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Abstract. Major depressive disorder is a primary cause of disability
in adults with a lifetime prevalence of 6–21% worldwide. While med-
ical treatment may provide symptomatic relief, response to any given
antidepressant is unpredictable and patient-specific. The standard of
care requires a patient to sequentially test different antidepressants for
3 months each until an optimal treatment has been identified. For 30–
40% of patients, no effective treatment is found after more than one
year of this trial-and-error process, during which a patient may suf-
fer loss of employment or marriage, undertreated symptoms, and sui-
cidal ideation. This work develops a predictive model that may be used
to expedite the treatment selection process by identifying for individ-
ual patients whether the patient will respond favorably to bupropion, a
widely prescribed antidepressant, using only pretreatment imaging data.
This is the first model to do so for individuals for bupropion. Specifically,
a deep learning predictor is trained to estimate the 8-week change in
Hamilton Rating Scale for Depression (HAMD) score from pretreatment
task-based functional magnetic resonance imaging (fMRI) obtained in
a randomized controlled antidepressant trial. An unbiased neural archi-
tecture search is conducted over 800 distinct model architecture and
brain parcellation combinations, and patterns of model hyperparameters
yielding the highest prediction accuracy are revealed. The winning model
identifies bupropion-treated subjects who will experience remission with
the number of subjects needed-to-treat (NNT) to lower morbidity of
only 3.2 subjects. It attains a substantially high neuroimaging study
effect size explaining 26% of the variance (R2 = 0.26) and the model
predicts post-treatment change in the 52-point HAMD score with an
RMSE of 4.71. These results support the continued development of fMRI
and deep learning-based predictors of response for additional depression
treatments.
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1 Introduction

Major depressive disorder (MDD) has a lifetime prevalence of 6–21% worldwide
and is a major cause of disability in adults [12]. Though half of MDD cases
are treated with medication, there are dozens of antidepressants available and a
patient’s response to each is highly unpredictable [7]. The current standard in
healthcare entails a long trial-and-error process in which a patient tries a series
of different antidepressants. The patient must test each drug for up to 3 months,
and if satisfactory symptomatic improvement is not achieved within this time,
the clinician modifies the dosage or selects a different drug to test next. This
trial-and-error process may take months to years to find the optimal treatment,
during which patients suffer continued debilitation, including worsening symp-
toms, social impairment, loss of employment or marriage, and suicidal ideation.
It has been shown that 30–40% of patients do not find adequate treatment after
a year or more of drug trials [19,22]. Consequently, a predictive tool that helps
prioritize the selection of antidepressants that are best suited to each patient
would have high clinical impact.

This work demonstrates the use of deep learning and pretreatment task-based
fMRI to predict long-term response to bupropion, a widely used antidepressant
with a response rate of 44% [15]. An accurate screening tool that distinguishes
bupropion responders from non-responders using pretreatment imaging would
reduce morbidity and unnecessary treatment for non-responders and prioritize
the early administration of bupropion for responders.

The use of functional magnetic imaging (fMRI) measurements to infer quan-
titative estimates of bupropion response is motivated by evidence for an asso-
ciation between fMRI and antidepressant response. For example, resting-state
activity in the anterior cingulate cortex as well as activity evoked by reward
processing tasks in the anterior cingulate cortex and amygdala have all been
associated with antidepressant response [13,16,17].

In this work, predictive models of individual response to bupropion treatment
are built using deep learning and pretreatment, task-based fMRI from a cohort
of MDD subjects. The novel contributions of this work are: (1) the first tool
for accurately predicting long-term bupropion response, and (2) the use of an
unbiased neural architecture search (NAS) to identify the best-performing model
and brain parcellation from 800 distinct model architecture and parcellation
combinations.

2 Methods

2.1 Materials

Data for this analysis comes from the EMBARC clinical trial [23], which includes
37 subjects who were imaged with fMRI at baseline and then completed an
8-week trial of bupropion XL. To track symptomatic outcomes, the 52-point
Hamilton Rating Scale for Depression (HAMD) was administered at baseline
and week 8 of antidepressant treatment. Higher HAMD scores indicate greater
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MDD severity. Quantitative treatment response for each subject was defined
as ΔHAMD = HAMD(week 8) − HAMD(baseline), where a negative ΔHAMD
indicates improvement in symptoms. The mean ΔHAMD for these subjects was
−5.98±6.25, suggesting a large variability in individual treatment outcomes. For
comparison, placebo-treated subjects in this study exhibited a mean ΔHAMD
of −6.70 ± 6.93.

Image Acquisition. Subjects were imaged with resting-state and task-based
fMRI (gradient echo-planar imaging at 3T, TR of 2000 ms, 64 × 64 × 39 image
dimensions, and 3.2 × 3.2 × 3.1 mm voxel dimensions). Resting-state fMRI was
acquired for 6 min. Task-based fMRI was acquired immediately afterwards for
8 min during a well-validated block-design reward processing task assessing reac-
tivity to reward and punishment [8,11]. In this task, subjects must guess in the
response phase whether an upcoming number will be higher or lower than 5.
They are then informed in the anticipation phase if the trial is a “possible win”,
in which they receive a $1 reward for a correct guess and no punishment for an
incorrect guess, or a “possible loss”, in which they receive a -$0.50 punishment
for an incorrect guess and no reward for a correct guess. In the outcome phase,
they are then presented with the number and the outcome of the trial.

2.2 Image Preprocessing

Both resting-state and task-based fMRI images were preprocessed as follows.
Frame-to-frame head motion was estimated and corrected with FSL MCFLIRT,
and frames where the norm of the fitted head motion parameters was >1 mm or
the intensity Z-score was >3 were marked as outliers. Images were then skull-
stripped using a combination of FSL BET and AFNI Automask. To perform
spatial normalization, fMRI images were registered directly to an MNI EPI tem-
plate using ANTs. This coregistration approach has been shown to better correct
for nonlinear distortions in EPI acquisitions compared to T1-based coregistration
[2,6]. Finally, the images were smoothed with a 6 mm Gaussian filter.

Predictive features were extracted from the preprocessed task-based fMRI
images in the form of contrast maps (i.e. spatial maps of task-related neuronal
activity). Each task-based fMRI image was fit to a generalized linear model,

Y = X × β + ε

where Y is the time × voxels matrix of BOLD signals, X is the time × regressors
design matrix, β is the regressors × voxels parameter matrix, and ε is the resid-
ual error, using SPM12. The design matrix X was defined as described in [11] and
included regressors for the response, anticipation, outcome, and inter-trial phases
of the task paradigm. In addition, a reward expectancy regressor was included,
which had values of +0.5 during the anticipation phase for “possible win” trials
and −0.25 during the anticipation phase for “possible loss” trials. These num-
bers correspond to the expected value of the monetary reward/punishment in
each trial. In addition to these task-related regressors and their first temporal
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derivatives, the head motion parameters and outlier frames were also included
as regressors in X.

After fitting the generalized linear model, contrast maps for anticipation
(Cantic) and reward expectation (Cre) were computed from the fitted β coeffi-
cients:

Cantic = βanticipation − βinter-trial

Cre = βreward expectation

To extract region-based features from these contrast maps, three custom,
study-specific brain parcellations (later referred to as ss100, ss200 and ss400 )
were generated with 100, 200, and 400 regions-of-interest (ROIs) from the
resting-state fMRI data using a spectral clustering method [5]. Each parcel-
lation was then used to extract mean contrast values per ROI. The performance
achieved with each of these custom parcellations, as well as a canonical func-
tional atlas generated from healthy subjects (Schaefer 2018, 100 ROIs) [20], is
compared in the following experiments.

2.3 Construction of Deep Learning Predictive Models

Dense feed-forward neural networks were constructed to take the concatenated
ROI mean values from the two contrast maps as inputs and predict 8-week
ΔHAMD. Rather than hand-tuning model hyperparameters, a random search
was conducted to identify a high-performing model for predicting response to
bupropion. The random search is an unbiased neural architecture search (NAS)
that was chosen because it has been shown to outperform grid search [1] and
when properly configured can provide performance competitive with leading
NAS methods such as ENAS [14].

200 architectures were sampled randomly from a uniform distribution over
a defined hyperparameter space (Table 1) and then used to construct models
that were trained in parallel on 4 NVIDIA P100 GPUs. All models contained a
single neuron output layer to predict ΔHAMD and were trained with the Nadam
optimizer, 1000 maximum epochs, and early stopping after 50 epochs without
decrease in validation root mean squared error (RMSE).

The combination of 200 model architectures with 4 different parcellations
resulted in a total of 800 distinct model configurations that were tested. To
ensure robust model selection and to accurately estimate generalization perfor-
mance, these 800 model configurations were tested with a nested K-fold cross-
validation scheme with 3 outer and 3 inner folds. Although a single random split
is commonly used in place of the outer validation loop, a nested cross-validation
ensures that no test data is used during training or model evaluation and pro-
vides an unbiased estimate of final model performance [24]. Within each outer
fold, the best-performing model was selected based on mean root mean squared
error (RMSE) over the inner folds. The model was then retrained on all training
and validation data from the inner folds and final generalization performance
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Table 1. Hyperparameter space defined for the random neural architecture search. For
each model, one value was randomly selected from each of the first set of hyperparam-
eters; for each layer in each model, one value was randomly selected from the second
set of hyperparameters.

Hyperparameter Possible values

Per-model hyperparameters

Number of dense hidden layers 1, 2, 3, 4, 5

Number of neurons in 1st hidden layer 32N for N ∈ [1, . . . , 16]

Activation for all layers Leaky ReLU, ReLU, ELU, PReLU

Learning rate 0.0001n for n ∈ [1, . . . , 50]

Per-layer hyperparameters

% decrease in neurons from previous layer None, 0.25, 0.5, 0.75

Weight regularization L1, L2, L1 and L2

Activity regularization L1, L2, L1 and L2

Batch normalization Yes, No

Dropout rate 0, 0.3, 0.5, 0.7

was evaluated on the held-out test data of the outer fold. Repeating this pro-
cess for each outer fold yielded 3 best-performing models, and the mean test
performance of these models is reported here.

3 Results and Discussion

3.1 Neural Architecture Search (NAS)

Results indicate that the NAS is beneficial. In particular, a wide range of vali-
dation RMSE was observed across the 800 tested model configurations (Fig. 1).
Certain models performed particularly well achieving RMSE approaching 4.0,
while other model architectures were less suitable. NAS helped identify high-
performing configurations expediently.

Fig. 1. Mean inner validation fold RMSE of the 800 model architecture & parcellation
combinations evaluated in the unbiased neural architecture search. Results from one
outer cross-validation fold are illustrated here, and findings for the other two folds were
similar.
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The information from the NAS can be examined for insight into what
configurations constitute high versus low performing models and whether the
ranges of hyperparameters searched were sufficiently broad. Towards this end,
the hyperparameter distributions of the top and bottom quartiles of these 800
model configurations, sorted by RMSE, were compared. Substantial differences
in the hyperparameter values that yielded high and low predictive accuracy
are observed (Fig. 2). Notably, the custom, study-specific parcellation with 100
ROIs (ss100 ) provided significantly better RMSE than the “off-the-shelf” Schae-
fer parcellation (p = 0.023). Additionally, the top quartile of models using ss100
used fewer layers (1–2), but more neurons (384–416) in the first hidden layer,
compared to the bottom quartile of models. Note that unlike in a parameter sen-
sitivity analysis, where ideal results exhibit a uniform model performance over a
wide range of model parameters, in a neural architecture search, an objective is to
demonstrate adequate coverage over a range of hyperparameters. This objective
is met when local performance maxima are observed. This is shown in (Fig. 2b,
c and d) where peaks in the top quartile (blue curve) of model architectures are
evident.

b c da

Fig. 2. Hyperparameter patterns for the top (blue) and bottom (orange) quartiles of
the 800 model configurations evaluated in the unbiased neural architecture search.
Representative results for one of the outer cross-validation folds are presented. a: Top
quartile models tended to use the ss100 parcellation, while bottom quartile models
tended to use the Schaefer parcellation. b–d: Distributions of three selected hyperpa-
rameters compared for the top and bottom quartiles of model configurations, revealing
the distinct patterns of hyperparameters for high-performing models. The top quartile
of model architectures have fewer layers (peaking at 1–2) but more neurons in the first
hidden layer (peaking at 384–416 neurons). (Color figure online)

The best performing model configuration used an architecture with two hid-
den layers and the 100-ROI study-specific parcellation (ss100 ). Regression accu-
racy in predicting ΔHAMD in response to bupropion treatment was RMSE 4.71
and R2 0.26. This R2 value (95% confidence interval 0.12–0.40 for n = 37) con-
stitutes a highly significant effect size for a neuroimaging study where effect sizes
are commonly much lower, e.g. 0.01–0.10 in [3] and 0.09–0.15 in [21]. Further-
more, this predictor identifies individuals who will experience clinical remission
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Table 2. Performance of the best model configuration from the neural architecture
search. To obtain classifications of remission, the model’s regression outputs were
thresholded post-hoc using the clinical criteria for MDD remission (HAMD(week 8) <
7). RMSE : root mean squared error, NNS : number needed to screen, PPV : positive
predictive value, AUC : area under the receiver operating characteristic curve.

Target Performance

ΔHAMD R2 0.26 (95% CI 0.12–0.40), RMSE 4.45

Remission NNS 3.2, PPV 0.64, NPV 0.81, AUC 0.71

(HAMD(week 8) <= 7) with number of subjects needed-to-treat (NNT) of 3.2
subjects and AUC of 0.71. This NNT indicates that, on average, one additional
remitter will be identified for every 3 individuals screened by this predictor.
In comparison, clinically-adopted pharmacological and psychotherapeutic treat-
ments for MDD have NNTs ranging from 2–25 [18], and other proposed predic-
tors for antidepressants besides bupropion have reported NNTs of 3–5 [9,10].
Therefore, this NNT of 3.2 has high potential for clinical benefit in identifying
individuals mostly likely to respond to bupropion (Table 2).

When evaluated on sertraline and placebo-treated subjects from the this
dataset, the model demonstrated poor accuracy (negative R2), which is desirable
because it indicates the model learned features specific to bupropion response.
Additionally, clinical covariates such as demographics, disease duration, and
baseline clinical scores were added to the data in another NAS, but this did
not increase predictive power. Lastly, less statistically complex models, includ-
ing multiple linear regression and a support vector machine, performed poorly
with negative R2, even after hyperparameter optimization with a comparable
random search of 800 configurations. This finding suggests that a model with a
higher statistical capability such as a neural network was needed to learn the
association between the data and treatment outcome.

3.2 Learned Neuroimaging Biomarker

Permutation feature importance was measured on the best-performing model
configuration to extract a composite neuroimaging biomarker of bupropion
response. Specifically, for each feature, the change in R2 was measured after
randomly permuting the feature’s values among the subjects. This was repeated
100 times per feature, and the mean change in R2 provided an estimate of the
importance of each feature in accurate predicting bupropion response. The 10
most important regions for bupropion response prediction are visualized in Fig. 3
and include the medial frontal cortex, amygdala, cingulate cortex, and striatum.
The regions this model has learned to use agree with the regions neurobiologists
have identified as key regions in the reward processing neural circuitry [4]. This
circuit is the putative target of bupropion and the circuit largely measured by
the reward expectancy task in this task-based fMRI study.
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Fig. 3. The 10 most important ROIs for bupropion response prediction, as measured by
permutation feature importance. These included 5 regions in the anticipation contrast
map (Cantic, top row) and 5 regions in the reward expectation contrast map (Cre,
bottom row). Darker hues indicate greater importance in predicting ΔHAMD.

4 Conclusions

In this work, deep learning and an extensive, unbiased NAS were used to con-
struct predictors of bupropion response from pretreatment task-based fMRI.
These methods produced a novel, accurate predictive tool to screen for MDD
patients likely to respond to bupropion, to estimate the degree of long-term
symptomatic improvement after treatment, and to identify patients who will not
respond appreciably to the antidepressant. Predictors such as the one presented
are an important step to help narrow down the set of candidate antidepressants
to be tested for each patient and to address the urgent need for individualized
treatment planning in MDD. The results presented also underscore the value of
fMRI and in MDD treatment prediction, and future work will target extension
to additional treatments.
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