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Abstract. Purpose. The goal of this paper is to build a simulation envi-
ronment that allows for the prediction of patient-specific tissue response
by drawing samples from a generative model with a probability distribu-
tion. We propose a Gaussian Process (GP) regression approach to learn
distributions over strain energy density functions including elastography,
linear and hyperelastic models reported in the literature. Methods. We
gather a total of 73 models characterising elastic properties of brain white
matter, grey matter and abnormalities and express them as strain energy
density functions. A multi-output GP is used to quantify means and con-
fidence intervals across each anatomical region and model. We sample the
GP distribution and use nonlinear optimisation to fit a Neo-Hookean
meta-model to guarantee stable strain energy functions. We validate the
Neo-Hookean meta-model by fitting known strain energy density func-
tions from the literature and report optimisation cost. We also validate
the ability of the GP to approximate elastic properties of tissue given
a reference deformed state using simulation. Results. The GP was able
to capture confidence intervals of varying strain ranges; the GP parame-
ters and optimisation costs indicated a higher variability of hyperelastic
models compared to elastography and linear models. Although one term
is insufficient to fully capture hyperelastic models with higher number of
terms, the resulting meta model is stable for real-time simulation within
a wider range of stretches captured during mechanical characterisation
of soft tissue. We demonstrated that our approach was able to approxi-
mate known elastic properties of tissue with a root-mean-squared error
of 0.6 mm of node displacements when drawing six samples from a distri-
bution of hyperelastic white matter. Conclusion. In this initial proof-of-
concept, we demonstrated a GP-based approach to estimate the elastic
behaviour of brain tissue through simulation by sampling a generative
model comprising elastic models found in the literature.
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1 Introduction

The motivation of this paper is to build a simulation environment to predict
patient-specific tissue response caused by mechanical stimuli. This is particularly
important in scenarios where an estimate of such behaviour is available from the
population but is not patient-specific. For instance, given the deformed state of
a human organ or even the effect of tools interacting with it, the main goal is to
sample elastic behaviour from a probability distribution that best characterises
the observations.

Soft tissue characterisation is typically performed either in-vivo using Mag-
netic Resonance Elastography (MRE) via shear wave propagation within a small
window of strain (e.g. 500µm) [6] or ex-vivo by mechanical loading of small
blocks of resected tissue. For human tissue, linear models are only appropriate
for small strains (where tissue behaves roughly linearly) and nonlinear hyperelas-
tic models are more appropriate for larger strains. Brain tissue has been widely
investigated [11] and recent studies report Ogden hyperelastic models best fit
the observations [3,8,9]. However, whilst computer-assisted interventions mostly
take into account patient-specific anatomy, elastic behaviour is typically mod-
elled with average values reported from the literature. Although it is relevantly
easy to compare linear models (Lamé coefficients), it is more difficult to compare
hyperelastic models due to differences in model order and coefficient heterogene-
ity. Furthermore, reported parameters fit observations over a smaller range of
strains than necessary for real-time simulation of deformable bodies.

Few generative models have been proposed for sampling mechanical
behaviour. In animation, Martin et al. [7] proposed the simulation of complex
material behaviour via interpolation in strain space of an example manifold and
then compute a force based on elastic potentials to attract a solid to that con-
figuration. This approach later became the foundation of projective dynamics
[4]. In multi-scale modelling, Bhattacharjee et al. [2] proposed a model reduction
using manifold learning (isomap) and neural networks for hyperelastic heteroge-
neous materials. Stochastic processes have also been used to model phenomena
as random functions including the mechanical characterisation of soft tissue [10].

In this paper, we propose a Gaussian Process for regression to learn a dis-
tribution over strain energy density functions that allows for sampling elastic
properties of human brain tissue (brain in general, white matter, grey matter
and abnormalities) from MRE, linear and hyperelastic models reported in the
literature. A Neo-Hookean hyperelastic meta-model is then used to fit samples
drawn from the distribution whilst guaranteeing a valid strain energy density
function that can be used for real-time simulation.

2 Methods

Elasticity of Brain Tissue. From the literature we collected a total of 73
elastic models with reported coefficients corresponding to MRE, linear and
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hyperelastic models as strain energy density functions [3,8,9,11]. A strain energy
density function Ψ , or elastic potential, relates strain (represented by the defor-
mation tensor FFF ) to stress (obtained using the gradient of Ψ with respect to F ).
We can define a nonlinear hyperelastic model Ψ(λ1, λ2, λ3) in terms of its princi-
pal stretches λi, where F̂FF is calculated using a rotation variant SVD [14,16] from
FFF with rotations UUU and VVV (Eq. 1). For instance, Eq. 1 defines a Neo-Hookean
hyperelastic model in terms of λi and shear modulus μ. Although Ψ can also be
defined in terms of the invariants of the right Cauchy-Green deformation tensor
CCC = FFFTFFF [15], it becomes difficult to express all materials, e.g. Ogden [16].

MRE and linear models were also defined in terms of their strain energy
density function Ψlinear(FFF ) = μLεεε : εεε+ λL

2 tr2(εεε), where εεε = 1
2 (FFF +FFFT )− I is the

small strain tensor, and μL, λL are the Lamé coefficients which are related to
the material properties (i.e. Young’s modulus and Poisson’s ratio) [13]. We use
compression and tension strain ranges when reported in the literature, which
was only for hyperelastic models (20, 30, 40, and 45%), otherwise we assume
strain ranges of +−5% for MRE studies and +−10% for linear models (Fig. 1 top).
Recent studies report fitted parameters of a hyperelastic model independently
for compression and tension [3] and these are treated accordingly.

FFF = UUUF̂FFVVV T

F̂FF =

⎡
⎣

λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎦

ΨN−H =
μ

2
(λ2

1 + λ2
2 + λ2

3 − 3)

(1)

Fig. 1. Brain tissue models from the literature expressed in terms of their strain energy
density function Ψ . Horizontal axis represents stretch λ during rest (=1), compression
(<1) and tension (>1). Different ranges of compression/tension tests are shown for
MRE (5%), linear (10%) and hyperelastic (<45%) studies. Top: Ψ in Pascals. Bottom:
natural log transform of Ψ .
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Generative Model. Gaussian Process (GP) regression is a non-parametric
Bayesian approach to learn distributions over functions [12]. We define a multi-
task GP following an Intrinsic Coregionalization Model (ICM) [1] where we
assume correlation among the tasks with heterotopic data Dt (N = 73) sampled
from different patients/brain regions and under different experimental conditions
(Eq. 2). We define a total of T = 12 tasks (fGPt

(λλλt), t = 1, . . . , T ) related to the
combination of brain tissue types (brain in general, white matter, grey matter
and abnormalities) and elastic model types (MRE, linear, hyperelastic). Each
curve is discretised in I = 100 points and the number of curves in each task
may vary (n ∈ t). Ψ varies significantly across stretches finding their log space
(lnΨ) easier to optimise. Each task fGPt

(λλλt) is a multiple output vector-valued
function that takes as inputs stretches λλλt ∈ �1xI (x-axis of Fig. 1) and as outputs
strain energy density functions in log space (lnΨ , y-axis in Fig. 1 bottom) with
Gaussian noise εεεt ∼ N (000,σσσ2

t ) (Eq. 3). The proposed kernel structure is a Matérn
3/2 covariance kernel k(λλλt,λλλ

′
t) = kM3/2 that captures the covariance within

tasks. The covariance across tasks is mapped with the coregionalization matrix
BBB, which is positive-definite and defined by BBB = WWWWWWT +κκκtIII, where WWW is of rank
1 and relates to coefficients used for the linear interpolation of fGPt

(λλλt) and κ
reflects the variance across tasks (Eq. 4). The GP regression optimisation has 38
parameters (Matérn length scale and variance, as well as 12-valued vectors WWW,
κκκt and σσσ2

t ). kM3/2 is initialised with a unit variance (fixed), and length scale of
0.01. After GP optimisation, we draw samples from the distribution fGPt

(λλλt) for
a task t and a range of stretches λλλt. We sample over a range of μs+−1.96σs, where
μs and σs are the mean and standard deviation of the distribution, respectively.

Dt = {(λλλi,n, ln Ψn(λλλi,n)) | i ∈ I, n ∈ N, t ∈ T, n ∈ t} (2)

ln ΨGPt
(λλλt) ∼ GP(0, k(λλλt,λλλ

′
t))

fGPt
(λλλt) = ln ΨGPt

(λλλt) + εεεt

(3)

⎡
⎢⎣

fGP1(λλλt)
...

fGPT
(λλλT )

⎤
⎥⎦ ∼ N

⎛
⎜⎝

⎡
⎢⎣
000
...
000

⎤
⎥⎦ ,BBB ⊗ KKK + σσσ2

tIII

⎞
⎟⎠ (4)

Hyperelastic Meta-model. We define a compressible Neo-Hookean hyper-
elastic meta-model Ψmeta (Eq. 5a) using Lamé coefficients μm, λm, principal
stretches λi=1,2,3 (Eq. 1) and J = λ1λ2λ3 to fit the samples described above.
For a uniaxial tension/compression mechanical test, Ψmeta can be reduced to

Ψopt(λ1, λ
− 1

2
1 , λ

− 1
2

1 ) = μm

2 (λ2
1 + 2λ−1

1 − 3). lnΨopt is then used to fit the sample
via non-linear least squares optimisation with a bound on weight μm to be posi-
tive. For real-time simulation, we define Ψmeta in terms of its principal stretches
λi and express it using the Valanis-Landel hypothesis (Eq. 5b) similar to [16],
where f(λi), g(λiλj) and h(λ1λ2λ3) are one-dimensional strain energy density
functions for uniaxial, biaxial and triaxial strain, respectively.
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Ψmeta =
μm

2
(λ2

1 + λ2
2 + λ2

3 − 3) − μmlnJ +
λm

2
(lnJ)2 (5a)

f(λi) =
μm

2
(λ2

i − 1), g(λiλj) = 0, h(J) = −μmlnJ +
λm

2
(lnJ)2 (5b)

Implementation. The presented generative model is implemented in Python
(3.6). For each elastic model from the literature, we describe Ψ in terms of
their principal stretches λi using symbolic mathematics with SymPy (1.3) and
evaluate it for a uniaxial tensile/compressible mechanical test. The GP is imple-
mented in GPy (1.9.6) [5] and its parameters are optimised using the default
bound constrained optimisation L-BFGS-B algorithm in SciPy (1.2.1). Least
square minimisation of Ψopt was performed with the Trust Region Reflective
(trf) method in SciPy. For real-time simulation, we implemented a hyperelas-
tic Finite Element Model partly based on VegaFEM (http://run.usc.edu/vega/)
and following [14,16] as a native C++ plugin executed using the Unity3D game
engine.

Validation. We evaluate the performance of the GP by reporting learnt param-
eters and inference across the confidence interval given a brain tissue and elastic
model type. We report the performance of Ψmeta and validate our approach by
running real-time nonlinear hyperelastic FEM simulation (see above) for each
inferred strain energy density functions when applying external forces (10 N) to
a subset of nodes of a volumetric tetrahedral mesh obtained from a human brain
segmented using a T1-w MRI and Geodesic Information Flow (GIF) parcellation
(Fig. 2). The volumetric deformable model (in yellow) consists of 437 tetrahedra
and 163 nodes, whereas the surface model (in pink) consists of 50,000 triangles
and 24580 vertices. Dirichlet fixed boundary conditions (in green) where defined
on 10 vertices at the base of the brain and falx cerebri (as in [11]) based on two
primitive boxes (in green).

Fig. 2. From a T1-weighted MRI (a) we determine a brain parcellation using GIF (b).
The parcellation is used to create a fine surface and coarse volumetric mesh of the
human brain. (c) Volumetric elements are shown in yellow with red spheres indicating
nodes where external forces (10 N) are applied to in the direction towards the screen.
(d) Boundary conditions are defined by fixing nodes inside green boxes located at the
base of the brain and falx cerebri. (Color figure online)

http://run.usc.edu/vega/
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3 Results

Table 1 reports the variance (κκκt) and noise (σσσ2
t ) for the best fit GP, using a

Matérn 3/2 kernel, T = 12 tasks and rank WWW = 1. As shown in the table,
the hyperelastic models had the highest variance and noise for the task consid-
ered. We found the GP converged and better fit means and confidence intervals
(including extended ranges of stretches than those reported in the literature)
compared to other kernels tested including squared exponential, linear, bias and
simple combinations of these.

Table 1. Number of samples (n), GP parameters (κκκt, σσσ2
t ) and nonlinear least squares

optimisation cost of Ψopt for a total of T = 12 tasks (elastic model and tissue types).

Model Tissue n κκκt σσσ2
t Ψopt lsq cost

MRE Grey matter 5 0.184 0.24 0.001 (6.5e−7)

White matter 5 0.467 0.57 0.001 (1.07e−6)

Brain 1 0.319 0.0 0.001

Abnormal 1 4.986 0.0 0.001

Linear Grey matter 1 0.0 0.0 0.008

White matter 1 0.063 0.0 0.008

Brain 16 0.409 1.33 0.008 (0.008)

Abnormal 7 1.034 9.66 0.043 (0.06)

Hyperelastic Grey matter 10 8.929 0.13 7.097 (1.447)

White matter 10 9.810 0.11 12.36 (4.325)

Brain 15 28.006 8.67 11.444 (9.889)

Abnormal 1 1.096 7.52 1.039

Validation of Meta-model. We evaluated the performance of Ψopt to represent
Ψ models from the literature using nonlinear least squares optimisation. We
observe higher optimisation costs of hyperelastic models compared to linear mod-
els (Table 1). The highest errors are observed in cases where multiple terms are
used and tension/compression tests are modelled independently (Fig. 3).

Validation of Generative Model. We examine three learnt GP functions (Fig. 4).
The proposed GP is able to fit well the mean and variance of strain energy density
functions in log space (lnΨ) for linear models in general. Small variations in log
space are translated into significant changes in Ψ , where differences are noticeable
between grey matter and white matter tissue. When generating samples for linear
models and fitting the proposed Neo-Hookean meta-model, smooth and uniform
samples (lines in grey colour) are obtained within the confidence interval. Related
to hyperelastic models, we were also able to capture a function spanning different



224 A. Granados et al.

Fig. 3. Full (top) and close-up view (bottom) of meta-model (dash/solid) fitted to
four linear elastic (left) and four hyperelastic (right) models (circles) in lnΨ and Ψ
space. Although the meta-model adequately fits linear data, it underperforms fitting
hyperelastic models with n-terms (pink) or are defined as mixed models (grey/orange).
(Color figure online)

ranges of stretches. However, the fluctuations observed in Ψ space of healthy
brain tissue are the result of the variability reported in the literature. The data
used for white matter (Fig. 4 centre) describes Ψ in two different parts (one
for tension and one for compression) that one Neo-Hookean meta-model with a
single term is unable to capture, resulting in regions of the meta-model falling
outside of the confidence interval. Despite this limitation, the meta-model is able
to cope with fluctuations and therefore avoids negative slopes in the gradient that
cause instabilities during real-time simulation.

Fig. 4. Top: GP of three tasks (MRE-GM, hyperelastic-WM and -healthy brain tissue)
learnt in lnΨ showing data (+), mean (blue), and confidence interval CI (light blue).
Bottom: CI is transformed to Ψ space (dashed lines) with 10 samples drawn from the
distribution (circles) and fitted to a Neo-Hookean meta-model (black lines). (Color
figure online)
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Validation of Generative Model and Meta-model. We demonstrate our approach
by estimating the elastic parameters of brain tissue given a reference deformed
state, a hyperelastic model of white matter (corpus callosum) consisting of two
models (compression and tension) [3], which is loaded into our simulation plat-
form and where external forces are applied as in Fig. 2. To validate our approach
six samples are drawn from the hyperelastic white matter distribution (Fig. 4
centre) within −2σs and +2σs from the mean μs, i.e. from soft to hard, respec-
tively (Fig. 5 blue series). Each sample is then fitted to the proposed meta-model
(Fig. 5 orange series) and the optimised shear modulus μm is used to initialise
the nonlinear hyperelastic FEM before applying an external force of 10 N to a
subset of nodes (Fig. 2). After 3 s, we compute node displacements with respect
to the reference nodes and quantify similarity by means of root-mean-squared
error (RMSE) of node displacements (Fig. 5 bottom). Given the RMSE, we con-
firmed that the reference elastic behaviour is between +1.2σ and +2σ from the
mean. Although external forces are difficult to measure during a real scenario,
recent approaches attempt to estimate these using machine learning algorithms.
With better boundary conditions and accounting for different types of regions
in the brain, we envisage that the presented generative model could be used
similarly as the validation described above to estimate elastic properties that
characterise nonlinear deformation.

Fig. 5. Estimating elastic behaviour by drawing six samples [μs − 2σs,μs + 2σs] from
white matter hyperelastic distribution. Top: Mean and confidence interval (grey), sam-
ple from distribution (blue), and meta-model (orange) for each sample along a reference
picked from the literature. Bottom: Colour map indicating (red) the Euclidean distance
of each volumetric node to those nodes of a reference state with similarity quantified
as root-mean-squared error in mm. (Color figure online)

4 Conclusion and Future Work

Our approach allows for sampling strain energy density functions from a GP
regression method to approximate elastic behaviour of human brain tissue. There
are numerous ways of extending this work in the future. Further studies could
incorporate combined load and other factors such as age, fibre orientation or
differentiate between different regions of similar type of tissue. Further work will
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investigate other strategies of GP kernel choice and extend our meta-model to
models with more terms such as Ogden.
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