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Abstract. This paper presents a novel method for detection of irregular
tissues in mammography images. Previous works solved such irregularity
detection tasks with binary classifiers. Here, we propose to detect irreg-
ularities by only observing the healthy samples and describe anything
largely different from them as irregularity (i.e., unhealthy or cancerous
tissues in terms of demographic breast images). This is particularly of
great interest as it is very complicated to acquire datasets with all types
of cancer cell shapes and tissues for building binary classifiers. Our mod-
eling allows for learning an irregularity detector without any supervising
signal from the irregular class. To this end, we propose an architecture
with two deep convolutional networks (R and M) that are trained adver-
sarially. R learns to Reconstruct regular mammography images by only
observing healthy tissues and M (a Matching network) to detect if its
input is healthy or not. The experimental results confirm the reliability
and superior performance of our methods for detecting cancer tissues in
mammography images in comparison with state-of-the-art irregularity
detection methods. The code is available at https://github.com/milad-
ahmadi/GAID.

1 Introduction

Invasive ductal carcinoma (also known as breast cancer) is the most common
type of cancer threatening the lives of women worldwide [20]. Its early detection
is very critical and one of the most important aspects of its treatment planning
[8]. Mammography is the most common method for screening and diagnosing
breast cancer before biopsy or utilizing any other types of imaging [25]. In stan-
dard breast examination procedures, X-Ray images form two different views are
taken and one or two expert radiologists investigate these data. Exploring mam-
mography images by experts is an expensive, challenging, and time-consuming
task. Furthermore, due to the low contrast of such images, the interpretations
may be troublesome from time to time.
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Previous work for detecting cancer in mammography images modeled the
problem in a binary classification setting. Earlier methods developed approaches
based on traditional machine learning techniques [6,14] and more recently deep
learning methods have led to great improvements for detecting irregularities
and delineating cancerous regions in mammography images [2,9,10,22]. How-
ever, cancer regions in mammography images are by nature irregularities mate-
rialized in between normal and healthy tissues. Modeling this as a two-class
classification problem is ill-posed. Specifically for this problem, cancer regions
may appear with different shapes or tissues and may have widely different lev-
els of progression. Modeling this as a binary classification problem may lead to
good results when used on datasets that contain only specific views and types
of images with similar irregularity characteristics. We argue that the appropri-
ate way is to learn what the healthy and normal tissues should look like and
single out the abnormalities. On the other hand, manually labeling and anno-
tating medical images is an expensive and time-consuming task. In this paper,
we propose a method based on Generative Adversarial Networks (GAN) [5] with
an end-to-end trainable architecture to identify irregularities in mammography
images under unsupervised settings. Our proposed method is comprised of two
networks, R and M, which are trained adversarially against each other. R is
trained to reconstruct images while it fools M that its output does not contain
any irregularity. In the meantime, M is trained to identify if its input is nor-
mal (healthy) tissue or is irregularity (i.e., cancer). After these two networks are
trained, we define a scoring function, S(·), based on the outputs of both to quan-
tify the likeliness of being irregularity for each input image. With this definition,
our method is related to the recent advance in anomaly detection in computer
vision applications, such as Adversarial Visual Irregularity Detection (AVID)
[18], GANomaly [1], AnoGAN [19], and Adversarial Learned One-Class Clas-
sifier (ALOCC) [17]. Although these methods are designed for anomaly detec-
tion, they needed major modifications to accommodate the needs of our applica-
tion. Specifically, ALOCC and GANomaly methods assumed that there exists a
major difference between the concept of regular samples and irregular ones. This
assumption is often reasonable for outlier detection and anomaly detection in
RGB images. Medical images, however, are different and the difference between
regular and irregular concepts is very minor. For instance, the noise element
used in the previous works, such as ALOCC disrupts medical images. Also, as
later shown by our experiments, GANomaly cannot properly reconstruct mam-
mographic images and AnoGAN is too slow and has a hard time operating on
limited training samples (since it exploits a residual loss function). In summary,
the main contributions of this work are: (1) We propose an end-to-end trainable
deep network able to detect irregularities (unhealthy cancerous tissues) in mam-
mography images. To the best of our knowledge, this is the first approach for
unsupervised irregularity detection in mammography images, i.e., the method
detects irregular tissues in images without any supervising signal from the irreg-
ularity class. (2) Our method is tailored for detecting and localizing cancerous
regions in mammography images. It obtains considerable performance which are
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comparable to fully-supervised methods and better than state-of-the-art irregu-
larity detection methods, i.e., GANomaly [1], AnoGAN [19], and ALOCC [17].

2 Proposed Method

Detecting irregular tissues in mammography images can be defined as discov-
ering regions that do not comply with normal (healthy) tissues present in the
training set. To this end, we propose a method based on adversarial training
composed of two important modules. The first module, denoted by R, discovers
the distribution of the healthy tissues by learning to reconstruct them. The sec-
ond module, M, learns to detect if its input is healthy or irregular (real or fake).
In a nutshell, given an input image, R learns how to reconstruct it in a way
that M does not identify it as irregular. Training R+M in a joint adversarial
manner, we propose a procedure to interpret mammography images and identify
irregular cancerous regions. With respect to R and M, we define an irregular-
ity score function S(·). The details of our Generative Adversarial Irregularity
Detection (GAID) method are outlined in Fig. 1 and explained in the following
subsections.

Fig. 1. Outline of proposed method: (a) R+M are jointly learned to identify irregu-
larity in mammography images. R learns to reconstruct healthy tissues. Whereas, M
is trained to distinguish between regular (healthy) and irregular tissues (real and fake
in GAN setting). During inference for a testing sample X, we use the final feature
layer learned in M, denoted by MF (X), to define the scoring function. (b) The scoring
function S(X) is defined based on ||X − R(X)||2 and ||MF (X) − MF (R(X))||2.

R: Reconstruction Network: Encoder-decoder networks are widely used for
tasks such as segmentation [3], inpainting [26], and anomaly detection [15–17].
Recently, similar structures were utilized for visual irregularity detection [18]. It
was demonstrated that encoder-decoder networks can reconstruct normal sam-
ples present in the training set, when trained in an adversarial manner together
with a discriminator. Similarly, we use an encoder-decoder network for R, whose
parameters, θR, are optimized to reconstruct healthy tissues. After training,
RθR

(X) (or R(X) for short) should be similar or close to X. High deviations of
R(X) with respect to X may conclude that X is not similar to the pool of train-
ing samples. Based on the previous work [1,18], R will be robust against some
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levels of noise in the input [23] while larger amounts of deviations will be con-
sidered as irregularity. We construct the training data such that it only involves
images with healthy (normal) tissues. Therefore, R only learns to reconstruct
healthy images, and will be incapable of reconstructing images with cancerous
or irregular tissues. This incapability which is relative to irregularity likelihood
can be measured by ||X − R(X)||. Figure 2(a) shows the details of R, which is
composed of two sub-networks (1) encoder and (2) decoder. The encoder maps
X to a latent space, which is then mapped back to the original image space using
the decoder. For better stability, max-pooling layers are not used in this network,
and instead kernel size of 5 × 5 with stride 2 are exploited in all convolutional
layers. Except the last layer, Leaky ReLU activation function is applied on the
output of convolutional layers of the encoder, and ReLU activation function on
up-convolutional layers of the decoder. The last layer uses a tanh(·) activation
function.

M: Matching Network: As mentioned before, R is optimized to reconstruct
regular tissues with a minimum error. Besides, R tries to fool M and trick it
to accept its generated image as original and not fake. On the other hand, M
focuses on discriminating between the reconstructed (fake) and original (real)
images in the dataset. In some previous work [1,17], it is demonstrated that
after the training of such discriminator in a GAN setting, it can detect irregular
samples. As a result, similarly we train the the parameters of M, θM, which
can distinguish between regular and irregular tissues at the inference time. In
summary, if X contains irregular tissues, MθM

(X) (or M(X) for short) provides
a good guidance to detect its irregularity. See Fig. 2(b) for the structure of M,
which involves convolution and fully connected layers.

Irregularity Detector: Both R and M are trained to manipulate and analyze
mammography images from different aspects. R learns to reconstruct its input
and finally generate an output that not only has small reconstruction error, but
it also can fool M. As a result, for input samples even with moderate to low
amounts of noise, R can reconstruct them. But when there is an irregularity
or high amounts of noise in the image (which were not present in the training
images), R fails to reconstruct them and as a side effect decimates the input.
Consequently, the reconstruction error is very high and hence it is a good dis-
criminative measure for detecting irregular tissues in mammography images. On
the other hand, M is learned to detect the irregular (fake) images. As shown
by the previous work [17], after training the two networks in a similar setting
as ours, M(X) defines a good detector for irregularities. However, we define a
scoring function to reliably single out irregularities using both R and M trained
networks.
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Fig. 2. Network structures. Batch normalization is included after some layers (denoted
by the green bar). Every layer is defined using five elements (kernel-size-width× kernel-
size-height× stride× input-feature-map-size× output-feature-map-size). (Color figure
online)

To define this scoring function, suppose X and X ′ are normal and irregu-
lar samples, respectively. Based the on above intuitions, it is anticipated that
||X − R(X)||2 ≤ ||X ′ −R(X ′)||2. This means that the difference of an irregular
sample compared to its reconstruction is more than the same difference metric
for a regular sample. Let MF define the last fully connected layer of M (before
the decision layer). Therefore, it is likely that ||MF (X) − MF (R(X))||2 ≤
||MF (X ′) − MF (R(X ′))||2. Based on these two useful directives from the R
and M networks, a function for irregularity score can be defined as the following,
such that a larger score will imply a larger likelihood for irregularity:

S(X) = λ||X − R(X)||2 + (1 − λ)||MF (X) − MF (R(X))||2, (1)

where λ ∈ [0, 1] is a regularization hyperparameter. With this scoring function,
Eq. (2) summarizes the irregularity detector (ID) used for labeling of samples:

ID(X) =

{
Regular tissue if S(X) < τ,

Irregular tissue otherwise,
(2)

where τ is a threshed value. subsectionTraining R+M R+M are adversarially
trained on a training set containing only healthy mammography images. They
are learned similar to GANs [5]. These two networks compete to each other, i.e.,
R tries to provide a lossless reconstruction from healthy images, and confuse M
in distinguish between reconstructed and original images. Therefore, the training
of R+M can be formulated as:

min
R

max
M

(
EX∼pdata

[log(M(X))] + EX∼pdata
[log(1 − M(R(X)))]

)
, (3)

where pdata is the distribution of the training images (with healthy tissues).
Parameters of θR are optimized to efficiently reconstruct the images (with the
loss term Lrec) while being able to fool M that R(X) is a real image and not
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a reconstructed one (Lreal). Consequently, the loss function of R can defined as
the combination of these two terms:

LR = βrec||R(X) − X||︸ ︷︷ ︸
Lrec(X)

+βrealfσ (M(R(X)), 1)︸ ︷︷ ︸
Lreal(X)

(4)

where fσ(s, t) is sigmoid cross-entropy function, i.e., the cross-entropy over s
with the desired label of t. βrec and βreal are two hyperparameters to adjust the
importance of each term (we set them equal to 1 and 4, respectively). On the
other hand, M trains to identify R(X) as fake and X as real. Therefore, the
objective function of M, LM, is defined as:

LM = fσ(M(R(X)), 0)︸ ︷︷ ︸
Lfake(X)

+ fσ(M(X), 1)︸ ︷︷ ︸
Lreal(X)

. (5)

3 Experiments

In this section, we evaluate the proposed Generative Adversarial Irregularity
Detection (GAID) method for detecting mammography image regions that con-
tain irregular tissues. Comparison with the state-of-the-art in the scope of irreg-
ularity detection in mammography images is challenging due to two important
difficulties: (1) Most of the previous methods solve this problem as a binary clas-
sification problem. This setting is different than ours while ours is more realistic,
since obtaining enough irregular or cancerous samples may be very hard. Our
method is the first that detects irregularities in mammography images by only
observing and hence modeling healthy tissues; (2) The previous methods are
often evaluated on private data, which make the comparison very complicated.
To this end, for a fair set of comparisons, we re-implemented some binary clas-
sifiers on this dataset (AlexNet [11] and VGG-Net [24]) and compare with the
fully-supervised settings, similar to the ones in [7]. Furthermore, we compare the
performance of GAID with state-of-the-art anomaly detection methods (AnoGan
[19], GANomaly [1], and ALOCC [17]) on the same mammography dataset. For
a fair comparison among different methods, we execute them all with similar
setting. We used the open-source shared source codes of these methods.

Experiment Setting: We implemented our method using of the Tensor-Flow
framework on a 1080 Ti GPU. λ in the score function Eq. (1) is set to 0.4. All
networks are learned with a batch size of 64. For the fully-supervised tests, since
the number of irregular samples are very limited, available irregular patches
are repeated to make equal sets of samples across the two classes. We Use the
Contrast limited adaptive histogram equalization on mammography images for
improving their contrast. We report the Area Under ROC Curve (AUC) and
F1 score as evaluation metrics widely used by the previous works of irregularity
detection. AUC is calculated by varying the τ threshold as introduced in (2). For
our method and the other anomaly detection methods, the training set is com-
posed of all normal samples (image patches), and there is no assumption about
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Table 1. Comparison of results on the MIAS and INBreast datasets with the state-of-
the-art methods for irregularity detection. In each column, the best results among of
methods are typeset in boldface and the second best results are underlined. Complexity
is in milliseconds of processing time per patch for processing of each of patch in the
testing phase. [AUC/F1 Score]

Patch size MIAS INBreast Run-time

64 128 256 64 128 256 64 128 256

AnoGAN [19] 0.66/0.61 0.60/0.55 0.64/0.57 0.78/0.73 0.80/0.76 0.68/0.60 4.13 10.31 37.42

GANomaly [1] 0.71/0.66 0.74/0.70 0.74/0.68 0.63/0.60 0.64/0.62 0.80/0.73 0.31 0.67 3.18

ALOCC [17] 0.70/0.65 0.74/0.67 0.72/0.66 0.70/0.67 0.78/0.74 0.75/0.71 3.45 9.02 32.40

GAID (Ours) 0.72/0.67 0.76/0.71 0.76/0.70 0.74/0.69 0.87/0.80 0.86/0.79 3.36 8.78 30.40

the context of irregular tissues during of training. For the binary classifiers, the
irregular samples in the dataset are split equally between training and testing.

Datasets: Mammographic Image Analysis Society (MIAS) Dataset: This
dataset [21] contains 322 mammography images in mediolateral-oblique (MLO)
view with a 1024 × 1024 resolution. We consider all the benign and malignant
cases in this dataset as irregular versus the normal class present in the dataset.
The ground-truth of irregular (i.e., benign or malignant tumor) regions are anno-
tated in the dataset using the center and the diameter of those regions. We
partition all images into patches with three of size for different experiments (1)
217,866 patches of size 64 × 64, (2) 52,519 patches of size 128 × 128, and (3)
4,346 patches of size 256 × 256. These patches only contain healthy tissues and
are used for training. For testing, in all three experiments 119 healthy and 119
irregular patches are considered (not included in the training set). Note that
for building the supervised methods, 50% of irregularity patches are used for
training.

INbreast Database: This dataset [13] contains 410 mammography images in
mediolateral-oblique (MLO) and cranial-caudal (CC) views with a 3000× 4000
resolution. We consider all the mass cases in this dataset as irregular versus the
normal class present in the dataset.

We partition all images into patches with three of size for different experi-
ments (1) 2,267,643 patches of size 64 × 64, (2) 541,341 patches of size 128 × 128,
and (3) 135,155 patches of size 256 × 256. For testing, for different experiments
(1) 177 healthy and 177 irregular (2) 1,596 healthy and 1,596 irregular (3) 10,259
healthy and 10,259 irregular.

Curated Breast Imaging Subset of Digital Database for Screening Mammography
(CBIS-DDSM) Dataset: This dataset [12] contains 2,620 scanned film mammog-
raphy studies from both cranial-caudal (CC) and mediolateral-oblique (MLO)
views. The labels in this dataset also include benign, malignant, and normal with
verified pathology information. We use this dataset only in a testing scenario and
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Fig. 3. Testing results of the proposed irregularity detector on the CBIS-DDSM dataset
[12], trained on MIAS [21] and INBreast [13] datasets. Brighter areas of heat-map
indicate higher likelihood of irregularity; The heat-map1 and heat-map2 are for training
the GAID on MIAS and INBreast datasets, respectively.

Table 2. Comparison of results on the MIAS dataset with both fully-supervised base-
line methods and the state-of-the-art methods for irregularity detection. ‘Sup’ stands
for Supervision. [train with INBreast test with MIAS -best results]

AlexNet VGG-Net AnoGAN [19] GANomaly [1] ALOCC [17] GAID (Ours)

Sup Full Full None None None None

AUC 0.59 0.63 0.64 0.56 0.58 0.70

F1 0.54 0.60 0.62 0.50 0.53 0.67

qualitatively evaluate the pretrained model on MIAS on this data. This test can
demonstrate the generalizability of the proposed method, specially when it is
tested on an entirely new dataset.

Results: To evaluate the generalizability of GAID, we train it on MIAS [21]
and INBreast, and test it on the CBIS-DDSM dataset [12]. Some of these results
are visualized in Fig. 3. For each input image (X), two heat-maps are generated
based on the irregularity score S(·), defined in Eq. (1). Comparing the heat-maps
with the ground-truth confirms that our method can delineate regions containing
irregular tissues, i.e., cancerous regions. Note that the MIAS dataset contains
images with only the CC view. This can be a reason why our method perform
a bit worse on the images with the MLO view. Domain adaptation techniques
can resolve such issues, which can define directions for future works.

Comparison with the State-of-the-Art Irregularity Detection Meth-
ods: Table 1 lists the comparison of our method with baseline and state-of-the-
art methods on MIAS and INBreast datasets. In this table, the performance of
the methods for detection of irregularities are provided in terms of AUC, F1-
score, as well as their computational complexity (run-time at testing phase).
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As can be seen, our method GAID outperforms all baseline and state-of-the-art
methods, in some cases by a large margin. In terms of running time, our proposed
method is better or as fast as other methods, except for GANomaly [1]. Consid-
ering both of aspects of run-time and detection accuracy, our method yields a
good compromise. Note, patch size and number of training epochs are important
for these results. Here, all models are trained with similar settings. Compared
to the fully-supervised, although our method does not see any irregular samples
during training, it obtains acceptable results. Note that accuracy scores of all
unsupervised methods are significantly better than chance (i.e., p-value <0.01
in Fisher’s exact test [4]). In this experiment, the supervised methods work
well, as the diversity among the irregular samples in this dataset is rather low.
On the other hand, if we test the trained models on entirely new datasets the
supervised models perform worse in identifying the abnormalities. In real-world
applications, imaging protocols and tumors can form in different shapes and with
different progressing patterns. To show the generalizability of our method, we
use the pretrained GAID and the supervised baseline, AlexNet, on the INBreast
dataset, and test both on MIAS dataset [12]. Table 2 shows their performance.

4 Conclusion

In this paper, we proposed a simple yet effective method for detecting irregular
tissues in mammography images. Our methods, GAID, was inspired by the adver-
sarial learning techniques in the widely used GANs. We proposed two networks
that were adversarially trained for interpreting mammography images. After
training, based on these two networks, we defined an irregularity scoring func-
tion that was able to detect irregular tissues. Our method outperformed fully-
supervised and the state-of-the-art methods for irregularity detection. Note, all
previous methods for detecting irregular tissues in mammography were learned in
a fully-supervised manner at the presence of both regular and irregular samples
during training. Our method is the first that is trained without any supervision
signal from the irregular class. In this work, our method operated on patches
(i.e., it is a patch-based method). As a direction for the future work, one can
extend the model to process the whole image at one-step, similar to AVID [18].
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