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Abstract. X-ray computed tomography (CT) reconstruction with
sparse projection views was proposed to reduce both the radiation dose
and scan time. However, lacking of sufficient projection views may lead
to severe artifacts for analytical reconstruction method such as the fil-
tered back projection (FBP). Although the projection data is incom-
plete, we can generate the full-sampling system matrices according to
the sufficient-sampling conditions [5]. Thus, we propose a novel iterative
reconstruction model to fit the target images and the corresponding high
resolution measurements in Radon domain by the full-sampling system
matrices. Our proposed model is solved by the learned alternating min-
imization method, which accounts for a forward operator in deep neural
network by the unrolling strategy. Numerical results demonstrate that
the proposed approach outperforms some latest learning based recon-
struction methods for the sparse-view CT problems.
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1 Introduction

Image reconstruction from down-sampled or limited measurements, e.g., low dose
and limited angle CT, are examples of ill-posed inverse problems, which can be
formulated as estimating the image u ∈ X from the measurement g ∈ Y ,

g = Au + n, (1)

where the reconstruction space X and data space Y are typically Hilbert space,
A : X → Y is the projection matrix for sparse CT, and n ∈ Y is the random
noises generated during the imaging processes. The goal of CT reconstruction is
to recover the image u from the set of acquired projection data g. For the sparse-
view CT, the system matrix, denoted by AS , has fewer rows than columns so
that there is a nontrivial nullspace and has infinity many solutions. Even if the
solution of the inverse problem exists and is unique, the linear operator AS may
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still be ill-conditioned such that the condition number ‖A‖‖A−1‖ is large and
the linear system (1) is sensitive to the perturbations in data.

One way for the ill-posed inverse problem is to introduce certain regularity
into the problem to guarantee the existence, uniqueness and stability of the solu-
tion. The general regularization method gives the following energy minimization
problem

min
u∈X

D(Au, g) + R(u), (2)

where D(Au, g) is the data fidelity term and R(u) is the regularization. Thus,
the task of solving (2) mainly includes: (1) how to define the data fidelity to
describe the interrelationship between g and u; and (2) how to model the regu-
larization according to the prior information of u. In case of additive Gaussian
noise and u being piecewise constant, we can obtain the well-known total varia-
tion minimization model for CT reconstruction [7]. Although TV regularization
improves the reconstruction quality compared to analytical reconstruction such
as filtered back-projection (FBP) method, it is still not judicious to choose the
data fidelity and regularization in such a sophisticated way.

Due to the development of deep convolutional neural networks (CNN) in
a broad range of computer vision tasks, deep learning techniques are being
actively used in medical imaging community. The pioneer work of Yang et al. [8]
reformulated an ADMM algorithm for compressive sensing MR imaging into a
deep network by learning the parameters end-to-end in the training phase. Jin
et al. [4] used the deep CNN as a post-processing step after the reconstruction of
FBP to mitigate noises and artifacts. Adler and Öktem [1] proposed the learned
primal dual algorithm for CT reconstruction by unrolling the proximal primal-
dual optimization method and replacing the proximal operators with CNNs.
Liu, Kuang and Zhang [6] used a deep learning regularization structure to learn
the data consistence from the observed data. Dong, Li and Shen [3] proposed
a joint spatial-Radon domain reconstruction (JSR) model for sparse view CT
imaging, and was recently reformulated into the feed-forward deep network [9].
Learning-based models have been already proven efficient for image reconstruc-
tion problems.

In this work, we aim to reconstruct the sparse-view CT by making using
of the full-sampling system matrix, which is called as the learned full sampling
reconstruction (FSR). Instead of modeling the data fidelity term according to the
noise distribution and the regularization term based on the prior information, we
take the advantages of deep CNN to learn the interrelationship between observed
data and reconstruction image and the prior information directly from the data.
As we can obtain the full sampling system-matrix according to the sufficient
sampling conditions in [5], we introduce another fidelity term to enforce the
closeness of the reconstructed image and the full sampling projection data. In
this way, we can learn the prior information of the completed Radon domain data
from the training data, which is then applied to approximate the full-sampling
projection in the testing. We use the alternating direction method to achieve
an iterative scheme, and find the best update in each iteration using the CNN.
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Numerical experiments demonstrate that the proposed FSR-net achieves better
performance in sparse-view CT reconstruction.

2 Our Approach

In CT reconstruction, the system matrix A reflects the relationship between the
projections on detector and the reconstructed objects. For the circular fan-beam
CT, the dimensions of the system matrix A are M × Npix, where Npix denotes
the total number of pixels and M is the number of ray integrations defined by

M = Nviews × Nbins

with Nviews being the number of views (i.e., 2π arc is divided into Nviews equally
spaced angular intervals) and Nbins being the number of bins on the detectors
(i.e., the detector is equally divided into Nbins). Before we discuss the sparse-view
CT, we define the full sampling based on the four sufficient-sampling conditions
(SSCs) in [5], which is obtained by setting the sampling parameters Nviews and
Nbins for given Npix to characterize the invertibility and stability of the system
matrix. The first pair of the SSCs characterizes invertibility of A, that is

SSC1 : M ≥ Npix and SSC2 : σmin �= 0,

where σmin is the smallest singular value of A. The other pair of the SSCs
characterizes the numerical stability for inversion of A, which is defined as

SSC3 :
κ(A)
κDC

< rsamp and SSC4 : Nviews = Nbins = 2N,

where κ(A) = σmax
σmin

, κDC = lim
Nbins → ∞
Nviews → ∞

κ(A), rsamp is a finite ratio parameter

greater than 1, and N is the length of the field-of-view (ROV) of the detector. The
relationship between N and Npix is Npix ≈ π

4N2 and we simply let N ≈
√

Npix.
Both the SSC1 and SSC4 are simple to evaluate, which will be used in our work.

When the Nviews is not large enough to meet the SSCs for the fixed Nbins,
it can be regarded as the sparse-view CT problem. Our goal is to develop effi-
cient reconstruction methods for such ill-posed inverse problem. Since the full-
sampling system matrix can be constructed according to the SSCs, we directly
bridge the completed Radon domain data f ∈ Z and the reconstructed image
u ∈ X through a full-sampling system matrix such that

f = AF u,

where AF : X → Z is the full-sampling projection matrix and Z is a Hilbert
space. Therefore, we propose the following minimization model to jointly recon-
struct the spatial and Radon domain data for sparse-view CT

min
u∈X,f∈Z

D(ASu, g) + R(u) + F(AF u, f), (3)
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where F(AF u, f) is used to measure the distance between AF u and f . Since the
unknown u and f are coupled together in (3), we introduce a new variable ũ and
rewrite (3) by adding a fitting term ‖ũ − u‖2 as follows

min
u∈X,f∈Z,ũ∈X

D(AS ũ, g) + R(ũ) + F(AF u, f) +
1
2r

‖ũ − u‖2X , (4)

where r is a positive parameter used to measure the trade-off between the under-
sampling data g and a full-sampling projected data f . The first term in (4) con-
tains the linear operator AS , which can be reformulated based on the Legendre-
Fenchel conjugate [2]

min
u∈X,f∈Z,ũ∈X

max
p∈Y

〈AS ũ, p〉 − D∗(p, g) + R(ũ) + F(AF u, f) +
1
2r

‖ũ − u‖2X , (5)

where D∗ denotes the conjugate of D. The classical alternating direction method
can be used to obtain an efficient algorithm for the multiple variable minimiza-
tion problem (5), which gives

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pk+1 = arg min
p∈Y

D∗(p, g) − 〈AS ũk, p〉 + 1
2τ ‖p − pk‖2Y ,

ũk+1 = arg min
ũ∈X

R(ũ) + 〈AS ũ, pk+1〉 + 1
2r‖ũ − uk‖2X ,

fk+1 = arg min
f∈Z

F(AF uk, f) + 1
2σ ‖f − fk‖2Z ,

uk+1 = arg min
u∈X

F(AF u, f) + 1
2r ‖u − ũk+1‖2X ,

(6)

where τ and σ are positive parameters. As shown, the proximal method is
adopted for the subproblem with respect to p and f in case the likelihood func-
tional D(·, ·) and F(·, ·) are non-smooth. The solutions to each subproblem can
be expressed as follows

⎧
⎪⎪⎨

⎪⎪⎩

pk+1 = (I + τ∂D∗)−1(pk, τAS ũ, g),
ũk+1 = (I + r∂R)−1(uk, rA∗

Spk+1),
fk+1 = (I + σ∂F)−1(fk, σAF uk),
uk+1 = (I + r∂F)−1(ũk+1, rA∗

F fk+1).

(7)

Guided by the success of deep learning, we use CNN for unrolled iterative scheme
such that the network can learn how to combine the variables in the object
functional, which accounts for a deep feed-forward neural network by using CNNs
to approximate the inverse operators in (7). The alternating direction algorithm
with I iterations is outlined as Algorithm 1.

Remark 1. In the algorithm, we assume the constraint ũ = u holds uncondition-
ally. Therefore, fk+1 is calculated based on AF ũk+1 rather than AF uk as ũk+1

was already updated in the previous step. Besides, instead of selecting specific
values for τ , σ and r, we let the network learn the appropriate value by itself.
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Algorithm 1. Learned Full Sampling Reconstruction (FSR)

1: Initialize u0, f0, p0, ũ0

2: for k = 0, . . . , I, do
3: pk+1 ← Γθp(pk, ASuk, g)
4: ũk+1 ← Λθũ(uk, A∗

Spk+1)
5: fk+1 ← Πθf (fk, AF ũk+1)
6: uk+1 ← Ξθu(ũk+1, A∗

F fk+1)
7: return uI , f I

3 Experiments and Results

In this section, we evaluate the proposed algorithm on both the ellipse data [1]
and a piglet data1 by comparing with the state-of-the-art work, i.e., FBP-Unet
denoising [4] and Leaned Primal-Dual network (PD-net) [1].

3.1 Implementation

The methods are implemented in Python using Operator Discretization Library
(ODL) and TensorFlow. We let the number of data that persists between the
iterates be Nu = Nũ = 6 and Np = Nf = 7. The convolution are all 3 × 3
pixel size, and the numbers of channels in each iteration are p of 9 → 32 →
32 → 7, ũ of 7 → 32 → 32 → 6, f of 8 → 32 → 32 → 7 and u of 7 → 32 →
32 → 6. The network structure of one iteration is illustrated in Fig. 1, where
totally 10 iterations are contained in our network. As shown, each iteration
involves four 3-layer that is the depth of network is 120 layers. Our FSR-net has
approximately 4.9 × 105 parameters, while FBP-Unet and PD-net have 107 and
2.4 × 105 parameters, respectively.

Fig. 1. Network architecture to solve the tomography problem. Each box corresponds
to one variable, which are all of the same architecture.

1 http://homepage.usask.ca/∼xiy525/.

http://homepage.usask.ca/~xiy525/
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We use the Xavier initialization scheme to initialize the convolution param-
eters, and initialize all biases to zero. Let Θ = {θp, θũ, θf , θu} and T † be the
pseudo-inverse of the minimization process (3) defined as

T †
Θ(g) ≈ (utrue, ftrue) for data g satisfying (1),

Suppose (TΘ(u), TΘ(f)) = T †
Θ(g) and (g1, u∗

1), (g2, u
∗
2), . . . , (gL, u∗

L) be L
training samples. We apply the ADAM optimizer in TensorFlow to minimize
the following empirical loss function

L(Θ) =
1

2L

L∑

i=1

(
‖TΘ(ui) − u∗

i ‖
2
X + ‖TΘ(fi) − AF u∗

i ‖
2
Z

)
. (8)

Most parameters are set the same as the PD-net in [1]. We use 2×105 batches on
each problem and a learning rate schedule according to cosine annealing, i.e., the
learning rate at step t is ηt = η0

2

(
1+cos(π t

tmax
)
)
, where the initial learning rate

is set as η0 = 10−3 for the ellipse data and η0 = 10−4 for the piglet phantom.
We let the parameter β2 of the ADAM optimizer to 0.99 and limit the gradient
norms to 1 to improve training stability. The batch size is set as 5 and 1 for the
ellipse data and piglet phantom, while the epoch is set as 22 for both datasets.

(a) FBP (b) FBP with f (c) FBP-Unet (d) PD-net (e) FSR-net

Fig. 2. Reconstruction comparison on the ellipse data, where the window is set to [0.1,
0.4].

3.2 Results on Ellipse Phantoms

Similar to [1], we randomly generate ellipses on a 128 × 128 pixel domain by
parallel beam projection geometry with Nbins = 128 and Nviews = 15, Nviews =
30. Both 5% and 10% additive white Gaussian noises are added to the projection
data. We use the full sampling system matrix provided by ODL for parallel beam
CT as AF in our model (3). Table 1 presents the PSNR and SSIM obtained by
the CNN based models. It is obviously shown that the best PSNR values are
always achieved by our FSR-net and PD-net ranks the second position, both
of which are significantly better than the Unet based post-processing method.
Especially, the advantage of our FSR-net over PD-net becomes more convincing
for Nviews = 15 and 5% Gaussian noise, giving an improvement exceeding 1 dB,
which demonstrates the effectiveness of our model in sparse-view reconstruction.
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The comparison of the PSNR and SSIM between the FBP with g and FBP using
the reconstructed projection data f from our model in Table 1 also demonstrates
that our model can recover the Radon domain data to certain qualities. We
display the reconstruction results of the sparse 15 views with 5% Gaussian noise
in Fig. 2, which shows that our reconstruction preserves the geometry and details
better than the other two methods.

Table 1. Comparison results for the ellipse phantom in terms of PSNR, SSIM and
Runtime.

Nviews Noises Methods PSNR SSIM Time FBP (PSNR) FBP (SSIM)

30 5% FBP-Unet 28.1693 0.9346 1.5 19.7216 0.5938

PD-net 39.2301 0.9860 4.6

FSR-net 39.6588 0.9897 6.6 21.5168 0.8930

10% FBP-Unet 26.2985 0.9250 1.5 19.1199 0.5073

PD-net 31.9033 0.9707 4.6

FSR-net 32.1213 0.9695 6.6 21.2971 0.8881

15 5% FBP-Unet 19.8411 0.7224 1.4 16.1378 0.4217

PD-net 30.3615 0.9719 4.4

FSR-net 32.0468 0.9707 6.4 21.3333 0.8607

10% FBP-Unet 19.4893 0.7370 1.4 15.5722 0.3394

PD-net 25.1603 0.9301 4.4

FSR-net 25.9528 0.9238 6.4 20.8019 0.8470

Moreover, we apply the model trained by the sparse 30 views and 5% Gaus-
sian noise to test data with different sparsity, i.e., g obtained by Nviews =
30, 25, 20. We compare the results with the learned PDHG net, primal-net and
PD-net from [1] in terms of PSNR and SSIM in Table 2. As shown, our model
performs more stable in adapting with different testing data, which is because
our model minimizes the distance between the reconstructed image and the full-
sampling projection data.

3.3 Results on Piglet Phantom Data

We test the proposed model on simulated CT data of a deceased piglet, which is
scanned from a 64-slice multi-detector CT scanner (Discovery CT750 HD, GE
Healthcare) using 100 kV and 0.625 mm slice thickness. We use 896 images of size
512 × 512 as the ground truth for training and 10 for evaluation. We adopt the
fan-beam geometry with Nbins = 512 and Nbins = 1024, source to axis distance
500 mm and axis to detector distance 500 mm. The number of views is set as
follows

• For Nbins = 512, the observed data g is generated by 64 uniformly distributed
views over 2π arc with two different Poisson noises of 104 and 5×105 incident
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photons per pixel before attenuation. The full-sampling system matrix AF is
constructed according to SSC1, i.e., Nviews = 512;

• For Nbins = 1024, the observed data g is generated with either 120 views
or 60 views and Poisson noise of 104 incident photons. The full-sampling
system matrix AF is defined according to SSC4, i.e., Nviews = 1024. Because
Nviews = 1024 gives too much computational burden, we use Nviews = 720 in
practice.

As shown in Tables 3 and 4, our model outperforms other methods in recon-
struction quality. Especially when we use the parameters trained by Nviews = 64
to reconstruct the sparse data such as Nviews = 32, 28, 24, our model achieves
a PSNR 0.5∼3 dB higher than PD-net. Both the reconstructed images and the
error maps are displayed in Fig. 3, the first column displays the FBP reconstruc-
tion of observed data g (1st row) and our estimated full-sampling measurement
f (2nd row). It is obviously shown that our model can well inpaint the Radon
domain data and improve the reconstruction quality.

Table 2. Reconstruction comparison on the piglet phantom for different sparsities.

Nviews 30 25 20

PSNR SSIM PSNR SSIM PSNR SSIM

PDHG-net 29.6762 0.9111 27.4642 0.8602 22.8205 0.6866

Primal-net 37.2040 0.9848 35.4175 0.9812 33.1559 0.9655

PD-net 39.2301 0.9860 36.4508 0.9757 34.6969 0.9365

FSR-net 39.6588 0.9897 38.6696 0.9853 35.8236 0.9769

Table 3. Comparison results for the piglet phantom in terms of PSNR, SSIM and
Runtime.

Nbins Nviews Noises Methods PSNR SSIM time FBP(PSNR) FBP(SSIM)

512 64 5 × 105 FBP-Unet 32.165 0.992 5.2 27.02 0.832

PD-net 36.202 0.997 5.3

FSR-net 36.875 0.997 6.6 27.423 0.9222

64 104 FBP-Unet 28.917 0.9853 5.2 22.7613 0.4196

PD-net 29.999 0.9887 5.3

FSR-net 30.564 0.9903 6.6 27.3457 0.9182

1024 120 104 FBP-Unet 30.8926 0.9898 5.3 20.5832 0.3023

PD-net 32.382 0.9933 5.4

FSR-net 33.084 0.9941 6.7 27.3967 0.921

60 104 FBP-Unet 28.192 0.9793 5.5 18.0077 0.1658

PD-net 31.263 0.9913 5.6

FSR-net 31.763 0.9921 7 27.3917 0.9198
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Table 4. Reconstruction comparison on the piglet phantom for different sparsities.

Nviews 32 28 24

PSNR SSIM PSNR SSIM PSNR SSIM

FBP-Unet 23.44 0.9513 20.1502 0.9008 18.9658 0.855

PD-net 25.27 0.9761 21.0392 0.9453 18.333 0.906

FSR-net 25.86 0.973 23.0581 0.9534 21.1436 0.9304

(a) FBP (b) FBP-Unet (c) PD-net (d) FSR-net

Fig. 3. Reconstruction comparison of a piglet phantom with Nviews = 64 and Nbins =
512.

4 Conclusion

We proposed a novel iterative reconstruction model by fitting the reconstructed
image with its corresponding measurements in Radon domain through the full-
sampling system matrices. This new algorithm is in the family of deep learning
based iterative reconstruction schemes. The application on sparse-view CT image
reconstruction demonstrates the effectiveness of the proposed model and it is also
clearly shown that the proposed method can be applied to other applications such
as limited-angle CT reconstruction and compressed-sensing MR reconstruction.
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