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Abstract. In PET/CT imaging, CT is used for PET attenuation correction (AC).
Mismatch between CT and PET due to patient body motion results in AC arti-
facts. In addition, artifact caused by metal, beam-hardening and count-starving in
CT itself also introduces inaccurate AC for PET. Maximum likelihood recon-
struction of activity and attenuation (MLAA) was proposed to solve those issues
by simultaneously reconstructing tracer activity (k-MLAA) and attenuation map
(l-MLAA) based on the PET raw data only. However, l-MLAA suffers from
high noise and k-MLAA suffers from large bias as compared to the recon-
struction using the CT-based attenuation map (l-CT). Recently, a convolutional
neural network (CNN) was applied to predict the CT attenuation map (l-CNN)
from k-MLAA and l-MLAA, in which an image-domain loss (IM-loss) function
between the l-CNN and the ground truth l-CT was used. However, IM-loss does
not directly measure the AC errors according to the PET attenuation physics,
where the line-integral projection of the attenuation map (l) along the path of the
two annihilation events, instead of the l itself, is used for AC. Therefore, a
network trained with the IM-loss may yield suboptimal performance in the l
generation. Here, we propose a novel line-integral projection loss (LIP-loss)
function that incorporates the PET attenuation physics for l generation. Eighty
training and twenty testing datasets of whole-body 18F-FDG PET and paired
ground truth l-CT were used. Quantitative evaluations showed that the model
trained with the additional LIP-loss was able to significantly outperform the
model trained solely based on the IM-loss function.
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1 Introduction

Positron Emission Tomography (PET) is used to assess physiological or pathological
processes, e.g., cancer staging, via the use of specific tracers. Those assessments rely on
in vivo radiotracer quantification based on PET images, which require accurate atten-
uation correction (AC). CT-based AC is commonly used for PET/CT studies. However,
mismatch between CT and PET due to patient body motion [1] results in AC artifacts
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and thus inaccurate PET quantification. In addition, artifact caused by metal, beam-
hardening and count-starving in CT itself also introduces inaccurate AC for PET.
Therefore, a method that can generate an accurate attenuation map (l) is critical for
accurate radiotracer quantification in PET.

The maximum likelihood reconstruction of activity and attenuation (MLAA)
algorithm [2] was proposed to simultaneously reconstruct tracer activity (k-MLAA)
and artifact-free attenuation map (l-MLAA) based on the time-of-flight (TOF) PET
raw data only. However, mainly due to the limited TOF timing resolution, l-MLAA
suffers from high noise and k-MLAA suffers from large bias [3] as compared to the
standard maximum likelihood expectation maximization reconstruction using the CT-
based attenuation map (l-CT). Recently, Hwang et al. [4] proposed to use a convo-
lutional neural network (CNN) to predict the CT attenuation map (l-CNN) from k-
MLAA and l-MLAA. Similar to other image-to-image translation work [5, 6], Hwang
et al. [4] used the L1-norm between the l-CNN and the ground truth l-CT in the image
domain as a loss function (IM-loss). However, this loss choice does not directly
measure the AC errors according to the PET attenuation physics, where the line-
integral of the l along the path of the two annihilation events, instead of l itself, is used
for AC. Therefore, a CNN trained using the IM-loss function may yield suboptimal
performance in the l generation task. In this study, we propose a novel loss function
that uses the line-integral projection (LIP-loss) of l as the loss, in addition to the IM-
loss, for l generation. Our hypothesis is that the additional LIP-loss will provide a
stronger constraint than the IM-loss alone for l generation, and therefore a more
accurate l can be generated.

We evaluated our method on real whole-body PET/CT datasets. Experimental
results demonstrate that incorporating the proposed LIP-loss in the network training
significantly improved the accuracy of the predicted l and yielded more accurate
quantification in the final attenuation corrected PET images compared with the con-
ventional training strategy using only the IM-loss.

2 Datasets

For this study, 220 whole-body, i.e., skull to feet, 18F‐FDG PET/CT scan data of
patients were acquired using a Siemens Biograph mCT 40 scanner. Based on careful
human-observer examination, i.e., visual comparison between k-MLAA/l-MLAA and
CT, 100 scans with minimal mismatch, i.e., body motion free, between the ground truth
l-CT and PET, were selected for training (N = 80) and testing (N = 20). The CTs for
the 100 selected scans were also without artifacts. All scans were performed *60 min
after intravenous injection of *10 mCi 18F‐FDG. The entire body of each patient with
arm-down position was scanned using the continuous bed motion protocol for *20
min. For MLAA, we used the same implementation as in [3] with 3 iterations by 21
subsets. Both k-MLAA and l-MLAA were originally reconstructed using 2 mm voxel
size followed by 5 mm Gaussian post-smoothing, and were further down-sampled to
4 mm. CT attenuation maps were generated using the Siemens e7 toolkit and down-
sampled to 4 mm voxel in width to save GPU memory in the later network training.
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3 Methods

3.1 Line-Integral Projection Loss (LIP-Loss) Function

The LIP-loss measures the line-integral difference between the image patch X of the
predicted l and the ground-truth patch Y of l-CT in the projection domain:

LLIP X; Yð Þ ¼ 1
NK

X
k2K

PNk
i¼1 PkX½ �i� PkY½ �i

� �2
Nk

ð1Þ

where K is the set of line-integral projection (LIP) angles, k is the index for the
projection angles, NK is the total number of angles in K; Pk is the LIP operator on the
image X and Y at the k-th angle, i is the pixel index in the projection domain and Nk is
the total number of pixels in the LIP PkX and PkY : Set K was designed such that NK

angles were uniformly sampled over 180°, i.e., K ¼ 0�; 45�; 90�; 135�f g in the case of
NK ¼ 4. In our implementation, we rotated the images (using bilinear interpolation)
and perform LIP at a single angle, instead of performing LIP at different angles. Note
that the LIP-loss can be easily back-propagated to update the weights in the network,
since the LIP operator Pk is a linear operation so that the loss function is differentiable.

In terms of loss function, the conventional IM-loss is constructed as

LIM X; Yð Þ ¼ LL1 X; Yð Þþ k1LGDL X; Yð Þ; ð2Þ

where LL1 is an L1-norm loss, which was reported [5, 6] to better preserve anatomical
structures than an L2-norm loss. LGDL is an image gradient difference loss defined as:

LGDL X; Yð Þ ¼ rXxj j � rYxj jj j2 þ rXy

�� ��� rYy
�� ���� ��2 þ rXzj j � rZzj jj j2; ð3Þ

where r is the gradient operator. LGDL is used to further discourage image blurring [7].
To enforce the additional similarity in the projection domain between the predicted

and ground-truth l-CT, the proposed LIP-loss (LLIP) was added to the IM-loss as:

LTOTAL X; Yð Þ ¼ LL1 X; Yð Þþ k1LGDL X; Yð Þþ k2LLIP X; Yð Þ; ð4Þ

where k1 and k2 are the weights for the LGDL and LLIP terms, respectively. The pro-
posed framework for the training phase is illustrated in Fig. 1. In this paper, we refer
the proposed method, i.e., training using LTOTAL, as line-integral projection enforced
deep learning method (LIPDL), and the conventional method, i.e., training using LIM ,
as deep learning method (DL).

3.2 Network Architectures

In this work, we used a modified version of the fully-convolutional U-net architecture
[8] for predicting the attenuation map from k-MLAA and l-MLAA. The network
operates on 3D patches and uses 3 � 3 � 3 convolution kernels. Different from the
original U-net, where 2 � 2 � 2 max pooling operations are used at the end of each
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stage, we reduced the resolution by using convolution operations with 2 � 2 � 2
kernels and stride 2 [9]. In addition, symmetric padding was applied to the input image
(and the feature maps in later layers) prior to the convolution operations to avoid
reducing the image (or feature map) sizes due to the convolution. This allows the
network’s output layer to have the same size as the input layer. Batch normalization
was applied after each convolutional layer and before the ReLU. Dropout with a rate of
0.15 was applied to the bottleneck layer of the U-net in the training phase to prevent
overfitting, however, was removed in the testing phase.

3.3 Image Preprocessing

Image normalization is a key pre-processing step for deep learning algorithms [10].
Unlike CT images, in which the image intensity (Hounsfield Unit, HU) represents
attenuation as relative to water and the intensity range is consistent across all the
patients, the PET image intensity represents the tracer uptake level. The use of stan-
dardized uptake value (SUV) in PET helps to normalize the tracer injection dose and
patient weight, however, the biological uptake range is intrinsically broad for FDG PET,
e.g., the contrast between brain and muscle can be 10:1, and even 100:1 between bladder
and muscle tissue. Additional image normalization is needed in order to obtain more
stable results. In this study, the k-MLAA images were normalized using knorm ¼
tanh k=rð Þ before training and testing, where k and knorm are the k-MLAA images (in
SUV) before and after normalization; r is a parameter controlling the range of the active
gradient zone of the hyperbolic tangent (tanh) function, which was empirically set to 5 to
ensure that the organs of interests, i.e., except bladder, are in the active gradient zone.
The l-CT and l-MLAA images were normalized by 0.15 cm−1, which corresponds to

Fig. 1. Proposed framework (training phase). Both image domain loss (IM-loss) and line-
integral projection loss (LIP-loss) are used to update the deep neural network.
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skull bone attenuation coefficient at 511 keV, to match the value range of knorm. The
normalized k-MLAA and l-MLAA were concatenated as a multi-channel image and
used as the input to the deep neural networks for training and testing.

3.4 Evaluation

In this study, 80 subjects were included in training, and 20 subjects were used for
evaluation. The predicted attenuation maps from the proposed LIPDL method (l-
LIPDL) were compared with those trained using only the image domain loss LIM (l-
DL) and l-MLAA, using the l-CT as the reference.

The quality of the predicted attenuation maps was evaluated regarding the nor-
malized mean absolute error (NMAE), the mean squared error (MSE), peak signal-to-
noise ratio (PSNR), structural similarity index (SSIM), line-integral normalized mean
absolute error (LINMAE) and line-integral mean squared error (LIMSE). The NMAE

was defined as NMAE ¼ P
x;y;z X x; y; zð Þ � Y x; y; zð Þj jÞ=ðN max Yð Þ �min Yð Þð Þ

� �
,

where X and Y present the predicted attenuation map and the reference CT-attenuation
map, max and min operators calculate the maximum and minimum intensities of the
reference image. N is the total number of voxels. The LINMAE and LIMSE
measure the error in line-integral projection domain. LINMAE was defined
as: LINMAE ¼ P

k2K
PNk

i¼1 ½PkXj �i� PkY½ �i =ðNk max PkYð Þ �min PkYð Þð Þj Þ� �
=NK.

The definition of LIMSE can be found in Eq. 1.
For each patient, 4 PET reconstructions, using the ordered subset expectation

maximization (3 iterations by 21 subsets, 5 mm Gaussian smoothing) algorithm, were
performed using l-LIPDL, l-DL, l-MLAA, and the ground-truth l-CT as the atten-
uation map, respectively. All the attenuation maps were resliced to 2 mm voxel in
width prior to the PET reconstructions. 2 mm voxel in width was used in PET
reconstruction. Using the PET reconstructed with l-CT as the reference, NMAE and
MSE were computed for l-LIPDL, l-DL and l-MLAA, respectively, on the entire
body as well as 5 anatomical regions: head, neck to chest, abdomen, pelvis and legs,
which correspond to the 0%–10%, 10%–30%, 30%–40%, 40%–50% and 50%-100%
segments of each patient.

4 Experimental Results

For both LIPDL and DL methods, we trained the networks for 80 epochs, respectively.
In each epoch, 40,000 32 � 32 � 32 patches were randomly sampled from the training
data and batch size of 16 was used for updating the network. The networks were trained
with the Adam optimizer. An initial learning rate of 10−3 was used, which was decayed
by a factor of 0.99 after each epoch. k1 and k2 were set to 1 and 0.02, respectively. In
the testing phase, to reduce the stitching artifacts caused by overlapping small image
patches, we used relatively a large patch size of 200 � 200 � 32 and stride size of
200 � 200 � 16 (i.e., no striding in the first 2 dimensions). We implemented our
framework using Tensorflow. The training takes about 40 h on an NVIDIA GTX 1080
Ti GPU.
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4.1 Attenuation Map Evaluation

Figure 2 shows one example of different attenuations maps. Qualitatively, both l-DL
and the proposed l-LIPDL yielded much less noisy attenuation maps as compared to
the l-MLAA, and visually, both l-DL and l-LIPDL are very similar to the l-CT.
However, l-LIPDL showed more consistent intestine cavity area (yellow arrow) than
the l-DL as compared to the l-CT. Note that the CT reconstruction artifacts in l-CT
(red arrow) were also removed in both l-DL and l-LIPDL.

Table 1 quantitatively shows that both l-DL and l-LIPDL yielded statistically
significant superior performance than the l-MLAAover all evaluation metrics (maxi-
mum p < 10−13). A paired t-test was used to evaluate statistical significance cross
subjects (N = 20). Interestingly, no significant difference was found between l-DL and
l-LIPDL when the conventional image domain quality metrics, i.e., MSE, PSNR and
SSIM, were used. Only 3% reduced error from l-DL to l-LIPDL was observed for
NMAE although it was statistically significant. In contrast, when the line-integral
domain quality metrics were used, large improvements in l-LIPDL were found as

Fig. 2. Visual comparison for the original l-CT, the l-MLAA, the predicted l-DL and l-
LIPDL. Improved intestine cavity area (yellow arrow) prediction can be seen in the proposed l-
LIPDL, as compared to the standard l-DL. Red arrow in the l-CT points at the CT
reconstruction artifacts (mild). The same gray-scale window is used for all images. (Color figure
online)

Table 1. Evaluation of the attenuation maps generated by three methods over 20 subjects using
the image domain quality metrics and the line integral projection (LIP) domain quality metrics.

Metric l-MLAA l-DL l-LIPDL

Image domain
quality metrics

NMAE 6.29% ± 1.16% 1.66% ± 0.25% 1.61% – 0.24%*
MSE 3.26E-4 ± 6.22E-5 3.20E-5 ± 9.24E-6 3.23E-5 ± 9.66E-6
PSNR 28.1 ± 1.06 38.2 ± 1.02 38.2 ± 1.06
SSIM 93.1% ± 0.007% 99.8% ± 0.0009% 99.8% ± 0.0008%

LIP domain
quality metrics

LINMAE 7.95% ± 1.10% 1.29% ± 0.24% 1.08% – 0.19%**
LIMSE 0.769 ± 0.144 0.024 ± 0.010 0.018 – 0.008**

mean ± STD, *indicates l-LIPDL and l-DL’s difference is significant (*: p < 10−5, **:
p < 10−8)
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compared to l-DL. Specifically, l-LIPDL yielded a 16.3% reduction in LIMAE and
33.3% reduction in LIMSE as compared to the l-DL. We note that for the PET
attenuation correction (AC) task, the line integral of l is used, therefore, an attenuation
map yielding lower line-integral error will provide superior performance in the AC task
than one with larger line-integral error. These results suggest that training with only the
conventional image domain loss might produce suboptimal results, since the image
domain loss cannot distinguish a better attenuation map, i.e., l-LIPDL, than a sub-
optimal attenuation map, i.e., l-DL, for the AC task.

4.2 Attenuation Correction Performance in PET Reconstruction

PET images corrected by l-LIPDL and l-DL yielded significantly lower NMAE and
MSE than those corrected by l-MLAA, respectively (maximum p < 10−3). Recon-
structed PET images corrected by the l-LIPDL yielded statistically significant lower
NMAE and MSE than those corrected by l-DL. As shown in Table 2, under both
metrics, the LIPDL-obtained results with substantially and significantly smaller errors
than DL on all the 5 body regions as well as on the whole body.

Table 2. Using PET images corrected by the l-CT as the reference, the NMAE and MSE of the
PET images corrected by l-MLAA, l-LIPDL and l-DL, respectively, were shown. Evaluations
were performed on 5 different anatomical regions as well as on the whole body.

AC method Head Neck/Chest Abdomen Pelvis Legs Whole-body

NMAE l-MLAA 21.4% 7.8% 9.4% 9.2% 8.5% 11.26%
l-DL 3.5% 4.2% 4.8% 4.4% 3.6% 4.1%
l-LIPDL 3.2%* 3.7%** 4.1%* 3.6%*** 3.2%** 3.6%***

MSE l-MLAA 1.3E-01 7.4E-03 1.2E-02 1.4E-02 3.3E-03 3.4E-02
l-DL 2.7E-02 3.5E-03 4.1E-03 7.7E-03 9.2E-04 8.7E-03
l-LIPDL 1.9E-02* 2.7E-03* 3.1E-03* 4.8E-03* 7.4E-04* 6.0E-03**

* indicates l-LIPDL and l-DL’s difference is significant (*: p < 10−2, **: p < 10−4, ***:
p < 10−6)

Fig. 3. (a) Coronal l-CT, (b) PET corrected by l-CT, (c) l-LIPDL, (d) PET corrected by l-
LIPDL and (e) line profile measured on PET images corrected by l-CT and l-LIPDL.
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4.3 Clinical Impact

Clinically, patient motion introduced mismatch between PET and CT that not only can
generate AC inaccuracy in the PET reconstruction, but also can result in scatter cor-
rection (SC) inaccuracy. Figure 3 shows a case that patient right arm moved sub-
stantially between CT (a) and PET (b). Such mismatch caused erroneous SC, which is
compounded with the AC artifact in the PET (dark area, arrows in (b)). l-LIPDL(c)
removed such mismatch and yielded stable SC in the PET reconstruction (d). Figure 3
(e) shows the line profile (dashed line in (b) and (d)) comparison between the PET
corrected by l-CT and l-LIPDL. High uptakes in the PET indicate bone metastasis.

5 Summary

We have proposed a novel line integral loss function which incorporates imaging
acquisition physics for PET attenuation map generation using deep learning. We
showed that by enforcing the image projection domain consistency while training the
deep neural networks, the generated attenuation maps perform significantly better for
the task of PET attenuation correction, compared with conventional training that
focuses solely on image domain consistency. In this study we used a modified version
of U-net to demonstrate the effectiveness of the proposed training strategy, although the
proposed method can be applied with any other neural networks. At the point of writing
this paper, we empirically set the weight of the proposed line integral loss to 0.02 and
obtained substantial improvement, we anticipate that fine tuning this parameter in the
future could further improve the results. Furthermore, the proposed method is not only
applicable to PET-CT image synthesis, but also to MRI-CT synthesis (for PET/MRI
systems) for the purpose of generating attenuation maps.
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