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Abstract. Metal artifacts in computed tomography (CT) arise from a
mismatch between physics of image formation and idealized assump-
tions during tomographic reconstruction. These artifacts are particu-
larly strong around metal implants, inhibiting widespread adoption of
3D cone-beam CT (CBCT) despite clear opportunity for intra-operative
verification of implant positioning, e. g. in spinal fusion surgery. On syn-
thetic and real data, we demonstrate that much of the artifact can be
avoided by acquiring better data for reconstruction in a task-aware and
patient-specific manner, and describe the first step towards the envi-
sioned task-aware CBCT protocol. The traditional short-scan CBCT
trajectory is planar, with little room for scene-specific adjustment. We
extend this trajectory by autonomously adjusting out-of-plane angula-
tion. This enables C-arm source trajectories that are scene-specific in
that they avoid acquiring “poor images”, characterized by beam hard-
ening, photon starvation, and noise. The recommendation of ideal out-
of-plane angulation is performed on-the-fly using a deep convolutional
neural network that regresses a detectability-rank derived from imaging
physics.
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1 Introduction

Background: Spinal fusion surgery is an operative therapy for chronic back pain
with high economic burden [12] that is projected to further increase due to our
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Fig. 1. High-level overview of our task-aware trajectory recommendation.

aging society and our increasingly inactive lifestyle. Despite substantial improve-
ments in operative technique, spinal fusion surgery remains high-risk: In addition
to usual complications, pedicle screws that breach cortex can result in nerve dam-
age [5]. Surprisingly, the number of misplaced pedicle screws remains high [2,5]:
Cortical breach occurs in up to 31% and 72% of the cases for freehand and
fluoroscopy-guided techniques, respectively. Even when surgical navigation is
employed, up to 19% of the screws are not fully contained in cortex [5]. Currently,
screw placement is assessed on post-operative CT images, such that immediate
repositioning of implants is not possible. Although intra-operative 3D cone-beam
CT (CBCT) imaging using mobile and robotic C-arm X-ray systems is becom-
ing widely available, it is not currently being used for spinal fusion 3D imaging,
because compared to CT, C-arm CBCT images suffer from substantially stronger
metal artifacts around the highly-attenuating titanium implants, which compro-
mise the value of intra-operative CBCT for assessing cortical breach [2].

The obvious implication is that image quality must be improved, before
CBCT is ready for prime-time in high-volume applications, such as spinal fusion.
Most current methods that seek to lift CBCT reconstruction quality to the
“clinical acceptance threshold” limit themselves to contain artifact propagation
(e. g. via masking) or image-enhancement (e. g. streak reduction) [6]. These meth-
ods have in common that they try to deal with artifacts after acquisition of the
CBCT short-scan is already completed, and are thus limited by the already
corrupted information present in the acquired X-ray projection images.

This somewhat straight-forward realization implies that there lies huge, unex-
ploited potential in “simply acquiring better data” to push the limits of CBCT
image quality. In a more formal way, metal artifacts arise from a mismatch
between the forward and inverse model, i. e. physical effects governing image
formation and idealized assumptions made in the tomographic reconstruction
algorithm. Sampling data that is less affected by un-explained corruption pro-
cesses during reconstruction will yield a better conditioned inverse problem,
and as an immediate consequence, improved image quality without any addi-
tional post-processing. The first step towards the envisioned task- and anatomy-
aware CBCT imaging protocol can be realized easily. The traditional short-scan
CBCT trajectory [3] is embedded in a single plane, and therefore, provides lit-
tle room for scene-specific adjustment. We propose to extend this trajectory by
autonomously adjusting out-of-plane angulation, which enables C-arm source
trajectories that are task-aware and scene-specific in that they avoid acquiring
images with substantial corruption (beam hardening and noise) as shown in



Towards Task-aware C-arm Cone-beam CT Trajectories 13

Fig. 1. The recommendation and adjustment of ideal out-of-plane angulation is
performed on-the-fly using a deep convolutional neural network (ConvNet) that
only relies on the current 2D X-ray projection image.

Related Work: Overall, there is little work on acquisition parameter-side image
quality enhancement. Previous work on task-based trajectories [9] leveraged pre-
operative CT scans and optimization techniques to select optimal parameters.
During application, these approaches would require registration between preop-
erative CT volume and intra-operative C-arm system, which cannot be achieved
easily in practice. Besides this requirement, an even more important limitation
is the fact that surgery will alter the patient’s anatomy represented by pre-
operative CT in an unpredictable way. Therefore, computing task-optimality
based on preoperative CT volumes can only serve as a coarse approximation of
the true optimal trajectory. These assumptions become even stronger as surgical
tools may still be present in the scene [9], as tools will strongly affect the optimal
solution due to their high attenuation.

The prospect of altering acquisition parameters to improve image quality
has recently also been recognized for magnetic resonance imaging [1], where
the undersampling pattern in k-space can be optimized via end-to-end learn-
ing with respect to fully sampled image. The approach closest to ours considers
finding an optimal acoustic window for cardiac ultrasound [7], where the cur-
rent image is interpreted by a reinforcement learning agent that suggests an
ultrasound probe displacement towards a better acoustic window. While both
previous approaches have some similarity from a conceptual standpoint, they
focus on image appearance rather than imaging physics and both the magnetic
resonance and ultrasound acquisition protocols are substantially different from
CBCT.

2 Methods

Assigning Task-optimality Rank to Projection Images: Task-based trajectory
optimization relies on finding projection images that result in optimum recon-
struction quality for a specific task. Therefore, the pipeline is contingent on (1)
assigning a task-optimality rank to images in projection domain and (2) selecting
views that are optimal in this metric. Previous work used the non-prewhitening
matched filter observer derived for penalized likelihood reconstruction [9] to
calculate a detectability index that correlates well with human performance in
detection tasks. Calculating detectability requires the patient volume and knowl-
edge about the task, i. e. an accurately annotated preoperative CT volume. Using
the observer model, the detectability d2 can be calculated as

d2(ϕ, θ) =

[∫ ∫ ∫ |MTF (ϕ, θ)|2 |Wtask|2dfxdfydfz
]2

∫ ∫ ∫
NPS(ϕ, θ) |MTF (ϕ, θ)|2 |Wtask|2dfxdfydfz , (1)

where Wtask is the Fourier transform of the region of interest to be imaged with
highest quality. Further, MTF is the modulation transfer function and NPS is
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Fig. 2. (a) Diminished coordinate system for CBCT: ϕ describes in-plane gantry rota-
tion (traditional short-scan) while θ is the out-of-plane angle to be adjusted in a task-
aware and autonomous fashion. (b) Detectability map for test CT volume as per Eq. 1
(brighter values indicate better detectability). We also show some areas with extremal
detectability that can be interpreted semantically.

the noise power spectrum (we refer to [4] for details) that both depend on the
projection image, and therefore, the relative pose of the C-arm with respect to
anatomy. Here we consider a diminished C-arm coordinate system (ϕ, θ) shown
in Fig. 2(a), where ϕ and θ describe the in- and out-of-plane angle, respectively.
It is worth mentioning that in order to compute the above detectability measure
for a particular view (ϕ, θ), the corresponding X-ray projection image must either
be simulated from the CT volume or available otherwise.

Predicting Task-Optimal Views from Live Data: If the 3D patient anatomy is
perfectly known, the complete trajectory can be optimized for directly. However,
this is not the case in surgical environments, where optimal view prediction may
only depend on the current and previous 2D X-ray projections. Following recent
work in robotics and control, we interpret the detectability index of each possi-
ble next view as the quality function and use a ConvNet to directly regress it
from the current view. Then, acquiring an optimized trajectory is achieved by
selecting the out-of-plane angle with the highest predicted detectability, adjust-
ing θ as the C-arm gantry moves to the next in-plane angle ϕ, and acquiring the
next X-ray image at this position, that is then fed back into the ConvNet. Next
possible views are defined as views with an increment of 5◦ in sweep direction φ.
The ConvNet predicts detectability for out-of-plane angles between ±25◦, uni-
formly discretized in 11 steps of 5◦. This definition allows generating a training
dataset, where all meaningful X-ray projections together with their detectabil-
ity are sampled on a uniform grid with stepsize of 5◦ in both ϕ and θ. The
resulting trajectory is patient specific, as the input images used to predict the
detectabilities reflect the patient’s anatomy at the current point in time.

Our ConvNet is based on VGG-19 [8] with modifications to perform regres-
sion instead of classification. Initial weights are pre-trained on ImageNet and the
ConvNet is subsequently retrained on our task. Due to the very short inference
time of in the range of few 10−2 s on current GPUs, the VGG-19 network is
compatible with the near real-time requirements of CBCT acquisition protocols.
During application, angle increments between two views are usually below 1◦,
and we use linear interpolation to predict the next best angle. The complete
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pipeline is shown in Fig. 1, where the image from the CBCT system is fed into
the ConvNet to predict the detectability of possible next views. Based on this
prediction, the interpolation module provides the next out-of-plane angle to the
CBCT system, that is servoed to the new position, acquires a new X-ray image,
and thus, closes the loop.

Training: Training is performed on realistic digitally reconstructed radiographs
(DRRs) generated from CT using the open-source tool DeepDRR [11]. The
pipeline was chosen as it enables the simulation of metal artifact as well as
the transfer to real data with only low degradation of prediction performance
[10]. For DRR generation, five chest CT-volumes were obtained from the Cancer
Imaging Archive. In every volume, six pairs of pedicle screws were annotated and
simulated leading to a total of 30 different anatomical configurations, since only
a single vertebral level is considered at once. Data augmentation is performed in
3D by randomly varying the C-arm isocenter, yielding a dataset of 212 “scans”
with 290,016 images in total. A “scan” consists of 1368 images uniformly sam-
pled on the truncated sphere with ϕ ∈ [0◦, 360◦) and θ ∈ [45◦, 135◦], with the
detectability calculated as per Eq. 1 for each image. To guarantee patient inde-
pendence of training and test, splitting of data is performed on CT level, where
four volumes (176 scans) are used for training and one volume (36 scans) is used
for test and validation.

The images are saved both noise-free and with noise corresponding to a flu-
ence of 20k photons emitted towards every pixel. The noise free images are used
to calculate ground-truth detectability while the noisy images are used as input
during training of the neural network. This approach was chosen, such that the
detectability maps are the optimum learning target, while the network becomes
invariant to noisy observations as they would occur in real X-ray projections.

For experiments on real data, a set of analytic phantoms (squares, cylinders,
screw model) that represent the chest was implemented and a second in silico
dataset was generated. For data generation, dimensions and location of the phan-
tom components where randomly varied within reasonable bounds to reflect the
fact that the anatomy, present during inference, is not known at training time.
The dataset consists of 75 “scans”, generated with the same setup as described
for the synthetic data experiments, except for the photon-fluence of 500 photons
per pixel, adapted to the smaller size of the phantom.

3 Experiments, Results, and Discussion

Quantitative Synthetic Data Experiments: Our trajectory optimization pipeline
was tested on six different vertebral levels in the separate test volume. As direct
evaluation of the training loss function would not represent the quality of the
selected trajectory, two surrogate measures were defined. The angular distance of
the predicted next-best action to the best action selected from the groundtruth
data measures the spatial difference between the predicted and optimal trajec-
tory. While the angular error is an intuitive and interpretable measure, it does
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Fig. 3. Distribution of degrading detectability in % for the synthetic test set.

not fully capture the performance of the algorithm. Even if the angular distance
of the selected action is high, it can still result in a close to optimal reconstruction
performance, as the function of detectability values can be multimodal. There-
fore, the difference in detectability between the predicted next action and the
optimal next action is introduced as a better measure for reconstruction perfor-
mance. On the test set, containing 36 scans across 6 different anatomical sites,
these performance metrics evaluated to 8.35◦ ± 11.61◦ for the angular distance
error and 13.69%± 18.92% degradation in detectability. The spatial distribution
of the average degradation of detectability in the test set is illustrated in Fig. 3.

Besides the quality of selected actions, pipeline stability w.r.t. noise is crucial
for practical applications. We compare the average distance between trajectories
predicted from noise-free data to noisy samples generated with 400k, 100k, and
50k photons per pixel. These measures are 0.83◦ ± 1.56◦, 1.13◦ ± 1.63◦, and
1.64◦ ± 1.73◦ for the different noise levels, respectively.

When the C-arm is used for intra-operative imaging, no optimal alignment
between the scanner and the patient’s anatomy can be ensured. Therefore,
robustness for different initialization angles is a major requirement, i. e. the algo-
rithm should transition into the same or equivalent trajectory irrespective of its
initialization. Theoretically this can be approached via the Markov property of
the proposed prediction pipeline: The detectabilities used for optimizing the tra-
jectory only depend on the last acquired X-ray projection, not on the history of
the trajectory. Therefore, as soon as two trajectories would intersect each other,
they will merge into a single trajectory.

Qualitative Synthetic Data Experiments: From a clinical perspective the quality
of the reconstructions is most interesting. For the synthetic test data, representa-
tive reconstructions from a short-scan and a task-aware trajectory are shown in
Fig. 4(a) and (b), respectively. Both volumes were reconstructed using iterative
conjugated gradients least-squares (ASTRA Toolbox) from noise free projec-
tions. It is apparent that, for the proposed task-aware trajectory, the screw is
more homogeneous, exhibits less cupping artifact, and metal artifacts (bright
and dark streaks) are reduced enabling better assessment of bony anatomy in
close proximity to the implant.

Real Data Experiments: Real data experiments are performed on a physical
phantom consisting of two ballistic gel cylinders mounted on a wooden beam
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Fig. 4. Representative axial slices through reconstructed volumes for the synthetic
test set at vertebral level T6 in (a,b), and for the real data set in (c,d). Slices (a,c)
show images using a straight-forward short-scan, while slices (b,d) show results of a
recommended task-aware trajectory.

with two iron screws, abstractly mimicking the human chest. A C-arm system
(Siemens Arcadis Orbic 3D) was used to acquire five CBCT short-scans, per-
formed with inclinations ranging from large negative (∼ −30◦) to large posi-
tive values (∼ 30◦). Corresponding reconstructions obtained with filtered back-
projection [3] were also obtained from the system.

The detectabilities of next possible views are predicted with the ConvNet
trained on our analytic phantom dataset. The resulting predictions are shown
in Fig. 5. As the available C-arm geometry currently limits the reconstruction to
circular trajectories, we compare the quality of the best circular scan with the
conventional circular scan. The best circular scan is determined by accumulating
the predicted detectability for ΔΘ = 0, which closely models the overall task.
Via this approach, the scan with the highest positive tilt is selected, yielding a
19.0% increase in predicted detectability compared to the conventional scan.

In Fig. 5, we highlight the highest predicted detectability at any given time,
which corresponds to the unregularized servoing commands that would be sent
to the C-arm. Curves close to the centerline indicate little C-arm adjustments,
while curves far from it imply our agent trying to drive the C-arm out of the
central plane. We observe large out-of-plane angle commands for scans with
low absolute tilt (conventional), and minimal deviation for scans with high tilt,
indicating a close to optimal trajectory. This behavior is well interpretable and
fits our intuition: The algorithm tries to prevent images with screw overlap,
thus reducing metal artifact in the reconstruction. Slices in the screw-plane,
reconstructed from the conventional and recommended trajectory are shown in
Fig. 4(c) and (d), respectively. The reconstruction from the high-tilt trajectory
recommended by our system exhibits a notable reduction of metal artifacts and
noise, and reveals the screw thread that is completely invisible in the conven-
tional case. We anticipate overall image quality improvements when using C-arm
systems with flat-panel detectors and more brilliant X-ray sources.
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Fig. 5. Detectability maps predicted from real X-ray projection images of a simple
human chest model. From top to bottom, inclination of the scan is decreasing; the
midline of each map corresponds to the scan axis. The red curve indicates the optimal
trajectories predicted from the map. Figure best viewed zoomed in. (Color figure online)

4 Conclusion

We present the first step towards task-aware CBCT imaging protocols. Our app-
roach enables scene-specific source trajectories in clinical settings, where only
little prior information is available. On both synthetic and real CBCT scans,
in simulations with human anatomy as well as on real X-ray images of a phan-
tom, we demonstrate that task-aware image acquisition is a promising avenue for
prospectively improving image quality in CBCT reconstruction. The proposed
learning-based method recommends viewing angles onto anatomy and can be
combined with any (iterative) reconstruction or metal artifact reduction algo-
rithm. In future work, we will test our system on cadaveric specimens, pedicle
screws on multiple levels, and more complex tasks including soft tissue imaging.
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