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Abstract. Several works have been dedicated to image super-resolution
(i.e., synthesizing high-resolution data from low-resolution data). How-
ever, existing works only operate on images (e.g., predicting 7T-like mag-
netic resonance image (MRI) from 3T MRI) whereas brain connectivity
network super-resolution remains unexplored. To fill this gap, we propose
the first framework for predicting high-resolution (HR) brain networks
from low-dimensional (LR) brain networks by hierarchically aligning and
embedding LR neighborhood centered at the testing sample, along with
its corresponding HR neighborhood. The proposed hierarchical embed-
ding better preserves higher-order structural neighborhood of subjects
within each domain. Recently, a seminal work was introduced for brain
network prediction at a single resolution (or scale), where domain align-
ment was achieved using canonical correlation analysis followed by mani-
fold learning to identify the most similar neighbors to the testing subject
(i.e., testing neighborhood) in the source domain that can best predict
the missing target network. Here, we inductively extend this idea by
hierarchically learning the embedding and alignment of embedding of
LR and HR neighborhoods. Our proposed framework achieved the best
results in comparison with baseline methods.

1 Introduction

Neuroimaging studies associate autism spectrum disorder (ASD) with local
structural and functional brain deficits [1,2]. Since ASD diagnosis is highly chal-
lenging, advanced machine learning-based diagnosis frameworks have been devel-
oped [3], most of which leveraging functional magnetic resonance imaging (fMRI)
and diffusion tensor imaging (DTI) neuroimaging modalities [4–6]. Typically,
there are two conventional representations of the brain derived from MRI data:
(i) intensity images, and (ii) connectivity networks (also called connectome). To
boost diagnosis accuracy of brain disorders, one would ideally use high-resolution
brain images and connectomes. However, MRI data with high-resolution are very
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scarce due to the limited number of high-resolution 7T MRI scanners worldwide.
To circumvent this issue, several works focused on designing methods for syn-
thesizing high-resolution images (7T-like MR) from low-resolution images (3T
MR) [7]. However, to the best of our knowledge, existing works on predicting
high-resolution data (HR) from low-resolution (LR) data overlooked connec-
tomic data, i.e., brain networks. Typically, a brain connectome is the result of
time-consuming MRI data processing pipelines which integrate an image to brain
atlas parcellation step such as Automated Anatomical Labelling (AAL) [8] with
90 anatomical regions of interest (ROIs), defining the resolution (or size) of the
constructed brain connectome. To generate brain connectomes at different res-
olutions or scales, one generally needs to process and register the input MRI
to each target MRI atlas space for automatic labelling of brain ROIs. However,
the bench-to-bedside image processing pipeline to transform an MR image into
a connectome is time-consuming –particularly when using high-resolution brain
images and atlases. Alternatively, one can learn how to directly synthesize HR
brain connectome from LR brain connectome to alleviate the computational cost
of image processing including the major steps of registration and label propaga-
tion, which are highly prone to bias.

Interestingly, works on brain network to network prediction are very lim-
ited [9] with the exception of the recent work [10] proposing the first framework
for missing multiple target brain networks prediction from single source brain
network. Since multi-view brain networks have different distributions, [10] inte-
grated a domain alignment step to find shared space where source and target
networks are projected while maximizing the correlation between their respec-
tive distributions. Fundamentally, this work is based on predicting the missing
target views from source views by learning how to select the best source training
samples in the shared space in terms of (i) closeness to the testing subject in
the LR domain, and (ii) their cross-domain overlap score based on the number
of shared local neighbors these training samples have across source and target
domains. We term the set of selected source training subjects, which are close
to the testing subject, as the ‘testing neighborhood’ (TN). Next, the missing
network in the target domain is predicted by linearly fusing the selected source
training samples in the previous step. Although pioneering, this work is lim-
ited by the use of an inherently flat training sample selection, which overlooks
the hierarchical structure that might be present in the testing neighborhood. In
order to address these challenges, we propose the first framework that predicts a
HR brain network from a LR brain network rooted in a hierarchical multi-layer
embedding and alignment of LR and HR testing neighborhoods.

We base our method on a simple hypothesis: if one can identify the best
hierarchically embedded representations of neighborhood including training sam-
ples centered around a given testing subject in the LR domain, one can use a
weighted average of their corresponding samples in the HR domain to predict
the missing testing HR network. To account for the domain shift where the dis-
tribution of the source LR and target HR domains might be misaligned, we first
leverage canonical correlation analysis (CCA) to find a coupled LR-HR manifold
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[11] that nests projected LR and HR networks while maximizing the correla-
tion between their respective distributions. Next, we learn a subject-to-subject
similarity matrix using multi-kernel connectomic manifold learning [12] which
models the relationships between all training and testing samples in the coupled
space. This defines the baseline layer of our HR prediction framework. Next, we
propose to hierarchically learn and embed LR neighoborhoods centered at the
LR testing sample and its corresponding HR neighborhood at each CCA-based
domain alignment layer. In the last layer, we identify the most similar training
samples with the highest cross-domain scores to the testing subject in the LR
domain for prediction in the HR domain. Both domain alignment and manifold
embedding steps are hierarchically implemented across L layers. Ultimately, we
use the final output of aligned and embedded shared subspace to predict HR net-
work. Specifically, we score the selected closest training samples to the testing
LR network with the highest hierarchical cross-domain neighborhood overlap.
We show that our proposed method achieves a better prediction accuracy in
comparison with two baseline methods [10,12].

2 Proposed Method

In this section, we detail our proposed hierarchical LR and HR domain alignment
and testing neighborhood embedding for brain network super-resolution. We
denote matrices by boldface capital letters, e.g., X, and scalars by lowercase
letters, e.g., x. We denote the transpose operator and the trace operator as
XT and tr(X), respectively. We illustrate the important steps of the proposed
pipeline in Fig. 1.

Feature Extraction. Each brain is represented by two of connectivity matrices
in LR and HR domains, respectively (Fig. 1–A). Each element in a single matrix
captures the relationship between two anatomical regions of interest (ROIs) using
a specific metric (e.g., correlation between neural activity or similarity in brain
morphology) and the number of ROIs of LR and HR are denoted n1 and n,
respectively. We then vectorize each connectivity matrix of the ith subject to
define a feature vector f i

LR (resp. f i
HR) for its HR (resp. LR) brain network.

We concatenate the off-diagonal elements in the upper triangular part of the
input matrices (LR and HR, respectively). Hence, each LR brain network is
represented by n1 × n1 matrix and the vectorization of the matrix produces a
(d1 = n1 × (n1 − 1)/2) size feature vector. Each HR network is encoded in n×n
matrix which is vectorized into a (d = n × (n − 1)/2) size feature vector. Given
N subjects, we leave-one-out cross-validation and store the remaining (N − 1)
training LR feature vectors in a training LR matrix DLR ∈ R

(N−1)×d1 and HR
feature vectors in training HR matrices DHR ∈ R

(N−1)×d.
Step 1: CCA-based LR and HR domain alignment. Our main goal

is to learn how to predict HR brain network from a given LR brain network
(Fig. 1–B). However, this learning process might be sensitive to the domain
fracture issue, where data distributions driven from different domains are not
inherently and naturally aligned. To solve this issue and motivated by the fact
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Fig. 1. Pipeline of the proposed hierarchical multi-layer embedding and alignment of
low-resolution (LR) and high-resolution (HR) neighborhoods for HR network predic-
tion. (A) Each training subject has a LR network and a HR network. Each network
is encoded in a symmetric connectivity matrix, whose upper off-diagonal part is vec-
torized. We store training LR feature vectors in a training LR matrix DLR and HR
feature vectors in training HR matrices DHR. (B) By using the training LR matrix
DLR and pairing it with its corresponding training HR matrix DHR, we learn a coupled
LR-HR manifold using Canonical Correlation Analysis (CCA) for domain alignment.
We then use multi-kernel learning [12] to learn a similarity matrix that models the

relationship between training and testing subject embeddings (Z
(0)
LR) in the coupled

manifold in layer l = 0. We also learn a HR manifold that nests only embedded (Z
(0)
HR)

training subjects in the first layer. In the first layer, we primarily identify the top κ0

training LR samples in the aligned domain with the highest learned similarities to the
LR testing sample. This selected training set defines the testing neighborhood, which
will be hierarchically mapped and aligned in the next layers. (C) We hierarchically
learn a LR-HR domain alignment and neighborhood embedding and select a new set
of top κl training subjects with the highest learned similarity scores to the embedded
testing subject. In the last hierarchical layer (l = L), we select training hierarchically
embedded LR samples which are (i) most similar to the hierarchically embedded LR
testing samples, and (ii) have the highest cross-domain overlap in proximal neighbors.
Last, we average the corresponding HR networks of the selected LR training networks
in the last layer L to predict the target missing HR network.

that canonical correlation analysis (CCA) is efficient in analyzing and mapping
two sets of variables onto a shared aligned space [13,14], we learn CCA mappings
that align LR brain networks with HR brain networks, respectively, to a shared
space. Given a training LR matrix DLR ∈ R

(N−1)×d1 comprising N − 1 training
feature vectors, each of size d1, and a training HR matrix DHR ∈ R

(N−1)×d,
we estimate a LR mapping WLR and a target mapping WHR that transforms
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both onto the couple LR-HR space, respectively. This produces LR and HR
embeddings (Z(l)

LR and Z(l)
HR) in each layer l:

Z(l)
LR = D(l)

LRW
(l)
LR ∈ R

(κl+1)×d2,l

Z(l)
HR = D(l)

HRW
(l)
HR ∈ R

κl×d2,l (1)

In the testing stage, we use the learned canonical transformation matrices
to map the LR feature vector of a testing subject onto the shared space, where
we learn how to identify the most similar and trustworthy training LR feature
vectors to the testing LR network using LR and HR manifold learning.

Step 2: HR and LR manifold learning. Following the domain alignment,
we learn pairwise similarities between LR samples (resp., HR) samples using the
embeddings Z(l)

LR (resp. Z(l)
HR) in the aligned coupled LR-HR space. Specifically,

we leverage the recent work of [12] proposing to learn a convenient cell-to-cell
similarity function from a single-cell data as an input. SIMLR (single-cell inter-
pretation via multi-kernel learning) firstly clusters samples into groups for identi-
fication of subgroups and projects into low-dimensional. This method finds a best
distance metric for fitting structure of different groups by combining multiple ker-
nels. The main advantage of SIMLR is the flexibility of the adoption of multiple
kernel representations for calculating similarities although single cell data have
varied statistical characteristic. By using this method, we learn two manifolds:
(1) one LR manifold encoded in SLR similarity matrix SLR, which integrates all
training and testing samples, and (2) one HR manifold encoded in SHR, mod-
eling the relationship between training HR samples. (Fig. 1–B). Each kernel K

is Gaussian and expressed as follows: K(f i
LR, f j

LR) = 1
εij

√
2π

e
(− |fi

LR−f
j
LR

|2
2ε2

ij

)
, where

f i
LR and f j

LR denote the feature vectors of the i-th and j-th subjects respectively
and εij is defined as: εij = σ(μi + μj)/2, where σ is a tuning parameter and

μi =
∑

l∈KNN(fi
LR

) |f i
LR−fj

LR|
k , where KNN(f i

LR) represents the top neighboring
subjects i of subject j. The learned similarity matrices in both LR and HR
aligned domains should be small if the distance between a pair of subjects is
large.

S(l)
LR = SIMLR(Z(l)

LR) ∈ R
(κl+1)×d3,l

S(l)
HR = SIMLR(Z(l)

HR) ∈ R
κl×d3,l (2)

For simplicity, in the following sections we will abstract away the internal
structure of the SIMLR in Eq. 2 and use S(l)

LR and S(l)
HR to denote an arbitrary

SIMLR module learning the new embedding of similarities in aligned LR and
HR domains, respectively.

Step 3: HR network prediction via hierarchical alignment and
embedding of LR and HR testing neighborhoods. Our proposed HR pre-
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diction framework hierarchically learns a finer LR testing neighborhood embed-
ding along with its corresponding HR neighborhood. The key idea is to learn
the most similar top κ subjects to the testing subject in LR domain at layer l,
by using the embeddings of neighbors generated from the previous layer l − 1.
Next, both learned LR and HR neighborhood embeddings are aligned using CCA
(Fig. 1–C). Given the baseline learned similarity matrix S(0)

LR at layer l = 0, we
detail below how the hierarchical alignment and embedding modules of S(0)

LR

operate and how this process is iterated from layer l to layer l + 1.
• Hierarchical alignment and embedding module. At baseline layer l = 0, we

leverage multiple kernel manifold learning [12] (Step 2) to learn (i) the similarity
matrix S(0)

LR ∈ R
(κ1×d3,1) where d3,1 < d2,1 between the testing LR network and

training LR networks, and (ii) the similarity matrix S(0)
HR ∈ R

(κ1×d3,1) between
all training HR networks.

S(l)
LR ∈ R

(κl+1)×(κl+1) denotes the most similar embedded LR samples to the
embedded testing subject by SIMLR (i.e., embedding testing neighborhood) and
S(l)

HR ∈ R
κl×κl the corresponding embedded HR samples in layer l. κl denotes

the dimension of the embedded neighborhood in layer l.
Suppose that S(l) has already been computed, i.e., that we have computed

the matrix in the l-th layer of our model. Given this input, the hierarchical l +1
layer generates a new similarity matrix of training LR embeddings Z(l+1)

LR and
Z(l+1)

HR . In particular, we alternatingly apply the two following equations:

Z(l+1)
LR = CCA(l)(S(l)

LR) ∈ R
(κl+1)×d2,l

Z(l+1)
HR = CCA(l)(S(l)

HR) ∈ R
κl×d2,l (3)

S(l+1)
LR = SIMLR(l)(Z(l+1)

LR ) ∈ R
(κl+1)×(κl+1)

S(l+1)
HR = SIMLR(l)(Z(l+1)

HR ) ∈ R
κl×κl (4)

Step 4: Predicting HR networks using cross-domain shared neigh-
borhood. Finally, in the last layer L, once the the most similar LR training
neighbors to the testing LR sample with the highest cross-domain scores are
identified, we retrieve their corresponding networks in the HR domain, then use
weighted average to predict the target missing HR network. Basically, we define
a ‘trust score’ for each training sample i similar to the testing subject j based
on the overlap of their hierarchically embedded neighborhoods in the aligned LR
and HR domains, respectively. Following the learning of SLR using all samples
in the mapped source domain using SIMLR, we identify the top κ-closest train-
ing subjects to a given testing subject. Next, for each training sample, we find
its nearest neighbors using SLR and SHR, learned in the aligned target domain
using only training subjects (Fig. 1).

This is rooted in the assumption that for a particular training subject which
is close to the testing subject in the LR domain, the more shared neighbors it
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has across the embedded LR and HR neighborhoods in the last layer L, the
more reliable it is in predicting the HR from the LR network, and thus it can
be considered as trustworthy for the target prediction task. We compute a nor-
malized trust score (TS) for each closest training neighbor to the testing subject
by (i) first identifying the list of its top κ closest neighbors NLR in SLR and
NHR in SHR, then (ii) computing the normalized overlap between both lists
as TS(κ) = NLR

⋂ NHR

κ . The ultimate TN(κ) score is thus calculated as a soft
overlap between S(L)

LR and S(L)
HR weighted by SLR.

3 Results and Discussion

Connectomic Dataset and Method Parameters. We used leave-one-out
cross-validation to evaluate the proposed prediction framework on 186 normal
controls (NC) from Autism Brain Imaging Data Exchange (ABIDE I)1 pub-
lic dataset, each with structural T1w MR image. We used FreeSurfer [15] to
reconstruct both right and left cortical hemispheres for each subject from T1-
w MRI, and then parcellated each cortical hemisphere into 35 cortical regions
using Desikan-Killiany Atlas. For each subject, we created cortical morphologi-
cal brain networks derived from the cortical maximum principal curvature using
the technique proposed in [16–18]. For SIMLR, we used a nested grid search,
fixing the number of clusters c (1 ≤ c ≤ 5). We used 10 kernels. We set the
number of L = 3 and the number of selected neighbors in each layer is defined
as κ = {50, 25, 5}, respectively.

LR Data Synthesis via Downsampling HR Brain Connectomes. HR
data downsampling or degradation models are frequently used in image super-
resolution literature (i.e, MR images) for evaluation. For instance, [19] applied
downsampling method to obtain LR images of 256 × 256 and 128 × 128 reso-
lutions from 512 × 512 HR images. By doing so, downsampling decreases the
number of voxels and also causes the loss of image details, thereby creating a
lower-resolution image. Similarly, we create LR networks for each subject by
computing mean connectivity value of HR within a w × w sized window, where
w denotes the window size (w = 10, 16, 20). Hence, we created three different
LR network datasets through this mean-pooling process.

Evaluation and Comparison Methods. To evaluate the performance of our
hierarchical HR prediction from LR framework, we benchmark our framework
against: (1) [12] where we used SIMLR to identify the most similar neighbors
to the left-out testing subject the LR domain without any domain alignment,
(2) the baseline network prediction method integrating both manifold learning
and aligned proposed by [10]. (Figure 2–A–C) demonstrates that our method
achieves the lowest prediction mean absolute error (MAE) in comparison with
baseline methods. Figure 2–D displays the predicted HR networks by different
methods from an input LR network along with the residual networks in both
1 http://fcon 1000.projects.nitrc.org/indi/abide/.
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left and the right hemispheres for a representative testing subject. Clearly, our
method decreases the residual error. However, we would like to point out that
our framework training is constrained by the availability of paired LR and HR
training networks. In our future work, we will relax this constraint by allowing
our high-resolution prediction framework to learn from unpaired training LR
and HR brain connectomes.

Fig. 2. (A–C)Evaluating the prediction performance of our proposed hierarchical align-
ment and embedding of LR and HR neighborhoods on left and right hemispheric brain
networks (LH and RH). We report the mean absolute error (MAE) between ground-
truth and predicted HR networks. We benchmark agains two methods: (1) [12] where
we used SIMLR to identify the most similar neighbors to the left-out testing subject
the LR domain without any domain alignment, (2) the baseline network prediction
method integrating both manifold learning and aligned proposed by [10]. (D) Compar-
ison between the ground-truth and predicted HR networks from LR networks (obtained
by mean-pooling using a w = 10 sized window) of the left hemisphere for a represen-
tative testing subject by our method and comparison methods. We display the residual
matrices computed using element-wise absolute difference between ground truth and
predicted networks. Ground truth: the ground truth HR network of a testing subject.
Prediction: the predicted HR network using our purposed framework.

4 Conclusion

This paper proposes the first work on predicting high-resolution brain net-
works from low-resolution brain networks, by bridging the connection between
low-resolution and high-resolution domains, then hierarchically learning how to
create high-order nested neighborhood embeddings for ultimately identifying the
most reliable training LR samples for the target prediction task. In our future
work, we will learn how to predict a multi-resolution brain networks from a single
low-resolution brain network. We will also evaluate our hierarchical HR predic-
tion framework on larger datasets to predict other types of high-resolution brain
networks including functional brain connectivity and structural connectivity.
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