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Abstract. In fully sampled cardiac MR (CMR) acquisitions, motion
can lead to corruption of k-space lines, which can result in artefacts in
the reconstructed images. In this paper, we propose a method to auto-
matically detect and correct motion-related artefacts in CMR acquisi-
tions during reconstruction from k-space data. Our correction method is
inspired by work on undersampled CMR reconstruction, and uses deep
learning to optimize a data-consistency term for under-sampled k-space
reconstruction. Our main methodological contribution is the addition of
a detection network to classify motion-corrupted k-space lines to convert
the problem of artefact correction to a problem of reconstruction using
the data consistency term. We train our network to automatically cor-
rect for motion-related artefacts using synthetically corrupted cine CMR
k-space data as well as uncorrupted CMR images. Using a test set of 50
2D+time cine CMR datasets from the UK Biobank, we achieve good
image quality in the presence of synthetic motion artefacts. We quanti-
tatively compare our method with a variety of techniques for recovering
good image quality and showcase better performance compared to state
of the art denoising techniques with a PSNR of 37.1. Moreover, we show
that our method preserves the quality of uncorrupted images and there-
fore can be also utilized as a general image reconstruction algorithm.

Keywords: Cardiac MR · Image reconstruction · Motion artefacts ·
UK Biobank · Convolutional neural networks

1 Introduction

Ensuring high image quality is essential for image analysis pipelines to extract
clinically useful information. Misleading diagnoses can be made when the original
data are of low quality, in particular for cardiac magnetic resonance (CMR)
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imaging, where cardiac indices are extracted using post-processing techniques
including segmentation and registration. CMR images can contain a range of
image artefacts [1], which can reduce the accuracy of image analysis. Improving
the quality of such images acquired on MR scanners is a challenging task.
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Fig. 1. Detection and correction of MR artefacts using predicted data consistency
masks.

One approach for correcting artefacts is image reconstruction using deep neu-
ral networks. In deep learning based reconstruction of accelerated (i.e. undersam-
pled) CMR, a pre-determined k-space acquisition trajectory is used and those
parts of k-space that have not been sampled are estimated using an inverse prob-
lem formulation to reconstruct the image [13]. A different, but related problem
exists in fully sampled acquisitions that have been corrupted by motion arte-
facts, for example due to mis-triggering or arrythmias. In these cases, the data
contain correct k-space lines as well as corrupted lines, but it is unknown which
are correct and which are corrupted. This problem is our focus in this paper but
we draw inspiration from work on accelerated imaging in devising our solution.

We propose a k-space artefact detection network that generates an individual
data consistency term for any given acquisition and converts the image artefact
correction task to an undersampled image reconstruction problem, which is sub-
sequently addressed by an algorithm developed for reconstruction of undersam-
pled CMR acquisitions (see the illustration in Fig. 1). Our proposed method is
evaluated using 300 cine SSFP (2D+time) CMR datasets from the UK Biobank.

The major contributions of this work are as follows: First, we introduce a
novel solution for the detection of artefacts in CMR images. Second, we use the
output of this k-space artefact detection network to introduce a data consis-
tency term to be used by an image reconstruction network. By training both
networks end-to-end we are able to ignore motion corrupted k-space lines during
the reconstruction. Finally, our algorithm is trained and tested also on uncor-
rupted images, which demonstrates its utility as a generic image reconstruction
algorithm.
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2 Background

Deep learning has recently shown great promise in reconstruction of highly
undersampled MR acquisitions with convolutional neural networks (CNNs)
[4,12,13]. For example, Schlemper et al. [13] proposed to use a deep cascaded
network to generate high quality images, and Hauptmann et al. [3] proposed to
use a residual U-net to reduce aliasing artefacts due to undersampling with the
purpose of accelerating image acquisition.

For automatic correction of CMR, Lotjonen et al. [7] used reconstructed
short-axis and long-axis slices to optimise the locations of the slices using mutual
information as a similarity measure. Estimating high quality images from cor-
rupted (or under-sampled) k-space has been a well investigated subject in the
literature [2]. The problem can be addressed either in the k-space domain or the
image domain. One choice is to correct the k-space before applying the inverse
Fourier transform (IFT) as proposed by Han et al. [2]. A more common app-
roach is to use the IFT on k-space and learn a mapping between the corrupted
reconstructed images and good quality images. To this end, a variety of image
denoising techniques can be utilized such as autoencoders [15], residual learning
networks [16] or wide networks [6]. Zhu et al. [17] proposed an end-to-end image
reconstruction approach (Automap) for MR and evaluated it on undersampled
k-space data.

3 Methods

Our network architecture consists of two sub-networks that are trained jointly
as visualized in Fig. 2. The first network is an artefact detection network which
is used to identify potentially corrupted k-space lines and hence define a data-
consistency term. and the second network is a recurrent convolutional neural
network (RCNN) used for reconstruction using this data-consistency term [12].
Details of both networks are provided below.

3.1 Network Architecture

The proposed artefact detection CNN consists of eight layers The architecture of
our network follows a similar architecture to [14], which was originally developed
for video classification using a spatio-temporal 3D CNN. In our case we use
the third dimension as the time component and use 2D+time mid-ventricular
sequences as the input to the network. Each image sequence has 50 time frames.
The network has 4 convolutional layers and 4 pooling layers, 1 fully-connected
layer and a softmax loss layer to predict corrupted k-space lines. After each
convolutional layer, a ReLU activation is used. We then apply pooling on each
feature map to reduce the filter responses to a lower dimensionality. We apply
dropout with a probability of 0.2 at all convolutional layers and after the first
fully connected layer for regularization. All of these convolutional layers are
applied with appropriate padding of 2 and stride of 1.
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Fig. 2. The CNN architecture for motion artefact correction. The proposed network
architecture consists of two building blocks (1) A corrupted k-space line detection
network to define the data-consistency term; (2) A recurrent neural network (RCNN)
architecture to correct image artefacts.

The reconstruction network features a RCNN architecture [12]. This network
reconstructs high quality cardiac MR images from highly undersampled k-space
data by jointly exploiting the dependencies of the temporal sequences as well as
the iterative nature of traditional optimisation algorithms. In addition, spatio-
temporal dependencies are simultaneously learned by exploiting bi-directional
recurrent hidden connections across time sequences. Any reconstruction network
can replace this network in our architecture. We chose this particular network for
its capability to incorporate information from different frames, which is instru-
mental in correcting the artefacts that occur due to displacement of k-space lines
in time.

3.2 Loss Function and Training

Our training objective is a linearly weighted combination of the image recon-
struction loss and a cross-entropy loss for the detection of corrupted lines:

Ltotal = λLdetection + (1 − λ)Lreconstruction

The reconstruction loss is computed using the mean square error, defined as:

Lreconstruction =
1

Np

Np∑

p=0

(Ix(p) − Iy(p))2

where p denotes each pixel and Np denotes the total number of pixels in images
Ix and Iy. The detection loss is the cross entropy loss, defined as:

Ldetection(pr, y) =
1
Nl

− (y log(pr) + (1 − y) log(1 − pr))
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where y is a binary indicator (0 or 1) indicating if a k-space line is corrupted
or not and pr is predicted probability of the line being uncorrupted. Np denotes
the total number of k-space lines in an image.

We used the Adam optimizer to minimise the binary cross entropy and mean
square error loss function. λ, which defines the contribution of each loss was set to
0.3 using the validation set. The cross entropy term represents the dissimilarity
of the predicted output distribution to the true distribution of labels after a
softmax layer. The detection and reconstruction networks were pre-trained for
50 epochs separately to enable faster convergence. End-to-end training ended
when the network did not significantly improve its performance on the validation
set for a predefined number of epochs (100). An improvement was considered
sufficient if the relative increase in performance was at least 0.5%.

During training, a batch-size of 5 2D+time sequences was used. The momen-
tum of the optimizer was set to 0.90 and the learning rate was 10−4. The param-
eters of the convolutional and fully-connected layers were initialised randomly
from a zero-mean Gaussian distribution. In each trial, training was continued
until the network converged. Convergence was defined as a state in which no sub-
stantial progress was observed in the training loss. We used Pytorch for imple-
mentation of the network and training took around 3 h on a NVIDIA Quadro
P6000 GPU. After training, deployment of the network to correct a single image
sequence took less than 1 s.

4 Experimental Results

We evaluated our algorithm on a subset of the UK Biobank dataset containing
300 datasets each consisting of 50 2D+time good quality cine CMR acquisitions
at a mid-ventricular short axis slice. From each subject, the 50 temporal frames
were used to generate synthetic motion artefacts. We used 200 datasets for train-
ing, 50 for validation and 50 for testing. The total of 300 subjects were chosen
to be free of other types of image quality issues, such as missing axial slices, and
were visually verified by an expert cardiologist for sufficient image quality. The
details of the acquisition protocol of the UK Biobank dataset can be found in
[11].

Data Preprocessing: Given a 2D+time cine CMR sequence of images we first
normalise the pixel values between 0 and 1. Since the image dimensions vary
from subject to subject, instead of image reshaping we use a motion information
based ROI extraction to 64 × 64 pixels [5]. Briefly, the ROI is determined by
performing a Fourier analysis of the sequences of images, followed by a circular
Hough transform to highlight the center of periodically moving structures.

K-space Corruption for Synthetic Data: We generated k-space corrupted
data in order to simulate motion artefacts. We followed a Cartesian sampling
strategy for k-space corruption to generate synthetic but realistic motion arte-
facts [8,10]. We retrospectively transformed each 2D short axis sequence to the
Fourier domain and changed a number (0, 2, 4, 8, 16) of Cartesian sampling k-
space lines to the corresponding lines from other cardiac phases to mimic motion
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artefacts. These lines were selected randomly in order to mimic the randomness
of real motion artefacts. The newly introduced k-space lines were also selected
randomly from all other frames in the image sequence. In this way CMR images
with artefacts were generated from the original ‘good quality’ images in the
training set. This is a realistic approach as the motion artefacts that occur from
mis-triggering arise from similar displacement (in time) of an arbitrary set of
k-space lines.

Methods of Comparison: We compared our algorithm to a variety of classes
of artefact correction strategy as outlined in Sect. 2. For image-to-image to arte-
fact removal (i.e. post-reconstruction), we used a deep network based on residual
learning (DNCNN) as well as a wide network with larger receptive fields and
more channels in each layer as proposed in [6] (WIN5). We also compared our
method to a reconstruction algorithm that uses an end-to-end correction method-
ology [9] (Automap-GAN) based on Automap [17]. Additionally, we compared
our approach to its variants: (1) training detection and reconstruction networks
separately (Proposed-separate); and (2) considering the corruption mask as a
pre-determined mask to illustrate the top performance achievable in this setup
(Proposed-known mask).

Table 1. Mean image quality results of image quality correction for motion artefacts for
corrupted and uncorrupted inputs. Uncorrupted results use the correct k-space as input
and indicates the potential of our method to be used as a global image reconstruction
framework.

Methods Corrupted Uncorrupted

PSNR RMSE SSIM PSNR RMSE SSIM

Baseline 26.3 0.068 0.821 – – –

DNCNN [16] 30.8 0.049 0.845 36.7 0.005 0.905

Win5 [6] 32.2 0.041 0.853 37.2 0.004 0.913

Automap-GAN [9] 34.8 0.028 0.878 38.7 0.003 0.927

Proposed-separate 34.7 0.026 0.879 39.3 0.003 0.947

Proposed-end to end 37.1 0.023 0.890 40.8 0.002 0.972

Proposed-known Mask 38.9 0.019 0.901 – – –

Quantitative Results: Table 1 shows the image quality metrics for the cor-
rected images produced by each image artefact correction algorithm for cor-
rupted and original images. For these experiments the ground truth was the
uncorrupted original 2D+time image sequence and we use peak signal to noise
ratio (PSNR), root mean square error (RMSE) and structural similarity index
metric (SSIM) for evaluation. The proposed end-to-end k-space detection and
correction algorithm outperforms the other methods. As can be appreciated, the
joint end-to-end network performs better compared to separate training of both
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architectures. Compared to the image-to-image denoising techniques (Win5,
DNCNN), k-space based correction (Automap-GAN) results in improved recon-
structions of the images. We have also shown results on using original images as
input to illustrate the capability of our method as a general image reconstruc-
tion algorithm. Our method outperforms the other state of the art techniques
and does not diminish the image quality of the original k-space thanks to the
detection network. Baseline and proposed-known mask methods provide perfect
image quality in case of uncorrupted images and therefore omitted.

Original Win5 Automap-GAN Proposed

Fig. 3. The results produced by Win5 (second column), Automap-GAN (third column)
and proposed algorithm (final column). In the first column, the top row shows the
corrupted image and the bottom row shows the corresponding uncorrupted image. It
is evident from the difference images in the bottom row that image quality is recovered
at the septum using proposed method.

Qualitative Results: In Fig. 3 we illustrate the performance of our technique
on artefact correction in comparison to the top state-of-the-art techniques [6,9].
The difference image shows improved image quality with the proposed technique,
especially in the left ventricular and right ventricular regions and with regard
to the sharpness of the myocardial boundaries. These results demonstrate that
the network reduced the impact of k-space corruption on reconstruction quality,
as the (beating) ventricles and their myocardial borders are mostly affected by
such corruption.

5 Discussion and Conclusion

In this paper, we have proposed a CNN-based technique for correcting motion-
related artefacts in a large 2D+time CINE CMR dataset. We have addressed
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the issue of incorrect k-space lines using a combined architecture to detect, cor-
rect and reconstruct images. The proposed network clearly outperforms compet-
ing algorithms. Moreover, the current architecture can also be used as a global
image reconstructor, as we have shown that it does not diminish the quality of
uncorrupted images, compared to the original reconstruction performed on the
scanner.

We have shown for the first time that a 3D CNN based neural network
architecture is capable of classifying k-space lines that cause motion artefacts.
Our work brings fully automated assessment of ventricular function from CMR
imaging a step closer to clinically acceptable standards, enabling reconstruction
of high quality images from data containing artefacts in order to enable their
analysis in large imaging datasets such as the UK Biobank. In future work, we
plan to validate our method on the entire UK Biobank cohort, which is eventually
expected to be 100,000 CMR images.
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