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Abstract. Crohn’s disease, one of two inflammatory bowel diseases
(IBD), affects 200,000 people in the UK alone, or roughly one in every
500. We explore the feasibility of deep learning algorithms for identifica-
tion of terminal ileal Crohn’s disease in Magnetic Resonance Enterogra-
phy images on a small dataset. We show that they provide comparable
performance to the current clinical standard, the MaRIA score, while
requiring only a fraction of the preparation and inference time. More-
over, bowels are subject to high variation between individuals due to
the complex and free-moving anatomy. Thus we also explore the effect
of difficulty of the classification at hand on performance. Finally, we
employ soft attention mechanisms to amplify salient local features and
add interpretability.

1 Introduction

1.1 Motivation

Most people suffering from Crohn’s disease are younger than 35 and the cost
of their treatment exceeds £500 million in the UK alone. Symptoms include
inflammation of tissue anywhere along the gastrointestinal tract. However, it is
most commonly found in the terminal ileum (where the small and large intestine
meet). While there is no cure, early detection can vastly improve quality of life.

A successful algorithm would assist radiologists in more accurate diagnosis
and follow-up of Crohn’s disease. This would be of particular benefit to radi-
ologists with limited experience of Crohn’s disease imaging or who encounter
patients with Crohn’s disease uncommonly. Such an algorithm could also be
used to triage patients so that severe cases can be reviewed more immediately,
or to perform a secondary review to the radiologist and flag potentially missed
cases.
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1.2 Study Outline and Contributions

Performance of classification tasks on the bowels is degraded by the intrinsic
complexity and noise of the anatomy. While Crohn’s disease can inflame the
entire gastrointestinal (GI) tract, radiologists typically study the terminal ileum
when making a diagnosis [1]. The first question we consider is the extent to
which is it possible to classify IBD Crohn’s disease from an MRI volume using
vanilla deep learning methods. To establish this baseline, we first localise to the
ROI using the patient-specific coordinates of the terminal ileum provided by a
radiologist. We demonstrate that this semi-automatic technique performs com-
parably to the current standard for evaluating Crohn’s with MRI, the MaRIA
score [8], while requiring only a fraction of the preprocessing. We also explore
how the difficulty and inflammation severity of a sample affects classification
performance.

The assumption will then be dropped, such that we are forced to work only
with population-specific knowledge, resulting in weaker localisation. Precision
and recall degrade as the now fully-automatic algorithm encounters a worse
signal-to-noise ratio (SNR). Finally, we show that in the absence of overfit-
ting soft attention mechanisms [9] improve performance through amplification
of salient local features.

2 Related Work

Currently there are no deep learning methods deployed in the clinic to assist
diagnosis of Crohn’s disease. Diagnosis is determined entirely by radiologists
and clinical professionals who employ various in vivo and imaging techniques.
Thus, our classification performance will be compared with the clinical standard,
the MaRIA score. For their similarity in physical domain, we then review similar
applications of deep learning to the abdomen.

2.1 Clinical Standards for Evaluating IBD

The first methods to standardise diagnosis of IBDs were endoscopic scoring sys-
tems, such as the Crohn’s Disease Endoscopic Index of Severity (CDEIS). How-
ever, these incur practical issues; regular endoscopic examinations have several
drawbacks related to ‘invasiveness, procedure-related discomfort, risk of bowel
perforation and relatively poor patient acceptance’ [8]. In fact, a meta-analysis
of prospective studies has shown both MRE and CT to have a sensitivity and
specificity of greater than 90% in diagnosing IBDs. To evaluate the MRI, radiol-
ogists visually examine the bowels slice by slice and look for high level features.
Signs indicative of IBD include increase in T2 signal and thickness of the bowel
walls. Rimola et al. [8] developed a scoring system, the MaRIA score, by first
extracting these standardised imaging features through manual annotation by a
radiologist and then fitting them in a regression model. MaRIA score was found
to have a strong correlation with CDEIS. For the detection of disease activity it
scored 0.81 for sensitivity and 0.89 for specificity.



Automatic Detection of Bowel Disease with Residual Networks 153

Challenges in computing the MaRIA score include differentiation of diseased
segments from those that are collapsed, variability of disease presentation and
image degradation caused by motion [2]. Additionally, the aforementioned met-
rics used in the MaRIA score must be calculated by a radiologist in the terminal
ileum, the transverse, ascending, descending and sigmoid colon and the rectum,
which is a timely and costly procedure.

2.2 Machine Learning for the Automated Detection of IBD

Machine learning can automatically extract local features in the presence of
noise, and combine them to make more complex decisions. Thus, it promises
to automate the collection of low level features and, as we determine in this
work, the diagnosis. Some attempt has been made to automate the collection
of features specifically for calculation of the MaRIA score; in 2013 Schüffler et
al. [7] used random forests to segment diseased bowels. However, this technique
first requires a radiologist to indicate the section of diseased bowel to evaluate.
Moreover at the time of the study it required one hour per patient. As far as we
can see, there are no studies that use deep learning to directly diagnose IBD from
imaging data. Moreover, there are comparatively few medical imaging challenges
that focus on the abdomen (notably KiTS19 and CHAOS19) compared to other
domains, and as far as we can see, none that regard IBD.

Typically, the medical imaging community has been more focused on tasks
such as tumour, lesion and anatomical segmentation. This is evidenced in ‘A Sur-
vey of Deep Learning in Medical Image Analysis’ [5], detailing that ‘Most papers
on the abdomen aimed to localize and segment organs, mainly the liver, kid-
neys, bladder, and pancreas’. A more recent review paper, ‘An overview of deep
learning in medical imaging focusing on MRI’ [6], describes continued progress
in segmentation, registration and image synthesis, but regarding diagnosis and
prediction it advises to consult the list from the previous review [5] indicating
that the main focus still lies in segmentation. Indeed, newer studies on the task
of prediction and diagnosis concentrate on the brain, kidney, prostate and spine,
but do so via segmentation rather than direction prediction.

Thus, it may be the case that the optimal method for diagnosing Crohn’s
IBD operates by first segmenting the terminal ileum. Abdominal segmentation
has been attempted, though not including the terminal ileum [3]; dice scores
were high for larger anatomy (e.g. liver at 95.3 ± 0.7) but significantly reduced
for smaller anatomy similar in function to the terminal ileum (e.g. duodenum at
65.5±8.9). Furthermore, they go on to describe the limitations of CNNs for infer-
ence in the bowels, commenting that ‘It is very challenging for the CNN to learn
stable representative features for the digestive organs because the appearances,
shapes, and sizes of these organs are highly unstable from day to day depending
on different food intake and digestion process ’ [3].

To summarise, there are no studies making direct diagnosis of IBD using
deep learning on images. Furthermore, there are also no learning algorithms
since the random forests [7] diagnosing IBD from MR volumes. Segmentation
is typically preferred to direct diagnosis due to the increased dimensionality of
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the annotations. As such, we compare our baseline performance to the reported
binary classification performance of the MaRIA score in classification of Crohn’s
disease.

3 Data

MRI data has been acquired on a Philips Achieva 1.5 T MR System with acqui-
sition parameters as outlined in Table 1. Use of de-identified data has been con-
sented by the local ethics committees.

Table 1. MRI acquisition parameters. Number of signal averages (NSA); Turbo spin
echo (TSE)

Planes Sequence FOV [mm] TR/ TE Slice [mm] Matrix NSA Time [s]

Axial e-THRIVE
(T1 FFE / TFE)

375 5.9/3.4 3 212× 160 1 20.7× 2

Coronal Single shot TSE
(T2 TSE)

375 554/120 3 300× 213 1 21.1

Axial Single shot TSE
(T2 TSE)

375 587/120 3.5 304× 255 1 22.3× 2

The Crohn’s MRI dataset is divided into healthy, mild, moderate and severe
(with fistulation) terminal ileal inflammation. These represent severity levels 0,
1, 2 and 3 respectively which were originally calculated using the MaRIA score.
As there are no terminal ileal ground-truth segmentations available, the only
other annotation is the centroid coordinates of the terminal ileum.

Individuals are ranked by classification difficulty ; an ordering determined by
the radiologists who annotated the data. While we cannot formally describe how
an MRI volume of a patient might be difficult to annotate, we can theorise that
it means the symptoms of Crohn’s disease are hard to spot or are borderline.
These difficulties may correspond to those discussed in computing the MaRIA
score discussed in Sect. 2.1. Indeed, we see that as the severity of inflammation
decreases the difficulty increases in Table 2 (average difficulty is 35.0).

Table 2. Distribution of inflammation and suggested classification difficulty

Inflammation class Frequency Average difficulty

Healthy 100 N/A

Mild 34 39.1

Moderate 29 35.3

Severe 7 19.1
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Formally, let {ij}Nj=1, {dj}Nj=1 such that ∀j ij ,dj ∈ R
3 be the set of physical

locations of the terminal ilea and the dimensions of the jth patient respectively.
Then let the proportional ileal location be pj = ij

dj
and suppose that

∀j pj ∼ N (μ, Σ)

The distribution of {pj}Nj=1 is shown in Fig. 1. Given that μ̂ < 0 and Σ̂ is small we
observe that the terminal ileum is usually confined to one octant of the volume.
From this distribution we can define a bounding box that we expect to contain
all ilea. We make use of this assumption in preprocessing (see Sect. 3.1). We also
observe from Σ̂ that most variation is in the axial direction. This is expected as
the method by which we determine the patient’s size is most uncertain in this
direction (patient dimensions were determined by region growing).

μ̂ =

⎡
⎣
−0.192
−0.171
−0.111

⎤
⎦

Σ̂ =

⎡
⎣

0.012 −0.005 −0.014
−0.005 0.019 0.017
−0.014 0.017 0.042

⎤
⎦

Fig. 1. Terminal ileal population distribution (normalised to [–1, 1])

3.1 Application Variants

We can localise to the ROI using the coordinates of the terminal ileum by extract-
ing a small surrounding window, resulting in the Localised dataset. However, in
the fully-automatic variant, we are forced to extract a larger region using the
estimated distribution shown in Fig. 1 resulting in the Generic dataset. The
effect of localisation strength on performance is detailed in Sect. 5. Localisation
is crucial for mitigating overfitting, but also for permitting larger batch sizes,
since the Generic and Localised techniques result in 95.8% and 99.4% volume
reductions respectively.

4 Method

We are interested in the binary classification power of vanilla deep learning
frameworks. As such, due to its efficient use of parameters, we chose ResNet [4]
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- this affords us larger batch sizes, which are restricted by the dimensionality of
the scans. Our custom Resnet uses exclusively 33 filters and ReLU activation.
Refer to our network specification in Table 3. Each set of residual blocks, dj ,
begins with a downsampling layer via strided convolution. The residual blocks
are followed by a classification module, comprising a global average pooling layer
which allows us to feed inputs of variable size to the network. It also reduces the
number of learnable parameters in the model as it is followed by a dropout fully
connected layer resulting in two output neurons, as in binary classification.

We also add soft attention layers as described in Attention-gated Sononet by
Schlemper et al. [9]. These act as a gate for signal by learning the compatabil-
ity between pixel-wise features at a large scale and more global, discriminative
features taken before the final soft-max layer. This is then normalised to form
the attention map (see Fig. 2 for examples) and the dot product is taken with
the pixel-wise features to produce attended features. These too pass through a
classification module and their prediction is weighted against that of the original
network’s. To extend our custom Resnet we add an attention layer before the
final downsampling layer. This multi-scale technique assists the network in iden-
tifying local, salient features such as the terminal ileum and is shown to improve
performance in the absence of overfitting.

Table 3. Our ResNet configuration for input volume of size 31× 87× 87

Layer Channels Blocks Resultant feature map

d1 64 3 16× 44× 44

d2 128 3 8× 22× 22

d3 256 3 4× 11× 11

Global average pooling 256

Dense layer 2

4.1 Training and Evaluation

Loss is computed as cross entropy between the logits and the ground truth labels.
We use Adam with β1 = 0.9, β2 = 0.99 for the first and second order moment
coefficients respectively, and a learning rate of 5 · 10−6. Due to the reduction
in volume (see Sect. 3.1) we can use batch sizes of 64, a significant portion of
the training set, which somewhat mitigates the intrinsic sample variability by
producing more accurate gradient estimates.

Most deep learning frameworks were designed to train on vast datasets. Since
we have many millions of parameters but relatively few samples, augmentation
is necessary to artificially inflate the dataset. We capture variation present in
anatomy and acquisition by including a mix of rotation (about the axial plane),
horizontal flipping and random cropping.

All results are determined by four-fold cross validation on stratified train-
ing and testing sets, allowing us to evaluate the network on the entire dataset.
The limited size of the dataset introduces an upper bound on overall binary
classification accuracy of 92.45% (p-value 0.05), and just 84.8% on a single fold.
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5 Results

Metrics were recorded when the loss was lowest for each fold. We will refer
to Table 4, containing the results for the combined predictions over the whole
dataset, as well as the best performing fold, and detailing the effect of the atten-
tion mechanism. It also compares the two levels of localisation that distinguish
the Localised and Generic datasets.

Table 4. Best and average cross-fold binary classification performance for all applica-
tion variants (formatted by precision/recall, and where A and H denote the abnormal
and healthy classes respectively)

Attention Generic region Localised region

A H A H

✗ Average 0.61/0.20 0.62/0.91 0.76/0.69 0.79/0.85

Best 0.73/0.47 0.71/0.88 0.93/0.82 0.89/0.96

✓ Average 0.59/0.14 0.61/0.93 0.79/0.80 0.86/0.85

Best 0.60/0.35 0.66/0.84 0.94/0.94 0.96/0.96

In most cases performance is reduced on the underrepresented class of abnor-
mal patients. Moreover, performance is signficantly increased on localised data,
and achieved best performance with attention mechanisms - this variant achieves
weighted f-1 score 0.83, demonstrating a strong correlation with the MaRIA
score.

However, there is a large disparity between the best fold and the cross-fold
average. In fact, the performance of any given fold was found to be highly depen-
dent on the difficulty of the test set. Here we consider the difficulty of the abnor-
mal samples only, assuming that healthy individuals present similar difficulty.
We find that difficulty of the best fold was merely 31.3 while the worst was
42.3. Moreover, for the Localised variant with attention mechanisms, the aver-
age difficulty of incorrectly predicted abnormals was high, at 51.78, and of the
seven severely inflamed individuals none were incorrectly classified (see Table 5).
Classification power consistently increases with inflammation severity.

The limited size of the dataset introduced severe overfitting in training, forc-
ing us to restrict the depth of the network and degrading overall performance.
Furthermore, larger networks performed worse on the Generic, or population-
specific, variant due to the reduction in SNR. This introduced difficulties in
comparing variants on a standardised architecture.

5.1 Attention

Attention mechanisms were found to exacerbate overfitting in scenarios with
a low SNR but otherwise boosted performance. This can be seen by observ-
ing that attention boosts performance on the Localised dataset but degrades it
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Table 5. Classification accuracy of best performing variant per inflammation class (for
class support refer to Table 2)

Inflammation Severe Moderate Mild Healthy

Accuracy (%) 100.0 86.2 70.6 85.0

on Generic. We theorise that attention mechanisms can only become effective
techniques to identify salient, local features within a network if the additional
parameters they introduce are not accidentially misused for overfitting. There
is evidence for this since the lowest cross entropy achieved by the best perform-
ing fold on the Generic dataset increased from 0.565 to 0.619 with the addition
of attention mechanisms. Referring to Fig. 2, it also assisted us in debugging
our network by highlighting that zero-padding allows the network to localise
to regions that can be overfit on, such as bordering tissue (see Fig. 2a); mirror
padding solves this issue. From Fig. 2b we deduce that the attention mechanism
successfully identifies the relevant bowel section, reinforcing our confidence in
the diagnoses.

(a) Zero-
padding

(b) Improved localisation with mirror-padding

Fig. 2. Attention maps on the Localised dataset (original slice and with attention
overlayed on top and bottom rows respectively)

6 Discussion and Conclusion

In this work we demonstrated that a generic deep learning network, trained on
a very small MRI dataset, correlates strongly to the MaRIA score, the current
clinical standard, while requiring a fraction of the preprocessing by the radiolo-
gist. However, the framework is not without limitations in that performance is
highly dependent on the level of localisation used in preprocessing and the diffi-
culty rating of the classification at hand. Furthermore, the low dimensionality of
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the output variable introduces statistical upper bounds on classification power
and increases overfit. In this paper the evaluation criteria is solely based on
expert radiologist assessment of the MRI data. Validation through colonoscopy
is subject to future work, pending ethical approval.

Despite this, we observed very high classification power on the moderate
to severely inflamed individuals, suggesting that this algorithm could provide
secondary diagnoses to the radiologist in order to flag potentially missed cases.
Overall, this pilot study highlights that deep learning is a very promising tech-
nique as a method for diagnosing disease in the bowels, and indicates that a
larger dataset should continue to be collected for further evaluation. Finally,
the limitations encountered through predicting low-dimensionality data might
be alleviated by instead automating segmentation of the terminal ileum using
deep learning, as a precursor to diagnosis. Thus, we recommend that terminal
ileal ground-truth segmentations also be collected.
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