is applied to explain coun-
terexamples from model checker [5] and estimate the coverage of specification
[9]. Besides, there are researches on analyzing causes of specific security issues.
E.g. King et al. [26] employ a blame dependency graph to explain the source of
information flow violation and generate a program slice as the error report.

Compared to the above techniques, this paper succeeds to formally define the
cause or responsibility, and the proposed responsibility analysis, which does not
require a counterexample from the model checker, is sound, scalable and generic
to cope with various problems.

6 Conclusion and Future Work

This paper formally defines responsibility as an abstraction of event trace seman-
tics. Typically, the responsibility analysis consists of four steps: collect the trace
semantics, build a lattice of behaviors of interest, create an observation function
for each observer, and apply the responsibility abstraction on analyzed traces.
Its effectiveness has been demonstrated by several examples.

In the future, we intent to: (1) formalize the abstract responsibility analy-
sis that is sketched in [13], (2) build a lattice of responsibility abstractions to
cope with possible alternative weaker or stronger definitions of responsibility,
(3) generalize the definition of cognizance function as an abstraction of system
semantics, and (4) study the responsibility analysis of probabilistic programs.
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Abstract. Dependency is a prevalent notion in computer science. There
have been numerous informal or formal attempts to define viable syn-
tactic and semantic concepts of dependency in programming languages
with subtle variations and limitations. We develop a new value depen-
dency analysis defined by abstract interpretation of a trace semantics.
A sound approximate dependency algorithm is formally derived by cal-
culational design. Further abstractions provide information flow, slicing,
non-interference, dye, and taint analyses.

1 Introduction
Motivation: Dependency is a prevalent notion in computer science. For example
it is useful in program development [14], it is an important part of any paral-
lelizing compiler [54]. It appears in dataflow analysis [51,64], (abstract) program
slicing [68,56,49,5], program refactoring [7], hardware design [2] and debugging
[46]. It is prevailing in security, [30,12] including privacy analysis [59,47], and in
data bases [27].

Context: There have been numerous attempts to define a viable semantic concept
of dependency in programming languages. For example they are purely syntactic,
not taking data into account [68]. Or they are postulated on programs [26,6,1] or
on one execution trace [69] rather than derived from a definition of dependency
and a definition of the program semantics. Or they are limited to one [17] or
a few [48] of the many possible definitions of dependency based on a specific
instrumentation of the semantics of a given language. Or they make assumptions
of when dependencies are observed e.g. on program termination only [30,8,11]
maybe including nontermination [5,64]. These are typical limitations that we
would like to overcome.

Objective: Our aim is to introduce, justify, and illustrate a methodology to define
flexible concepts of dependency and corresponding static analyzes that can be
adapted to various contexts of use, each context requiring different notions of
dependency, sometimes with subtle variations.

The general idea of dependency is that modifying something in an execution
will later modify some other thing in the execution. This involves comparing at
least two executions, the original and the modified one. Therefore dependency is
not a property of a trace (such as invariance and termination) but a property of
a set of traces (such as program equivalence), sometimes called hyperproperty
[18].

Previous definitions of dependency (and related notions such as interference)
have called for changing the description of program executions by considering
multisemantics [16] or multilogics [31] handling more than one execution at
a time. Other abstract interpretation-based definitions of dependency consider
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only one execution trace (by postulating dependency on that execution trace
[69] or by annotating the semantics [17,28]). When considering several execu-
tion traces, dependency can be defined by abstracting to functional dependency
[56]. Otherwise, one can provide an hypercollecting semantics [8,64] which then
abstracted.

As usual in abstract interpretation [23], we represent properties of entities in
a universe U by a subset of this universe. So a property of elements of U belongs
to ℘(U). For example “to be a natural” is the property N ≜ {𝑛 ∈ Z ∣ 𝑛 ⩾ 0} of
the integers Z. The property “𝑛 is a natural” is “𝑛 ∈ N”.

Given a program component S which semantics 𝓢JSK is an element of the
semantic domain 𝓓JSK, we understand a program component property 𝑃 as a
property of its semantics 𝓢JSK ∈ 𝓓JSK so 𝑃 ∈ ℘(𝓓JSK) and 𝓢JSK ∈ 𝑃 means
that 𝓢JSK has property 𝑃. The collecting semantics is the strongest program
property, that is the singleton {𝓢JSK}.

For example, the semantics we consider is a relation between a finite execu-
tion trace representing a past computation into its continuation into the future
which may not terminate so 𝓓JSK = ℘(𝕋+ × 𝕋+∞) where 𝕋+ is the set of all
finite execution traces and 𝕋+∞ the set of all finite or infinite execution traces.
So program properties belong to ℘(℘(𝕋+ × 𝕋+∞)). They are often called “hyper
properties”, after [18]. This terminology is supposed to rectify a previous mis-
understanding of program properties in [3], where property stands for a trace
property. More precisely, a program semantics is a set of execution traces in
℘(𝕋+∞) and a program property is also a set of execution traces in ℘(𝕋+∞). So
a semantics and its properties belong to the same semantic domain, which is
apparently incoherent.

Considering a property as a set of entities (with this property) has several
advantages. It applies to languages which semantics are not naturally defined
as traces e.g. [51] for logic programs. It avoids the definition of program proper-
ties through program transformation (like [10] duplicating programs which can
compare one execution to another one but not one too many other ones). It
eliminates the expressivity problems of logics (which can always be taken into
account by a further abstraction). It eliminates the need to define different no-
tions of properties for different notions of entities. In particular, the abstraction
of a property is a property such as ⟨℘(℘(𝕋+∞)), ⊆⟩ −−−−−→⟶←−−−−−−−𝛼∪

𝛾∪ ⟨℘(𝕋+∞), ⊆⟩ with
𝛼∪(𝑋) ≜ ∪𝑋, thus solving the apparent incoherence of [3]. Finally, and more
importantly, it aims at avoiding to create different theories for concepts that are
the same.

One difficulty encountered e.g. by [8,64] to define dependency is to lift the
structural trace semantics of a program component in ℘(𝕋+ ×𝕋+∞) into a struc-
tural collecting semantics in ℘(℘(𝕋+ × 𝕋+∞)). For example, [8] has 𝓓JSK =
Trc⊥ → Trc⊥ (where Trc is a set of pairs of initial-final states augmented by
⊥ for non-termination) while the (hyper-)collecting semantics is in ℘(℘(Trc)) →
℘(℘(Trc)) not in ℘(Trc⊥ → Trc⊥). This is a strict approximation (as shown

by [8, Theorem 1] which is an inclusion not an equality). Similarly, [64] uses
an “outcome semantics” which approximates the (hyper-)collecting semantics.
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These collecting semantics are specialized for dependency and lack generality
since traces are approximated by a relation or function, but the advantage is
that dependency boils down to functional dependency, which is easy to define
[56]. We show that, for dependency, we can dispense with the formal structural
definition of the (hyper-)collecting semantics {𝓢JSK} (since it is trivially isomor-
phic to 𝓢JSK by the singleton map • → {•}).
Content: We consider the syntax and trace semantics of iterative programs as
defined in [20, Section 2] in this volume. Traces are necessary to allow us to ob-
serve sequences of values of variables, in particular infinite ones. More abstract
input/output semantics (such as denotational, natural, or axiomatic semantics)
would not be adequate since intermediate or infinite computations are abstracted
away. Informal requirements on the semantic definition of dependency are illus-
trated in Section 3. The formal definition of value dependency is in Section 4. We
prove that this definition is valid both for prefix and maximal trace semantics
hence excludes timing channels including empty observations. The calculational
design of the structural static potential value dependency analysis is in Section 5.
It is not postulated without justification but designed by abstract interpretation
of the semantics, handling uniformly the control and data dependency notions of
[26]. Dye and tracking analysis are further abstractions described in Section 7.
We discuss related work and conclude in Section 2.

2 Syntax and Trace Semantics

We consider a subset of C with simple variables, arithmetic and boolean ex-
pressions, assignment, skip (;), conditionals, while iterations, break, compound
statement, statement lists. The syntax, program labelling, prefix trace seman-
tics, and maximal trace semantics of this subset of C is defined in [20, Section 2]
in this volume. The main idea is that ⟨𝜋0, 𝜋1⟩ ∈ 𝓢JSK if and only if the trace
𝜋0 representing a past computation arriving at S is continued within S by 𝜋1
resulting in a computation 𝜋0 ⌢⋅ 𝜋1. The continuation trace 𝜋1 is finite prefix of
the whole computation when 𝓢JSK = 𝓢∗JSK. 𝜋1 is finite maximal or infinite when
𝓢JSK = 𝓢+∞JSK. 𝝔(𝜋)x denotes the value of a variable x at the end of the trace
𝜋.

3 Informal Requirements for a Semantic Definition of
Dependency

According to [26], “Information flows from object x to object y, denoted x⇝ y,
whenever information stored in x is transferred to, or used to derive information
transferred to, object y”. When x ⇝ y we say that x flows to y or, when con-
sidering the inverse relation, that y depends on x. To make this information flow
clear, most definitions of in/dependency [17,65,64]) are of the form “changing
(part of) the input (say x) may/should not change (part of) the output (say y)”,
sometimes including nontermination [64]. For example, a pure function depends
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on a parameter if and only if changing only this parameter changes the result of
the function. In non-interference [30,48] changing private/untrusted input data
should not change public/trusted output data. This shows that two different ex-
ecutions reflecting the change should be involved in the definition of dependency
(or secrecy in [65]).

Dependency is usually static (valid for any execution of the program). The
dependency relation ⇝ can be global (valid anywhere in the program as in [26])
or local (that is relative to a correspondence between initial values of variables
and their values when reaching a program point, if ever, including for nontermi-
nating executions). We consider a static and local definition of dependency. The
following examples illustrate this intuition and show how it may be made more
precise.
Example 1 (explicit dependency). Consider ℓ1 y = x ; ℓ2. Changing the initial
value 𝑦0 of y will change the value of y at the entry point ℓ1. Changing the initial
value 𝑥0 of x will not change the value of y at ℓ1. So at the entry point ℓ1, y
depends on 𝑦0 but not on 𝑥0.

The value of y at exit point ℓ2 is 𝑥0 so changing the initial value 𝑦0 of y will
not change the value of y at ℓ2. Changing the initial value 𝑥0 of x will change the
value of y at ℓ2. So at ℓ2, y depends on 𝑥0 but not on 𝑦0. Such a dependency at
ℓ2 is called explicit in [26] since it does not depend on the program control.

Dependency is local since x ⁄⇝ y at ℓ1 but x ⇝ y at ℓ2. We write x ⁄⇝ℓ2 y
and x⇝ℓ2 y to show the program point where dependency is specified ⊓⊔

Example 2 (implicit dependency). Consider Pa ≜ ℓ1 y = 1 ;if ℓ2 (x == 0) { ;ℓ4 }ℓ5.
Changing the initial value 𝑥0 of x will change whether program control ℓ4 is
reached or not. If ℓ4 is reached then the value of y at ℓ4 will always be 1 so y does
not depend on 𝑥0 at ℓ4 (and neither at ℓ5).

Consider now Pb ≜ ℓ1 y = 1 ;if ℓ2 (x == 0) { ℓ3 y = x ;ℓ4 }ℓ5. Changing the
initial value 𝑥0 of x will change whether program control points ℓ3 and ℓ4 are
reached or not. If ℓ4 is reached then the value of y at ℓ4 will always be 0 so y
does not depend on 𝑥0 at ℓ4. However, depending on the initial value 𝑥0 of x, the
value of y at ℓ5 will be either 1 (when 𝑥0 ≠ 0) or 0 (when 𝑥0 = 0) so y depends
on 𝑥0 at ℓ5. Such a dependency at ℓ5 is called implicit in [26] since it depends on
the program control. ⊓⊔

Our formalization of dependency does not need to distinguish implicit de-
pendency (Ex. 2) from explicit dependency (Ex. 1) since the definition is the
same in both cases.
Example 3 (timely dependency). Consider the program while (0 == 0) ℓ y = x ;.
The sequence of values taken by x at ℓ is 𝑥0, 𝑥0, 𝑥0, …while it is 𝑦0, 𝑥0, 𝑥0, …for
y. So x depends on 𝑥0 while y depends on 𝑥0 and 𝑦0 at ℓ. For y considering
only one possible value during the iterations would be insufficient to determine
the dependency upon initial values and, in general, we have to consider the full
sequence of successive values of y at a given program point ℓ. ⊓⊔
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Example 4 (value dependency). Consider the program while (0 == 0) { ℓ x = x -
1 ;if (x == 0) y = y + 1 ; }. If 𝑥0 ⩽ 0, the sequence of values of y at ℓ is the

infinite sequence 𝑦0, 𝑦0, 𝑦0, …. If 𝑥0 > 0, it is
𝑥0times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑦0,… , 𝑦0, 𝑦0 + 1, 𝑦0 + 1, …. So we

can find two executions of the program with different initial values 𝑥0 of x such
that the sequences of values of y at ℓ have a common prefix but differ at least
by one value after that prefix. So y depends on 𝑥0 at ℓ. ⊓⊔

Example 5 (timing channel). Consider the program int x, y; while (x > 0)
ℓ x = x - 1 ; (where we have added a declaration to show that the program
involves variable y). If the initial value of x is 𝑥0 ⩽ 0 then the sequence of values
taken by y at ℓ is empty. Otherwise, if 𝑥0 > 0, it is 𝑦0 ⋅ 𝑦0 ⋅ … ⋅ 𝑦0 repeated 𝑥0
times. So changing 𝑥0 changes this sequence of values. Depending on 𝑥0 we can
find sequences of values of at ℓ that differ in length, but along these sequences
we cannot find a point where they differ in value.

In security, this is a covert channel [44] (more precisely a timing channel [58])
which may or may not be considered as observable, the choice being application-
dependent.

Traditionally, in dependency analysis, timing channels are not considered to
be at the origin of dependencies [26], in particular when dependency is used in
the context of compilation. ⊓⊔

Example 6 (empty observation). Consider the program if (x==0) { ℓ1 y = x ;ℓ2 }ℓ3.
What are the values of y observed at ℓ2? If x==0 this is 0 while if x!=0 there is no
possible observation y at ℓ2. So we may consider that an empty observation is a
valid observation in which case y depends on x at ℓ2. This is certainly a frequent
point of view in security. On the contrary, we may exclude empty observations,
in which case y does not depend on x at ℓ2. This is more common in compilation
(since y is constant at ℓ2). Notice that in both cases y depends on x at ℓ3 since
we can observe different values of y depending on the test on x. ⊓⊔

Our definition of dependency relies on the timely observation of values but
excludes timing channels and empty observations. This is an arbitrary choice
that follows the implicit tradition in compilation.

4 Formal semantic definition of value dependency

Informally, we say that the initial value 𝑥0 of variable x flows to variable y at
program point ℓ (or y depends on the initial value of x), written x⇝ℓ y, if and
only if changing the initial value 𝑥0 of x will change the sequence of values taken
by y whenever execution reaches program point ℓ.

Sequence of values of a variable at a program point Given an initialization
trace 𝜋0 ∈ 𝕋+ followed by a nonempty trace 𝜋 ∈ 𝕋+∞, let us define the sequence
seqvalJyKℓ(𝜋0, 𝜋) of values of the variable y at program point ℓ along the trace 𝜋
continuing 𝜋0 as follows.
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seqvalJyKℓ(𝜋0, ℓ) ≜ 𝝔(𝜋0)y (1)
seqvalJyKℓ(𝜋0, ℓ′) ≜ ϶ when ℓ′ ≠ ℓ

seqvalJyKℓ(𝜋0, ℓ 𝑎−−−−→ ℓ″𝜋) ≜ 𝝔(𝜋0)y ⋅ seqvalJyKℓ(𝜋0 ⌢⋅ ℓ 𝑎−−−−→ ℓ″, ℓ″𝜋)
seqvalJyKℓ(𝜋0, ℓ′ 𝑎−−−−→ ℓ″𝜋) ≜ seqvalJyKℓ(𝜋0 ⌢⋅ ℓ′ 𝑎−−−−→ ℓ″, ℓ″𝜋) when ℓ′ ≠ ℓ

seqvalJyKℓ(𝜋0, 𝜋) is the empty sequence ϶ when ℓ does not appear in 𝜋. We rely
on intuition that this definition applies to finite and infinite traces (by passing
to the limit as in [20, Section 2.5]).

The sequence of values of variable y at a program point ℓ abstracts away the
position in traces where the values are observed. So execution time (represented
as the number of steps that have been executed to reach a given position in the
trace) is abstracted away.

Differences between sequences of values of a variable at a program
point The definition of dependency of y on the initial value of x involves the
comparison of sequences 𝜔 and 𝜔′ of the successive values of variable y taken at
some program point for two different executions that differ on the initial value
of x. By “differ”, we mean that the sequences may have a common prefix but
must eventually have a different value at some position in the sequences.

diff(𝜔, 𝜔′) ≜ ∃𝜔0, 𝜔1, 𝜔′1, 𝜈, 𝜈′ . 𝜔 = 𝜔0 ⋅ 𝜈 ⋅ 𝜔1 ∧ 𝜔′ = 𝜔0 ⋅ 𝜈′ ⋅ 𝜔′1 ∧ 𝜈 ≠ 𝜈′ (2)

Observe that ¬diff(𝜔, 𝜔′) implies either that 𝜔 = 𝜔′ (the futures are the same so
there is no dependency) or one is a strict prefix of the other (this is a timing
channel abstracted away in this definition (2) of dependency). Because 𝜔 and
𝜔′ in (2) must contain at least one value, they cannot be empty (thus excluding
Ex. 6).

Definition of value dependency Let us define 𝒟ℓ⟨x, y⟩ to mean that “the
sequence of values of variable y at ℓ depends upon the initial value of x”, also
written x ⇝ℓ y to mean that the initial value of x flows to y. So there are
two execution traces whose initial values are the same but for x for which the
sequences of values of y at program point ℓ on these two execution traces do
differ.

Definition 1 (Dependency 𝒟).

𝒟ℓ⟨x, y⟩ ≜ {Π ∈ ℘(𝕋+ × 𝕋+∞) ∣ ∃⟨𝜋0, 𝜋1⟩, ⟨𝜋′0, 𝜋′1⟩ ∈ Π . (3)
(∀z ∈ V ⧵ {x} . 𝝔(𝜋0)z = 𝝔(𝜋′0)z) ∧

diff(seqvalJyKℓ(𝜋0, 𝜋1), seqvalJyKℓ(𝜋′0, 𝜋′1))} ⊓⊔

We do not need to require 𝝔(𝜋0)x ≠ 𝝔(𝜋′0)x in (3), since, the language being
deterministic, the computations would be the same for the same initial values of
variables.
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Dependency in (3) defines (a) an abstraction of the past (the initial value
of variables), (b) an abstraction of the future (seqvalJyK), (c) the difference be-
tween past abstractions (the initial values of variables only differ for x), (d) the
difference between futures (diff). It states that the abstraction of the future de-
pends on the abstraction of the past if and only if there exist two executions
with different past abstractions and different future abstractions.

Definition 2 (Value dependency flow). At program point ℓ of program P,
variable y depends on the initial value of variable x (or x ⇝ℓ

P
y i.e. the initial

value of variable x flows to variable y at program point ℓ) if and only if

x⇝ℓ
P
y ≜ (𝓢+∞JPK ∈ 𝒟ℓ⟨x, y⟩). (4) ⊓⊔

The definition of seqval in (1) accounts for timely dependency (Ex. 3) while
that of diff in (2) accounts for value dependency (Ex. 4) but excludes timing
channels (Ex. 5) and empty observations (Ex. 6). Contrary to [26] there is no need
for an artificial distinction between explicit (Ex. 1) and implicit flows (Ex. 2).
In (3) and (4) both explicit and implicit flows are comprehended in exactly the
same definition.

Notice that definition (4) of dependency is semantic-based and explicitly
depends upon the program semantics. The notation x ⇝ℓ

𝓢+∞JPK y would be more
precise.

Prefix versus maximal trace semantics based dependency The use of
the prefix trace semantics 𝓢∗JPK is equivalent to that of the maximal trace
semantics 𝓢+∞JPK in the definition (4) of dependency. This is formally stated by
the following

Lemma 1 (Value dependency for finite prefix traces).

x⇝ℓ
P
y = (𝓢∗JPK ∈ 𝒟ℓ⟨x, y⟩). ⊓⊔

Value dependency abstraction The value dependency abstraction of a se-
mantic property S ∈ ℘(℘(𝕋+ × 𝕋+∞)) is

𝛼ᶁ(S)ℓ ≜ {⟨x, y⟩ ∣ S ⊆ 𝒟ℓ⟨x, y⟩} (5)

Lemma 2. There is a Galois connection ⟨℘(℘(𝕋+×𝕋+∞)), ⊆⟩ −−−−−→←−−−−−
𝛼ᶁ

𝛾ᶁ
⟨ℙᶁ, ⊇̇⟩ where

ℙᶁ ≜ L → ℘(V × V ) is ordered pointwise and the concretization of a dependency
property 𝐃 is

𝛾ᶁ(𝐃) ≜ ⋂
ℓ∈L
⋂

⟨x, y⟩∈𝐃(ℓ)
𝒟ℓ⟨x, y⟩ ⊓⊔

395



P. Cousot

The intuition is that the more semantics 𝓢 have semantic property S, the less
dependencies can be found i.e. S ⊆ S′ ⇒ 𝛼ᶁ(S)ℓ ⊇ 𝛼ᶁ(S′)ℓ. This is because
the dependencies must exist for all semantics 𝓢 having semantic property S.
Otherwise stated, the less dependencies you consider, the more semantics will
exactly have these dependencies.

This is different from the observation than larger semantics have more de-
pendencies 𝓢 ⊆ 𝓢′ ⇒ 𝛼ᶁ({𝓢})ℓ ⊆ 𝛼ᶁ({𝓢′})ℓ since 𝓢 ∈ 𝒟ℓ⟨x, y⟩ ⇒ 𝓢′ ∈ 𝒟ℓ⟨x,
y⟩.

Value dependency semantics is an abstraction of the collecting trace seman-
tics.
Corollary 1 (Value dependency for finite prefix traces).

𝜆 ℓ . {⟨x, y⟩ ∣ x⇝ℓ
P
y} = 𝛼ᶁ({𝓢+∞JPK}) = 𝛼ᶁ({𝓢∗JPK}) ⊓⊔

Exact, definite, and potential value dependency semantics The ex-
act value dependency semantics 𝓢 diff abstracts the maximal trace semantics, or
equivalently, by Lem. 1, the prefix trace semantics by the dependency abstrac-
tion. By Rice theorem [55], {𝓢∗JSK} is not computable so 𝓢 diff is not computable
in this way. Therefore, static analysis must content itself with approximations (or
unsoundness that we disapprove of). There are two possibilities. Definite value
dependency is an under-approximation of value dependency (so ∅ is a correct
under-approximation). Potential value dependency is an over-approximation of
value dependency (so V × V is a correct over-approximation). Formally,

𝓢 diffJSK ≜ 𝛼ᶁ({𝓢+∞JSK}) = 𝛼ᶁ({𝓢∗JSK}) exact dependency
𝓢 diff
∀ JSK ⊆̇ 𝛼ᶁ({𝓢+∞JSK}) definite dependency

𝛼ᶁ({𝓢+∞JSK}) ⊆̇ 𝓢 diff
∃ JSK potential dependency (6)

We choose potential value dependency, which is an over-approximation of value
dependency needed e.g. in compilation or security, looking for more dependencies
than there are actually.

5 Calculational Design of the Structural Static Potential
Value Dependency Analysis

Value dependency abstract domain An abstract property 𝐃 ∈ ℙᶁ of the
value dependency abstract domain ℙᶁ tracks at each program point in ℓ ∈ L the
flows ⟨x, y⟩ ∈ 𝐃ℓ the initial value of x to the value of y at ℓ, that is x⇝ℓ y.

𝐃 ∈ ℙᶁ ≜ L→ ℘(V × V ) (7)

⟨ℙᶁ, ⊆̇, ⊥̇, ⊤̇, ∩̇, ∪̇⟩ is a finite complete lattice partially ordered by pointwise
subset inclusion ⊆̇. As in [26], values of variables are not taken into account in
this abstraction. The Ex. 7 below shows that this introduces imprecision. This
imprecision can be recovered by a reduced product [23,24] with a relational value
analysis, which is an orthogonal problem.
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Example 7 (structural compositionality). In the following statement, x and y at
ℓ1 depend on x at ℓ0. /* 𝑥 = 𝑥0, 𝑦 = 𝑦0 */

ℓ0 y = x ;
ℓ1 /* 𝑥 = 𝑥0, 𝑦 = 𝑥0 */

In the following statement, x and y at ℓ2 depend on x at ℓ1.
/* 𝑥 = 𝑥0, 𝑦 = 𝑦0 */

ℓ1 y = y-x ;
ℓ2 /* 𝑥 = 𝑥0, 𝑦 = 𝑦0 −𝑥0 */

In the sequential composition of the two statements
/* 𝑥 = 𝑥0, 𝑦 = 𝑦0 */

ℓ0 y = x ; /* 𝑥 = 𝑥0, 𝑦 = 𝑥0 */
ℓ1 y = y-x ; /* 𝑥 = 𝑥0, 𝑦 = 0 */
ℓ2

y at ℓ2 depends on x at ℓ1 which depends on x at ℓ0 so, by composition, y at ℓ2
depends on x at ℓ0. However, y = 0 at ℓ2 so y at ℓ2 does not depend on x at ℓ0.

For a more precise analysis, the reduced product of the dependency analysis
and the linear equality analysis [40] will find ∃𝑥′0, 𝑦′0 . 𝑥′0 = 𝑥0 ∧ 𝑦′0 = 𝑥0 ∧ 𝑥 =
𝑥′0, 𝑦 = 𝑦′0 − 𝑥′0, that is, by projection, 𝑥 = 𝑥0, 𝑦 = 0 so y at ℓ2 does not depend
on x at ℓ0. ⊓⊔

Value dependency abstract semantics Whenever some term is not com-
putable because it uses values, the calculational design of the potential value
dependency semantics 𝓢 diff

∃ JSK will over-approximated it (as required by (6)).
Therefore 𝓢 diff

∃ JSK is sound by construction. Besides the reduction with abstrac-
tions of values, this calculational design of 𝓢 diff

∃ JSK shows that it is possible to
improve the precision of the analysis by taking the symbolic constancy of ex-
pressions into account.

Theorem 1. For all program components S, the abstract value dependency se-
mantics 𝓢 diff

∃ JSK defined by (8) to (17) is sound as specified by (6) of potential
dependency.

We obtain an abstract semantics operating by structural induction and comput-
ing fixpoints in a finite domain. It is therefore computable and directly yields
an effective algorithm. We show the calculational design for the assignment, the
other cases are similar.
• The abstract potential dependency semantics at a statement S which
is not an iteration, variables have their initial value so only depend on them-
selves. (For loops (17) more dependencies may originate from the iterations.)

𝓢 diff
∃ JSK atJSK ≜ 1V (8)

where 1𝑆 ≜ {⟨x, x⟩ ∣ x ∈ 𝑆} is the identity relation on set 𝑆 and V is the set of
program variables.
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• The abstract potential dependency semantics outside a statement,
there is no possible potential dependency since executions never reach that
point.

ℓ ∉ labsJSK⇒ 𝓢 diff
∃ JSK ℓ ≜ ∅ (9)

• The abstract potential dependency semantics after an assignment
S ∶∶= x = A ;, the unmodified variables y ≠ x depend upon their initial value at
atJSK. The assigned-to variable x depends on 𝓢 diff

∃ JAK defined as the variables on
which the assigned expression A does depend.

𝓢 diff
∃ JSK ℓ ≜ ( ℓ = atJSK ? 1V (10)

| ℓ = aftJSK ? {⟨y, x⟩ ∣ y ∈ 𝓢 diff
∃ JAK} ∪ {⟨y, y⟩ ∣ y ≠ x}

: ∅ )

𝓢 diff
∃ JAK ≜ {y ∣ ∃𝜌 ∈ Ev . ∃𝜈 ∈ 𝕍 .𝓐JAK𝜌 ≠𝓐JAK𝜌[y← 𝜈]} ⊆ 𝕧𝕒𝕣𝕤JAK

The functional dependency 𝓢 diff
∃ JAK of expression A is traditionally over-approx-

imated syntactically by the set of variables 𝕧𝕒𝕣𝕤JAK of this expression A [68,26].
This is very coarse since e.g. if A is constant (such as y = x - x ;), 𝓢 diff

∃ JAK is
empty. For a trivial improvement, we can define

𝓢 diff
∃ J1K ≜ ∅ 𝓢 diff

∃ JxK ≜ {x} 𝓢 diff
∃ JA1 - A2K ≜ {y ∈ 𝕧𝕒𝕣𝕤JA1K ∪ 𝕧𝕒𝕣𝕤JA2K ∣ A1 ≠ A2}.

The analysis looks quite imprecise. Further precision can be obtained by a re-
duced product with a value analysis, as examplified in Ex. 7 and later discussed
in Section 6.

The interest of the proof of (10) is to show that the value dependency al-
gorithm follows by calculus from the trace semantics of [20, Section 2] and
the abstraction (5). By varying the semantics this can be applied to other lan-
guages. By varying the abstraction, one can consider the different variants of
dependency. In another context of safety analysis, such proofs have been shown
to be machine checkable [39] and hopefully, in the future, automatisable.

Proof (of (10)). The cases ℓ = atJSK was handled in (8) and ℓ ∉ labsJSK in (9). It
remains the case ℓ = aftJSK.
𝛼ᶁ({𝓢+∞JSK}) aftJSK

= 𝛼ᶁ({𝓢∗JSK}) aftJSK HLem. 1I
= {⟨x′, y⟩ ∣ 𝓢∗JSK ∈ 𝒟(aftJSK)⟨x′, y⟩} Hdef. (5) of 𝛼ᶁ and def. ⊆I
= {⟨x′, y⟩ ∣ ∃⟨𝜋0, 𝜋1⟩, ⟨𝜋′0, 𝜋′1⟩ ∈ 𝓢∗JSK . ∀z ∈ V ⧵ {x′} . 𝝔(𝜋0)z = 𝝔(𝜋′0)z ∧

diff(seqvalJyK(aftJSK)(𝜋0, 𝜋1), seqvalJyK(aftJSK)(𝜋′0, 𝜋′1))}Hdef. ∈ and (3) of 𝒟ℓ⟨x′, y⟩I
= {⟨x′, y⟩ ∣ ∃⟨𝜋0, 𝜋1⟩, ⟨𝜋′0, 𝜋′1⟩ ∈ {⟨𝜋atJSK, atJSK x=𝓐JAK𝝔(𝜋atJSK)−−−−−−−−−−−−−−−−−−−−−→

aftJSK⟩ ∣ 𝜋atJSK ∈ 𝕋+} . ∀z ∈ V ⧵ {x′} . 𝝔(𝜋0)z = 𝝔(𝜋′0)z ∧
diff(seqvalJyK(aftJSK)(𝜋0, 𝜋1), seqvalJyK(aftJSK)(𝜋′0, 𝜋′1))}
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Hdef. ([20].3) of the assignment prefix finite trace semanticsI
= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩, ⟨𝜋′0atJSK,

atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩ . ∀z ∈ V ⧵ {x′} . 𝝔(𝜋0atJSK)z =
𝝔(𝜋′0atJSK)z ∧ diff(seqvalJyK(aftJSK)(𝜋0atJSK, atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK),

seqvalJyK(aftJSK)(𝜋′0atJSK, atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK))} Hdef. ∈I
= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩, ⟨𝜋′0atJSK,

atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩ . (∀z ∈ V ⧵ {x′} . 𝝔(𝜋0atJSK)z = 𝝔(𝜋′0atJSK)z) ∧
diff(𝝔(𝜋0atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK)y, 𝝔(𝜋′0atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK)y)}Hdef. (1) of the future seqvalJyKI

= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩, ⟨𝜋′0atJSK,
atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩ . (∀z ∈ V ⧵ {x′} . 𝝔(𝜋0atJSK)z =
𝝔(𝜋′0atJSK)z) ∧ ((𝝔(𝜋0atJSK)y ≠ 𝝔(𝜋′0atJSK)y) ∨ (𝝔(𝜋0atJSK)y = 𝝔(𝜋′0atJSK)y ∧
𝝔(𝜋0atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK)y ≠ 𝝔(𝜋′0atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK)y)}H(2) so that diff(𝑎 ⋅ 𝑏, 𝑐 ⋅ 𝑑) if and only if (1) 𝑎 ≠ 𝑐 or (2) 𝑎 = 𝑐 ∧ 𝑏 ≠ 𝑑.I

= {⟨x′, y⟩ ∣ ∃⟨𝜋0atJSK, atJSK x=𝓐JAK𝝔(𝜋0atJSK)−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩, ⟨𝜋′0atJSK,
atJSK x=𝓐JAK𝝔(𝜋′0atJSK)−−−−−−−−−−−−−−−−−−−−−−−→ aftJSK⟩ . (∀z ∈ V ⧵{x′} . 𝝔(𝜋0atJSK)z = 𝝔(𝜋′0atJSK)z)∧((y =
x′) ∨ (y = x ∧𝓐JAK𝝔(𝜋0atJSK) ≠𝓐JAK𝝔(𝜋′0atJSK)))} Hdef. (2) of 𝝔I
⊆ {⟨x′, y⟩ ∣ ((y = x′) ∨ (y = x ∧ ∃𝜌, 𝜈 .𝓐JAK𝜌 ≠𝓐JAK𝜌[x′ ← 𝜈]))} (11)

Hletting 𝜌 = 𝝔(𝜋0atJSK) and 𝜈 = 𝝔(𝜋′0atJSK)(x′) so that ∀z ∈ V ⧵ {x′} .
𝝔(𝜋0atJSK)z = 𝝔(𝜋′0atJSK)z implies that 𝝔(𝜋′0atJSK) = 𝜌[x′ ← 𝜈].I

= {⟨x′, x′⟩ ∣ x′ ≠ x} ∪ {⟨x′, x⟩ ∣ ∃𝜌, 𝜈 .𝓐JAK𝜌 ≠𝓐JAK𝜌[x′ ← 𝜈]} Hcase analysisI
= {⟨x′, x′⟩ ∣ x′ ≠ x} ∪ {⟨x′, x⟩ ∣ x′ ∈ 𝓢 diff

∃ JAK}
Hby defining the functional dependency of an expression A as 𝓢 diff

∃ JAK ≜
{x′ ∣ ∃𝜌, 𝜈 .𝓐JAK𝜌 ≠𝓐JAK𝜌[x′ ← 𝜈]} in (10)I ⊓⊔

Equality holds in (11) if every environment is computable i.e. ∀𝜌 ∈ Ev . ∃𝜋 ∈ 𝕋+ .
𝝔(𝜋) = 𝜌. Then imprecision comes only from 𝓢 diff

∃ JAK i.e. when it is impossible
to evaluate A in all possible environments. Notice that a reduced product with a
reachability analysis providing an invariant atJSK will limit the possible values of
the environments 𝜌 and 𝜌[x′ ← 𝜈] in 𝓢 diff

∃ JAK and therefore make the dependency
analysis more precise.

• The abstract potential value dependency semantics of a conditional
statement S ∶∶= if (B) S𝑡 is specified in (12) below. It was discovered by
calculational design. (The left restriction 𝑟 ⌉ 𝑆 of a relation 𝑟 ∈ ℘(𝑆1 × 𝑆2) to a set
𝑆 is {⟨𝑥, 𝑦⟩ ∈ 𝑟 ∣ 𝑥 ∈ 𝑆}.)
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𝓢 diff
∃ JSK ℓ ≜ ( ℓ = atJSK ? 1V (a) (12)

| ℓ ∈ inJS𝑡K ? 𝓢 diff
∃ JS𝑡K ℓ ⌉ nondet(B, B) (b)

| ℓ = aftJSK ? 𝓢 diff
∃ JS𝑡K aftJS𝑡K ⌉ nondet(B, B) (c.1)
∪ 1V ⌉ nondet(¬B, ¬B) (c.2)
∪ nondet(¬B, ¬B) ×modJS𝑡K (c.3)

: ∅ ) (d)

On entry (12.a), which is an instance of (8), variables in V only depend upon
themselves as specified by the identity relation 1V .

The reasoning in (12.b) is that if a variable y depends at ℓ on the initial value
of a variable x at atJS𝑡K, it depends in the same way on that initial value of the
variable x at atJSK since the test B has no side effect. However, (12.b) also takes
into account that if S𝑡 can only be reached for a unique value of the variable x
and the branch is not taken for all other values of x then the variable y does not
depend on x in S𝑡 since empty observations are disallowed by the abstraction (5)
using the definition (2) of diff.

[Non-]determinacy det(B1, B2) [nondet(B1, B2)] is defined s.t.

det(B1, B2) ⊆ {x ∣ ∀𝜌, 𝜌′ . (𝓑JB1K𝜌 ∧𝓑JB2K𝜌′) ⇒ (𝜌(x) = 𝜌′(x))} (13)
nondet(B1, B2) ⊇ V ⧵ det(B1, B2)

So if x ∈ det(B1, B2) in (13) then B1 and B2 can both be true for at most one value of
x (e.g. det(x==1, x==1) = {x} and det(x==1, x!=1) = ∅). It is under-approximated
by ∅. Its complement nondet(B1, B2) in (13) is the set of variables for which B1
and B2 may both be true for different values of variable x. It is over-approximated
by all variables V . A better solution is to use a reduced product with a value or
symbolic constant propagation analysis as in Section 6.

If x ∉ nondet(B, B) in (12.b) then x ∈ det(B, B) so the value of x is constant
in S𝑡 so no variable y in S𝑡 can depend on x. For example dependency at ℓ in
if (x == 1) { y = x ; ℓ } is the same as x = 1 ;y = x ; ℓ, which is the same as
y = 1 ; ℓ so y does not depends on x at ℓ.

(12.c) determines dependencies after S so compare two possible executions of
that statement. In case (12.c.1) both executions go through the true branch. In
case (12.c.2) both executions go through the false branch, while in case (12.c.3)
the executions take different branches.

In case (12.c.1) when the test is true tt for both executions, the executions
of the true branch S𝑡 terminate and control after S𝑡 reaches the program point
after S (recall that aftJS𝑡K = aftJSK). The dependencies after S𝑡 propagate after S
but only in case of non-determinism, e.g. for variables that are not constant.

The second case in (12.c.2) is for those executions for which the test B is false
ff. Variables depend on themselves atJSK and control moves to aftJSK so that
dependencies are the same there, but only for variables that can reach aftJSK
with different values on different executions as indicated by the restriction to
nondet(¬B, ¬B).
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The third case in (12.c.3) is for pairs of executions, one through the true
branch and the other through the false branch. In that case y depends on x
only if x does not force execution to always take the same branch, meaning that
x ∈ nondet(¬B, ¬B). If y is not modified by the execution through S𝑡 then its
value after S is always the same as its value atJSK (since y is not modified on the
false branch either). In that case changing y atJSK would not change y after S so
that, in that situation, y does not depend on x. Therefore (12.c.3) requires that
y ∈ modJS𝑡K.

The variables modJSK modified by a statement S are

modJSK ⊇ {x ∣ ∃𝜋0, 𝜋1 . ⟨𝜋0atJSK, atJSK𝜋1aftJSK⟩ ∈ 𝓢+∞JSK
∧ 𝝔(𝜋0atJSK𝜋1aftJSK)x ≠ 𝝔(𝜋0atJSK)x} (14)

In the style of [26], a purely syntactic and very rough over-approximation would
be
modJx = E ;K ≜ {x} modJif (B) S𝑡 else S𝑓K ≜modJS𝑡K ∪modJS𝑓K (15)
modJ{ Sl }K ≜modJSlK modJwhile (B) SK ≜modJif (B) SK ≜modJSK

modJSl SK ≜modJSlK ∪modJSK modJ;K ≜modJ 𝜖 K ≜modJbreak ;K ≜∅
Again Section 6 applies. A reduced product with a reachability analysis would
be more precise e.g. because the variable is constant on exit of S or a relational
analysis such that linear equalities [40] shows that it is equal to its initial value.

Finally in case (12.d) the program point ℓ is not reachable in S so, as stated
in (9) there is not dependency at ℓ originating from S.

Example 8. Consider S ∶∶= ℓ L = H ;ℓ′. We have 𝓢 diff
∃ JSK ℓ = {⟨x, x⟩ ∣ x ∈ V } and

𝓢 diff
∃ JSK ℓ′ = {⟨H, L⟩} ∪ {⟨x, x⟩ ∣ x ∈ V ⧵ {L}}.

We have nondet(H, H) = nondet(H, ¬H) = nondet(¬H, ¬H) = {H} so that for the
statement S′ ∶∶= { if ℓ1 (H) ℓ2 L = H ;ℓ3 else ℓ4 L = H ;ℓ5 }ℓ6, we have

𝓢 diff
∃ JS′K ℓ1 = {⟨x, x⟩ ∣ x ∈ V }

𝓢 diff
∃ JS′K ℓ2 = 𝓢 diff

∃ JS′K ℓ4 = {⟨x, x⟩ ∣ x ∈ V ⧵ {H}}
𝓢 diff
∃ JS′K ℓ3 = 𝓢 diff

∃ JS′K ℓ5 = {⟨x, x⟩ ∣ x ∈ V ⧵ {L}}
𝓢 diff
∃ JS′K ℓ6 = {⟨H, L⟩} ∪ {⟨x, x⟩ ∣ x ∈ V ⧵ {L}}

This is different and more precise than e.g. [5,26] since L does not depend on H
at ℓ3 and ℓ5 since, by def. nondet, L is constant at ℓ3 and ℓ5. So this is equivalent to
ℓ2 L = true ;ℓ3 and ℓ4 L = false ;ℓ5 which obviously would create no dependency.
In contrast [5,26] maintain an imprecise control dependence context, denoting
(a superset of) the variables that at least one test surrounding S depends on.
Section 6 provides other examples of increased precision when taking values of
variables into account. ⊓⊔

r • The abstract potential dependency semantics of a statement list
Sl ∶∶= Sl′ S is
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𝓢 diff
∃ JSlK ℓ ≜ ( ℓ ∈ labsJSl′K ? 𝓢 diff

∃ JSl′K ℓ (16.a)
| ℓ ∈ labsJSK ⧵ {atJSK} ? 𝓢 diff

∃ JSl′K atJSK #𝓢 diff
∃ JSK ℓ (16.b)

: ∅ )

where the composition # of relations is 𝑟1 # 𝑟2 ≜ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 . ⟨𝑥, 𝑧⟩ ∈ 𝑟1 ∧ ⟨𝑧,
𝑦⟩ ∈ 𝑟2}.

The first case (16.a) looks for dependencies at a program point ℓ inside Sl′
so, by structural induction, this is 𝓢 diff

∃ JSl′K ℓ.
The second case (16.b) looks for dependencies at a program point ℓ inside S.

We exclude the case ℓ = atJSK since atJSK = aftJSl′K ∈ labsJSl′K so this case has
already been handled in the previous case (16.a).

Otherwise in (16.b), a variable y at ℓ in S depends on the initial value of a
variable x on entry atJSl ∶∶= Sl′ SK = atJSl′K ∈ labsJSl′K if and only if y at ℓ
in S depends on the initial value of some variable z on entry atJSK = aftJSl′K of
statement S and the value of z at that point depends on the initial value of a
variable x on entry atJSlK of the statement list Sl. So there exists z such that
⟨y, z⟩ ∈ 𝓢 diff

∃ JSl′K aftJSl′K = 𝓢 diff
∃ JSl′K atJSK and ⟨z, y⟩ ∈ 𝓢 diff

∃ JSK ℓ, meaning that
⟨x, y⟩ ∈ 𝓢 diff

∃ JSl′K atJSK #𝓢 diff
∃ JSK ℓ is in their composition. As shown by Ex. 7, the

precision can be improved by a reduced product with a value analysis.

• The abstract potential dependency semantics of an iteration state-
ment S ∶∶= while ℓ (B) S𝑏 is the following

𝓢 diff
∃ JSK ℓ′ = (lfp ⊆̇𝓕diff

∃ Jwhile ℓ (B) S𝑏K) ℓ′ (17)

𝓕diff
∃ Jwhile ℓ (B) S𝑏K𝑋 ℓ′ =
( ℓ′ = ℓ ? 1V ∪ (𝑋(ℓ) # (𝓢 diff

∃ JS𝑏K ℓ ⌉ nondet(B, B))) (a)
| ℓ′ ∈ inJS𝑏K ? 𝑋(ℓ) # (𝓢 diff

∃ JS𝑏K ℓ′ ⌉ nondet(B, B)) (b)
| ℓ′ = aftJSK ? 𝑋(ℓ) ∪ (𝑋(ℓ) # (V ×modJS𝑏K)) ∪

𝑋(ℓ) # ((⋃ℓ″∈brks-ofJS𝑏K 𝓢 diff
∃ JS𝑏K ℓ″) ⌉ nondet(B, B))

(c)

: ∅ ) (d)

Since 𝓕diff
∃ JSK ∈ ℙᶁ → ℙᶁ is ⊆̇-monotone and the abstract domain ⟨ℙᶁ, ⊆̇, 𝜆 ℓ .∅,

𝜆 ℓ . V × V , ∪̇, ∩̇⟩ in (7) is a complete lattice, the least fixpoint lfp ⊆̇𝓕∗JSK of
𝓕∗JSK exists by Tarski’s fixpoint theorem [62]. Moreover, since ℙᶁ is finite (at
least when considering only the program labels L and variables V occurring
in a program), the abstract properties of ℙᶁ have a finite computer memory
representation and the limit of iterates [22] can be computed in finitely many
iterations, which yields an effective static analysis algorithm.

lfp ⊆̇𝓕diff
∃ Jwhile ℓ (B) S𝑏K is the least solution to the system of equations

{𝑋(
ℓ′) =𝓕diff

∃ Jwhile ℓ (B) S𝑏K𝑋 ℓ′
ℓ′ ∈ L

which can be understood as follows.
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(a) On loop entry the variables depend on themselves. After several iterations
the dependency is the composition of the dependencies of the previous it-
erations 𝑋(ℓ) composed with those 𝓢 diff

∃ JS𝑏K ℓ created by one more iteration.
The composition # is that used for a list of statements in (16). The restric-
tion ⌉nondet(B, B) eliminates dependencies on variables with a single possible
value on loop [re-]entry;

(b) The initial value of a variable x on loop entry flows to a variable z at ℓ′ ∈ inJS𝑏K
in the loop body if and only if the initial value of a variable x on loop entry
flows to some variable y at loop entry ℓ after 0 or more iterations (so ⟨x,
y⟩ ∈ 𝑋(ℓ)) and the value of variable y at the loop body flows to z at ℓ′ (so
⟨y, z⟩ ∈ 𝓢 diff

∃ JS𝑏K ℓ′). Moreover the restriction nondet(B, B) eliminates the case
when x is constant after the loop test B. (The case when y is constant after
the loop test B has been recursively eliminated by 𝓢 diff

∃ JS𝑏K ℓ′));
(c) This case determines the dependencies on loop exit ℓ′ = aftJSK, not knowing

the values of variables, so the number of iterations and how the loop is exited
is unknown. Therefore all cases must be considered.
• The term 𝑋(ℓ) (where ℓ ≜ atJSK = aftJS𝑏K) corresponds to the case when

the loop is entered and iterated 0 or more times before exiting so either
the loop is never entered so each variable depends on itself by (17.a) or
the dependencies on exit of the loop are those after the last iteration of
the body;
• The term (𝑋(ℓ) # (V ×modJS𝑏K)) covers dependencies originating from two

executions decided by the initial values of a variable x such that in one
case the loop is entered and exited and for another value it is immediately
exited. The variables y modified in the loop body depend on x, as was the
case in (12.c.3) for the conditional;
• The term ⋃ℓ″∈brks-ofJSK(𝑋(ℓ) #𝓢 diff

∃ JS𝑏K ℓ″) propagates the dependencies at the
break ; statements within the loop body to the break point aftJSK after
the loop;
• The term (17.c) can be refined to take the test determinism into account

more precisely, by eliminating those cases for which it is sure that no two
distinct executions can be found in the definition of dependency;

(d) The iteration statement while ℓ (B) S𝑏 introduces no dependency outside its
reachable points.

• The remaining cases of the conditional with alternative, empty statement
list, skip, break, and compound statements are similar.

6 Reduced product with a relational value analysis

𝓢 diff
∃ JAK in (10) handles the case 𝓢 diff

∃ Jx - xK = ∅ while 𝕧𝕒𝕣𝕤Jx - xK = {x}. As
shown in Ex. 7, even more precision can be achieved by considering reachable
environments only. The abstraction 𝛼𝑟(𝓢JSK)ℓ of the trace semantics 𝓢JSK of a
program component S by the classical relation abstraction

𝛼𝑟(𝓢) ≜ 𝜆 ℓ ∈L . {⟨𝝔(𝜋0), 𝝔(𝜋0 ⌢⋅ 𝜋1ℓ)⟩ ∣ ⟨𝜋0, 𝜋1ℓ⟩ ∈ 𝓢}
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provides a relation between the initial value of variables and their value at a
program point ℓ of S (the relation is empty if ℓ is not in S).

Then the dependency analysis can be refined using this relational value in-
formation.

– For the assignment (10), the imprecision is only due to the term 𝓢 diff
∃ JAK be-

cause it is impossible to evaluate the arithmetic expression A in all reachable
environments on entry of the assignment (see step (11) of the calculation
design). However, a relational value static analysis can provide relevant infor-
mation.
For example, using a constant propagation either cartesian [41,67] or relational
in [40,42,52], or a zone/octagon analysis [50], y ∈ 𝓢 diff

∃ JA1 - A2K only if this
analysis cannot prove that A1 - A2 is constant.

– For the conditional (12) and the iteration (17), the relational value static
analysis can provide relevant information on non-determinacy nondet in (13).

– For sequential composition, conditionals, and iteration, it is also possible to
refine the calculational design to improve compositionality. For example, in
if (H) L=X; else L=X;, the above relational value analyzes yield L=X0 on
exit of the conditional so L does not depend on H.

This is better implemented by a reduced product [23,69,19] and side condi-
tions in the dependency analysis (such as 𝓢 diff

∃ JAK and nondet) refining depen-
dencies using relational value information provided by the other domains in the
product. This separation of concerns greatly simplifies the design of the analysis
[25].

7 Examples of derived dependency semantics and
analyzes

Independence Definite independence is the complement of potential depen-
dency. [53,4,5] introduced a Hoare-like logic to statically check independences. It
also takes nontermination into account so relies on a different definition of ¬𝒟ℓ⟨x,
y⟩. It is recognized that definite independence is an abstract interpretation but
this is not used to design the logic which remains empirical.

Abstract non-interference/dependency The abstraction 𝛼ᶁ(S) of the se-
mantic property S in (5) is meaningful for any semantic property S, including
abstract ones, as considered in abstract non-interference/dependency [29]. Given
a structural semantic definition of this abstract property, the principle of design
by calculational design of the abstract dependency remains the same.

Forward and backward dependency Dependency information is useful for
program slicing [68]. The semantics ([20].3)—([20].9) considered in Section 2 is
forward, defining the continuation in a program component of an initialization

404



Abstract Semantic Dependency

computation ending on entry of that program component. This forward depen-
dency is adequate for forward slicing [5]. The dependency abstraction may be
applied to a backward semantics defining the reachability in a program compo-
nent of an finalization computation starting at that end of a program component
or on a break. This backward dependency would certainly be more useful as a
basis for slicing [68], or abstract slicing [37,57,49].

Dye instrumented semantics By analogy with dye-tracer tests in hydrology
to determine the possible origins of spring discharges or resurgences by water
source coloring and flow tracing [43], it has been suggested to decorate the ini-
tial values of variables with labels such as color annotations and to track their
diffusion and mixtures to determine dependencies [17]. This postulated defini-
tion of dependency can be proved sound by observing that the initial color of
variables can be designated by the name of these variables and that the color
mix at point ℓ for variable y is {x ∣ 𝓢+∞JPK ∈ 𝒟ℓ⟨x, y⟩}. Note that in the postu-
lated instrumented semantics, the choice of diff remains implicit as defined by
the arbitrarily selected color mixing rules. Otherwise the instrumented seman-
tics [38] need to be semantically justified with respect to the non-instrumented
semantics, in which case the non-instrumented semantics can be used as well to
justify dependency, as we do.

Tracking analysis Assume the initial values of variables (more generally in-
puts) are partitioned into tracked T and untracked U variables, V = T ∪ U

and T ∩ U = ∅. The tracking abstraction 𝛼𝜏(𝐃) of a dependency property
𝐃 ∈ L → ℘(V × V ) (7) attaches to each program point ℓ the set of variables
y which, at that program point ℓ, depend upon the initial value of at least one
tracked variable x ∈ T .

𝛼𝜏(𝐃)ℓ ≜ {y ∣ ∃x ∈ T . ⟨x, y⟩ ∈ 𝐃(ℓ)}
A tracking analysis is an over-approximation of the abstract tracking semantics

𝓢𝜏JSK ⊇ 𝛼𝜏(𝛼ᶁ({𝓢+∞JSK}))
assigning the each program point ℓ, a set 𝓢𝜏JSKℓ ∈ ℘(V ) of variables potentially
depending on tracked variables. Examples are taint analysis in privacy/security
checks [28,61] (tracked is tainted, untracked is untainted); binding time anal-
ysis in offline partial evaluation [33] (tracked is dynamic, untracked is static)
and absence of interference [30,66,15,36,45] (tracked is high (private/untrusted),
untracked is low (public/trusted)).

8 Conclusion
Related work Definitions of dependency follow one of the approaches below1.
1 Some approaches are a mix of these cases. For example [69,19] postulates dependency

on one trace as in 1. and then abstracts for a set of traces as in 3. and so uses
the “Merge over all paths” approach of dataflow analysis [23], with no semantics
justification of soundness.
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1. Dependency is postulated for a given programming language by specifying
an algorithm [68,26] or a calculus [1] which is claimed, a priori, to define
dependency. Since the definition is not semantic, it hides (and does not allow
to discuss) important details and so is hardly transferable to other languages.

2. Dependency is incorporated in a semantics of the language instrumented with
a policy [65] or flows [17]. The problem is that changing slightly the instru-
mentation definitely changes the variety of dependency which is defined. In
particular, it does not guarantee that the notion of dependency is defined
uniformly all over the language (e.g. conditionals and iterations might be
handled using different notions of dependency).

3. Dependency is defined as an abstract interpretation of properties of a formal
semantics [65,8,64], although the abstraction originally remained completely
implicit [30,66].

Our approach is in the category 3. Besides a generalization beyond input-output
dependency, we have shown that, although dependency is an “hyperproperty”
(i.e. a property of the semantics which is a set of traces), we don’t need a differ-
ent abstract interpretation theory for that case (as in [8,64] introducing specific
collecting semantics abstracting general semantic properties). The classical ap-
proach [21,23] directly applies whichever kind of property is considered.

Achievements We have designed by calculus a new potential value dependency
analysis between the initial value of variables and their value when reaching a
program point during execution. It follows and formalizes the intuition provided
by [26], “Information flows from object x to object y, denoted x⇝ y, whenever
information stored in x is transferred to, or used to derive information transferred
to, object y. A program statement specifies a flow x ⇝ y if execution of the
statement could result in a flow x ⇝ y.” “Information flow” is formalized as
“changing initial values will change the non-empty sequence of values observed
at a program point”.

An alternative [32,13,35] is to monitor an abstraction of the program seman-
tics at runtime (Lem. 1 on prefix observation is not valid for all definitions of
dependency so dynamic checking might be unsound [60,9]).

The analysis is not postulated but derived formally by abstract interpretation
of the trace semantics. So our definition is concise and coherent. We found no
need for extra notions like (hyper)𝑛properties [8], non-standard abstract inter-
pretation [64], postulated instrumented semantics [70, Sect. 4], multisemantics
[16], monadic reification [31], etc.

As shown by [13,34] and Ex. 7, taking values into account will definitely
improve the precision of the dependency analysis. As noticed in Section 6, one
possible implementation is by a reduced product of a dependency analysis with
a reachability analysis [69,19].

The data-dependence analysis used to detect parallelism in sequential code
[54] is also an abstract interpretation, see [63].
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Future work The Def. 1 of 𝒟 is certainly not unique. For example replacing diff
in (3) by equality would take into consideration timing dependencies (Ex. 5) and
empty observations (Ex. 6). The methodology that we proposed in this paper
can, in our opinion, be applied to a wide variety of definitions of dependency, as
follows.

The semantics is a set of executions by pairs ⟨𝜋ℓ, ℓ𝜋′⟩ where 𝜋ℓ is the past
before reaching ℓ and ℓ𝜋′ is the continuation. We define an abstraction of the
past 𝜋ℓ (e.g. the initial value of variables in our case). We define an abstraction
of the continuation (e.g. seqval (1) in our case). We define the difference between
past abstractions (the initial values of variables only differ for one variable in
our case). We define the difference between futures (diff in our case). Then the
abstraction of the future depends on the abstraction of the past if and only if
there exist two executions with different past abstractions and different future
abstractions. We conjecture that by varying the past/future abstractions and
their difference, we can express the dependency abstractions introduced in the
literature. Good examples are [29] for (abstract) non-interference and [12] for
mitigation against side-channel attacks.

Acknowledgement. I thank the reviewers for their comments. This work was
supported in part by NSF Grant CCF-1617717. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author
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Abstract. This paper presents a novel program verification method
based on Mu-Arithmetic, a first-order logic with integer arithmetic and
predicate-level least/greatest fixpoints. We first show that linear-time
temporal property verification of first-order recursive programs can be
reduced to the validity checking of a Mu-Arithmetic formula. We also
propose a method for checking the validity of Mu-Arithmetic formu-
las. The method generalizes a reduction from termination verification
to safety property verification and reduces validity of a Mu-Arithmetic
formula to satisfiability of CHC, which can then be solved by using off-
the-shelf CHC solvers. We have implemented an automated prover for
Mu-Arithmetic based on the proposed method. By combining the auto-
mated prover with a known reduction and the reduction from first-order
recursive programs above, we obtain: (i) for while-programs, an auto-
mated verification method for arbitrary properties expressible in the
modal μ-calculus, and (ii) for first-order recursive programs, an auto-
mated verification method for arbitrary linear-time properties express-
ible using Büchi automata. We have applied our Mu-Arithmetic prover
to formulas obtained from various verification problems and obtained
promising experimental results.

1 Introduction

Several researchers have recently advocated the use of fixpoint logics in program
verification. The idea at least goes back to the early work of Blass [10], who
showed that the weakest preconditions of while-loops can be expressed by using
a fixpoint logic. Bjorner et al. [5,8,9,22] advocated a reduction from program
verification problems to the satisfiability of Constrained Horn Clauses (CHC),
which is essentially the validity checking for a restricted fragment of first-order
fixpoint logic. Burn et al. [12] have recently extended the approach to a higher-
order extension of Constrained Horn Clauses. Kobayashi et al. [26,41] have shown
c© Springer Nature Switzerland AG 2019
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that temporal verification problems for higher-order functional programs can be
reduced to validity checking problems in a higher-order fixpoint logic. Nanjo
et al. [32] also proposed an approach to temporal verification based on a fixpoint
logic. One of the main advantages common to those approaches is that a fixpoint
logic prover can be used as a common, language-independent backend tool for
a variety of verification problems (not only safety properties but also arbitrary
regular temporal properties, including liveness). Fixpoint logic provers have not,
however, been available yet with the full generality.

Based on the observation above, in the present paper, we propose a method
for automatically checking the validity of first-order fixpoint logic formulas. The
first-order fixpoint logic (with integer arithmetic) we consider has been stud-
ied before albeit in different contexts and with different syntax [11,30]. Follow-
ing Bradfield [11], we call the logic Mu-Arithmetic. For while-programs (with
unbounded integers), the formulas generated by the aforementioned translations
of Kobayashi et al. [26,41] are actually Mu-Arithmetic formulas. The core logic
used by Nanjo et al. [32] is also Mu-Arithmetic. Thus, by combining those pre-
vious studies with our procedures for proving Mu-Arithmetic formulas, we can
obtain an automated tool for temporal program verification.

Our method, called Mu2CHC, reduces the validity of a Mu-Arithmetic for-
mula to the satisfiability of CHC (in a sound but incomplete manner). The
reduction has been inspired by reductions from termination verification to safety
property verification [21,35]. More precisely, we generalize the termination veri-
fication method of Fedyukovich et al. [21] to underapproximate a least fixpoint
formula by a greatest fixpoint formula. Given a formula ϕ consisting of both
least and greatest fixpoints, we convert it to a stronger formula ϕ′ (in the sense
ϕ′ ⇒ ϕ) that consists of only greatest fixpoint formulas. We then transform it
to a set C of CHCs, so that C is satisfiable if and only if ϕ′ is valid. This provides
a sound method for proving the validity of the original Mu-Arithmetic formula.
The main advantages of this approach are: (i) the reduction is fairly simple
and easy to implement, and (ii) we can use off-the-shelf CHC solvers [13,27,38],
avoiding replicated work for, e.g., invariant inference.

We have implemented the proposed approach, and confirmed its effective-
ness. The benchmark problems used for experiments contain those beyond the
capabilities of the existing related tools (such as CHC solvers and program ver-
ification tools).

Another main contribution of the present paper is a sound and complete
reduction from linear-time properties (expressible using Büchi automata) of first-
order recursive programs to the validity of Mu-Arithmetic formulas. This can
be considered a generalization of reductions from safety properties of first-order
recursive programs to CHC satisfiability (see [6], Sect. 3.2). Kobayashi et al. [26]
have shown a reduction from linear-time properties of higher-order programs to
the validity of higher-order fixpoint logic formulas, but for first-order recursive
programs, their translation yields a formula of a second-order fixpoint logic, not
a first-order one. We also show a reduction from the modal μ-calculus model
checking of while-programs to the validity of Mu-Arithmetic formulas. Such a
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reduction can in principle be obtained from the general reduction of Watanabe
et al. [41], but our reduction is more direct.

The rest of the paper is organized as follows. Section 2 defines Mu-Arithmetic,
the first-order fixpoint logic with integer arithmetic. Section 3 discusses applica-
tions of the fixpoint logic to program verification; in particular, we show that
linear-time properties of first-order recursive programs can be reduced to the
validity of Mu-Arithmetic formulas. We propose our method Mu2CHC in Sect. 4.
Section 5 reports on the implementation and experimental evaluation of our
methods. We discuss related work in Sect. 6 and conclude the paper in Sect. 7.

2 First-Order Fixpoint Logic with Integer Arithmetic

This section introduces the first-order fixpoint logic with integer arithmetic.
Following Bradfield [11], we call the logic Mu-Arithmetic (though the syntax is
different). We define the syntax and semantics of fixpoint logic in the form of
hierarchical equation systems, following [37].

2.1 Syntax

The set of formulas, ranged over by ϕ is given by:

ϕ ::= a1 ≥ a2 | P (a1, . . . , ak) | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃x.ϕ | ∀x.ϕ
a ::= x | n | a1 op a2

Here, P ranges over a set of predicate names. We have only ≥ as a primitive
predicate; in examples, we shall use other integer predicates like = (which can
be expressed in terms of ≥ and other logical operators).

A hierarchical equation system (HES) Φ is a pair (E ,H). Here, E is a set
of equations of the form {P1(x̃1) = ϕ1, · · · , Pm(x̃m) = ϕn}, where x̃ stands
for a sequence of variables, and H is a sequence (Pk, αk); · · · ; (P1, α1), where
Pk, . . . ,P1 are mutually disjoint sets of predicate names such that Pk ∪ · · · ∪
P1 = {P1, . . . , Pm}, and αi ∈ {μ, ν}. We write PΦ, P≤i, and P≥i for

⋃

j Pj ,
⋃

j≤i Pj , and
⋃

j≥i Pj , respectively. We often write P for PΦ if Φ is clear from
the context. We also write EPi

, or just Ei to denote the subset of equations
{P (x̃) = ϕ ∈ E | P ∈ Pi}. We sometimes write

{Pk,1(x̃k,1) =αk
ϕk,1, . . . , Pk,�k

(x̃k,�k
) =αk

ϕk,�k
}; · · · ;

{P1,1(x̃1,1) =α1 ϕ1,1, . . . , P1,�1(x̃1,�1) =α1 ϕ1,�1}

for (E ,H) where E = {Pi,j(x̃i,j) =αi
ϕi,j | i ∈ {1, . . . , k}, j ∈ {1, . . . , �i}} and

H = ({Pk,1, . . . , Pk,�k
}, αk); · · · ; ({P1,1, . . . , P1,�1}, α1). When P (x̃) = ϕ ∈ E , we

write arE(P ) for the length |x̃| of the sequence x̃; we often omit the subscript
when E is clear from context.

Bound (integer) variables in a formula are defined as usual. Integer variables
{x̃} are bound in an equation P (x̃) = ϕ. We assume that a given HES is closed:
free predicate variables in each formula are defined in the HES.
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Intuitively, ({Pi,1, . . . , Pi,�i
}, αi) where αi = μ (αi = ν, resp.) means that

Pi,1, . . . , Pi,�i
are the least (greatest, resp.) predicates that satisfy the corre-

sponding equations. In H = ({Pk,1, . . . , Pk,�k
}, αk); · · · ; ({P1,1, . . . , P1,�1}, α1),

the predicates in {Pk,1, . . . , Pk,�k
} ({P1,1, . . . , P1,�1}, resp.) are bound in the out-

ermost (innermost, resp.) position.

Example 1. Consider the HES1 Φ = (E ,H) with H = ({P2}, ν); ({P1}, μ) and

E = {P2(x) = P2(x + 1) ∧ P1(x, 0), P1(x, y) = (y = x ∨ P1(x, y + 1))}.

Since P1(x, y) can be expanded to:

P1(x, y) ≡ y = x ∨ P1(x, y + 1) ≡ y = x ∨ y + 1 = x ∨ P1(x, y + 2) ≡ · · · ,

P1(x, y) is equivalent to x ≥ y. Thus, P2(x) is equivalent to:

P2(x + 1) ∧ x ≥ 0 ≡ P2(x + 2) ∧ x + 1 ≥ 0 ∧ x ≥ 0 ≡ · · · .

Therefore, P2(x) is equivalent to x ≥ 0. ��
Remark 1. We do not have the negation operator as a primitive, but it can be
expressed by using de Morgan duality [29]. The quantifiers ∀,∃ could also be
removed: A formula ∃x.ϕ with the free variables ỹ can be expressed by P (0, ỹ)
where P is defined by P (x, ỹ) =μ ϕ∨P (x+1, ỹ)∨P (x−1, ỹ); similarly for ∀x.ϕ.

2.2 Semantics

We now define the formal semantics of HES. Let Z and B = {tt, ff} be the sets
of integers and Booleans, respectively. We consider the partial order ff  tt
on B, and write � (�, resp.) for the least upper (greatest lower, resp.) bound
with respect to . Given Φ and P ⊆ PΦ, we write ΓP for the set of maps ρ such
that dom(ρ) = P and ρ(P ) ∈ Zar(P ) → B for P ∈ dom(ρ). (ΓP ,ΓP ) forms a
complete lattice, where ΓP is the pointwise ordering on the elements of ΓP .

Given a map ρ such that dom(ρ) = P ∪ X , where X is a finite subset of
integer variables, and ρ(P ) ∈ Zar(P ) → B for P ∈ P and ρ(x) ∈ Z for x ∈ X ,
the semantics �ϕ�ρ ∈ B of a formula ϕ is defined by:

�a1 ≥ a2�ρ =
{

tt if �a1�ρ ≥ �a2�ρ

ff otherwise �P (a1, . . . , am)�ρ = ρ(P )(�a1�ρ, . . . , �am�ρ)

�ϕ1 ∨ ϕ2�ρ = �ϕ1�ρ � �ϕ1�ρ �ϕ1 ∧ ϕ2�ρ = �ϕ1�ρ � �ϕ1�ρ

�∃x.ϕ�ρ =
⊔

z∈Z�ϕ�ρ{x�→z} �∀x.ϕ�ρ =
�

z∈Z�ϕ�ρ{x�→z}
�x�ρ = ρ(x) �n�ρ = n �a1 op a2�ρ = �a1�ρ�op��a2�ρ.

Here, �op� denotes the binary function on integers represented by op.
1 We remark that, for those who are familiar with fixpoint logics, P2(x) can be written

as νP2.λx.P2(x + 1) ∧ (μP1.λy.y = x ∨ P1(y + 1)) 0 in the ordinary syntax of Mu-
Arithmetic [11] or HFL [40].
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Given an HES Φ, Pi and ρ ∈ ΓPΦ
, the semantics �Ei�ρ ∈ ΓPi

is defined by:

�Ei�ρ = {P �→ λz̃ ∈ Zar(P ).�ϕP �ρ{x̃�→z̃} | P (x̃) = ϕP ∈ Ei}.

We are now ready to define the semantics of HES. By abuse of notation,
we write Γi, Γ≥i, and Γ≤i for ΓPi

, ΓP≥i
, and ΓP≤i

respectively. The semantics
�Φ�i ∈ Γ≥i+1 → Γi and �Φ�≤i ∈ Γ≥i+1 → Γ≤i are defined by induction on i, as
follows.

�Φ�0 = �Φ�≤0 = λρ ∈ Γ≥1.∅
�Φ�i = λρ ∈ Γ≥i+1.FPΓi

αi
(λρ′ ∈ Γi.�Ei�ρ∪ρ′∪�Φ�≤i−1(ρ∪ρ′)) (for i > 0)

�Φ�≤i = λρ ∈ Γ≥i+1.�Φ�i(ρ) ∪ �Φ�≤i−1(ρ ∪ �Φ�i(ρ)) (for i > 0)

Here, FPΓ
μ ,FPΓ

ν ∈ (Γ → Γ) → Γ (the superscript Γ is often omitted) are the
least and greatest fixpoint operators defined by:

FPΓ
μ(F ) =

�
Γ{f ∈ Γ | f �Γ F (f)} FPΓ

ν (F ) =
⊔

Γ{f ∈ Γ | f Γ F (f)}.

Note that the semantics �Φ�i of the predicates in Pi is parameterized by the
semantics of predicates of higher levels (as indicated by λρ ∈ Γ≥i+1. · · ·). To
evaluate �Ei� in the definition of �Φ�i, we need an environment on all the pred-
icate variables; ρ, ρ′, and �Φ�≤i−1(ρ ∪ ρ′) respectively provide the environment
on the predicates of higher levels, the current level i, and lower levels. We write
�Φ� for �Φ�≤k(∅) (where k is the highest level) and write Φ |= ϕ if �ϕ��Φ� = tt.

Example 2. Recall Example 1, with P1 = {P1} and P2 = {P2}.

�Φ�1 = λρ ∈ Γ≥2.FPμ(λρ′ ∈ Γ1.{P1 �→ λ(x, y).y = x ∨ ρ′(P1)(x, y + 1)})
= λρ ∈ Γ≥2.{P1 �→ λ(x, y).x ≥ y}.

�Φ�≤1 = λρ ∈ Γ≥2.�Φ�1(ρ) ∪ �Φ�≤0(ρ ∪ �Φ�1(ρ)) = �Φ�1.

�Φ�2 = λρ ∈ Γ≥3.FPν(λρ′ ∈ Γ2.{P2 �→ λx.ρ′(P2)(x + 1) ∧ x ≥ 0})
= λρ ∈ {∅}.{P2 �→ λx.x ≥ 0}.

�Φ�≤2 = λρ ∈ {∅}.{P2 �→ λx.x ≥ 0, P1 �→ λ(x, y).x ≥ y}.

Thus, we have �Φ� = {P2 �→ λx.x ≥ 0, P1 �→ λ(x, y).x ≥ y}, hence Φ |= P2(0). ��
Example 3. To understand the importance of the order of equations, let us con-
sider Φ1 = (E ,H1) and Φ2 = (E ,H2), where:

E = {X = X ∧ Y, Y = X ∨ Y }
H1 = ({X}, ν); ({Y }, μ) H2 = ({Y }, μ); ({X}, ν).

Note that Φ2 is obtained from Φ1 by just swapping the order of X and Y .
Yet, their semantics are completely different: �Φ1� = {X �→ tt, Y �→ tt} but
�Φ2� = {X �→ ff, Y �→ ff}. To see this, for Φ1, we have:

�Φ1�1 = λρ ∈ Γ≥2.FPμ(λρ′ ∈ Γ1.�Y = X ∨ Y �ρ∪ρ′) = λρ ∈ Γ≥2.{Y �→ ρ(X)}
�Φ1�2 = λρ ∈ {∅}.FPν(λρ′ ∈ Γ2.�X = X ∧ Y �ρ′∪{Y �→ρ(X)})

= λρ ∈ {∅}.{X �→ tt}.
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In contrast, for Φ2, we have:

�Φ2�1 = λρ ∈ Γ≥2.FPν(λρ′ ∈ Γ1.�X = X ∧ Y �ρ∪ρ′) = λρ ∈ Γ≥2.{X �→ ρ(Y )}
�Φ2�2 = λρ ∈ {∅}.FPμ(λρ′ ∈ Γ2.�Y = X ∨ Y �ρ′∪{X �→ρ(Y )})

= λρ ∈ {∅}.{Y �→ ff}. ��

2.3 Relationship with Other Logics

We comment on the relationship between our logic and other logics used in
the context of program verification. As indicated already, our fixpoint logic
in the form of HES is essentially equi-expressive as Bradfield’s original Mu-
Arithmetic [11]. Any formula of HES can be translated to a formula of the origi-
nal Mu-Arithmetic in the same way as the translation from HES for higher-order
fixpoint logic to HFL formulas [25].

Our Mu-Arithmetic can be considered a restriction of HFLZ [26] (which is
an extension of HFL [40] with integers), obtained by (i) restricting predicates to
those on integers, and (ii) removing modal operators.

HES can also be considered an extension of Constrained Horn Clauses
(CHC) [6], obtained by allowing fixpoint alternations. In fact, the satisfiability
problem of CHC (i.e., whether there is a substitution for the predicate variables
P1, . . . , Pn that makes all the clauses valid):

P1(x̃1) ⇐ ϕ1 · · · Pn(x̃n) ⇐ ϕn ff ⇐ P1(x̃1)

(where we allow disjunctions in ϕ1, . . . , ϕn, and assume that P1, . . . , Pn are mutu-
ally distinct) is equivalent to the validity of ∀x̃1.P 1(x̃1), where P i is defined by
HES: ({P 1(x̃1) = ϕ1, . . . , Pn(x̃n) = ϕn}, ({P 1, . . . , Pn}, ν)). Here, ϕi is the de
Morgan dual of ϕi, and P i intuitively represents the negation of Pi.

Conversely, the validity checking problem for any HES without μ or ∃ can be
transformed to the satisfiability problem for CHC, by just reversing the above
transformation. In fact, let Φ be an HES of the form

({P1(x̃1) = ∀ỹ1.ϕ1, . . . , Pn(x̃n) = ∀ỹn.ϕn}, ({P1, . . . , Pn}, ν)),

where ϕ1, . . . , ϕn are quantifier-free formulas. Then, Φ |= ∀x̃.Pi(x̃) if and only if
the followings are satisfiable:

P 1(x̃1) ⇐ ∃ỹ1.ϕ1 · · · Pn(x̃n) ⇐ ∃ỹn.ϕn ff ⇐ ∃x̃.P i(x̃).

Since P i(x̃i) ⇐ ∃ỹi.ϕi is equivalent to ∀ỹi.(P i(x̃i) ⇐ ϕi) (assuming that x̃i∩ỹi =
∅), one can transform the conditions above to CHC.

3 From Temporal Property Verification to First-Order
Fixpoint Logic

This section discusses applications of the fixpoint logic to temporal verification of
programs. As we mentioned in Sect. 1, Watanabe et al. [41] have shown that tem-
poral verification of higher-order recursive programs can be reduced in a sound
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and complete manner to validity checking of higher-order fixpoint logic formulas.
For while-programs (i.e., imperative programs without recursion), their transla-
tions actually produce formulas within our fixpoint logic. Thus, by combining
their translations with the procedures for our fixpoint logic given in Sect. 4, we
obtain an automated temporal verification method for while-programs, which
can deal with arbitrary temporal properties that can be expressed in modal μ-
calculus. The reduction of Watanabe et al. [41] is, however, indirect: one has
to first transform a while-program to a tree-generating grammar HORSZ that
generates a computation tree of the program, and a temporal property to a tree
automaton. We thus present a direct reduction from modal μ-calculus model
checking of imperative programs to validity checking of Mu-Arithmetic formulas
in Sect. 3.1 below.

For linear-time temporal properties, we can also deal with first-order pro-
grams with arbitrary recursion (not just while-loops). More precisely, given a
first-order (possibly non-deterministic) recursive program D (that contains spe-
cial primitives called events) and a Büchi automaton A, one can construct an
HES ΦD,A, such that ΦD,A |= mainqI ,tt() (where qI is the initial state of A)
holds, if and only if some (infinite) event sequence generated by D is accepted by
A. We formalize the reduction in Sect. 3.2, which is one of the main contributions
of the present paper.

3.1 Modal μ-Calculus Model Checking of Imperative Programs

We model an imperative program as a tuple P = (PC,Vars,Code), where
PC is a finite set consisting of non-negative integers (which intuitively represent
program counters), Vars is a finite set of variables, and Code is a map from
PC to the set IVars of instructions, consisting of:

– x := a;goto i: update the value of x ∈ Vars to that of a, and then go to
i ∈ PC.

– x := ∗;goto i: update the value of x ∈ Vars to an arbitrary integer in a
non-deterministic manner, and then go to i ∈ PC.

– if a1 ≥ a2 then goto i else goto j: go to i ∈ PC if a1 ≥ a2 and j ∈ PC
otherwise.

– if ∗ then goto i else goto j: non-deterministically go to i or j.

Here, a ranges over the set of arithmetic expressions, like the meta-variable a in
Sect. 2.

A program P = (PC,Vars,Code), with Vars = {x1, . . . , xn} can be viewed
as a Kripke structure KP = (AP, S, s0,−→, L), where: (i) AP is a set of con-
straints on Vars (such as x1 ≥ 0), (ii) the set S of states is PC × (Vars → Z),
(iii) the initial state s0 ∈ S is (0, {x1 �→ 0, . . . , xn �→ 0}), (iv) the labeling func-
tion L ∈ S → AP is given by: L(i, σ) = {p ∈ AP ||= σ(p)}. Here, σ(p) is the
closed formula obtained by replacing each variable xi in p with σ(xi), and |= σ(p)
means that the resulting formula evaluates to true, and (v) −→⊆ S × S is the
transition relation (see [33] for the definition). We represent modal μ-calculus
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formulas in the form of hierarchical equation systems, following [37]. We call
them hierarchical modal equation systems (HMES), to distinguish them from
the HES for Mu-Arithmetic introduced in Sect. 2.

The set of (fixpoint-free) modal formulas, ranged over by ψ, is defined by:

ψ ::= p | X | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | �ψ | �ψ
a ::= n | x | a1 op a2.

A hierarchical modal equation system (HMES) Ξ is a pair (E,H), where E is
a set of equations for the form {X1 = ψ1, · · · ,Xm = ψn}, where H is a sequence
(Pk, αk); · · · ; (P1, α1), where Pk, . . . ,P1 are mutually disjoint sets of variables
such that Pk ∪ · · ·∪P1 = {X1, . . . , Xm}, and αi ∈ {μ, ν}. We write P≥i and P≤i

for
⋃

j≥i Pj and
⋃

j≤i Pj respectively.
The semantics of HMES Ξ is defined in a way analogous to that of HES in

Sect. 2, as a function that maps each propositional defined in Ξ to the set of
states that satisfy the proposition; see [33] for details.

Given a program P with variables {x1, . . . , xn} and an HMES Ξ with X ∈
PΞ , we say that a program P satisfies (Ξ,X), written P |= (Ξ,X), if the initial
state (0, {x1 �→ 0, . . . , xn �→ 0}) belongs to �Ξ�(X). The goal of verification is to
check whether P |= (Ξ,X) holds.

We now reduce the problem of checking whether P |= (Ξ,X) to the valid-
ity checking problem for Mu-Arithmetic. For the convenience of presenting the
reduction, we assume without loss of generality that the righthand side of each
equation in HMES is restricted to the following syntax.

ψ ::= a1 ≥ a2 | X | X1 ∨ X2 | X1 ∧ X2 | �X | �X.

Let Vars = {x1, . . . , xn} and x̃ be the sequence x1, . . . , xn. For each equation
X = ψ and i ∈ PC, we define the equation �X = ψ�i of Mu-Arithmetic by:

�X = (a1 ≥ a2)�i = (X(i)(x̃) = a1 ≥ a2) �X = X1�i = (X(i)(x̃) = X
(i)
1 )

�X = X1 ∨ X2�i = (X(i)(x̃) = X
(i)
1 (x̃) ∨ X

(i)
2 (x̃))

�X = X1 ∧ X2�i = (X(i)(x̃) = X
(i)
1 (x̃) ∧ X

(i)
2 (x̃))

�X = �X1�i =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

X(i)(x̃) = X
(k)
1 (x1, . . . , xj−1, a, xj+1, . . . , xn)

if Code(i) = xj := a;goto k

X(i)(x̃) = ∃m.X
(k)
1 (x1, . . . , xj−1,m, xj+1, . . . , xn)

if Code(i) = xj := ∗;goto k

X(i)(x̃) = (a1 ≥ a2 ∧ X
(j)
1 (x̃)) ∨ (a2 ≥ a1 + 1 ∧ X

(k)
1 (x̃))

if Code(i) = if a1 ≥ a2 then goto j else goto k

X(i)(x̃) = X
(j)
1 (x̃) ∨ X

(k)
1 (x̃)

if Code(i) = if ∗ then goto j else goto k
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�X = �X1�i =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

X(i)(x̃) = X
(k)
1 (x1, . . . , xj−1, a, xj+1, . . . , xn)

if Code(i) = xj := a;goto k

X(i)(x̃) = ∀m.X
(k)
1 (x1, . . . , xj−1,m, xj+1, . . . , xn)

if Code(i) = xj := ∗;goto k

X(i)(x̃) = (a1 ≥ a2 ∧ X
(j)
1 (x̃)) ∨ (a2 ≥ a1 + 1 ∧ X

(k)
1 (x̃))

if Code(i) = if a1 ≥ a2 then goto j else goto k

X(i)(x̃) = X
(j)
1 (x̃) ∧ X

(k)
1 (x̃)

if Code(i) = if ∗ then goto j else goto k.

Given Ξ = (E,H) with H = (P1, α1); · · · ; (P�, α�), and P =
(PC,Vars,Code), we define HES ΦΞ,P as (EΞ,P,HΞ,P), where:

EΞ,P = {�X = ψ�i | (X = ψ) ∈ E, i ∈ PC},

and HΞ,P = ({X(i) | X ∈ P1, i ∈ PC}, α1); · · · ; ({X(i) | X ∈ P�, i ∈ PC}, α�).
By the translation, it is not difficult to observe that (j, {x1 �→ m1, . . . , xn �→

mn}) ∈ �Ξ�(Xi) if and only if �ΦΞ,P�(X(j)
i )(m1, . . . ,mn) = tt. Thus, P |=

(Ξ,X1) if and only if HΞ,P |= X
(0)
1 (0, . . . , 0).

Example 4. Consider the program P0 = ({0, 1}, {x, y},Code0), where:

Code0 = {0 �→ (x := x − 1;goto 1), 1 �→ (y := y + 1;goto 1)}.

The modal μ-calculus formula νX.(x + y ≥ 0 ∧ � � X) expresses the property
“there exists an execution sequence in which x + y ≥ 0 holds after any even
number of steps.” This is a property that cannot be expressed in CTL*. The
corresponding HMES Ξ0 is (E0,H0) where

E0 = {X = x + y ≥ 0 ∧ �Y, Y = �X} H0 = ({X,Y }, ν).

By the translation above, we obtain ΦΞ0,P0 = (E0,H0) where H0 =
({X(0),X(1), Y (0), Y (1)}, ν) and E0 consists of:

X(0)(x, y) = x + y ≥ 0 ∧ Y (1)(x − 1, y) X(1)(x, y) = x + y ≥ 0 ∧ Y (0)(x, y + 1)
Y (0)(x, y) = X(1)(x − 1, y) Y (1)(x, y) = X(0)(x, y + 1)

3.2 Linear-Time Property Verification of Recursive Programs

Target Language and Verification Problem. We first define a language of
first-order recursive programs with non-determinism. The syntax of programs
is given by:

D(programs) ::= {f1(x1, . . . , xk1) = e1, . . . , f�(x1, . . . , xk�
) = e�}

e(expressions) ::= a | ∗ | A; e | f(v1, . . . , vk) | let x = e1 in e2
| if v ≥ 0 then e1 else e2

a ::= v | a1 op a2 v ::= n | x

The expression ∗ evaluates to an integer in a non-deterministic manner. The
expression A; e raises an event A and evaluates e. Here, we assume a finite set
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of events; they are referred to by temporal property specifications (expressed by
Büchi automata below). The other expressions are standard and should be self-
explanatory. In a function definition fi(x1, . . . , xki

) = ei, variables x1, . . . xki
and

functions f1, . . . , f� are bound in ei and we assume a given program is closed.
In a program D = {f1(x1, . . . , xk1) = e1, . . . , f�(x1, . . . , xk�

) = e�}, we
assume that {f1, . . . , f�} contains the special function name main of the “main”
function with arity 0, that main() never terminates, and every infinite reduction
sequence generates an infinite sequence of events.2

n ∈ Z

E[∗] ε−→D E[n]
a �∈ Z val(a) = n

E[a] ε−→D E[n]

E[A; e] A−→D E[e]

(f(x1, . . . , xk) = e) ∈ D

E[f(n1, . . . , nk)]
ε−→D E[[n1/x1, . . . , nk/xk]e]

E[let x = n in e] ε−→D E[[n/x]e]
n ≥ 0

E[if n ≥ 0 then e1 else e2]
ε−→D E[e1]

n < 0

E[if n ≥ 0 then e1 else e2]
ε−→D E[e2]

Fig. 1. Operational Semantics. E ranges over the set of evaluation contexts, defined
by E ::= [ ] | let x = E in e.

Operational Semantics. The transition relation e
ξ−→D e′ (where ξ is either A

or ε) is defined in Fig. 1. Here, val(a) denotes the value of an integer arithmetic

expression a. We write e
w=⇒D e′ if w = ξ1 · · · ξ� and ei−1

ξi−→D ei for each
i ∈ {1, . . . , �}, with e = e0 and e′ = ei. Here, we treat ε as the empty word.

We write L(D) for the set of infinite sequences A1A2A3 · · · such that

main() A1=⇒D e1
A2=⇒D e2

A3=⇒D · · · .

Example 5. Consider the program D0 consisting of the following function defi-
nitions.

main() = let x = ∗ in f(x)
f(x) = let r = g x in (A; f(r)) g(x) = B; if x ≥ 0 then g (x − 1) else 5

It has, for example, the following reduction sequence:

main() ε=⇒ f(0) ε−→ let r = g(0) in (A; f(r)) B−→ let r = g(−1) in (A; f(r))
ε=⇒ A; f(5) A−→ f(5) ε−→ · · ·

The set L(D0) of infinite event sequences generated by D0 is {Bn(AB6)ω | n ≥ 1}.
2 The assumption on non-termination is guaranteed by renaming main to main′, and

adding the function definitions main() = let x = main′() in loop() and loop() =
Acall ; loop; the last assumption is guaranteed by restricting the righthand side of
each function definition to an expression of the form Acall ; e.
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Verification Problem. We are interested in the verification of linear-time
properties, expressible by using Büchi automata. Let us recall the definition of
Büchi automata.

Definition 1 (Büchi automata). A (non-deterministic) Büchi automaton A
is a quintuple (Σ,Q,Δ, q0, F ), where (i) Σ is a set of input symbols, (ii) Q is
a set of states, (iii) Δ ∈ Q × Σ → 2Q is the transition function, (iv) q0 ∈ Q
is the initial state, and (v) F ⊆ Q is the set of final states. An ω-word w =
A1A2 · · · ∈ Σω is accepted by A if there exists an infinite sequence of states
q′
0q

′
1q

′
2 · · · ∈ Qω, such that (i) q′

0 = q0, (ii) q′
j ∈ Δ(q′

j−1, Aj) for each j ≥ 1,
and (iii) ∀j ∈ J.q′

j ∈ F holds for an infinite subset J of natural numbers (in
other words, final states are visited infinitely often). We write L(A) for the set
of ω-words accepted by A.

Example 6. Let A0 = ({A, B}, {qA, qB},Δ, qA, {qA}) where Δ(qA, A) =
Δ(qB , A) = {qA} and Δ(qA, B) = Δ(qB , B) = {qB}. The automaton is depicted
as follows.

qA

A

B

qB
A

B

A0 accepts an infinite word w ∈ {A, B}ω just if w contains infinitely many A’s.

We are interested in the following verification problem: Given a program D
and a Büchi automaton A, does L(D) ∩ L(A) �= ∅ hold? In a typical verification
context, L(A) denotes the set of invalid infinite sequences of events, and the

question L(D) ∩ L(A)
?

�= ∅ asks whether D may generate an invalid infinite
sequence. The goal of the rest of this section is to characterize the condition
L(D) ∩ L(A) �= ∅ by a fixpoint formula ϕD,A.

Overview of the Reduction Through an Example. Consider the program
D0 and automaton A0 in Examples 5 and 6. Suppose we wish to verify that
L(D0) ∩ L(A0) �= ∅.

For each function f ∈ {main, f, g}, we construct the following predicates:

– fq,b,q′(x, r) for each q, q′ ∈ {qA, qB}, b ∈ B. Intuitively, fq,b,q′(x, r) means that
f(x) may generate an event sequence that changes the state of the automa-
ton from q to q′, and returns r. The Boolean value b represents whether a
final state is visited by the automaton during the state changes from q to
q′ (excluding the state q). For example, since g(−1) B−→D0 5, gq,ff,qB

(−1, 5)
should hold for q ∈ {qA, qB}.

– fq,b(x) for each q ∈ {qA, qB}, b ∈ B. Intuitively, fq,b(x) means that f(x) may
generate an event sequence that can be accepted by the automaton from the
state q. The Boolean value b is determined by the calling context of f ; it
represents whether a final state has been visited since the parent recursive
call of f . For example, fq,b(n) should hold for any integer n, q ∈ {qA, qB},
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and b ∈ B, as f(n) generates an event sequence that contains infinitely many
A’s, which is accepted by A0. On the other hand, gq,b(n) does not hold, as
g(n) cannot generate an infinite sequence.

The predicates above can be systematically constructed from function defini-
tions. For our running example, let us first construct gq,b,q′ . Since g(x) generates
only events B and returns r if either (i) x ≥ 0 and g(x − 1) returns r, or (ii)
x < 0 and r = 5. Thus, gq,b,q′ should satisfy:

gqA,ff,qB
(x, r) = (x ≥ 0 ∧ gqB ,ff,qB

(x − 1, r)) ∨ (x < 0 ∧ r = 5)
gqB ,ff,qB

(x, r) = (x ≥ 0 ∧ gqB ,ff,qB
(x − 1, r)) ∨ (x < 0 ∧ r = 5)

gq,b,q′(x, r) = ff (if q′ = qA or b = tt).

Notice that the above equations are recursive. Since we are concerned about
termination, gq,b,q′ is defined as the least solution of the equations above.

Using gq,b,q′ above, the equation for fqA,tt is given as follows.

fqA,tt(x) = ∃r.(gqA,ff,qB
(x, r) ∧ fqA,tt(r)).

This is because f(x) generates an infinite event sequence accepted from qA by A0

if g(x) terminates and returns some r, and then f(r) generates an event sequence
accepted from qA. This time, fqA,tt should be defined as the greatest solution
for the above equation, since the automaton visits a final state (as indicated by
the subscript tt for the predicate fqA, ) each time f is expanded. In general, fq,b

is defined as the greatest solution if b = tt, and as the least solution if b = ff.
Based on the discussion above, ΦD0,A0 is given as:

{mainqA,tt() =ν ∃x.fqA,ff(x),
fqA,tt(x) =ν ∃r.(gqA,ff,qB

(x, r) ∧ fqA,tt(r))};
{fqA,ff(x) =μ ∃r.(gqA,ff,qB

(x, r) ∧ fqA,tt(r)),
gqA,ff,qB

(x, r) =μ (x ≥ 0 ∧ gqB ,ff,qB
(x − 1, r)) ∨ (x < 0 ∧ r = 5),

gqB ,ff,qB
(x, r) =μ (x ≥ 0 ∧ gqB ,ff,qB

(x − 1, r)) ∨ (x < 0 ∧ r = 5)}.

General Construction of ΦD ,A. We now formalize the general construction
of the HES ΦD,A. Below we fix a Büchi automaton A = (Σ,Q,Δ, q0, F ).

As explained in the overview, for each function definition f(x̃) = ef , we
construct predicates fq,b,q′(x̃, r) and fq,b(x̃). To obtain equations for those pred-
icates, we convert each subexpression e of ef to formulas [e]q,b,q′,r and [e]q,b,
where q, q′ ∈ Q, b ∈ B and r is an integer variable. Intuitively, the formula
[e]q,b,q′,r means that there is a terminating execution sequence of e which gen-
erates a finite sequence of events that changes the state of A from q to q′, and
returns the integer r. The Boolean parameter b expresses whether an accepting
state is visited during the automaton’s transitions from q to q′ (excluding the
start state q). [e]q,b means that there is an infinite execution sequence of e that
generates an infinite sequence of events accepted from q. The Boolean parame-
ter b records information on whether an accepting state has been visited since
the parent recursive call; the Boolean parameter is used to choose the Boolean
parameter b′ of fq,b′ .
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The formula [e]q,b,q′,r is defined by induction on the structure of e, as follows.

[a]q,b,q′,r =
{

a = r if q = q′ and b = ff
ff otherwise [∗]q,b,q′,r =

{

tt if q = q′ and b = ff
ff otherwise

[A; e]q,b,q′,r =
∨{[e]q′′,b′,q′,r | q′′ ∈ Δ(q,A), b′ ∈ B, b′ ∨ (q′′ ∈ F ) = b}

[f(a1, . . . , ak)]q,b,q′,r = fq,b,q′(a1, . . . , ak, r)
[let x = e1 in e2]q,b,q′,r =

∨{∃x.([e1]q,b1,q′′,x ∧ [e2]q′′,b2,q′,r) | q′′ ∈ Q, b1, b2 ∈ B, b = b1 ∨ b2}
[if a ≥ 0 then e1 else e2]q,b,q′,r = (a ≥ 0 ∧ [e1]q,b,q′,r) ∨ (a < 0 ∧ [e2]q,b,q′,r)

We explain a few cases. Since a immediately evaluates to an integer, [a]q,b,q′,r is
true just if a = r, q = q′, and b = ff. In the translation of A; e, q′′ is the state of A
after the event A has occurred. The case for a function call f(a1, . . . , ak) is based
on the intuition on the predicate fq,b,q′ explained in Sect. 3.2. The translation
for e ≡ let x = e1 in e2 is based on the intuition that e evaluates to r just if e1
evaluates to some integer x, and then e2 evaluates to r; q′′ is the intermediate
state of A when e1 has been evaluated.

The formula [e]q,b is also inductively defined as follows.

[a]q,b = ff [∗]q,b = ff [A; e]q,b =
∨{[e]q′,b∨(q′∈F ) | q′ ∈ Δ(q,A)}

[f(a1, . . . , ak)]q,b = fq,b(a1, . . . , ak)
[let x = e1 in e2]q,b = [e1]q,b ∨ (

∨{∃x.[e1]q,b′,q′,x ∧ [e2]q′,b∨b′ | q′ ∈ Q, b′ ∈ B})
[if a ≥ 0 then e1 else e2]q,b = (a ≥ 0 ∧ [e1]q,b) ∨ (a < 0 ∧ [e2]q,b)

When e = a or ∗, [e]q,b = ff since e does not generate an infinite event sequence.
In the translation of A; e, we update the state and accumulate (by b ∨ (q′ ∈ F ))
information on whether an accepting state has been visited. For a function call
f(a1, . . . , ak), the Boolean parameter b is used to annotate f , so that fq,b is
defined as the greatest fixpoint if b = tt (which means that an accepting state
has been visited since the last recursive call), and otherwise defined as the least
fixpoint. The translation for e ≡ let x = e1 in e2 is based on the intuition that
e diverges either if e1 diverges, or if e1 evaluates to an integer x and e2 diverges.

Using [e]q,b,q′,r and [e]q,b, we define ED,b,PD,fin, ED,fin and PD,b (b ∈ B) by:

ED,b = {fq,b(x̃) = [e]q,ff | (f(x̃) = e) ∈ D, q ∈ Q}
PD,b = {fq,b | (f(x̃) = e) ∈ D, q ∈ Q}

ED,fin = {fq,b,q′(x̃, r) = [e]q,b,q′,r | (f(x̃) = e) ∈ D, q, q′ ∈ Q, b ∈ B}
PD,fin = {fq,b,q′ | (f(x̃) = e) ∈ D, q, q′ ∈ Q, b ∈ B}.

Finally, we define ΦD,A = (ED,HD) by:

ED = ED,tt ∪ ED,ff ∪ ED,fin HD = (PD,tt, ν); (PD,ff ∪ PD,fin, μ).

As indicated above, the alternation depth (between ν and μ) of ΦD,A is 2.
The following theorem states the correctness of the construction of ΦD,A.

A proof is given in [33].
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Theorem 1. Let D be a program and A be a Büchi automaton. Then L(D) ∩
L(A) �= ∅ if and only if ΦD |= mainq0,tt().

Example 7. We have already given an example of the construction of ΦD,A in
Sect. 3.2. We give another simple example here, which may help the reader under-
stand the role of the Boolean parameter b in fq,b. Recall the automaton A0 in
Example 6, and consider the program D1 that consists of the single function
definition main() = A;main(). Then, ΦD1,A0 is:

{mainqA,tt() =ν mainqA,tt()}; {mainqA,ff() =μ mainqA,tt()}.

(We omit the equations for mainqB ,b.) Thus, ΦD1,A0 |= mainqA,tt(). Indeed, D1

generates Aω, which is accepted by A0. The reason why mainqA, in the bodies of
the equations is annotated with tt is that an event A occurs (so, the automaton
visits the accepting state qA) before main is called in the body of the function
definition.

In contrast, the program D2 consisting of main() = B;main() is trans-
lated to: {mainqA,tt() =ν mainqB ,ff()}; {mainqB ,ff() =μ mainqB ,ff()}. Thus,
ΦD2,A0 �|= mainqA,tt(). Indeed, D2 only generates Bω, which is not accepted by
A0. Note that mainqB , in the bodies of the equations is annotated with ff
because each call of main() is only preceded by an event B; so, the automaton
does not visit qA. ��

4 Proving Fixpoint Formulas by Reduction to CHC
Solving

In this section, we describe our Mu2CHC approach to validity checking of fix-
point formulas. The method is based on a reduction to CHC solving [5]. As
mentioned in Sect. 1, a main advantage of the approach is that we can reuse
off-the-shelf CHC solvers such as Spacer [27] and HoIce [13].

Suppose that we wish to prove Φ |= main(). Without loss of generality, we
can assume that the predicate main is bound by ν in Φ (otherwise, just introduce
a fresh predicate main′, and prove {main′() =ν main()};Φ |= main()). We can
also assume that Φ contains no existential quantifiers, as existential quantifiers
can be encoded by using μ; recall Remark 1. Below we present a method to
transform Φ to another HES Φ′ so that Φ′ |= main() implies Φ |= main(), and
Φ′ contains neither μ nor existential quantifiers. By the observation in Sect. 2.3,
Φ′ |= main() can be reduced to CHC solving. Using a CHC solver as a backend,
we obtain a sound procedure for proving Φ |= main(). To disprove Φ |= main(),
it suffices to prove the dual problem Φ |= main() (where main is the predicate
symbol that denotes the negation of main in Φ); thus, by running the sound
procedure for proving Φ |= main() and Φ |= main() in parallel, we obtain a
sound (but incomplete) decision procedure.

Inspired by methods for proving termination by reduction to safety proper-
ties [35], we approximate μ-formulas (which can be considered generalization of
the termination property) by ν-formulas (which can be considered generalization
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of safety properties). In particular, we pick the recent termination verification
method of Fedyukovich et al. [21] and generalize it for our context.

Let us first consider a special case, where an HES consists of a single equation:
P (x̃) =μ ϕ. Recall that the semantics of P is the least fixpoint of F = λf ∈
Zk → B.λṽ ∈ Zk.�ϕ�{P �→f,x̃→ṽ}, where k = ar(P ). Thus, the semantics of P
can be under-approximated by F y(λṽ.ff) for any y ≥ 0, and a greater value of
y gives a better approximation. With this in mind, we prepare a new predicate
P ′ and construct a new equation:

P ′(y, x̃) =ν y > 0 ∧ ϕ′,

where ϕ′ is the formula obtained from ϕ by replacing each formula of the
form P (˜t) with P ′(y − 1,˜t). The predicate λx̃.P ′(y, x̃) corresponds to F y(λṽ.ff)
above (in fact, one can prove that the semantics of λx̃.P ′(y, x̃) is equivalent to
F y(λṽ.ff) by induction on y), and thus P ′(y, x̃) ⇒ P (x̃) for any y ∈ Z. To
prove a formula of the form C[P (ã)] (here, C is a formula with a hole, and
we write C[ϕ] for the formula obtained by filling the hole with ϕ), it suffices
to prove C[∀y.(y ≥ a′

1 ∧ · · · ∧ y ≥ a′
k ⇒ P ′(y, ã))], where a′

1, . . . , a
′
k are arbi-

trary arithmetic expressions constructed by using variables available in the hole
of C. Note that ∀y.(y ≥ a′

1 ∧ · · · ∧ y ≥ a′
k ⇒ P ′(y, ã)), which is equivalent to

P ′(max(a′
1, . . . , a

′
k), ã), implies P (x), and that (the semantics of) C is monotonic

with respect to the hole position, since there is no connective for negation. Thus,
we have reduced the validity checking problem for a least fixpoint formula with
that of a greatest fixpoint formula in a sound (but incomplete) manner.

Remark 2. In ∀y.(y ≥ a′
1 ∧ · · · ∧ y ≥ a′

k ⇒ P ′(y, ã)), the bounds a′
1, . . . , a

′
k can

be chosen heuristically. A nice point about using multiple bounds is that we
can monotonically increase the precision of approximation, by adding new ele-
ments to the set {a′

1, . . . , a
′
k}. This advantage is analogous to that of disjunctive

well-founded relations over well-founded relations in the context of termination
verification [35].

Example 8. Consider:
P (x) =μ x = 0 ∨ P (x − 1)

and suppose that we wish to prove ∀z.z < 0 ∨ P (z). We define a new predicate
P ′ by:

P ′(y, x) =ν y > 0 ∧ (x = 0 ∨ P ′(y − 1, x − 1)),

and change the goal to ∀z.z < 0 ∨ (∀y.y ≥ z + 1 ⇒ P ′(y, z)). One can reduce its
validity to the satisfiability of the following CHC:

P ′(y, x) ⇐ y ≤ 0 ∨ (x �= 0 ∧ P ′(y − 1, x − 1))
ff ⇐ z ≥ 0 ∧ y ≥ z + 1 ∧ P ′(y, z).

It is satisfiable with P ′(y, x) ≡ y ≤ 0 ∨ x < 0 ∨ y < x + 1; hence we know the
original formula ∀z.z < 0 ∨ P (z) is valid. ��
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In the general case, we replace each layer of μ-equations with ν-equations
one by one. Assume that a given HES Φ is

Φ1; {P1(x̃1) =μ ϕ1, . . . , Pk(x̃k) =μ ϕk};
{Pk+1(x̃k+1) =ν ϕk+1, . . . , Pk+�(x̃k+�) =ν ϕk+�}.

As in the special case, we approximate the least fixpoint FPμ(F ) for the values
of P1, . . . , Pk with a finite approximation F y(⊥). To this end, we replace Φ with
the following HES Φ′:

Φ′
1; {P ′

1(y, x̃1) =μ y > 0 ∧ ϕ′
1, . . . , P

′
k(y, x̃k) =μ y > 0 ∧ ϕ′

k};
{P ′

k+1(y, x̃k+1) =ν ϕ′
k+1, . . . , P

′
k+�(y, x̃k+�) =ν ϕ′

k+�}.

Here,

– ϕ′
i (1 ≤ i ≤ k + �) is the formula obtained from ϕi by replacing each sub-

formula of the form Pj(ã) with P ′
j(y − 1, ã) if 1 ≤ j ≤ k, and with P ′

j(y, ã)
if k + 1 ≤ j ≤ k + �). Intuitively, P ′

i (y, ) 1 ≤ i ≤ k is the y-th approxima-
tion F y(⊥) of the least fixpoint of F ; hence y is decremented each time Pi is
recursively called. For P ′

i (y, x̃i) for k + 1 ≤ i ≤ k + � approximates Pi(x̃i) by
approximating Pj(x̃j) with P ′

j(y, x̃j) for 1 ≤ j ≤ k (recall that the semantics
of Pk+1, . . . , Pk+� are parameterized by those of P1, . . . , Pk).

– Φ′
1 is the HES obtained from Φ1 by replacing each formula of the form

Pi(ã) (1 ≤ i ≤ k + �) with ∀y.y ≥ a′
1 ∧ · · · ∧ y ≥ a′

m ⇒ P ′
i (y, ã), where

a′
1, . . . , a

′
m are expressions consisting of the variables available at the position

of Pi(ã).

By the construction above, P ′
i (y, x̃i) ⇒ Pi(x̃i) holds for every y, x̃1 ∈ Z;

hence Φ′ is an under-approximation of Φ. By repeatedly applying the transfor-
mation above to Φ, we get an HES Φ′ such that Φ′ contains neither μ nor ∃, and
�Φ′�  �Φ�.

Example 9. Recall the HES Φ1 in Sect. 3.2 (with some simplification):

{mainqA,tt() =ν ∃x.fqA,tt(x), fqA,tt(x) =ν ∃r.(gqA,ff,qB
(x, r) ∧ fqA,tt(r))};

{gqA,ff,qB
(x, r) =μ (x ≥ 0 ∧ gqB ,ff,qB

(x − 1, r)) ∨ (x < 0 ∧ r = 5),
gqB ,ff,qB

(x, r) =μ (x ≥ 0 ∧ gqB ,ff,qB
(x − 1, r)) ∨ (x < 0 ∧ r = 5)}.

By encoding ∃ with μ, we obtain:

{mainqA,tt() =ν P (0), fqA,tt(x) =ν Q(0, x)};
{P (x) =μ fqA,tt(x) ∨ P (x + 1) ∨ P (x − 1),
Q(r, x) =μ (gqA,ff,qB

(x, r) ∧ fqA,tt(r)) ∨ Q(r + 1, x) ∨ Q(r − 1, x),
gqA,ff,qB

(x, r) =μ (x ≥ 0 ∧ gqB ,ff,qB
(x − 1, r)) ∨ (x < 0 ∧ r = 5),

gqB ,ff,qB
(x, r) =μ (x ≥ 0 ∧ gqB ,ff,qB

(x − 1, r)) ∨ (x < 0 ∧ r = 5)}.
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By the transformation above, we obtain Φ′
1:

{mainqA,tt() =ν ∀y.(y ≥ 1 ⇒ P ′(y, 0)),
fqA,tt(x) =ν ∀y.(y ≥ x + 6 ⇒ Q′(y, 0, x)),
P ′(y, x) =ν y > 0 ∧ (fqA,tt(x) ∨ P ′(y − 1, x + 1) ∨ P ′(y − 1, x − 1)),
Q′(y, r, x) =ν y > 0 ∧ ((gqA,ff,qB

(y − 1, x, r) ∧ fqA,tt(y − 1, r))
∨Q′(y − 1, r + 1, x) ∨ Q′(y − 1, r − 1, x)),

g′
qA,ff,qB

(y, x, r) =ν y > 0
∧((x ≥ 0 ∧ g′

qB ,ff,qB
(y − 1, x − 1, r)) ∨ (x < 0 ∧ r = 5)),

g′
qB ,ff,qB

(y, x, r) =ν y > 0
∧((x ≥ 0 ∧ g′

qB ,ff,qB
(y − 1, x − 1, r)) ∨ (x < 0 ∧ r = 5))}.

Since Φ′
1 |= mainqA,tt(), we know Φ1 |= mainqA,tt(). ��

Remark 3. As explained above, the idea of our translation is to approximate
the least fixpoint FPμ(F ) with F k(⊥). This is too conservative, when (i) the
least fixpoint is not reached in the ω-step (i.e., when FPμ(F ) �= Fω(⊥)), or (ii)
the bound k is too large to express it and for the underlying CHC solver to
reason about (e.g. when k is expressed by the Ackermann function). One way
to overcome this problem is to represent a bound as a tuple of integers. For
example, P (x̃) =μ ϕ can be approximated by P ′(y1, y2, x̃), which is defined by:

P ′(y1, y2, x̃) =ν y1 > 0 ∧ y2 > 0 ∧ ϕ′,

where ϕ′ is the formula obtained from ϕ′ by replacing each subformula of the
form P (ã) with

P ′(y1, y2 − 1, ã) ∨ ∀y′
2.(y

′
2 ≥ max(a′

1, . . . , a
′
k) ⇒ P ′(y1 − 1, y′

2, ã)).

Note that when the value of y1 is decreased, the value of y2 can be reset.
This corresponds to the use of a lexicographic ranking function in termination
verification. ��

CheckValidity(Φ, main){ /* Φ: HES, main: Entry formula */

if Φ is a ν-only HES then return CHCsolver(toCHC(MakeDual(Φ,main)))
else if Φ is a μ-only HES then return not(CHCsolver(toCHC(Φ,main)))
else return (CheckSub(Φ, main) || not(CheckSub(MakeDual(Φ,main))));

}
CheckSub(Φ, main){

(Φ′,main′) := ElimMu(Φ,main)
while(true) {

if CHCsolver(toCHC(Φ′,main′)) then return true

else (Φ′,main′) := IncreaseBounds(Φ′,main′); }
}

Fig. 2. Mu2CHC procedure
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Figure 2 shows pseudo code of our overall procedure. The procedure
CheckValidity takes as input an HES Φ and an entry predicate main and
returns whether Φ |= main() holds. If Φ is ν-only (i.e., it contains neither ∃ nor
μ), then the procedure converts the problem to the corresponding CHC satisfia-
bility problem, and calls a backend CHC solver. Similarly, if Φ is μ-only (i.e., it
contains neither ∀ nor ν), then the procedure makes the de Morgan dual of the
problem by MakeDual, converts it to CHC, and calls a CHC solver; in this case,
the final result is the negation of the output of the CHC solver. The remaining
is the case where Φ has alternations between μ and ν. In this case, the proce-
dure runs the subprocedure CheckSub for proving the original problem and its
dual in parallel. As described above, CheckSub approximates a given HES Φ to a
ν-only HES Φ′ and then converts Φ′ to CHC. Due to the under-approximation,
the result is valid only if the CHC solver returns true (which means the formula
is valid); if the CHC solver returns false or time-outs, the procedure increases
bounds (a′

1, . . . , a
′
k used for eliminating μ) and repeats the loop.

5 Implementation and Evaluation

We have implemented a validity checking tool Mu2CHC for the fixpoint logic
in OCaml, based on the method in Sect. 4. We use Spacer [27] and HoIce [13] as
the backend CHC solvers of Mu2CHC. In addition, we have also implemented
a translator from CTL verification problems for C programs to Mu-Arithmetic
formulas, which supports only a very small subset of C, just large enough to cover
the benchmark programs of [17]. We have not yet implemented the translations
described in Sects. 3.1 and 3.2 (implementing them for a full-scale language is
not difficult but tedious); thus, the outputs of those translations used in the
experiments below have been obtained by hand.

As the set of bounds {a′
1, . . . , a

′
k} used for approximating μ-formulas by ν-

formulas (recall Remark 2), Mu2CHC uses {c1x1+...+cnxn+B | ci ∈ {−A,A}}
where A,B are positive integers, and x1, . . . , xn are the variables in scope. Those
bounds are equivalent to the single bound A(|x1| + ... + |xn|) + B. Mu2CHC
first sets A = 1, B = 10, and doubles them each time the IncreaseBounds
procedure in Fig. 2 is called. In the implementation, an existentially-quantified
formula ∃x.ϕ is directly approximated by the formula ∀x.x ≥ a′

1 ∧ · · · ∧ x ≥
a′

k ⇒ P (x), where P (x) =ν x ≥ 0 ∧ (ϕ ∨ [−x/x]ϕ ∨ P (x − 1)) (rather than
encoding it using μ as in Remark 1 and then approximating μ by ν). Note that
∀x.x ≥ a′

1 ∧ · · · ∧ x ≥ a′
k ⇒ P (x) is equivalent to ∃x.x ≤ max(a′

1, . . . , a
′
k) ∧ ϕ.

We have tested Mu2CHC against our own benchmark set, and the standard
benchmark set for CTL verification [17]. The tool was run on an Intel Core i5
2.7 GHz dual-core processor with main memory of 8 GB.

The first table in Table 1 shows the results on our own benchmark set. The
columns Exp. and Act. show expected and actual results, respectively, where �,
✗, and ? denote “valid”, “invalid”, and “unknown”, respectively. All the problems
except ex4 contain nested ν and μ. The problems 1–6 encode some properties of
integer arithmetic in the fixpoint logic. The problems 7–22 encode linear-time
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properties of recursive programs, based on the translation in Sect. 3 (with some
hand-optimizations). In particular, 7 and 8 are ΦD0,A0 in Sect. 3.2 and a variation
of it. The problems 9–14 are from [23,28,31]. For those problems, the formulas
encode the property “there is an (infinite) error trace that violates an expected
linear-time property.” Those formulas are invalid, since the original programs
have actually no error trace. The rest of the problems (23–28) encode tempo-
ral property of while-programs, based on the translation in Sect. 3.1. Among
them, the problems 23 and 24 verify the properties νX.(x + y ≥ 0 ∧ � � X) and
νX.μY.�Y ∨ (0 ≥ x ∧ (μZ. � Z ∨ (x ≥ 1 ∧ X))) respectively, which we believe
cannot be expressed in CTL*. The problem ex5 has been taken from a test case3

of T2 [15], and verifies the CTL* property AG(AFG(x = 0) ∨ AFG(x = 1)). See
[33] for more details on the benchmark set. Our tool could successfully check the
validity of Mu-Arithmetic formulas, except the problem 22. It requires a reason-
ing about the divisibility predicate, which is not well handled by the underlying
CHC solvers.

The table below in Table 1 shows the result for the “industrial” benchmark
set from [17]; the result for the “small” benchmark set is provided in [33]. For
comparison, we take the results from [17] verbatim (note that the execution time
is measured by using a different processor).4 As the table shows, our tool could
successfully solve all the problems and outperforms [17] in most cases (note
however the difference in the experimental environments). This may be a bit
surprising, as our tool is not customized for CTL verification.

6 Related Work

As already mentioned, our work has been motivated by recent proposals of
reductions from program verification to validity/satisfiability checking in fix-
point logics [3,5,7–9,22,26,32,41]. The idea of using CHC in program analysis
or verification can actually be further traced back to earlier studies on constraint
logic programming [19,24,34].

The combination of our method for proving Mu-Arithmetic formulas with
the translation given in Sect. 3.1 yields an automated verification method for
the full modal μ-calculus model checking of while-programs with infinite data.
In contrast, the previous temporal verification methods have been restricted to
less expressive temporal logics such as CTL [3,17,18,39], CTL∗ [14], and linear-
time logics such as LTL [16,20,31]. As already mentioned, the translation given
3 https://github.com/hkhlaaf/T2/blob/master/test/ctlstar test.t2.
4 There are some discrepancies on the verification results among [17], [3] and ours.

We are not sure about this, but it is most likely because the benchmark set has
accidentally been modified when it was passed around. We have taken the industrial
set from that of E-HSF [3] provided by Andrey Rybalchenko. Note, however, that
we found some discrepancies between the C programs and their encodings in the
E-HSF; that explains the difference between the outputs of our tool and those of
E-HSF [3]. The “small” set was provided by Eric Koskinen. For 26–28, the results
are “invalid” for both ϕ and ¬ϕ (as in [3]); this is not a contradiction, as the checked
properties are of the form “for all the initial states, ϕ (or ¬ϕ) holds.”.

https://github.com/hkhlaaf/T2/blob/master/test/ctlstar_test.t2
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Table 1. Experimental Results. The upper table shows the results for our own bench-
mark set, and the lower table shows the results for the Industrial Set from [17].

Benchmark Name Exp. Act. Time[s]
1. simple-nest 0.21
2. simple-nest-inv 0.19
3. lines1 1.72
4. lines2-invalid 0.27
5. lines3 1.95
6. lines4 1.66
7. ex3 9.36
8. ex3-forall 22.87
9. hofmann1 0.17
10. hofmann2 0.48
11. koskinen1 fo 0.27
12. koskinen2 1.50
13. koskinen3 0.46
14. intro 1.96

Benchmark Name Exp. Act. Time[s]
15. infinite1 1.58
16. infinite1b 2.97
17. infinite1c-invalid 1.64
18. infinite2 0.36
19. infinite3 0.13
20. intfun1-invalid 0.06
21. intfun2-invalid 0.06
22. intfun3-invalid ? -
23. ex4 0.09
24. ex4 0.13
25. ex5 1.58
26. ctl1 0.79
27. ctl2 5.50
28. ctl2b-invalid 1.72

Problem ID
and Property
ϕ

|= ϕ |= ¬ϕ

Exp.
[17] Mu2CHC

Exp.
[17] Mu2CHC

Act. Time[s] Act. Time[s] Act. Time[s] Act. Time[s]
1. AG(p ⇒ AFq) 4.6 0.40 12.5 0.41
2. AG(p ⇒ AFq) 9.1 0.10 3.5 0.32
3. AG(p ⇒ EFq) 9.5 0.23 18.1 1.57
4. AG(p ⇒ EFq) 1.5 0.65 105.7 0.82
5. AG(p ⇒ AFq) 2.1 0.49 6.5 3.91
6. AG(p ⇒ AFq) 1.8 0.15 1.2 2.91
7. AG(p ⇒ EFq) 3.7 4.91 8.7 6.33
8. AG(p ⇒ EFq) 1.5 5.55 5.6 4.25
9. AG(p ⇒ AFq) 38.9 0.65 1930.9 3.27
10. AG(p ⇒ AFq) 148.0 28.20 1680.7 29.53
11. AG(p ⇒ EFq) 90.0 0.42 ? - 2.69
12. AG(p ⇒ EFq) 107.8 0.52 ? - 2.92
13. AFq ∨ AFp 34.3 0.16 62.3 14.62
14. AFq ∨ AFp 18.8 0.20 7.6 1.91
15. EFq ∧ EFp 1261.0 21.87 0.9 0.14
16. EFq ∧ EFp ? - 1.80 0.6 0.16
17. AGAFp 596.7 0.58 1471.7 2.39
18. AGAFp 65.1 0.07 351.1 0.23
19. AGEFp ? - 0.46 85.5 0.38
20. AGEFp ? - 0.89 255.8 0.52
21. AGAFp ? - 1.22 45.3 0.29
22. AGAFp 38.1 0.13 35.2 0.32
23. AGEFp ? - 0.11 ? - 0.11
24. AGEFp 42.7 0.11 30.2 1.62
25. p ⇒ AFq 70.2 17.17 0.4 0.13
26. p ⇒ AFq 32.4 0.84 4.5 0.09
27. p ⇒ EFq 18.5 0.94 0.5 0.09
28. p ⇒ EFq 1.3 0.07 0.3 0.11
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in Sect. 3.1 can be considered a special case of the translation of Watanabe
et al. [41] for higher-order programs. For imperative programs, however, our
translation in Sect. 3.1 is more direct. Our translation for infinite-data programs
may also be viewed as a generalization of Andersen’s translation from modal
μ-calculus model checking of finite-state systems to Boolean graphs [2].

The reduction from linear-time properties of first-order recursive programs
to the validity checking problem in a first-order fixpoint logic is new, to our
knowledge. Kobayashi et al. [26] proposed a translation from linear-time proper-
ties of higher-order programs to the validity checking in a higher-order fixpoint
logic (called HFL), but their translation yields second-order fixpoint logic formu-
las for first-order recursive programs. Combined with our Mu-Arithmetic prover,
the translation yields a new automated method for proving linear-time properties
of first-order recursive programs. Our translation may be considered a general-
ization of the technique for LTL model checking of recursive state machines [1],
to deal with infinite-data programs.

Our approach of Mu2CHC described in Sect. 4 has been inspired by termi-
nation verification methods [21,35] and generalizes the method of Fedyukovich
et al. [21]. A related technique has been proposed by Biere et al. [4] for finite-
state model checking. The Mu2CHC approach also much relies on the recent
advance of CHC solving techniques [5,13,27,38]. An alternative approach to
approximate μ-formulas by ν-formulas would be to generalize the termination
verification method based on transition invariants [36], as sketched in [41].

As discussed in Sect. 2.3, the validity checking problem for Mu-Arithmetic
may be seen as a generalization of the satisfiability problem for CHC [8,9].
A few extensions of CHC have been previously studied [3,7]. To encode CTL
verification problems, Beyene et al. [3] extended CHC with a special predicate
dwf such that dwf (r) if and only if r is disjunctively well-founded. This fragment
is close to Mu-Arithmetic, in that, as an alternative to the method in Sect. 4, we
can replace a μ-equation P (x̃) =μ ϕ with P (x̃) =ν ϕ′, where ϕ′ is the formula
obtained from ϕ by replacing each subformula of the form P (ã) with r(ã, x̃)∧P (ã)
for a well-founded relation r. Allowing universal quantifiers in bodies of CHC [7]
corresponds to allowing existential quantifiers in our HES (recall that we took de
Morgan dual in the conversions between a fragment of Mu-Arithmetic and CHC
in Sect. 2.3). In contrast, there is no counterpart of the extension with existential
quantifiers (in head positions of CHC) [3] in our fixpoint logic, which indicates
that such an extension is unnecessary for the μ-calculus model checking of while
programs.

7 Conclusion

We have proposed a method for proving validity of first-order fixpoint logic
with integer arithmetic. Combined with the reduction in Sect. 3.1, the proposed
methods yield an automated, unifying verification method for temporal prop-
erties of while-programs, supporting all the properties expressive in the modal
μ-calculus. We have also presented a reduction from linear-time properties of
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first-order recursive programs to validity of fixpoint formulas, which also yields
an automated method for temporal properties of first-order recursive programs,
supporting all the properties expressive by Büchi automata. Future work includes
further refinement of our verification method (e.g., on the point discussed in
Remark 3), and an extension of our tool lo support data types other than inte-
gers. Extending our methods in Sects. 3 and 4 to support algebraic data types
is not difficult, but the CHC solving phase may become a bottleneck, as the
current CHC solvers are not very good at dealing with algebraic data types.

Acknowledgments. We would like to thank anonymous referees for useful com-
ments. This work was supported by JSPS KAKENHI Grant Number JP15H05706
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Abstract. We propose an extension of linear temporal logic that we call
Linear Temporal Logic of Calls (LTLC) for describing temporal proper-
ties of higher-order functions, such as “the function calls its first argu-
ment before any call of the second argument.” A distinguishing feature
of LTLC is a new modal operator, the call modality, that checks if the
function specified by the operator is called in the current step and, if so,
describes how the arguments are used in the subsequent computation. We
demonstrate expressiveness of the logic, by giving examples of LTLC for-
mulas describing interesting properties. Despite its high expressiveness,
the model checking problem is decidable for deterministic programs with
finite base types.

1 Introduction

Specifications of programs (or other systems) are often described by temporal or
modal logics such as linear temporal logic (LTL), computational tree logic (CTL)
and modal μ-calculus [2,8,12,16,19,22]. Formulas of these logics are built from
atomic propositions representing basic properties of run-time states, e.g. whether
the control is at a certain program point and whether the value of a certain global
variable is positive. The set of atomic propositions in these logics is static in the
sense that it remains unchanged during evaluation of programs.

We are interested in verification of higher-order functional programs, and
logics suitable for describing temporal properties of such programs. For example,
consider a function g : (unit → string) → (int → int), which takes (the reader
function of) a read-only file and creates a function on integers. The following is
a possible specification for g:

– g is allowed to access the reader function only until it returns.

The implementation

let g r =
(
letw = int of string (r ()) inλx.x + w

)

meets the specification, whereas

let g r = λx.x + (int of string (r ()))
c© Springer Nature Switzerland AG 2019
B.-Y. E. Chang (Ed.): SAS 2019, LNCS 11822, pp. 437–458, 2019.
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violates it.
Properly describing this specification is difficult because the property refers

to dynamic notions such as “the argument of the first call of g.” The program

let g r =
(
letw = int of string (r ()) inλx.x + w

)
in

let fp = open filename in
let r = λ .read line fp in
let v1 = g r in
let v2 = g r in
print (v1 1 + v2 2)

is an example that calls g twice. The sequence of call and return events of g and
r in the evaluation is written as

call g1 → call r1 → ret r1 → ret g1 → call g2 → call r2 → ret r2 → ret g2,

where g1 means the first call of g and r1 is its argument and similarly for g2 and
r2. The above program satisfies the property since there is no call ri after ret gi

for i = 1, 2. However, by ignoring the subscripts, i.e. confusing the first call of
g with the second call, the program may seem to violate the specification since
there is call r2 after ret g1. This means that references to dynamic notions like
the subscripts in the above sequence are inevitable for precise description of the
specification. For this reason, the specification does not seem to be expressible
in the standard logics listed above.

This paper proposes a new temporal logic, named Linear Temporal Logic of
Calls (LTLC for short), by which one can describe the above property. The
logic is an extension of Linear Temporal Logic (LTL) with a new operator
call f(x1, . . . , xn).ϕ, the call operator, where the occurrences of x1, . . . , xn are
binding occurrences. Intuitively this formula is true just if the function f is called
in the current step (i.e. the current expression is of the form E[f e1 . . . en]) and
ϕ[e1/x1, . . . , en/xn] holds at the next step.1 We shall see in Example 2 an LTLC
formula describing the above property.

LTLC is expressive. One can describe properties written by dependent refine-
ment types in the form of [21], relational properties [1,5] (e.g. monotonicity of a
given function) and some examples in resource usage analysis [10].

Furthermore LTLC is tractable. The LTLC model-checking problem is not
more difficult than the standard temporal verification problem, because the
LTLC model-checking problem is effectively reducible to the standard tempo-
ral verification of programs. In particular, for programs over finite types,2 the
LTLC model-checking is reducible to higher-order model checking [12,17] and
thus decidable.

1 Here is a subtlety. We should distinguish different occurrences of the same expression,
and here ei means the occurrence of ei as the i-th argument of this function call.
See Sects. 3.2 and 3.3.

2 This finiteness condition is obviously necessary, because most verification problems
are undecidable for programs with infinite types, such as integers.
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Organisation of this Paper. After defining the target language in Sect. 2, we
present the syntax and semantics of LTLC in Sect. 3. Section 4 shows examples of
properties expressible by LTLC. Section 5 proves the reducibility result. Section 6
gives a brief discussion on other topics. After discussing related work in Sect. 7,
Sect. 8 concludes the paper.

2 Target Language

This section describes the target language of this paper, which is a simply-typed
call-by-name higher-order functional programming language with recursion.

We assume a set of base types, ranged over by b, as well as a set Vb of values
for each base type b. We require that Vb ∩ Vb′ = ∅ whenever b �= b′. Examples
of base types are boolean type and (bounded or unbounded) integer type. We
assume the set of base types contains the boolean type Bool and VBool = { tt ,ff }.

We also assume a set of binary operators Op. Each binary operator op ∈ Op
is associated with their sort b1, b2 → b3, meaning that it takes two arguments of
types b1 and b2 and yields a value of type b3. Examples of binary operations are
+,−,× (of sort Int, Int → Int) and =Int (of sort Int, Int → Bool).

Most results of this paper are independent of the choice of basic types and
operators. The only exception is the decidability of model checking (Theorem 4)
for which we assume base types are finite (i.e. Vb is finite for each base type b).

The set of types is given by:

τ := � | σ → τ σ := b | τ.

A type is the unit type �, a base type b or a function type σ → τ . For a technical
convenience, the above syntax requires that the return type of a function is not a
base type. Therefore a type τ must be of the form σ1 → · · · → σn → � for some
n ≥ 0 and σi, 1 ≤ i ≤ n. This does not lose generality because this requirement
can be fulfilled by applying the CPS translation.

Assume disjoint sets V of variables and F of function names. The set of
expressions is defined by the following grammar:

e := () | c | x | f | e1 e2 | op | if

where x and f are meta-variables ranging respectively over variables and function
names. The expression () is the unit value and c ∈

⋃
b Vb is a constant of a base

type. Each binary operation op ∈ Op has the associated constructor op, which
is in CPS (see the type system below) for a technical convenience. We also have
a constructor if of conditional branching.

A function definition P is a finite set of equations of the form f x1 . . . xn = e,
where f is the name of the function, x1, . . . , xn (n ≥ 0) are formal parameters
and e is the body of the function. We assume that a function definition P contains
at most one equation for each function name f . A program is a pair (P, e) of a
function definition and an expression.

We shall consider only well-typed programs. A type environment is a finite set
of type bindings of the form x : σ or f : τ . We shall use Δ for type environments
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of function names, and Γ for variables. A type judgement is a tuple Δ | Γ 	 e : σ.
The typing rules for expressions are straightforward, e.g.,

f : τ ∈ Δ

Δ | Γ 	 f : τ Δ | Γ 	 if : Bool → � → � → �

op ∈ Op has sort b1, b2 → b3
Δ | Γ 	 op : b1 → b2 → (b3 → �) → �

.

Some notable points are (1) the then- and else-branches of an if-expression have
to be of unit type, and (2) the binary operation op e1 e2 e3 in CPS takes two
arguments e1 : b1 and e2 : b2 of base types and a continuation e3 : b3 → �.
We say that a function definition f x1 . . . xn = e defines a function of type τ
under the type environment Δ, written Δ 	 f x1 . . . xn = e : τ , if τ = σ1 →
· · · → σn → � and Δ | x1 : σ1, . . . , xn : σn 	 e : �. Note that the function body
e is required to have type � (this restriction can be fulfilled by η-expanding
the definition, which does not change the meaning of a function in the call-by-
name setting). A function definition P = { fi x̃i = ei}1≤i≤m is well-typed under
Δ = { f1 : τ1, . . . , fm : τm }, written Δ 	 P, if Δ 	 fi x̃i = ei : τi for every i. A
program (P, e) is well-typed if there exists Δ such that Δ 	 P and Δ | ∅ 	 e : �.

The operational semantics of the language is fairly straightforward. We define
the small-step reduction relation −→ by the following rules:

c1 op c2 = c

op c1 c2 e −→ e c if tt e1 e2 −→ e1 if ff e1 e2 −→ e2

(f x1 . . . xn = e) ∈ P
f e1 . . . en −→ [e1/x1, . . . , en/xn]e () −→ ()

The last rule is an artificial rule, which ensures that every well-typed expression
has an infinite reduction sequence, somewhat simplifying some definitions in the
next section. We write −→∗ for the reflexive, transitive closure of −→.

If Vb is finite and the equality =b on b is in Op, the case analysis of values of
type b is definable in the language. We write

case eof c1 → e1 | · · · | cn → en,

where e, c1, . . . , cn : b and e1, . . . , en : �, for the expression

if (=b e c1) e1(if (=b e c2) e2 (. . . (if(=b e cn) en ()) . . . )).

Example 1. Recall the example in Introduction, which was written in direct
style. By abstracting unimportant details and transforming it into CPS, we
obtain the following program:

let g r k = r (λw.k (λxh.h (x + w))) in
let r k = k 0 in
let p x = () in

g r (λv1.g r (λv2.v1 1 (λu1.v2 2 (λu2.p (u1 + u2)))))
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Here r is a function reading the value from a file (consisting of only 0 s) and
passing it to the continuation k; p is the function that prints the argument
(but formally does nothing). This program can be seen as a program in our
language,3 of which functions definitions are given by sequences of let and the
initial expression e is that in the last line. The type environment for functions
is given by

r : (Int → �) → �, p : Int → �,

g : ((Int → �) → �) → ((Int → (Int → �) → �) → �) → �

The evaluation of the program is

g r k1 −→ r (λw.k1 (λxh.h(x + w))) −→∗ k1 (λxh.h(x + 0)) −→
g r k2 −→ r (λw.k2 (λxh.h(x + w))) −→∗ k2 (λxh.h(x + 0)) −→ · · ·

where

k1 = (λv1.g r (λv2.v1 1 (λu1.v2 2 (λu2.p (u1 + u2)))))
k2 = [(λxh.h(x + 0))/v1] (λv2.v1 1 (λu1.v2 2 (λu2.p (u1 + u2)))).

Note that r is called twice: The first (resp. the second) call of r is between the
first (resp. the second) call of g and the call of the corresponding continuation
k1 (resp. k2).

3 Linear Temporal Logic of Calls

This section defines a novel temporal logic that we call Linear Temporal Logic of
Calls (LTLC for short). It is an extension of the standard linear temporal logic
(LTL) by a modal operator, called the call operator, which describes a property
on function calls. Let P be a function definitions and Δ be the type environment
for functions, fixed in the sequel.

3.1 Syntax

Assume a set L of variables that is disjoint from the sets of function names and
of variables in expressions. We use α, β and γ for variables in L. The set of
LTLC formulas is defined by the following grammar:

ϕ := true | false | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | ϕ U ϕ | ϕ R ϕ | call ξ(β̃).ϕ | p(β̃)

where ξ is either a function name f or a variable α ∈ L. It is the standard
LTL with next ©, (strong) until U and release R extended by the call operator
call ξ(β̃).ϕ and predicates p(β̃) on values of base types (such as the order <

3 Strictly speaking, we need to do lambda-lifting as the lambda abstraction is not in
the syntax.
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and equivalence = of integers). The occurrences of variables β̃ in call ξ(β̃).ϕ are
binding occurrences, and ξ is free.

The meaning of formulas should be clear except for call ξ(β̃).ϕ. Intuitively
call f(β̃).ϕ is true just if the current expression is of the form f ẽ and ϕ{ẽ/β̃}
holds in the next step ef{ẽ/x̃} (where f x̃ = ef ∈ P), although here is a subtle
point that we shall discuss in the next subsection.

Each variable β in a formula naturally has its type, and a formula should
respect the types to make sense. For example, call f(β).ϕ would be nonsense
if the function f has two arguments. We use a type system to filter out such
meaningless formulas. We write Θ for a type environment for variables in L. A
type judgement is of the form Δ | Θ 	 ϕ, meaning that ϕ is well-formed under
Δ and Θ. Here Δ and Θ declares the types for function names and variables in
L, respectively. Examples of typing rules are as follows:

Δ | Θ 	 false
Δ | Θ 	 ϕ

Δ | Θ 	 ©ϕ

Δ | Θ 	 ϕ1 Δ | Θ 	 ϕ2

Δ | Θ 	 ϕ1 U ϕ2

f : σ1 → · · · → σn → � ∈ Δ Δ | Θ ∪ {βi : σi}1≤i≤n 	 ϕ

Δ | Θ 	 call f(β1, . . . , βn).ϕ
.

We shall use the following abbreviations. As usual, the temporal operators
“future” F and “always” G are introduced as derived operators, defined by

Fϕ := true U ϕ and Gϕ := false R ϕ.

We also use a derived operator ifcall given by

ifcall ξ(β̃).ϕ := ¬Fcall ξ(β̃).(¬ϕ)

meaning that call ξ(β̃).ϕ holds for every call of ξ in the future. This operator
can alternatively be defined by

ifcall ξ(β̃).ϕ = G(call ξ(β̃).ϕ ∨ ¬call ξ(β̃).true).

We write ©nϕ for © · · · ©
︸ ︷︷ ︸

n

ϕ, meaning that ϕ holds after n steps.

Example 2. Recall the program in Example 1. The formula meaning “g does not
call its first argument after returning the value” can be written as follows:

ifcall g(α, β) . ifcall β(γ) . (¬Fcall α(δ) . true).

Since the programs are now written in CPS, “returning the value” means “calling
the continuation β.” The above formula says that, for every call of g, if it returns
the value (via the continuation β), then it will never call the first argument α.
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3.2 Näıve Semantics and a Problem

Every closed expression Δ | ∅ 	 e : �, possibly using functions in P, induces the
unique infinite reduction sequence

e = e0 −→ e1 −→ e2 −→ . . . −→ en −→ · · · .

An LTLC formula ϕ describes a property on such infinite reduction sequences.
Thus the satisfaction relation e |= ϕ is defined as a relation between an expres-
sion Δ 	 e : � and an LTLC formula Δ 	 ϕ.

The definition of the relation for logical connectives from the standard LTS
is straightforward. For example, ©ϕ means that ϕ holds in the next step, and
thus e |= ©ϕ if and only if e′ |= ϕ for the unique e′ such that e −→ e′.

The main issue is how to define the semantics of call f(β̃).ϕ. Intu-
itively e |= call f(β1, . . . , βn).ϕ holds if and only if e = f e1 . . . en and
ef [e1/x1, . . . , en/xn] |= ϕ[e1/β1, . . . , en/βn], where ef is the body of the defi-
nition of f . However this näıve definition has a problem.

Let us explain the problem by using an example. Consider the function
doTask defined by

doTask f g = f (g ()).

It would be natural to expect that “doTask does not call the second argument
unless it does not call the first argument” should be true independent of the
context in which doTask is used. Formally we expect C[doTask ] |= ϕ for every
context C, where ϕ is the formula given by

ϕ = call doTask(α, β) .
(
(¬ call β(γ).true) U (call α(δ).true)

)
.

However it is not true. Consider, for example, C = []hh where h is an arbitrary
function. Then

doTask hh |= ϕ ⇔ h (h ()) |= (¬ call h(γ).true) U (call h(δ).true)

but the right-hand-side is false because h (h ()) |= call h(γ).true and thus
h (h ()) �|= ¬ call h(γ).true.

The problem is caused by confusion between h as the first argument and h as
the second argument. In the formula ϕ, the first and second arguments of doTask
are distinguished by their names, α and β. However they become indistinct by
the substitution [h/α, h/β].

3.3 Formal Semantics

We use labels to correctly keep track of expressions. A label is just a variable α ∈
L in a formula. Labelled expressions are those obtained by extending expressions
with the labelling construct, as follows:

e ::= · · · | eα, α ∈ L.
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e, ρ |= true always holds
e, ρ |= false never holds
e, ρ |= ¬ϕ ⇐⇒ e, ρ �|= ϕ
e, ρ |= ϕ1 ∨ ϕ2 ⇐⇒ e, ρ |= ϕ1 or e, ρ |= ϕ2

e, ρ |= ϕ1 ∧ ϕ2 ⇐⇒ e, ρ |= ϕ and e, ρ |= ϕ2

e, ρ |= ©ϕ ⇐⇒ (∃e′)[e −→ e′ and e′, ρ |= ϕ]
e, ρ |= ϕ1 U ϕ2 ⇐⇒ (∃j)[e, ρ |= ©jϕ2 and (∀i < j)[e, ρ |= ©iϕ1]]
e, ρ |= ϕ1 R ϕ2 ⇐⇒ (∀j)[e, ρ |= ©jϕ2 or (∃i < j)[e, ρ |= ©iϕ1]]
e, ρ |= p(α1, . . . , αk)a ⇐⇒ p(�ρ(α1), . . . , �ρ(αk)) is true
e, ρ |= call α(β1, . . . , βk).ϕ ⇐⇒ e = (. . . (eS0

0 e1)S1 . . . ek)Sk and α ∈ S0 and
e0 eβ1

1 . . . e
βk
k −→ e′ and e′, ρ ∪ {βi → ei}1≤i≤k |= ϕ

e, ρ |= call f(β1, . . . , βk).ϕ ⇐⇒ e = (. . . (fS0 e1)S1 . . . ek)Sk and
e0 eβ1

1 . . . e
βk
k −→ e′ and e′, ρ ∪ {βi → ei}1≤i≤k |= ϕ

Fig. 1. Semantics of formulas. The operation � removes labels from a given expression.

For a possibly empty sequence S = α1 . . . αn, we write eS for ((eα1) . . . )αn .
Given a labelled expression e, we write �e for the (ordinary) expression obtained
by removing labels in e.

The labels do not affect reduction. For example,

(((fS0 e1)S1 e2)S2 . . . en)Sn −→ ef [e1/x1, . . . , en/xn]

provided that f x1 . . . xn = ef ∈ P. Therefore, if e −→ e′ as labelled expressions,
then �e −→ �e′.

Now we formally define the satisfaction relation |=. It is a ternary relation
e, ρ |= ϕ on a labelled expression e : �, a valuation map ρ from free variables in
ϕ to labelled expressions, and an LTLC formula ϕ. It is defined by induction on
the complexity4 of formulas by the rules in Fig. 1.

Remark 1. Given a judgement e, ρ |= ϕ, one can remove the following data
without changing the meaning of the judgement:

– mapping α �→ e from ρ if α is not of a base type, and
– label β in (d)β from e if d is an expression of a base type.

This is because the information on a base-type variable β is recorded in ρ, and the
information on a non-base-type variable α is tracked by labels in the expression.
We put both information to both ρ and e just to simplify the definition (by
avoiding the case split by types).

The main difference from the näıve semantics is the meaning of the call
operator. Instead of substituting βi in the formula to the actual argument ei in
the expression, we annotate the actual argument ei by βi.
4 We define the complexity of a formula ϕ as the pair of numbers (n, m) ordered by

the lexicographic ordering, where n is the sum of the numbers of occurrences of U
and R in ϕ and m is the size of ϕ.
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We see how the labelling works by using the example in the previous subsec-
tion. By the labelling semantics, we have

(doTask hh), ∅ |= ϕ ⇔ hα (hβ ()), ρ |= (¬ call β(γ).true) U (call α(δ).true)

for some ρ (whose contents are not important here). Notice that h as the first
argument of doTask can be distinguished from h as the second argument of
doTask : the former has the label α whereas the latter is annotated by β. Now
hα (hβ ()), ρ �|= call β(γ).true and hα (hβ ()), ρ |= ¬call β(γ).true as expected. It
is not difficult to see that doTask hh, ∅ |= ϕ indeed holds, whatever h is.

3.4 Negation Normal Form

The negation ¬ in a formula can be pushed inwards in many cases, without
changing the meaning of the formula. For example,

¬true = false ¬(ϕ1 U ϕ2) = (¬ϕ1) R (¬ϕ2) and ¬©ϕ = ©¬ϕ.

Unfortunately the negation of the call operator ¬call ξ(β̃).ϕ cannot be pushed
inwards in general, but we can restrict the shape of the formula to which the
negation is applied. The formula call ξ(β̃).ϕ does not hold if either (a) ξ is now
called but the following computation violates ϕ or (b) ξ is not called in the
current step. This observation can be expressed by the equation

¬call ξ(β̃).ϕ = call ξ(β̃).(¬ϕ) ∨ ¬call ξ(β̃).true.

We shall abbreviate ¬call ξ(β̃).true as ¬call ξ.
The above argument gives an effective rewriting process, yielding a formula

in the following syntax that we call the negation normal form:

ϕ := true | false | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | ϕ U ϕ | ϕ R ϕ

| call ξ(β̃).ϕ | ¬call ξ | p(β̃) | ¬p(β̃).

We shall use this normal form in the following section.

4 Expressiveness

This section briefly explains the expressiveness of LTLC.

4.1 Dependent Refinement Types

Properties described by dependent refinement types in the form of [21] are
expressible by LTLC formulas.
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Example 3. Consider the type

T0 := (x : {Int | ν ≥ 0}) → {Int | ν > x}

for call-by-value programs. This is the type for functions f on integers such that
f(x) > x for every positive x. As the target language of this paper is call-by-
name, we need to apply the CPS translation to call-by-value programs of interest
and the corresponding translation to dependent types. The resulting type is

T := (x : {Int | ν ≥ 0}) →
(
{Int | ν ≥ x} → �

)
→ �.

The LTLC formula ϕT corresponding to the judgement 	 f : T is

ϕT := ifcallf(α, β) .
(
α ≥ 0 ⇒ ifcall β(γ) . α < γ

)
.

We explain the general rule of the translation, focusing on the image of
function types by the call-by-value CPS translation. The syntax of dependent
refinement types is given by

T, S ::= (α : U) →
(
V → �

)
→ � U, V ::= {Int | ϑ(ν)} | T

where ν is a distinguished variable and ϑ(ν) is a formula of the underlying logic.
The occurrence of α is a binding occurrence and ϑ may contain variables other
than ν. The LTLC formula ΦU is defined by the following rules:

Φ{Int|ϑ(ν)}(α) := ϑ(α)

Φ(β:U)→(V →�)→�(α) := ifcall α(β, κ).
(
ΦU (β) ⇒ ifcall κ(γ) . ΦV (γ)

)
.

A judgement 	 f : T corresponds to the LTLC formula ΦT (f).

4.2 Relational Property

Some relational properties [1,5], such as the relationship between two functions
and that between two calls of a function, can be described by LTLC. An example
of relational property is monotonicity; if a given function f is not monotone, one
can find two inputs x ≤ y such that f(x) � f(y). Monotonicity can be naturally
expressed by LTLC.

Example 4 (Monotonicity). Assume a function f : Int → (Int → �) → �. This
function is monotone if n ≤ n′, f n k calls the continuation k with the value m
and f n′ k′ calls k′ with m′, then m ≤ m′. (Recall that f is in CPS and thus
“calling k with m” can be understood as “returning m”.) If f is assumed to be
non-recurrent, this property can be written as

ifcall f(α, β) . ifcall β(γ) . ifcall f(α′, β′) . ifcall β′(γ′) . ψ(α, γ, α′, γ′)

where ψ(α, γ, α′, γ′) = (α ≤ α′ ⇒ γ ≤ γ′) ∧ (α ≥ α′ ⇒ γ ≥ γ′). The meaning of
this formula can be expressed by a natural language as follows:
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Let α be the argument to the first call of f , and γ be the “return value”
of the first call. Similarly let α′ be the argument to the second call of f ,
and γ′ be the “return value” of the second call. We require that α ≤ α′

implies γ ≤ γ′, and that α ≥ α′ implies γ ≥ γ′.

A formula applicable to the case of f being recurrent is a bit complicated, since
the order of two calls and returns is not determined. The formula applicable to
the general case is

ifcall f(α, β) . ifcall f(α′, β′) . ifcall β(γ) . ifcall β′(γ′) . ψ(α, γ, α′, γ′)
∧ ifcall f(α, β) . ifcall f(α′, β′) . ifcall β′(γ′) . ifcall β(γ) . ψ(α, γ, α′, γ′)
∧ ifcall f(α, β) . ifcall β(γ) . ifcall f(α′, β′) . ifcall β′(γ′) . ψ(α, γ, α′, γ′)

The conjunction enumerates all possible orders of two calls and returns of f .

4.3 Resource Usage Verification

The final example is verification/analysis of programs using resources, known
as resource usage analysis [10]. An example of resource is read-only files. For
simplicity, we focus on the verification of usage of read-only files.

Let us first consider the simplest case in which a program generates a unique
resource only at the beginning. In this case, a target is a program with distin-
guished functions r, c : � → � for reading and closing the file. The specification
requires (1) the program does not read the file after closing it, and (2) the file
must be closed before the termination of the program. The specification can be
described by an LTLC formula:

ϕ(r, c) := G(call c ⇒ ¬Fcall r) ∧ (¬endU call c),

where end is the event meaning the termination. Indeed this is an LTL formula
when one regards call c and call r as atomic propositions.

In the general case, a program can dynamically create read-only file resources.
The target program has a distinguished type File for file resources and a dis-
tinguished function gen : (File → �) → �. Since the possible operations for
File is read and close, we identify the type File as (� → �) × (� → �), the
pair of reading and closing functions. The specification requires that, for each
call of gen, the created resource should be used in the manner following ϕ; this
specification can be written by an LTLC formula as

ifcall gen(α) . ifcall α(r, c) . ϕ(r, c).

Note that ifcall α(r, c) intuitively means that “if the function gen returns the
value (r, c)” since gen is in CPS and α is the continuation.

5 LTLC Model Checking

This section focuses on the LTLC model-checking problem, i.e. the problem to
decide, given a program P, an expression e and an LTLC formula ϕ, whether
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e, ∅ |= ϕ (where ∅ is the empty valuation). The main result of this section
is that the LTLC model-checking problem is effectively reducible to the stan-
dard temporal verification problem, which could be solved by model checkers for
higher-order programs. In particular, for programs and expressions over finite
types, this reduction yields an instance of higher-order model checking [12,17],
for which several model-checkers are available [6,20].

5.1 Preliminaries: Higher-Order Model Checking

Higher-order model checking is a problem to decide, given a higher-order tree
grammar and an ω-regular tree property, whether the (possibly infinite) tree
generated by the grammar satisfies the property. Higher-order model checking
has been proved to be decidable by Ong [17]5 and applied to many verification
problems of higher-order programs (see, e.g., [12]). We prove that LTLC model
checking is decidable by reducing it to higher-order model checking.

This subsection briefly reviews higher-order model checking, tailored to our
purpose. See [12,17] for formal definitions and general results.

Let Σ be a ranked alphabet defined by

Σ := {�,⊥ �→ 0, �,� �→ 2, U, R �→ 3 }.

This means that � is a leaf and � (resp. U) is a binary (resp. ternary) branching
tree constructor, and so on. A Σ-labelled tree is a possibly infinite tree of which
each node is labelled by a symbol in Σ. We shall consider only well-ranked trees:
we require that the number of children of a node labelled by � is 2, for example.
We shall often use the infix notation for � and �, e.g. T1 � T2 is the tree whose
root is � and its children are T1 and T2.

A nondeterministic Büchi automaton is a tuple (Q, q0, δ, F ), where Q is a
finite set of states, q0 ∈ Q is an initial state, δ :

∏
a∈dom(Σ)(Q → P(QΣ(a))) is

a transition function and F ⊆ Q is the set of accepting states. A run-tree of
A over a tree T is an association of states q ∈ Q to nodes in T that respects
the transition function in a certain sense. A run-tree is accepting if each infinite
branch contains infinitely many occurrences of an accepting state. A tree T is
accepted by A if there is an accepting run-tree over T .

A tree-generating program is a variant of programs introduced in Sect. 2, but
has different set of operators on type �. The syntax of expressions is

e := � | ⊥ | � | � | U | R | c | x | f | e1 e2 | op e1 e2 e3 | if e1 e2 e3,

obtained by replacing () with the tree constructors in Σ. Their types are

�,⊥ : � �,� : � → � → � and U, R : � → � → � → �.

5 The original definition (as in [17]) considers only programs without data types, but
the decidability result can be easily extended to programs with finite data types.
We shall consider a generalised version, in which programs may contain infinite data
types. Of cause, the decidability result fails for the generalised version.
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So � should be now regarded as the type for trees. The notion of function defini-
tion remains unchanged, except that the body of a function is now an expression
with tree constructors.

The operational semantics is basically the same as before. The only difference
is that reduction may occur under tree constructors, i.e. the following rules

e1 −→ e′
1

(e1 � e2) −→ (e′
1 � e2)

and
e2 −→ e′

2

(e1 � e2) −→ (e1 � e′
2)

are added, as well as similar rules for other constructors. A program (P, e)
generates a possibly infinite tree as a result of possibly infinite steps of reduction.

Higher-order model checking asks to decide, given a program (P, e) and a
nondeterministic Büchi automaton A, whether the tree generated by (P, e) is
accepted by A.

Theorem 1 (Ong [17]). Given a tree-generating program (P, e), of which all
basic data types are finite, and a nondeterministic Büchi automaton A, one can
effectively decide whether the tree generated by (P, e) is accepted by A.

5.2 Satisfaction Tree

Let P be a function definition, fixed in this subsection. Given an expression e : �,
a valuation ρ and an LTLC formula ϕ in negation normal form, we define a tree
T (ϕ, ρ, e), called the satisfaction tree, which represents the process evaluating
e, ρ |= ϕ. This subsection shows that the satisfaction tree correctly captures the
satisfaction relation, in the sense that e, ρ |= ϕ if and only if T (ϕ, ρ, e) belongs
to a certain ω-regular tree language.

A satisfaction tree is a Σ-labelled tree. The meaning of �,⊥,� and � should
be obvious. The trees � and ⊥ represent immediate truth and falsity. The tree
T1 � T2 means that the evaluation process invokes two subprocess, represented
by T1 and T2, and the result is true just if the results of both subprocesses are
true. The meaning of � is similar.

The constructors U and R, corresponding respectively to U and R, require
some expositions. The meaning of U is based on a classical but important obser-
vation: whether e, ρ |= ϕ1 U ϕ2 or not is completely determined by three judge-
ments, namely e, ρ |= ϕ1, e, ρ |= ϕ2 and e, ρ |= ©(ϕ1 U ϕ2). That means,
e, ρ |= ϕ1 U ϕ2 if and only if either (a) e, ρ |= ϕ1 and e, ρ |= ϕ2, or (b) e, ρ |= ϕ1

and e, ρ |= ©(ϕ1 Uϕ2). So the process of checking e, ρ |= ϕ1 Uϕ2 invokes three
subprocesses; the three subtrees of U correspond to these judgements. A similar
observation applies to R.

The definition of satisfaction trees is co-inductively defined by the rules in
Figs. 2, 3, 4 and 5. The meaning of the rules in Fig. 2 should now be clear. For
example, the rule for ϕ1 U ϕ2 says that e, ρ |= ϕ1 U ϕ2 depends on satisfaction
of e, ρ |= ©(ϕ1 U ϕ2), e, ρ |= ϕ1 and e, ρ |= ϕ2.

Figure 3 defines the rules for the call modality call α(β̃).ϕ. The first two rules
check if e is calling an expression labelled by α. If one finds the label α, then
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Fig. 2. Satisfaction tree: (1) Boolean connectives, until and release.

the arguments are recorded to ρ and labelled by β̃ as required. In this case, we
also change the target formula to ©ϕ. In the second rule, a label other than α
should be simply ignored. The last three rules deal with the case of α not being
annotated; then e, ρ |= call α(β̃).ϕ is immediately false.

Fig. 3. Satisfaction tree: (2) Call modality. We assume γ �= α. The satisfaction tree for

call f(˜β).ϕ is similar; we omit the rules here.

Figure 4 defines the rules for the negation of call. If e is calling an expression
labelled by α, then e, ρ |= ¬call α( ) is obviously false. The last three rules
describe the case of α not being found, in which case ¬call α( ) holds.

Figure 5 defines the rules for the next modality. It simply ignores labels and
reduces the expression in one step.

We omit the rules for call f(β̃).ϕ and ¬call f( ), which are basically the same
as those for call α(β̃).ϕ and ¬call α( ).

We formalise the meaning of a satisfaction tree by giving a nondeterministic
Büchi automaton. The definition of the automaton is basically straightforward,
but there is a subtlety in the meaning of U. Recall that ϕ1 U ϕ2 holds if either
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Fig. 4. Satisfaction tree: (3) Negation of call modality. We assume γ �= α. The satis-
faction tree for ¬call f( ) is similar; we omit the rules here.

Fig. 5. Satisfaction tree: (4) Next modality. It ignores labels and reduces the expression
in one step. We assume that (f x1 . . . xn = ef ) ∈ P.

1. both ϕ1 and ϕ2 hold, or
2. both ϕ1 and ©(ϕ1 U ϕ2) hold.

Similarly ϕ1 R ϕ2 holds if and only if

1. both ϕ1 and ϕ2 hold, or
2. both ϕ2 and ©(ϕ1 U ϕ2) hold.

The condition for U quite resembles that for R, but there is a crucial difference
which cannot be captured by the above descriptions. That is, ϕ1 U ϕ2 requires
that ϕ2 eventually holds, but ϕ1 R ϕ2 is true even if ϕ1 never becomes true.
This difference should be captured by the acceptance condition of the Büchi
automaton.

The Büchi automaton A has three states, q0, q1 and ∗. The states q0 and
q1 have the same behaviour except that q0 is accepting and q1 is not accepting.
The state ∗ accepts every tree; this state is used to describe a rule which ignores
some of children. The set of accepting states is {q0, ∗} and the initial state is q0.
The transition rules are given by:

δ�(q) := {()} δ⊥(q) := {()}
δ
(q) := {(q0, q0)} δ�(q) := {(q0, ∗), (∗, q0)}
δU(q) := {(q1, q0, ∗), (∗, q0, q0)} δR(q) := {(q0, ∗, q0), (∗, q0, q0)},

where q = q0 or q1. We omit the rules for the state ∗, which accepts every tree.
The tree U(T1, T2, T3) is accepted from q0 if T1 is accepted from q1 and T3 is
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accepted from q0; note that we assign q1 to T1, instead of q0, because the until
formula ϕ1 U ϕ2 expects ϕ2 eventually holds.

The following theorem is the first half of the reduction.

Theorem 2. e, ρ |= ϕ if and only if T [e, ρ |= ϕ] is accepted by A.

5.3 A Tree-Generating Program Generating the Satisfaction Tree

The previous subsection introduced satisfaction trees, which concern only about
LTL features of LTLC, i.e. the tree does not have any information on the call
nor next modality, which are related to reduction of programs.

This subsection discusses a way to deal with these features missing in sat-
isfaction trees. Technically, given a program (P, e) and a formula ϕ, we con-
struct a tree-generating program (P#, e′) that generates the satisfaction tree
T [e, ∅ |= ϕ]. The construction of (P#, e′) is effective, and if the original program
and the formula use only finite base types, then so does (P#, e′). Therefore this
construction, together with the result of the previous subsection, shows that the
LTLC model checking is decidable for programs and formulas over finite data
types.

We first give the formal statement of the theorem, which shall be proved in
the rest of this subsection.

Theorem 3. Given a program (P, e0) and an LTLC formula ϕ, one can effec-
tively construct a tree-generating program (P#, e′

0) that generates the satisfac-
tion tree T [e, ∅ |= ϕ]. Furthermore, if both the program (P, e) and the formula ϕ
contain only finite base types, then so does (P#, e′

0).

Let ϕ0 be a formula of interest, fixed in the sequel. By renaming bound
variables if necessary, we can assume without loss of generality that different
variables in ϕ0 have different names. Let L0 ⊆ L be the finite set of bound
variables in ϕ0. Note that each α ∈ L0 is associated to its type in ϕ0.

The idea of the translation, written #, is as follows. Recall that the satis-
faction tree T [e, ρ |= ϕ] is determined by the three data, namely an expression
e : �, a valuation ρ and a formula ϕ. Hence the translation e# of the expression
e should take two extra arguments ρ and ϕ to compute T [e, ρ |= ϕ].

Let us first consider the translation of types. Because the translation of an
expression e of unit type � takes two additional arguments, namely a formula
and a valuation, the translation of the unit type should be given by

�
#�−→ (valuation → formula → �),

where valuation and formula are the “types” for valuations and formulas, which
shall be described below. The translation can be naturally extended to base
types and function types by

b# := b and (σ → τ)# := σ# → τ#.
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The “type” formula can be defined as an additional finite base type. An
important observation is that only finitely various formulas are reachable by
unfolding the definition of T [e, ∅ |= ϕ0]. It is easy to see that the following set

{ψ,©ψ | ψ is a subformula of ϕ0 }

is an overapproximation. So we define the values in Vformula as this set. We shall
write �ψ� for the formula ψ seen as a value in Vformula . We assume an operation
=formula to compare formulas. Since formula is now a finite base type, one can
define a function by using pattern matching of formulas.

The “type” valuation can be implemented as a tuple. Note that valuations
ρ reachable from T [e, ∅ |= ϕ0] have subsets of L0 as their domains. So a reach-
able valuation ρ can be represented as a tuple of length |L0|, where |L0| is the
number of elements in L0. If ρ(α) is undefined for some α ∈ L0, one can fill the
corresponding place in a tuple by an arbitrary expression.

Summarising the above argument, the translation of the unit type is

�
#�−→ (σ1 → σ2 → · · · → σn → formula → �)

if the set of variables L0 in ϕ0 is {α1, . . . , αn } and σi is the type for αi, 1 ≤ i ≤ n.
We shall fix the enumeration α1, . . . , αn of L0 in the sequel.

We give the translation of expressions. The function definition P# after trans-
lation defines the following functions:

– f# : τ# for each function f defined in P,
– α# : τ# → τ# for each variable α ∈ L0 of type τ ,
– op# : b1 → b2 → (b3 → �#) → �# for each operation op ∈ Op,
– if# : Bool → �# → �# → �#, the translation of if , and
– ()# : �#, the translation of the unit value.

Note that α ∈ L0 does not have the translation if α has a base type; the label
(−)α is simply ignored by the translation (see Remark 1). Using these functions,
the translation of expressions is given as follows:

c# := c x# := x (e1 e2)
# := e#1 e#2 (eα)# := α# e# and (eβ)# := e#

where α (resp. β) is a variable in L0 of a non-base type (resp. a base type).

Other cases have already given by P#: for example, ()
#�→ ()# and f

#�→ f#. A
notable point is that the label annotation eα is translated to application to α#.

The translation of valuations should now be clear. A valuation is translated
to a sequence of expressions, defined by

ρ
#�−→ ρ(α1)# . . . ρ(αn)#.

If ρ(αi) is undefined, then ρ(αi)# can be arbitrary (but fixed a priori) expression
of the required type. We use � for sequences of this kind. We write �[αi �→ e] for
the sequence obtained by replacing the ith element in � with e.
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What remains is to give definitions of functions P# so that the value tree
of e# ρ# �ϕ� will coincide with the satisfaction tree T [e, ρ |= ϕ]. Each function
definition is of the form h x̃ � �ϕ� = e, where x̃ is a sequence of arguments in the
original definition, � is a sequence representation of a tuple of type valuation,
and �ϕ� ∈ Vformula is the value of type formula. All functions in P# are defined
by pattern matching on the final argument �ϕ�. For example, consider the case
of the final argument being �ψ1 ∧ ψ2�. Because

T [h ẽ, ρ |= ψ1 ∧ ψ2] = T [h ẽ, ρ |= ψ1] � T [h ẽ, ρ |= ψ2],

the definition6 of h for this case has to be

h x̃ � �ψ1 ∧ ψ2� = (h x̃ � �ψ1�) � (h x̃ � �ψ2�).

As an example of more complicated case, let us consider the rule

T [eα e1 . . . en, ρ |= call α(β1, . . . , βn).ϕ] = T [e eβ1
1 . . . eβn

n , ρ′ |= ©ϕ]

where ρ′ = ρ ∪ {βi �→ ei}1≤i≤n. Because

(eα e1 . . . en)# = α# e# e#1 . . . e#n ,

the above rule can be seen as (a part of) the definition of α#:

α# g x̃ � �call α(β1, . . . , βn).ϕ� = g (β#
1 x1) . . . (β#

n xn) �′ �©ϕ�

where �′ = �[β1 �→ x1] . . . [βn �→ xn]. It is easy to check that

(eα e1 . . . en)# ρ# �call α(β1, . . . , βn).ϕ� −→∗ (e eβ1
1 . . . eβn

n )# ρ′# �©ϕ�

as expected. All other cases are given in the same way.
Now the definition of the translation has been given in sufficient detail, we

believe. It is not difficult to establish the following lemma.

Lemma 1. The value tree of e# ρ# �ϕ� is equivalent to T [e, ρ |= ϕ], provided
that ρ and ϕ are reachable from the definition of T [e1, ∅ |= ϕ0] for some expres-
sion e1 of type �.

Theorem 3 is a consequence of this lemma: e′
0 can be defined as e#0 ∅# �ϕ0�.

The decidablity result is a corollary of Theorems 2 and 3.

Theorem 4. Let (P, e) is a program and ϕ is an LTLC formula. If (P, e) and
ϕ contain only finite base types, then one can effectively decide whether e, ∅ |= ϕ.

6 Strictly speaking, the “function definition” here does not precisely follow the syntax
of function definition in our language, as we do not allow pattern matching on the
left-hand-side of a definition, but we expect that the reader can fill the gap.
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Remark 2. Let us briefly discuss the time complexity of the algorithm. The cost
of the translation is negligible; we estimate the running time of the higher-
order model checking. If we fix the property automaton to A in Theorem 2, the
higher-order model checking be solved in time O(P 2 expN (poly(AD))) for some
polynomial poly ([13, Section 5] adopted to our setting), where P , N , A and D
are parameters determined by the program after translation; P is the size, N is
the order, A is the maximum arity of types and D is the maximum number of
values in base types. Easy calculation shows that

P = O(|(P, e)| × |ϕ|) N ≤ order(P, e) + 2 N = O(|ϕ|) A = O(|ϕ|)

where |(P, e)| and |ϕ| are the sizes of the program and of the formula.

6 Discussions

Compositional Reasoning. LTLC model checking is a kind of whole-program
verification. Actually C[f ], ρ |= ΦT (f), where ΦT is the LTLC formula corre-
sponding to a dependent type T (see Sect. 4.1), only means that the behaviour
of f in the context C does not violate the specification T ; it does not ensure
that f meets T in other contexts as well.

This is in contrast to a compositional approach such as a type-based one, in
which 	 t : T means that t satisfies the specification T in whatever the context
t is used. In this sense ΦT (f) is not like a type judgement but like dynamic
monitoring of a contract [9].

A way to fill the gap is to consider all possible contexts. That means, we
define |= f : T to mean that C[f ], ∅ |= ΦT (f) for every context C. In a suffi-
ciently expressive programming language, ∀C.

(
C[f ], ∅ |= ΦT (f)

)
is equivalent

to C0[f ], ∅ |= ΦT (f) for a certain “worst” context C0; this observation gives us a
way to reduce compositional reasoning to whole-program analysis. This strategy
is actually used in [23], for example.

A typical way to construct the “worst” context C0 is to use nondetermin-
ism [23]; intuitively C0 is a “maximally” nondeterministic context, which may
do anything allowed. Unfortunately this construction is not directly applicable
to our case, since our reducibility result (in particular, Theorem 2) essentially
relies on the determinism of programs.

Non-deterministic Programs. Determinism of programs is essential to our
reducibility result. In fact, even the definition of the satisfaction relation becomes
“incorrect” in the presence of non-determinism.

To see the reason, consider an LTLC formula

ϕ := ifcall f ∨ ¬ifcall f,

which is obviously true for every program. By definition, we have

e, ρ |= ifcall f ∨ ¬ifcall f iff e, ρ |= ifcall f or e, ρ |= ¬ifcall f,



456 Y. Okuyama et al.

for every expression e. This rule is problematic in the presence of nondeter-
minism. For example, consider e = (f ()) ⊕ () where ⊕ is the nondeterministic
branching. This expression decides nondeterministically whether it calls f or not.
Then e, ρ |= ifcall f ∨ ¬ifcall f but neither e, ρ |= ifcall f nor e, ρ |= ¬ifcall f .

This problem can be easily fixed by changing the definition of the satisfaction
relation. It should be a relation π, ρ |= ϕ on an infinite reduction sequence
π (instead of an expression e), a valuation and a formula in the presence of
nondeterminism.

However Theorem 2 cannot be modified accordingly to the new definition.
The definition of T [e, ρ |= ϕ] is so deeply related to the current definition of
the satisfaction that we cannot obtain a variant of Theorem 2 applicable to
nondeterministic setting.

Actually we conjecture that LTLC model-checking for nondeterministic pro-
grams is undecidable even for programs with only finite data types. The proof
of the conjecture is left for future work.

7 Related Work

LTLC model checking is a kind of temporal verification of higher-order programs,
which has been extensively studied [11,12,14,15,22]. The temporal properties of
higher-order programs have also been studied in the context of contracts, named
temporal higher-order contracts [7].

Alur et al. proposed a linear temporal logic called CARET [2], which is
designed for specifying properties for first-order programs modeled by Recur-
sive State Machines [3] and Pushdown Sytems [16]. Neither CARET nor LTLC
subsumes the other. On the one hand, CARET cannot describe properties of
higher-order functions, such as “a function argument of some function is even-
tually called.” On the other hand, CARET can describe caller properties such
as “a caller function of the function currently invoded is never returned,” which
cannot be expressed in LTLC. An extension of LTLC for specifying caller prop-
erties is left for future work. Alur and Madhusudan proposed Visibly Pushdown
Languages (VPL) [4], which can specify properties of function calls and returns,
and subsumes CARET. Like CARET, VPL is for first-order programs, not for
higher-order programs.

Recently Satake and Unno proposed a dynamic logic for higher-order pro-
grams, named HOT-PDL [22]. Their logic is not directly comparable to ours,
as their logic is for call-by-value programs. The gap can be partially filled by
applying the CPS translation, and the formulas in their logic can be translated
to LTLC formulas in many cases, although we need to extend LTLC by anony-
mous call operator call (β̃).ϕ to fully capture their logic. Many LTLC formulas
such as those in Example 2 and Sect. 4.3 cannot be expressed in HOT-PDL.

Applications of HORS model checking to program verification has been stud-
ied [11,12,14,15,17,18,22]. Decidability of resource usage verification has been
proved in [12] by using a program translation tailor-made for the resource usage
verification problem. The argument in Sect. 4.3 together with Theorem 4 gives
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another, more principled proof of the decidability result, although the current
argument proves only a partial result of [12].

8 Conclusion

We have proposed a temporal logic called LTLC, which is an extension of LTL
and can specify properties for call-by-name higher-order programs. Thanks to the
call operator, LTLC can describe properties of arguments of function currently
called. For example, LTLC can specify the order of function calls such as “the
first argument passed to the function f is called before the call of the second
argument passed to f.” We have shown that LTLC model checking is decidable
for a finite-data deterministic programs via a reduction to HORS model checking.

The most important future work is to prove the undecidability (possibly,
the decidability) of LTLC model checking for non-deterministic programs. To
further widen the scope of our method, it is worth extending LTLC for specifying
branching properties by embedding the call operator into CTL* or modal μ-
calculus.
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Abstract. Multiphase ranking functions (MΦRFs) are used to prove
termination of loops in which the computation progresses through a
number of phases. They consist of linear functions 〈f1, . . . , fd〉 where fi
decreases during the ith phase. This work provides new insights regard-
ing MΦRFs for loops described by a conjunction of linear constraints
(SLC loops). In particular, we consider the existence problem (does a
given SLC loop admit a MΦRF). The decidability and complexity of
the problem, in the case that d is restricted by an input parameter,
have been settled in recent work, while in this paper we make progress
regarding the existence problem without a given depth bound. Our new
approach, while falling short of a decision procedure for the general case,
reveals some important insights into the structure of these functions.
Interestingly, it relates the problem of seeking MΦRFs to that of seeking
recurrent sets (used to prove nontermination). It also helps in identify-
ing classes of loops for which MΦRFs are sufficient, and thus have linear
runtime bounds. For the depth-bounded existence problem, we obtain a
new polynomial-time procedure that can provide witnesses for negative
answers as well. To obtain this procedure we introduce a new represen-
tation for SLC loops, the difference polyhedron replacing the customary
transition polyhedron. We find that this representation yields new insights
on MΦRFs and SLC loops in general, and some results on termination
and nontermination of bounded SLC loops become straightforward.

1 Introduction

Proving that a program will not go into an infinite loop is one of the most fun-
damental tasks of program verification, and has been the subject of voluminous
research. Perhaps the best known, and often used, technique for proving ter-
mination is that of ranking functions. This consists of finding a function that
maps program states into the elements of a well-founded ordered set, such that
its value decreases when applied to consecutive states. This implies termination
since infinite descent is impossible in a well-founded order.
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Unlike termination of programs in general, which is undecidable, the algorith-
mic problems of detection (deciding the existence) or generation (synthesis) of a
ranking function can well be solvable, given certain choices of the program rep-
resentation, and the class of ranking function. There is a considerable amount
of research in this direction, in which different kinds of ranking functions for
different kinds of program representations were considered. In some cases the
algorithmic problems have been completely settled, and efficient algorithms pro-
vided, while other cases remain open.

The program representation we study is single-path linear-constraint loops
(SLC loops), where a state is described by the values of numerical variables, and
the effect of a transition (one iteration) is described by a conjunction of linear
constraints. We consider the settings of integer-valued variables and rational-
valued (or real-valued) variables. Here is an example of this loop representation;
primed variables x′

1, x
′
2, . . . refer to the state following the transition.

while (x1 ≥ −x3) do x′
1 = x1 + x2, x′

2 = x2 + x3, x′
3 = x3 − 1 (1)

Note that x′
1 = x1 + x2 is an equation, not an assignment. The description of

a loop may involve linear inequalities rather than equations, and consequently
be nondeterministic. It is a standard procedure to compile sequential code (or
approximate it) into such representation using various techniques. We assume the
“constraint loop” to be given, and do not concern ourselves with the orthogonal
topic of extracting such loops from general programs. The loop is called simple
since branching in the loop body is not represented. Despite this restriction, SLC
loops are important, e.g., in approaches that reduce a question about a whole
program to questions about simple loops [14–16,21,27]; see [29] for references
that show the importance of such loops in other fields.

Several types of ranking functions have been suggested for SLC loops; linear
ranking functions (LRFs) are probably the most known. In this case, we seek a
function ρ(x1, . . . , xn) = a1x1 + · · · + anxn + a0 such that (i) ρ(x) ≥ 0 for any
valuation x = 〈x1, . . . , xn〉 that satisfies the loop constraints (i.e., an enabled
state); and (ii) ρ(x) − ρ(x′) ≥ 1 for any transition leading from x to x′ =
〈x′

1, . . . , x
′
n〉. The algorithmic problems of existence and synthesis of LRFs have

been completely settled [5,12,18,31,33], for both integer-valued and rational-
valued variables, not only for SLC loops but rather for control-flow graphs.

LRFs do not suffice for all terminating SLC loops, e.g., Loop (1) does not
have a LRF , and in such case, one may resort to an argument that combines
several linear functions to capture a more complex behavior. A common such
argument is one that uses lexicographic ranking functions, where a tuple of linear
functions is required to decrease lexicographically when moving from one state
to another. In this paper we are interested in a special case of the lexicographic
order argument that is called Multiphase ranking functions (MΦRF for short).
Intuitively, a MΦRF is a tuple 〈f1, . . . , fd〉 of linear functions that define phases
of the loop that are linearly ranked, as follows: f1 decreases on all transitions,
and when it becomes negative f2 decreases, and when f2 becomes negative, f3
will decrease, etc. Loop (1) has the MΦRF 〈x3 + 1, x2 + 1, x1〉. The parameter d
is called the depth of the MΦRF, intuitively the number of phases.
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The decision problem Existence of a MΦRF asks to determine whether a
SLC loop has a MΦRF. The bounded decision problem restricts the search to
MΦRFs of depth d, where d is part of the input. The complexity and algorithmic
aspects of the bounded version of the MΦRF problem were completely settled
in [6]. The decision problem is PTIME for SLC loops with rational-valued vari-
ables, and coNP-complete for SLC loops with integer-valued variables; synthesiz-
ing MΦRFs, when they exist, can be performed in polynomial and exponential
time, respectively. In addition, [6] shows that for SLC loops MΦRFs have the
same power as general lexicographic-linear ranking functions, and that, surpris-
ingly, MΦRFs induce linear iteration bounds. The problem of deciding if a given
SLC admits a MΦRF, without a given bound on the depth, is still open.

In practice, termination analysis tools search for MΦRFs starting by depth 1
and incrementally increase the depth until they find one, or reach a predefined
limit, after which the returned answer is don’t know. Clearly, finding a theoretical
upper-bound on the depth of a MΦRF, given the loop, would also settle this
problem. As shown in [6], such bound must depend not only on the number of
constraints or variables, but also on the coefficients used in the constraints.

In this paper we make progress towards solving the problem of existence
of a MΦRF , i.e., seeking a MΦRF without a given bound on the depth. In
particular, we present an algorithm for seeking MΦRFs that reveals new insights
on the structure of these ranking functions. In a nutshell, the algorithm starts
from the set of transitions of the given SLC loop, which is a polyhedron, and
iteratively removes transitions (x,x′) such that ρ(x)−ρ(x′) > 0 for some function
ρ(x) = �a · x + b that is nonnegative on all enabled states. The process continues
iteratively, since after removing some transitions, more functions ρ may satisfy
the nonnegativity condition, and they may eliminate additional transitions in
the next iteration. When all transitions are eliminated in a finite number of
iterations, we can construct a MΦRF using the ρ functions; and when reaching
a situation in which no transition can be eliminated, we prove that we have
actually reached a recurrent set that witnesses nontermination.

The algorithm always finds a MΦRF if one exists, and in many cases it finds a
recurrent set (see experiments in Sect. 5) when the loop is nonterminating, how-
ever, it is not a decision procedure as it diverges in some cases. Nonetheless, our
algorithm provides important insights on the structure of MΦRFs. Apart from
revealing a relation between seeking MΦRFs and seeking recurrent sets, these
insights are useful for finding classes of SLC loops for which, when terminating,
there is always a MΦRF and thus have linear runtime bound.

Our research has, in addition, led to a new representation for SLC loops,
that we refer to as the displacement representation, that provides us with new
tools for studying termination of SLC loops in general, and existence of a MΦRF
in particular. In this representation a transition (x,x′) is represented as (x,y)
where y = x′ −x. Using this representation our algorithm can be formalized in a
simple way that avoids computing the ρ functions mentioned above (which might
be expensive), and reduces the existence of a MΦRF of depth d to unsatisfiability
of a certain linear constraint system. Moreover, any satisfying assignment is a
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witness that explains why the loop has no MΦRF of depth d. As an evidence on
the usefulness of this representation in general, we also show that some nontrivial
observations on termination of bounded SLC loops are made straightforward in
this representation, while they are not easy to see in the normal representation.

The article is organized as follows. Section 2 gives precise definitions and nec-
essary background. Section 3 describes our algorithm and its possible outcomes.
Section 4 discusses the displacement representation for SLC loops. Section 5 dis-
cusses some experiments. Finally, in Sect. 6 we conclude and discuss related
work.

2 Preliminaries

Polyhedra. A rational convex polyhedron P ⊆ Q
n (polyhedron for short) is the

set of solutions of a set of inequalities Ax ≤ b, namely P = {x ∈ Q
n | Ax ≤ b},

where A ∈ Q
m×n is a rational matrix of n columns and m rows, x ∈ Q

n

and b ∈ Q
m are column vectors of n and m rational values respectively. We

say that P is specified by Ax ≤ b. If b = 0, then P is a cone. The set of
recession directions of a polyhedron P specified by Ax ≤ b, also known as
its recession cone, is the set rec.cone(P) = {y ∈ Q

n | Ay ≤ 0}. Polyhe-
dra also have a generator representation in terms of vertices and rays, written
as P = conv.hull{x1, . . . ,xm} + cone{y1, . . . ,yt}. This means that x ∈ P iff
x =

∑m
i=1 ai · xi +

∑t
j=1 bj · yj for some rationals ai, bj ≥ 0, where

∑m
i=1 ai = 1.

Note that y1, . . . ,yt are the recession directions of P, i.e., y ∈ rec.cone(P) iff
y =

∑t
j=1 bj · yj for some rationals bj ≥ 0. For a given polyhedron P ⊆ Q

n we
let I(P) be P ∩ Z

n, i.e., the set of integer points of P. The integer hull of P,
commonly denoted by PI , is defined as the convex hull of I(P).

Let P ⊆ Q
n+m be a polyhedron, and let

( x
y
) ∈ P be such that x ∈ Q

n and
y ∈ Q

m. The projection of P onto the x-space is defined as projx(P) = {x ∈
Q

n | ∃y ∈ Q
m such that

( x
y
) ∈ P}. We will need the following lemmas later.

Lemma 1. projx(rec.cone(P)) = rec.cone(projx(P)).

Proof. A polyhedron P whose variables are split into two sets, x and y, can
be represented in the form Ax + Gy ≤ b for matrices A, G and a vector b of
matching dimensions. Then [13, Theorem 11.11] states that projx(P) is specified
by the constraints V (b− Ax) ≥ 0 for a certain matrix V determined by G only.
From this it follows that rec.cone(projx(P)) = {x : VAx ≤ 0}. But we can
also apply the theorem to rec.cone(P), which is specified by Ax+ Gy ≤ 0, and
we get the same result projx(rec.cone(P)) = {x : VAx ≤ 0}. 
�
Lemma 2 (Lemma 1 in [6]). Given a polyhedron P �= ∅, and linear functions
ρ1, . . . , ρk such that

(i) x ∈ P → ρ1(x) > 0 ∨ · · · ∨ ρk−1(x) > 0 ∨ ρk(x) ≥ 0
(ii) x ∈ P �→ ρ1(x) > 0 ∨ · · · ∨ ρk−1(x) > 0
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There exist nonnegative constants μ1, . . . , μk−1 such that x ∈ P → μ1ρ1(x) +
· · · + μk−1ρk−1(x) + ρk(x) ≥ 0.

Single-Path Linear-Constraint Loops. A single-path linear-constraint loop (SLC
loop) over n variables x1, . . . , xn has the form

while (Bx ≤ b) do Ax + A′x′ ≤ c (2)

where x = (x1, . . . , xn)T and x′ = (x′
1, . . . , x

′
n)T are column vectors, and for some

p, q > 0, B ∈ Q
p×n, A,A′ ∈ Q

q×n, b ∈ Q
p, c ∈ Q

q. The constraint Bx ≤ b is
called the loop guard and the other constraint is called the update. The update
is deterministic if, for any given x (satisfying the guard) there is at most one x′

satisfying the update, and is affine linear if it can be rewritten as x′ = Ux+c. We
say that there is a transition from a state x ∈ Q

n to a state x′ ∈ Q
n, if x satisfies

the loop condition and x and x′ satisfy the update constraint. A transition can
be seen as a point

( x
x′

) ∈ Q
2n, where its first n components correspond to x and

its last n components to x′. For ease of notation, we denote
( x
x′

)
by x′′. The set

of all transitions x′′ ∈ Q
2n, of a given SLC loop, will be denoted by Q and is

specified by the set of inequalities A′′x′′ ≤ c′′ where

A′′ =
(

B 0
A A′

)

c′′ =
(
b
c

)

and B, A, A′, c and b are those of (2). We call Q the transition polyhedron. An
integer loop is a SLC loop restricted to integer values, i.e., the set of transitions
is I(Q).

Multi-Phase Ranking Functions. An affine linear function ρ : Qn → Q is a func-
tion of the form ρ(x) = �a · x + b where �a ∈ Q

n is a row vector and b ∈ Q. For a
given function ρ, we define the function Δρ : Q2n �→ Q as Δρ(x′′) = ρ(x)−ρ(x′).

Definition 1. Given a set of transitions T ⊆ Q
2n, we say that τ = 〈ρ1, . . . , ρd〉

is a MΦRF (of depth d) for T if for every x′′ ∈ T there is index i such that:

∀j ≤ i. Δρj(x′′) ≥ 1, (3)
ρi(x) ≥ 0, (4)

∀j < i. ρj(x) ≤ 0. (5)

We say that x′′ is ranked by ρi (for the minimal such i).

It is not hard to see that a MΦRF 〈ρ1〉 of depth d = 1 is a linear ranking
function (LRF ). If the MΦRF is of depth d > 1, it implies that if ρ1(x) ≥ 0,
transition x′′ is ranked by ρ1, while if ρ1(x) < 0, 〈ρ2, . . . , ρd〉 becomes a MΦRF.
This agrees with the intuitive notion of “phases.” We say that τ is irredundant
if removing any component invalidates the MΦRF. Finally, it is convenient to
allow an empty tuple as a MΦRF, of depth 0, for the empty set.

The decision problem Existence of a MΦRF asks to determine whether a
given SLC loop admits a MΦRF. The bounded decision problem restricts the
search to MΦRFs of depth at most d, where d is part of the input.



464 A. M. Ben-Amram et al.

Recurrent Sets. A recurrent set is a set of states that witnesses nontermination
of a given SLC loop Q. It is commonly defined as a set of states S ⊆ projx(Q)
where for any x ∈ S there is x′ ∈ S such that (x,x′) ∈ Q. This clearly proves
the existence of an infinite run. In this article we use a slightly different notion.

Definition 2. Give a SLC loop Q, we say that S ⊆ Q is a recurrent set of
transitions if projx′(S) ⊆ projx(S).

Clearly, both notions are equivalent: if S is a recurrent set of transitions
then projx(S) is a recurrent set of states, and if S is a recurrent set of states
then Q ∩ (S × S) is a recurrent set of transitions. Note that both notions cor-
respond to what is known as existential recurrent sets, i.e., they guarantee the
existence of nonterminating runs starting in some initial states, however, due to
nondeterminism, these initial states might have terminating runs as well.

3 An Algorithm for Inferring MΦRFs

In this section we describe our algorithm for deciding the existence of (and
constructing) MΦRFs, which is also able to find recurrent sets for certain non-
terminating SLC loops. In what follows we assume a given SLC loop Q where
variables range over the rationals (or reals), the case of integer variables is dis-
cussed after considering the rational case.

Let us start with an intuitive description of the algorithm and its possible
outcomes. Our work started with the following crucial observation: given linear
functions ρ1, . . . , ρl such that

– ρ1, . . . , ρl are nonnegative over projx(Q), i.e., over all enabled states;
– for some ρi, we have Δρi(x′′) > 0 for at least one transition x′′ ∈ Q; and
– Q′ = Q ∧ Δρ1(x′′) ≤ 0 ∧ · · · ∧ Δρl(x′′) ≤ 0 has a MΦRF of depth d

then Q has a MΦRF of depth at most d + 1. The proof of this observation is
constructive, i.e., given a MΦRF τ ′ for Q′, we can construct a MΦRF τ for Q
using conic combinations of the components of τ ′ and ρ1, . . . , ρl.

Let us assume that we have a procedure F (Q) that picks some candidate
functions ρ1, . . . , ρl, i.e., nonnegative over projx(Q), and computes F (Q) =
Q ∧ Δρ1(x′′) ≤ 0 ∧ · · · ∧ Δρl(x′′) ≤ 0. Clearly, if F d(Q) = ∅, for some d > 0,
then using the above observation we can conclude that Q has a MΦRF of depth
at most d. Obviously, the difficult part in defining F is how to pick functions
ρ1, . . . , ρl, and, moreover, how to ensure that if Q has a MΦRF of optimal depth
d then F d(Q) = ∅, i.e., to find the optimal depth. For this, we observe that the
set of all nonnegative functions over projx(Q) is a polyhedral cone, and thus it
has generators ρ1, . . . , ρl that can be effectively computed. These ρ1, . . . , ρl turn
out to be the right candidates to use. In addition, when using these candidates,
we prove that if we cannot make progress, i.e., we get F i−1(Q) = F i(Q), then
we have actually reached a recurrent set that witnesses nontermination.

In Sect. 3.1 we present the algorithm and discuss how it is used to decide
existence of MΦRFs; in Sect. 3.2 we discuss how the algorithm can infer recurrent
sets; and in Sect. 3.3 we discuss cases where the algorithm does not terminate
and raise some questions on what happens in the limit.
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3.1 Deciding Existence of MΦRFs

Definition 3. The set of all nonnegative functions over a polyhedron S ⊆ Q
n,

is defined as S# = {(�a, b) ∈ Q
n+1 | ∀x ∈ S. �a · x + b ≥ 0}.

It is known that S# is a polyhedral cone [32, p. 112]. Equivalently, it is gener-
ated by a finite set of rays (�a1, b1), . . . , (�al, bl). The cone generated by �a1, . . . ,�al

is known as the dual of the cone rec.cone(S) – we make use of this in Sect. 4.
These rays are actually the ones that are important for the algorithm, as can
be seen in the definition below, however, in the definition of S# we included the
bi’s as they makes some statements smoother. Since S is a closed convex set,
it is known that it is equal to the intersection of all half-spaces defined by the
elements of S#, i.e., S = ∧{�a · x + b ≥ 0 | (�a, b) ∈ S#}.

Definition 4. Let Q be a SLC loop, and define

F (Q) = Q ∧ �a1 · x − �a1 · x′ ≤ 0 ∧ · · · ∧ �al · x − �al · x′ ≤ 0

where (�a1, b1), . . . , (�al, bl) are the generators of projx(Q)#.

It is easy to see that each �ai · x − �ai · x′ ≤ 0 above is actually Δρi(x′′) ≤ 0
where ρi = �ai ·x+bi ≤ 0. Intuitively, F (Q) removes from Q all transitions x′′ for
which there is (�a, b) ∈ projx(Q)# such that �a ·x−�a ·x′ > 0. This is because any
(�a, b) ∈ projx(Q)# is a conic combination of (�a1, b1), . . . , (�al, bl), and thus for
some i we must have �ai ·x−�ai ·x′ > 0, otherwise we would have �a ·x−�a ·x′ = 0.

Example 1. Consider Loop (1), whose transition polyhedron is defined by Q =
{x1 ≥ −x3, x

′
1 = x1 + x2, x′

2 = x2 + x3, x′
3 = x3 − 1}. The generators of

projx(Q)# are {(1, 0, 1, 0), (0, 0, 0, 1)}—the last component of each generator is
the free constant b, and the rest is �a. The corresponding nonnegative functions
are ρ1(x1, x2, x3) = x1 + x3 and ρ2(x1, x2, x3) = 1. Computing F (Q) results in:

Q′ = Q ∧ Δρ1(x′′) ≤ 0 ∧ Δρ2(x′′) ≤ 0 = Q ∧ (x1 + x3) − (x′
1 + x′

3) ≤ 0 (6)

This eliminates any transition for which the quantity x1 + x3 decreases. 
�
In what follows we aim at showing that Q has a MΦRF of optimal depth d

iff F d(Q) = ∅. We first state some auxiliary lemmas.

Lemma 3. If Q′ = F (Q) has a MΦRF of depth at most d, then Q has a MΦRF
of depth at most d + 1.

Proof. Consider the generators (�a1, b1), . . . , (�al, bl) used in Definition 4, and let
ρi(x) = �ai · x + bi. We have Q′ = Q ∧ Δρ1(x′′) ≤ 0 ∧ · · · ∧ Δρl(x′′) ≤ 0. Let
τ = 〈g1, . . . , gd〉 be a MΦRF for Q′, and w.l.o.g. assume that it is of optimal
depth. Next, we show how to construct a MΦRF 〈g′

1 +1, . . . , g′
d +1, gd+1〉 for Q.

Note that simply appending ρ1, . . . , ρl to τ does not always produce a MΦRF
for Q, since the components of τ are not guaranteed to decrease over Q \ Q′.
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If g1 is decreasing over Q, we define g′
1(x) = g1(x), otherwise we have

x′′ ∈ Q →Δρ1(x′′) > 0 ∨ · · · ∨ Δρl(x′′) > 0 ∨ Δg1(x′′) − 1 ≥ 0 (7)
x′′ ∈ Q �→Δρ1(x′′) > 0 ∨ · · · ∨ Δρl(x′′) > 0 (8)

and by Lemma 2 there are nonnegative constants μ1, . . . , μl such that

x′′ ∈ Q → Δg1(x′′) − 1 +
l∑

i=1

μiΔρi(x′′) ≥ 0. (9)

Define g′
1(x) = g1(x)+

∑l
i=1 μiρi(x). Clearly, x′′ ∈ Q → Δg′

1(x
′′) ≥ 1. Moreover,

since ρ1, . . . , ρl are nonnegative on all enabled states, g′
1 is nonnegative on the

states on which g1 is nonnegative. If d > 1, we proceed with

Q(1) = Q ∩ {x′′ | g′
1(x) ≤ (−1)}. (10)

If g2 is decreasing over Q(1), let g′
2 = g2, otherwise, since transitions in Q′ ∩Q(1)

are ranked by 〈g2, . . . , gd〉 we have

x′′ ∈ Q(1) → Δρ1(x′′) > 0 ∨ · · · ∨ Δρl(x′′) > 0 ∨ Δg2(x′′) − 1 ≥ 0 (11)

x′′ ∈ Q(1) �→ Δρ1(x′′) > 0 ∨ · · · ∨ Δρl(x′′) > 0 (12)

and again by Lemma 2 we can construct the desired g′
2 as we did for g′

1. In
general, for any j ≤ d we construct g′

j+1 such that Δg′
j+1(x

′′) ≥ 1 over

Q(j) = Q ∩ {x′′ ∈ Q
2n | g′

1(x) ≤ (−1) ∧ · · · ∧ g′
j(x) ≤ (−1)} (13)

and x′′ ∈ Q ∧ gj(x) ≥ 0 → g′
j(x) ≥ 0. Finally we define

Q(d) = Q ∩ {x′′ ∈ Q
2n | g′

1(x) ≤ (−1) ∧ · · · ∧ g′
d(x) ≤ (−1)} (14)

and note that

x′′ ∈ Q(d) → Δρ1(x′′) > 0 ∨ · · · ∨ Δρl(x′′) > 0 (15)

We assume that no ρi is redundant in (15), otherwise we take an irredundant
subset. Now from (15) we get

x′′ ∈ (Q(d) ∧ Δρ1(x′′) ≤ 0 ∧ · · · ∧ Δρl−1(x′′) ≤ 0) → Δρl(x′′) > 0 (16)

and since the left-hand side is a polyhedron, there is a constant c > 0 such that

x′′ ∈ (Q(d) ∧ Δρ1(x′′) ≤ 0 ∧ · · · ∧ Δρl−1(x′′) ≤ 0) → Δρl(x′′) ≥ c. (17)

W.l.o.g. we may assume that c ≥ 1, otherwise we divide ρl by c. Then we have

x′′ ∈ Q(d) →Δρ1(x′′) > 0 ∨ · · · ∨ Δρl−1(x′′) > 0 ∨ Δρl(x′′) − 1 ≥ 0 (18)

x′′ ∈ Q(d) �→Δρ1(x′′) > 0 ∨ · · · ∨ Δρl−1(x′′) > 0 (19)

By Lemma 2 we can construct gd+1 = ρl +
∑l−1

i=1 μiρi such that x′′ ∈ Q(d) →
Δgd+1(x′′) ≥ 1. Moreover, gd+1 is nonnegative over Q(d) and thus it ranks all
Q(d). Now, by construction, τ ′ = 〈g′

1 + 1, . . . , g′
d + 1, gd+1〉 is a MΦRF for Q. 
�
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Algorithm 1. Deciding existence of MΦRFs and inferring recurrent sets

FindMLRF(Q)

begin
1 if (Q is empty) then return ∅
2 else

3 Compute the generators (�a1, b1), . . . , (�al, bl) of projx(Q)#

4 Let Q′ = Q ∧ �a1 · x − �a1 · x′ ≤ 0 ∧ · · · ∧ �al · x − �al · x′ ≤ 0
5 if (Q′ == Q) then return Q
6 else return FindMLRF (Q′)

Lemma 4. If Q has a MΦRF of depth d then Q′ = F (Q) has a MΦRF of depth
at most d − 1.

Proof. Let τ = 〈ρ1, . . . , ρk〉 be an MΦRF for Q, of optimal depth k ≤ d. As shown
in [6], there is no loss of generality in assuming a special form of MΦRF (nested
MΦRF [25]) in which the last component is nonnegative; so we assume ρk(x) ≥ 0
over projx(Q). Clearly τ ′ = 〈ρ1, . . . , ρk−1〉 is a MΦRF for Q ∧ Δρk(x′′) ≤ 0.
Now since ρk is a conic combination of the generators of projx(Q)# we have
Q′ = F (Q) ⊆ Q ∧ Δρk(x′′) ≤ 0 and thus τ ′ is a MΦRF for Q′ as well. 
�
Lemma 5. Q has a MΦRF of depth d iff F d(Q) = ∅.
Proof. For the first direction, suppose that Q has a MΦRF of depth at most d,
then applying Lemma 4 iteratively we must reach F k(Q) = ∅ for some k ≤ d, thus
F d(Q) = ∅. For the other direction, suppose F d(Q) = ∅, then using Lemma 3
we can construct a MΦRF of depth d. 
�

Procedure FindMLRF(Q) of Algorithm 1 implements the above idea, it basi-
cally applies F (lines 3–4) iteratively until it either reaches an empty set (Line 1)
or stabilizes (Line 5). If it returns ∅ then Q has a MΦRF and we can construct
one simply by invoking the polynomial-time procedure for synthesizing nested
MΦRFs as described in [6], or construct one as in the proof of Lemma3. Note
that, by Lemma 5, if we bound the recursion depth by a parameter d, then the
algorithm is actually a decision procedure for the existence of MΦRFs of depth
at most d. The case in which it returns a nonempty set is discussed in Sect. 3.2.

The complexity of Algorithm 1 is exponential since computing the generators
at Line 3 might take exponential time. In Sect. 4 we provide a polynomial-time
implementation that avoids computing the generators.

Example 2. Let us apply Algorithm 1 to Loop (1). We start by calling FindMLRF
with Q = {x1 ≥ −x3, x

′
1 = x1 + x2, x

′
2 = x2 + x3, x

′
3 = x3 − 1} and proceed as

follows (Qi represents the polyhedron passed in the i-th call to FindMLRF):
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Qi Generators of projx(Qi)
#

Q0 = Q {(1,0,1,0), (0,0,0,1)}
Q1 = Q0 ∧ (x1 + x3) − (x′

1 + x′
3) ≤ 0 {(0,1,0, −1), (1, 0, 1, 0), (0, 0, 0, 1)}

Q2 = Q1 ∧ x2 − x′
2 ≤ 0 {(0,0,1,0), (0, 1, 0, −1), (1, 0, 1, 0), (0, 0, 0, 1)}

Q3 = Q2 ∧ x3 − x′
3 ≤ 0 = ∅

Explanation:

– Q0 is not empty. We compute the generators of projx(Q0)
#, which define

the nonnegative functions ρ1(x1, x2, x3) = x1 +x3 and ρ2(x1, x2, x3) = 1, and
then compute Q1 = Q0 ∧ Δρ1(x′′) ≤ 0 ∧ Δρ2(x′′) ≤ 0; and since it differs
from Q0 we recursively call FindMLRF(Q1).

– Q1 is not empty. We compute the generators of projx(Q1)
#, which define the

nonnegative function ρ3(x1, x2, x3) = x2 − 1, and then compute Q2 = Q1 ∧
Δρ3(x′′) ≤ 0; and since it differs from Q1 we recursively call FindMLRF(Q2).
Note that the only new generator wrt. the previous iteration is the one in
bold font, the others are ignored as they have been used for computing Q1.

– Q2 is not empty. We compute the generators of projx(Q2)
#, which define

the nonnegative function ρ4(x1, x2, x3) = x3, and then compute Q3 = Q2 ∧
Δρ4(x′′) ≤ 0; and since it differs from Q2 we recursively call FindMLRF(Q3).

– Q3 is empty, so we return ∅.

Since we have reached an empty set in 3 iterations, we conclude that Loop (1)
has a MΦRF of optimal depth 3, e.g., 〈x3 + 1, x2 + 1, x1 + x3 + 1〉. 
�

For the case of integer-valued variables, i.e., when considering I(Q), it is
know that I(Q) has a MΦRF iff the integer hull QI of Q has a MΦRF (over the
rationals) [6, Sect. 5]. Thus, I(Q) has a MΦRF of depth d iff F d(QI) = ∅.

3.2 Inference of Recurrent Sets

Next we discuss the case in which FindMLRF(Q) returns a nonempty set of tran-
sition S ⊆ Q (Line 5), and show that S is always a recurrent set, implying that
Q is nonterminating. In Sect. 5 we discuss an experimental evaluation regarding
the use of Algorithm 1 for proving nontermination of control-flow graphs.

Lemma 6. Let S ⊆ Q
2n be a polyhedron, if S = F (S) then S is a recurrent set.

Proof. According Definition 2, we need to show that projx′(S) ⊆ projx(S).
Since projx(S) and projx′(S) are closed convex sets, each is an intersec-
tion of half-spaces that are defined by the corresponding sets projx(S)# and
projx′(S)#, e.g., projx(S) = ∧{�a · x + b ≥ 0 | (�a, b) ∈ projx(S)#}. Thus, it is
enough to show that projx(S)# ⊆ projx′(S)#.

Let (�a, b) ∈ projx(S)#, we show that (�a, b) ∈ projx′(S)# as well. Define
ρ(x) = �a · x + b. Since S = F (S), by definition of F we have

x′′ = (x,x′) ∈ S |= ρ(x) − ρ(x′) ≤ 0 (20)
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which together with the fact that ρ is nonnegative over projx(S) implies that
ρ(x′) ≥ 0 holds for any x′ ∈ projx′(S), and thus (�a, b) ∈ projx′(S). 
�
Corollary 1. If FindMLRF(Q) returns S �= ∅ then S is a recurrent set, and thus
Q is nonterminating.

Proof. This follows from Lemma 6, since the algorithm returns a nonempty set
S ⊆ Q iff it finds one such that S = F (S) (Line 5 of FindMLRF). 
�
Example 3. Let us apply Algorithm 1 to the following loop, from [34]:

while (x1 − x2 ≥ 1) do x′
1 = −x1 + x2, x′

2 = x2 (21)

This loop does not terminate, e.g., for x1 = −1, x2 = −2. We call FindMLRF with
Q = {x1 − x2 ≥ 1, x′

1 = −x1 + x2, x
′
2 = x2}, and proceed as in Example 2:

Qi Generators of projx(Qi)
#

Q0 =Q {(1,−1,−1), (0,0,1)}
Q1 =Q0 ∧ (x1 − x2) − (x′

1 − x′
2) ≤ 0 {(−2,1,0), (1,−1,−1), (0, 0, 1)}

Q2 =Q1 ∧ (−2x1 + x2) − (−2x′
1 + x′

2) ≤ 0 {(2,−1,0), (−1,0,−1), (−2, 1, 0), (0, 0, 1)}
Q3 =Q2 ∧ (2x1 − x2) − (2x′

1 − x′
2) ≤ 0∧

(−x1) − (−x′
1) ≤ 0

Explanation:

– Q0 is not empty. We compute the generators of projx(Q0)
#, which define

the nonnegative functions ρ1(x1, x2, x3) = x1 − x2 − 1 and ρ2(x1, x2, x3) = 1,
and then compute Q1 = Q0 ∧Δρ1(x′′) ≤ 0∧Δρ2(x′′) ≤ 0; and since it differs
from Q0 we recursively call FindMLRF(Q1).

– Q1 is not empty. We compute the generators of projx(Q1)
#, which define

the nonnegative function ρ3(x1, x2, x3) = −2x1 +x2, and then compute Q2 =
Q1 ∧ Δρ3(x′′) ≤ 0; and since it differs from Q1 we invoke FindMLRF(Q2).

– Q2 is not empty. We compute the generators of projx(Q2)
#, which define the

nonnegative functions ρ4(x1, x2, x3) = 2x1 −x2 and ρ5(x1, x2, x3) = −x1 − 1,
and then compute Q3 = Q2 ∧ Δρ4(x′′) ≤ 0 ∧ Δρ5(x′′) ≤ 0; and since it is
equal to Q2 (Δρ4(x′′)≤ 0 and Δρ5(x′′)≤ 0 are implied by Q2) we return Q2.

Thus, Q2 is a recurrent set of transitions and we conclude that Loop (21) is
nonterminating. Projecting Q2 on x1 and x2 we get {x1 ≤ −1, 2x1 − x2 = 0},
which is the corresponding recurrent set of states.

We remark that Loop (21) has a fixed point (−1,−2), i.e., from state x1 =
−1, x2 = −2 we have a transition to x1 = −1, x2 = −2. The algorithm also
detects nontermination of loops that do not have fixed points. For example, if
we change x′

2 = x2 in Loop (21) by x′
2 = x2 − 1, we obtain a recurrent set of

transitions S such that projx(S) = {−2x2 ≥ 3, 4x1 − 2x2 = 1}. 
�
Now that we have seen the possible outcomes of the algorithm (in case it

terminates), we see that this approach reveals an interesting relation between
seeking MΦRFs and seeking recurrent sets. A possible view is that the algorithm
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seeks a recurrent set (of a particular form) and when it concludes that no such
set exists, i.e., reaching ∅, we can construct a MΦRF.

The recurrent sets inferred by Algorithm 1 belong to a narrower class than
that of Definition 2. In fact, the condition in Definition 2 is equivalent to requiring
that if ρ(x) ≥ 0 over projx(S) then ρ(x) ≥ 0 over projx′(S). In our recurrent
sets, we further have ρ(x′) ≥ ρ(x) for any (x,x′) ∈ S. We call a recurrent set
satisfying this stronger condition monotonic.

Example 4. Consider the following SLC loop:

while (x ≥ 0) do x′ = 1 − x (22)

The largest recurrent set of transitions for this loop is {x ≥ 0, x ≤ 1, x′ = 1−x},
and it is not monotonic. Algorithm1 infers the largest monotonic recurrent set
{x = 1

2 , x′ = 1
2}, where it first eliminates all transitions for which x − x′ > 0,

i.e., x ∈ (12 ,∞), and then those for which (−x) − (−x′) > 0, i.e., x ∈ [0, 1
2 ). 
�

At this point, it is natural to explore the difference between the two kinds
recurrent sets. The most intriguing question is if nonterminating SLC loops
always have monotonic recurrent sets. This is true for loops that have a fixed
point, i.e., there is x such that (x,x) ∈ Q, however, this question is left open for
the general case. We note that the geometric nontermination argument intro-
duced in [26] is also related to monotonic recurrent sets. Specifically, it is easy to
show that in some cases (when the nonnegative coefficients μi and λi, in Def. 5
of [26], are either 0 or at least 1), we can construct a monotonic recurrent set.

Let us discuss now the case of integer loops. First, the difference between the
two kinds of recurrent sets is clear in the integer case: Loop (22) of Example 4 has
a recurrent set of integers {(0, 1), (1, 0)}, but does not have a monotonic recur-
rent set of integers. Apart from this difference, a natural question is whether the
recurrent set S returned by FindMLRF(QI), or more precisely I(S), witnesses
nontermination of I(Q). This is not true in general (see Example 5 below), how-
ever, there are practical cases for which it is true.

Lemma 7. Let Q be a SLC loop with affine update x′ = Ux + c, and assume
the coefficients of U and c are integer. If S is a recurrent set for Q, and I(S) is
not empty, then I(S) is recurrent for I(Q).

Proof. Since the update is affine with integer coefficients, it follows that any
state in projx(I(S)) has a successor in projx′(I(S)) ⊆ projx(I(S)), which is
the definition of a recurrent set. 
�

In the context of the above lemma, assuming that S = FindMLRF(QI), if
S �= ∅ and I(S) = ∅ all we can conclude (when the algorithm is applied to
QI) is that I(Q) does not have a MΦRF, we cannot conclude anything about
nontermination as in the rational case. For example, for the loop QI = Q =
{x ≥ 0, x′ = 10 − 2x} we have S = {(3 1

3 , 3 1
3 )} and I(S) = ∅ and the loop is

terminating over the integers, and for the loop QI = Q = {x ≥ 0, x′ = 1 − x}
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we have S = {( 12 , 1
2 )} and I(S) = ∅ and the loop is nonterminating over the

integers.
The next example demonstrates that the above lemma does not extend to

SLC loops in general, even when the algorithm is applied to the integer hull QI .
This is because it is not guaranteed that any integer state x ∈ I(projx(S)) has
an integer successor x′ ∈ I(projx′(S)).

Example 5. Consider the following loop

while (x ≥ 2) do x′ =
3
2
x (23)

which is nonterminating over the rationals, for any x ≥ 2, and is terminating over
the integers. For the integer case, the loop stops (or blocks) if for some integer
x, there is no integer x′ such that that equality x′ = 3

2x holds. The algorithm
returns Q as a recurrent set, but I(Q), which is not empty, is not a recurrent set
as the loop is terminating over the integers. Note that the transition polyhedron
is integral, i.e., Q = QI . 
�

3.3 Cases in Which Algorithm1 Does Not Terminate

When Algorithm 1 terminates, it either finds a MΦRF or proves nontermination
of the given loop. This means that if applied to a terminating loop that has no
MΦRF, Algorithm 1 will not terminate, e.g., for the loop Qt = {x1 ≥ x2, x2 ≥
1, x′

1 = 2x1, x
′
2 = 3x2}, which is terminating [25]. Algorithm 1 might also fail to

terminate when applied to some nonterminating loops, e.g., the nonterminating
loop [26] Qnt = {x1 + x2 ≥ 3, x′

1 = 3x1 − 2, x′
2 = 2x2}.

When the algorithm does not terminate, the iterates F i(Q) converge to Qω =
∩i≥0F

i(Q). For example, for the terminating loop Qt above, we have Qω = ∅,
and for the nonterminating loop Qnt above, we have Qω = {x1 ≥ 1, x′

2 =
2x2, x′

1 = 3x1−2} which is a monotonic recurrent set. Given these examples, we
ask: (i) is it true that Qω = ∅ iff Q is terminating? (ii) is it true that if Qω �= ∅
then it is a (monotonic) recurrent set? For deterministic loops, it is easy to show
that termination implies Qω = ∅, and that if Qω �= ∅ then Qω is a monotonic
recurrent set. The general questions are left open.

4 MΦRFs and the Displacement Polyhedron

In this section we introduce an alternative representation for SLC loops, that
we refer to as the displacement polyhedron, and show that Algorithm 1, or more
precisely the check F k(Q) = ∅, has a simple encoding in this representation that
can be preformed in polynomial time, specifically, we show that it is equivalent
to checking for unsatisfiability of a particular linear constraint system. Note that
we already know that deciding the existence of a MΦRF of depth d can be done in
polynomial time [6], so in this sense we do not provide new knowledge. However,
apart from the efficient encoding of the check F k(Q) = ∅, the new formulation
has some importance advantages:
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– Unlike existing algorithms for inferring MΦRFs [6,26], it allows synthesizing
witnesses for the nonexistence of a MΦRF of a given depth, see Sect. 4.1.

– It provides a new tool for addressing the general MΦRF problem, i.e., without
a depth bound, that is still open, see Sect. 4.2.

– Some nontrivial observations about termination and nontermination SLC
loops are made straightforward through this representation, see Sect. 4.3.

Next, we define the notion of the displacement polyhedron, show how the check
F d(Q) = ∅ can be encoded in this representation, and then discuss each of the
above points.

Definition 5. Given a SLC loop Q ⊆ Q
2n, we define its displacement polyhe-

dron as R = projx,y(Q ∧ x′ = x + y) ⊆ Q
2n.

Note that the projection drops x′. Intuitively, an execution step using Q
starts from a state x, and chooses a state x′ such that

( x
x′

) ∈ Q. To perform
the step using R, select y such that

( x
y
) ∈ R and let the new state be x + y.

By definition, we obtain the same transitions. The constraint representation of
R can be derived from that of Q as follows. Let Q ≡ [A′′( x

x′
) ≤ c′′] where A′′

is the matrix below on the left (see Sect. 2), then R ≡ [R
( x
y
) ≤ c′′] where R is

the matrix below on the right:

A′′ =
(

B 0
A A′

)

R =
(

B 0
A + A′ A′

)

(24)

Example 6. Consider Loop (1) which is defined by Q = {x1 ≥ −x3, x
′
1 = x1 +

x2, x
′
2 = x2 + x3, x

′
3 = x3 − 1}. The corresponding displacement polyhedron is

R = {x1 ≥ −x3, y1 = x2, y2 = x3, y3 = −1}. 
�
We will show that the displacement polyhedron Rk of Qk = F k(Q) is equiv-

alent to the following polyhedron projected onto x and y0

R̂k ≡ R
( x
y0

) ≤ c′′ ∧ R
( y0
y1

) ≤ 0 ∧ R
( y1
y2

) ≤ 0 ∧ . . . ∧ R
( yk−1
yk

) ≤ 0 (25)

Now since, by Definition 5, Qk is empty iff Rk is empty, the check F k(Q) = ∅ is
reduced to checking that (25) is empty, which can be done in polynomial time
in the bit-size of the constraint representation of Q and the parameter k. It is
important to observe that the first conjunct R

( x
y0

) ≤ c′′ of (25) is actually
R, and that each R

( yi
yi+1

) ≤ 0 is actually rec.cone(R). Observe also how the
conjuncts of (25) are connected, i.e., that the lower part of the variables vector
of each conjunct is equal to the upper part of the next one.

We first show how Rk+1 can be obtained from Rk similarly to Qk+1 = F (Qk).

Lemma 8. Let (�a1, b1), . . . , (�al, bl) generate the cone projx(R)#. Then Rk+1 =
Rk ∧ −�a1 · y ≤ 0 ∧ · · · ∧ −�al · y ≤ 0.

Proof. Follows from the fact that projx(Qk) = projx(Rk), and thus
projx(Qk)# and projx(Rk)# are the same, and that for ρ(x) = �a · x + b
we have Δρ(x′′) = ρ(x) − ρ(x′) = −�a · y, by definition of the displacement
polyhedron. 
�
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Lemma 9. Let (�a1, b1), . . . , (�al, bl) generate the cone projx(R)#. Then the con-
dition −�a1 ·y ≤ 0 ∧ · · · ∧ −�al ·y ≤ 0 of Lemma 8 is equivalent to My ≤ 0, where
M is such that projx(R) ≡ [Mx ≤ b].

Proof. Consider (�a, b) ∈ projx(Q)# = projx(R)#. By Farkas’ lemma, a func-
tion f(x) = �a · x + b is nonnegative over projx(R) iff there are nonnegative
�λ = (λ1, . . . , λm) such that �λ ·M = −�a ∧ �λ ·b ≤ b. Note that any (nonnegative)
values for �λ define corresponding values for �a and b. Thus the valid values for �a
are all conic combinations of the rows of −M , i.e., this cone is generated by the
rows of −M . Hence −�a1 · y ≤ 0 ∧ · · · ∧ −�al · y ≤ 0 is equivalent to My ≤ 0. 
�

We use the above lemma to show that Rk can be represented as in (25), with-
out the need to compute M explicitly. We first note that using Lemmas 8 and 9,
we have Rk+1 = Rk ∩ Dk, where

Dk = {( x
y
) ∈ Q

2n | My ≤ 0} (M as in Lemma 9)

= {( x
y
) ∈ Q

2n | y ∈ rec.cone(projx(Rk))}.

Lemma 10. Rk = projx,y0
(R̂k) where R̂k is defined by (25).

Proof. We use induction on k. For k = 0 the lemma states that R0 is specified
by R

( x
y0

) ≤ c′′, which is correct since by definition R0 = R. Assume the lemma
holds for Rk, we prove it for Rk+1 = Rk ∩ Dk. By the induction hypothesis,

Rk = { ( x
y0

) ∈ Q
2n | R

( x
y0

) ≤ c′′ ∧ R
( y0
y1

) ≤ 0 ∧ . . . ∧ R
( yk−1
yk

) ≤ 0 } (26)

and

Dk = {( x
y0

) ∈ Q
2n | y0 ∈ rec.cone(projx(Rk))} by definition

= {( x
y0

) ∈ Q
2n | y0 ∈ rec.cone(projx(projx,y0

(R̂k)))} by IH

= {( x
y0

) ∈ Q
2n | y0 ∈ rec.cone(projx(R̂k))}

= {( x
y0

) ∈ Q
2n | y0 ∈ projx(rec.cone(R̂k))} by Lemma 1

= {( x
y0

) ∈ Q
2n | R

( y0
y1

) ≤ 0 ∧ R
( y1
y2

) ≤ 0 ∧ · · · ∧ R
( yk
yk+1

) ≤ 0}

Note that in the last step, we incorporated the recession cone of R̂k as in (25),
after renaming yi to yi+1, and x to y0 just to make it easier to read in the next
step. Now, let us compute Rk+1 = Rk ∩ Dk. Note that any

( x
y0

) ∈ Rk+1 must
satisfy the constraint R

( x
y0

) ≤ c′′ that comes form Rk. Adding this constraint
to Dk above we clearly obtain a subset of Rk, and thus

Rk+1 = {( x
y0

) | R
( x
y0

) ≤ c′′ ∧ R
( y0
y1

) ≤ 0 ∧ · · · ∧ R
( yk
yk+1

) ≤ 0}

which is exactly projx,y0
(R̂k+1), justifying the lemma’s statement for k + 1. 
�
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Lemma 11. Q has a MΦRF of depth d iff R̂d is empty.

Proof. By Lemma 5, Q has a MΦRF of depth d iff Qd = F d(Q) is empty, and
by Definition 5, Qd is empty iff Rd is empty. Since Rd is empty iff R̂d is empty
the lemma follows. 
�
Example 7. Consider Loop (1) and the corresponding displacement polyhedron
as in Example 6. As notation, let x0 = (x1, x2, x3), y0 = (y1, y2, y3), y1 =
(w1, w2, w3), y2 = (z1, z2, z3), and y3 = (v1, v2, v3). Then R̂2 = {x1 ≥ −x3, y1 =
x2, y2 = x3, y3 = −1}∧{y1 ≥ −y3, w1 = y2, w2 = y3, w3 = 0}∧{w1 ≥ −w3, z1 =
w2, z2 = w3, z3 = 0} is satisfiable, e.g., for x0 = (0, 1, 0), y0 = (1, 0,−1), y1 =
(0,−1, 0) and y2 = (−1, 0, 0), and thus, as expected, the loop does not have a
MΦRF of depth 2. On the other hand, R̂3 = R̂2 ∧ {z1 ≥ −z3, v1 = z2, v2 =
z3, v3 = 0} is not satisfiable, and thus the loop has a MΦRF of depth 3. 
�

4.1 Witnesses for the Nonexistence of MΦRFs of a Given Depth

Existing algorithm for deciding whether a given loop has a MΦRF of depth
d [6,26] synthesize a MΦRF in the case of success, but in the case of failure
they do not provide any further knowledge on why the loop does not have such
a MΦRF. In this section we show that any satisfying assignment for R̂k (as
defined in (25)) witnesses the nonexistence of MΦRF of depth k, i.e., it can be
used to explains the reason why the loop does not have such MΦRF.

To gain intuition into the next idea let us start with the case k = 1, i.e., the
case of LRFs. If x0,y0,y1 is a satisfying assignment for R̂1, then by construction

( x0
y0

) ∈ R ( y0
y1

) ∈ rec.cone(R) (27)

Observe that for b ≥ 0,
( x0
y0

)
+ b · ( y0

y1

) ∈ R. If R has a LRF ρ, then ρ ranks( x0
y0

)
and

( x0
y0

)
+ b · ( y0

y1

) ∈ R for any b > 0. This requires ρ(y0) ≤ −1 and
ρ(x0)+b·ρ(y0) ≥ 0, which contradict for b large enough. Thus the point

( x0
y0

)
and

ray
( y0
y1

)
form a witness that explains why the loop does not have a LRF . More

precisely, the loop generated by the point and ray of (27), i.e., conv.hull{( x0
y0

)}+
cone{( y0

y1

)} ⊆ R, cannot have a LRF .
Let us generalize the above intuition for MΦRFs. Assume the loop has a

MΦRF 〈ρ1, . . . , ρk〉, and let x0,y0, . . . ,yk be an assignment satisfying R̂k, then
( x0
y0

) ∈ R ( y0
y1

) ∈ rec.cone(R) · · · ( yk−1
yk

) ∈ rec.cone(R) (28)

We may assume that
( x0
y0

)
is ranked by ρ1.

Let R′ = R∧ρ1(x) ≤ −1. Note that none of the transitions of R′ are ranked
by ρ1. Since ρ1 is decreasing on all transitions of R, we must have ρ1(y0) ≤ −1
and ρ1(yi) ≤ 0 for 1 ≤ i ≤ k. This means that the rays

( y0
y1

) · · · ( yk−1
yk

)
are in

rec.cone(R′) too. Moreover, for some b > 0 large enough, the point
( x0+b·y0
y0+b·y1

)

is in R′ since ρ1 can be made arbitrarily negative by increasing b. Now we have
( x0+b·y0
y0+b·y1

) ∈ R′ ( y0+b·y1
y1+b·y2

) ∈ rec.cone(R′) · · · ( yk−2+b·yk−1
yk−1+b·yk

) ∈ rec.cone(R′)
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It has the same form as in (28), i.e., the lower part of each point/ray is equal
to the upper part of the next one, but the number of rays is reduced by 1, and
since 〈ρ2, . . . , ρk〉 is a MΦRF for R′ we can apply the same reasoning again and
reduce the number of rays to k − 2. Repeating this, we arrive to a point and ray
as in (27) that are supposed to be ranked by ρk, but we know that they cannot
have a LRF so we need at least one more component in the MΦRF. Thus, we
conclude that the solution of (28) is a witness that suffices to prohibit a MΦRF
of depth k. In fact, the loop generated by this witness, i.e., conv.hull{( x0

y0

)} +
cone{( y0

y1

)
, . . . ,

( yk−1
yk

)} ⊆ R, cannot have a MΦRF of depth k.

Example 8. The satisfying assignment for R̂2 in Example 7 is a witness for the
nonexistence of MΦRF of depth 2 for Loop (1). The transition polyhedron
corresponding to this witness is {x1 = −x3, x2 ≤ 1, x3 ≤ 0, x′

1 = x1 + x2, x
′
2 =

x2 + x3, x
′
3 = x3 − 1}. Note how the guard is strengthened wrt. x1 ≥ −x3 of

Loop (1). 
�
Finally, observe that any polyhedral subset of R that is disjoint from Rk has

a MΦRF of depth at most k.

Example 9. Consider Loop (1), for which R̂2 is satisfiable as we have seen in
Example 7. Computing R2 = projx0,y0

(R̂2) results in {x3 ≥ 0, x2 ≥ 1, x1 +y2 ≥
0, y1 = x2, y2 = x3, y3 = −1}. For ε > 0, any subset of R that includes x3 ≤ −ε
or x2 ≤ 1 − ε is disjoint from R2. Adding either constraint to Loop (1) results
in loops that have MΦRFs of optimal depth 1 and 2 respectively. 
�

4.2 New Directions for Addressing the General MΦRF Problem

We believe that the displacement polyhedra representation, in particular the
check induced by Lemma 10, provides us with new tools that can be used for
addressing the problem of deciding whether a given SLC loop has a MΦRF of
any depth, which is still an open problem. Next we discuss some directions.

One direction is to come up with conditions on the matrices A′′ (or equiva-
lently R) and c′′, that define the loop, under which it is guaranteed that if R̂k is
empty then k must be smaller than some d, i.e., bounding the depth of MΦRFs
for classes of loops that satisfy these conditions.

Let C ≡ [R
( y
y′

) ≤ 0] and Ci be the i-fold composition of C. Consider the
problem of seeking N , such that CN = CN+1. This is a sufficient condition for
Algorithm 1 to terminate in at most N iterations (either with a recurrent set or
with a MΦRF), since then RN = RN+1. This is particularly interesting if the
loop has an affine update x′ = Ux+c. In such case C ≡ [By ≤ 0∧y′ = (U −I)y],
where I ∈ Q

n×n is the identity matrix, and thus if the matrix (U−I) is nilpotent,
for example, then there is N such that CN = CN+1. This also holds when matrix
(U − I) satisfies the finite-monoid property [8].

Another tantalizing observation reduces the existence of d such that R̂d is
empty to the question whether a related SLC loop terminates, for a given poly-
hedron of initial states, in a bounded number of steps. Specifically, the loop:

while (By ≤ 0) do (A + A′)y + A′y′ ≤ 0.
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where B, A and A′ are those used in the definition of R in (24), and the question
whether it terminates in at most d steps for all y ∈ {y ∈ Q

n | R
( x
y
) ≤ c′′}.

This is because R̂d as in (25) is equivalent to unrolling the above loop d times.
If the update is affine, i.e., x′ = Ux+ c, then the above loop is equivalent to the
following loop: while (By ≤ 0) do y′ = (U − I)y.

4.3 Termination and Nontermination of Bounded SLC Loops

To further demonstrate the usefulness of the displacement polyhedra, in this
section we provide some observations, regarding SLC loops whose set of enabled
states are defined by bounded polyhedra, that are easy to see using the displace-
ment polyhedron and are much less obvious using the transition polyhedron. A
polyhedron is bounded if its recession cone consists of a single point 0.

Lemma 12. Let Q be a SLC loop such that the set of enabled states projx(Q)
is a bounded polyhedron, then Q is nonterminating iff it has a fixpoint

( x
x
) ∈ Q,

and it is terminating iff it has a LRF.

Proof. Let R be the displacement polyhedron of Q. Since projx(Q) is bounded,
projx(R) is bounded. This means that its recession cone R

( x
y
) ≤ 0 consists of

points of the form
( 0
y
)
. From the form of R̂k, which is a conjunction of instances

of R
( yi
yi+1

) ≤ 0, it is easy to see that R2 = R1. This means that the algorithm
will terminate in at most two iterations with one of the following outcomes:
(i) R0 = R1; (ii) R2 = R1; or (iii) R1 is empty. In the first two cases all
transitions of R1 or R2 are of the form

( x
0
)
, and thus

( x
x
) ∈ Q; in the third case

we have found a MΦRF of depth 1, i.e., LRF . Note that the part that relates
nontermination to the existence of a fixpoint follows also from [26]. 
�

5 Implementation and Experimental Evaluation

For experimentally evaluating Algorithm1 for nontermination, we have inte-
grated it in a version of iRankFinder which is available at http://irankfinder.
loopkiller.com. It takes as input a control-flow graph, and proves nontermina-
tion as follows: when it fails to prove termination, it enumerates closed walks
(which are basically SLC loops) using only transitions whose termination was
not proven, and then applies Algorithm1 to seek recurrent sets. For now it does
not check that the recurrent set is reachable, which is an orthogonal problem.

We have analyzed 436 benchmarks that we have taken from TPDB [35] and
for which iRankFinder fails to prove termination, and for 412 it finds recur-
rent sets. These recurrent sets are valid over the rationals, however, at least for
223 benchmarks that satisfy the condition of Lemma7, they are also valid over
the integers. The raw data of the experiments is available at http://irankfinder.
loopkiller.com/papers/extra/sas19. Since we do not check reachability, we can-
not compare numbers to the other tools, however, in the link above we also
provide the results for some other tools when applied to these examples.

http://irankfinder.loopkiller.com
http://irankfinder.loopkiller.com
http://irankfinder.loopkiller.com/papers/extra/sas19
http://irankfinder.loopkiller.com/papers/extra/sas19
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We also provide an implementation of Algorithm1 in a light version of
iRankFinder that accepts SLC loops as input, which is adequate for exper-
imenting with the algorithm both for finding MΦRFs and recurrent sets –
it is available at http://www.loopkiller.com/irankfinder by selecting options
MΦRF (Q) or MΦRF (Z).

6 Conclusion

The purpose of this work has been to improve our understanding of MΦRFs, in
particular of the problem of deciding whether a given SLC loop has a MΦRF
without a given bound on the depth. The outcomes are important insights that
shed light on the structure of these ranking functions.

At the heart of our work is an algorithm that seeks MΦRFs, which is based
on iteratively eliminating transitions, until eliminating them all or stabilizing
on a set of transitions that cannot be reduced anymore. In the first case, a
MΦRF can be constructed, and, surprisingly, in the second case the stable set
of transitions turns to be a recurrent set that witnesses nontermination. This
reveals an equivalence between the problems of seeking MΦRFs and seeking
recurrent sets of a particular form.

Apart from the relation to seeking recurrent sets, the insights of our work are
helpful for characterizing classes of loops for which there is always a MΦRF, when
terminating. In addition, our insights led to a new representation for SLC loops
in which our algorithm has a very simple formalization that, unlike previous
algorithms, yields witnesses for the nonexistence of MΦRFs of a given depth.
Moreover, this new representation makes some nontrivial observations regarding
(bounded) SLC loop straightforward. We believe that this representation can
be useful for other related problems. Our research leaves a number of new open
questions, which we hope will trigger the interest of the community.

The problem of seeking MΦRFs with a given bound on the depth has been
considered in several works. The complexity of the problem for SLC loops was
settled in [6]. MΦRFs for general loops are considered in [25,28], both using non-
linear constraint solving. In [2] the notion of “eventual linear ranking functions,”
which are MΦRFs of depth 2, was studied. The method in [7] can infer MΦRFs
for general loops incrementally, by solving safety problems using Max-SMT.
Lexicographic ranking function are closely related. Their algorithmic aspects
are considered in [1,5,9,19,23]. There are other works [17,36,37] that address
the problem of prove termination by ranking functions, in particular [37] that
combines piecewise-linear functions with lexicographic orders. None considers
recurrent sets together with ranking-function termination proofs. The combina-
tion of piecewise-linear functions with lexicographic orders as in [37] subsumes
multiphase ranking functions, however, being more general, and using an app-
roach which is more generic, [37] does not offer any particular insights about
multiphase ranking functions and makes no claims of completeness.

Nontermination provers are described in several works. Some techniques are
based on finding recurrent sets in one form or another [3,4,8,10,20,22,26,30];

http://www.loopkiller.com/irankfinder
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while others are based on reducing the problem to proving non-reachability of
terminating states [11,24,38]. The idea of shrinking a set of states until finding
a recurrent set can be found in several of these works, the main difference is that
they typically remove states that ensure termination while our procedure might
remove nonterminating states (so that, when it finds a recurrent set, it is not
necessarily the largest one).
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13. Conforti, M., Cornuéjols, G., Zambelli, G.: Polyhedral approaches to mixed integer
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