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Abstract. Assessing coronary artery plaque segments in coronary CT
angiography scans is an important task to improve patient management
and clinical outcomes, as it can help to decide whether invasive investiga-
tion and treatment are necessary. In this work, we present three machine
learning approaches capable of performing this task. The first approach is
based on radiomics, where a plaque segmentation is used to calculate var-
ious shape-, intensity- and texture-based features under different image
transformations. A second approach is based on deep learning and relies
on centerline extraction as sole prerequisite. In the third approach, we
fuse the deep learning approach with radiomic features. On our data the
methods reached similar scores as simulated fractional flow reserve (FFR)
measurements, which - in contrast to our methods - requires an exact
segmentation of the whole coronary tree and often time-consuming man-
ual interaction. In literature, the performance of simulated FFR reaches
an AUC between 0.79–0.93 predicting an abnormal invasive FFR that
demands revascularization. The radiomics approach achieves an AUC of
0.84, the deep learning approach 0.86 and the combined method 0.88 for
predicting the revascularization decision directly. While all three pro-
posed methods can be determined within seconds, the FFR simulation
typically takes several minutes. Provided representative training data in
sufficient quantities, we believe that the presented methods can be used
to create systems for fully automatic non-invasive risk assessment for a
variety of adverse cardiac events.
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1 Introduction

Cardiovascular diseases (CVDs) have persisted to be the leading cause of death
across all developed countries [10]. Most CVDs are related to atherosclerotic
plaques in the associated arteries [11]. Two types of high risk plaque segments
exist: functionally significant plaques, which narrow the lumen and immediately
lead to cardiac ischemia, and vulnerable plaques, which can rupture and cause
thrombus formation and adverse coronary syndromes (ACS) such as stroke or
cardiac infarction.

The reference standard measure to judge whether a plaque segment is func-
tionally significant and the corresponding vessel needs to be revascularized is
the fractional flow reserve (FFR) value. FFR is defined as the pressure after a
lesion relative to the pressure before the lesion, and is measured invasively [3]. As
interventional procedures involving the heart have the risk of inducing adverse
cardiac events, a non-invasive assessment of the type of plaque for further patient
selection is highly desirable. A non-invasive approach for this task is simulated
FFR, which aims to simulate the FFR values from coronary computed tomo-
graphy angiography (CCTA) data using a fluid dynamics approach [14], which
requires an exact segmentation of the whole coronary tree and computational
mesh generation [16]. Sufficient segmentation quality can often only be achieved
with time-consuming manual interaction.

Previously, radiomics have been proposed to represent quantitative image
information which is inherent in the data but hard to interpret for human read-
ers [8]. They include multiple intensity-, texture-, shape- and transformation-
based metrics extracted from a lesion segmentation and have been shown to
be able to characterize coronary plaques [6]. More recently, deep learning has
been investigated to detect lesions with a high stenosis degree and to catego-
rize the calcification grade of coronary plaques using a recurrent convolutional
neural network (RCNN) [18]. In their work, they first extract multi planar refor-
matted (MPR) slices orthogonally to each centerline point. Next, they cut the
resulting image stack into multiple overlapping cubes from which features are
extracted using a 3D convolutional neural network (CNN). Finally, classification
is achieved using a sequence analysis network.

In this work, we propose a fully automatic method to directly predict the clin-
ical decision of revascularization based on single plague segments. We investigate
three machine-learning approaches for classification: radiomic feature analysis,
deep learning and a combination of both. For the first variant, radiomic fea-
tures are extracted from each vessel segment based on the vessel segmentation
in the region of interest. Contrary to the approach in [6], we do not perform data
mining since it neglects cross-feature correlations. Instead, we train a bagging
classifier, namely the XGBoost algorithm [1], which automatically detects rele-
vant features and uses all information from the features. For the deep learning
approach, we extend the approach presented in [18] by improving the data repre-
sentation using a transformation of the image stack into a cylindrical coordinate
system which allows for a more effective training of the network and reduce
the risk of overfitting by using 2D instead of 3D convolutions. Thirdly, we pro-
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pose a novel combination of both aforementioned approaches. After extracting
a sequence of cubes along the centerline, we calculate the radiomic features of
each cube using a plaque segmentation mask extracted a priori. The resulting
sequence of radiomic features is then recombined with a multi-layer perceptron
(MLP) and subsequently analyzed using a sequence analysis network based on
gated recurrent units (GRUs). We evaluate all variants on CCTA scans of 95
patients with a total of 345 plague segments using ten-fold cross validation and
compare our results with simulated FFR.

2 Data

The data collection contains CCTA scans of 95 patients taken within a time span
of 2 years with the same system. The decision for revascularization or further
invasive assessment was based on different clinical indications, e.g., functional
tests including cardiac stress MRI or MIBI SPECT, and was made by trained
cardiologists. In some cases, identification of culprit lesions was additionally
based on ECG abnormalities if these indicated a bad perfusion of a specific
part of the heart muscle. In total, the data contained 345 lesions, which were
annotated by defining their start and end centerline point and segmenting their
inner and outer vessel wall using a fully automatic approach [9]. For all data
sets, automatic centerline extraction was performed as described in [17]. For each
main branch of the coronaries a label indicated whether it was revascularized
or not. To obtain reliable labels on the segment level, we propagated a positive
revascularization decision only to the segment with the highest stenosis grade. In
order to allow for an comparison with the results in [18], we additionally assessed
for all segments whether the stenosis grade was below or above 50%. With this
procedure 85 (24.64 %) lesions were labeled as having a high stenosis grade and
93 (26.97 %) as requiring revascularization.

3 Methods

3.1 Radiomic-Based Classification

As mentioned, a multitude of shape-, intensity- and texture-based features is
extracted under different image transformations from the lesion segmentation as
radiomics. A detailed description of all radiomic features can be found in [7]. The
extracted feature vector has a high dimensionality. Therefore, direct classification
is hard to achieve due to the curse of dimensionality. To overcome this we used
the XGBoost classifier [1], which calculates its prediction based on an ensemble
of decision trees while minimizing a loss function based on the total ensemble
prediction. Since new leaves are added based on greedy search, only relevant non-
redundant features are selected during training. Features were calculated using
the open source PyRadiomics library [5] selecting all possible features under all
transformations.



596 F. Denzinger et al.

3.2 Deep Learning-Based Classification

The second approach is based on deep learning and can be separated into sev-
eral steps: data extraction, local feature extraction and sequence analysis. An
overview of the workflow is shown in Fig. 1. First, MPR slices are extracted
orthogonally to each point of the centerline in the segment. Then, the result-
ing image stack is cut into multiple overlapping cubes. The extracted cubes are
transformed to polar coordinates to allow for a better representation for the
neural network. The motivation behind this lies in the assumption that features
that characterize lesions are formed radially to the centerline and vary along the
centerline direction. The slices of each transformed cube are then used as input
to a 2D-CNN that performs a slice-wise feature extraction. This is followed by
1 × 1 convolutions in centerline direction that recombine and fuse the informa-
tion across a cube to perform a local feature extraction. The architecture of the
feature extraction network is depicted in Fig. 2, alongside the 3D-CNN network
proposed in [18] that we evaluate for comparison. To obtain a final classifica-
tion, we perform a sequence analysis using a two layer recurrent neural network
(RNN) using gated recurrent units [2] on the features extracted from the cubes
with the centerline direction as “temporal” dimension. Based on the assumption
that information about the plaque composition is contained in both directions
of the centerline, we perform the sequence analysis in a bidirectional fashion.

Feature
Extraction

Feature
Extraction

Feature
Extraction

Feature
Extraction

Feature
Extraction

Sequence Analysis

Classification

Fig. 1. Algorithm overview: extraction of a sequence of cubes along the centerline is
followed up by a feature extraction method – either with a convolutional neural network
or the PyRadiomics module. The resulting sequence of features is then analyzed by a
sequence analysis neural network.
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Fig. 2. Feature extraction model overview: (a) model as described in [18]. (b) our
proposed model. * denotes a slice-wise operation, and fmp denotes fractional max
pooling [4], which allows a pooling size smaller than 2 which enables feature extraction
from intermediate scales.

3.3 Combined Approach

A common way to train neural networks with a limited amount of data is to
use pretrained models, which comprise relevant image features already learned
on different data sets. However, this is difficult when dealing with medical data,
since data of different organs, modalities and use cases are often not correlated
and three-dimensional. To overcome this, non-deep learning feature extraction
methods can be used and combined with deep learning. Therefore, we combine
the above mentioned radiomic and deep learning approaches. Again, the vessel
was sliced in a sequence of overlapping volume cubes, but now the feature extrac-
tion was performed using the PyRadiomics library and the vessel segmentation
of the plaque segment. Since preliminary experiments suggested the shape-based
feature group to be the most important for estimating both the revasculariza-
tion decision and the stenosis degree, we focused on these features. The resulting
sequence of radiomic feature vectors was further evaluated using a three layer
MLP before analyzing the sequence with bidirectional GRUs.

4 Experiments and Results

We evaluate the proposed approach for binary stenosis grade classification (high-
degree stenosis > 50%, low-degree stenosis < 50%) to allow for a direct compar-
ison with [18] and for the prediction of clinical revascularization decisions. For
all experiments, evaluations were performed using ten-fold cross validation with
patient-wise stratified splitting. For the neural network based methods, 20% of
the training data was set aside as validation set in each fold. For each fold, the
networks were trained for 50 epochs and the model that performed best on the
validation set was selected for evaluation on the test set. For the CNN-based
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Table 1. Evaluation results for stenosis degree prediction on lesion-level. The results
in the first row are copied from [18].

Model/metric AUC Acc F1 PPV NPV Sens Spec MCC

3D-RCNN [18] (orig data) – 0.94 0.64 0.65 0.97 0.63 0.97 0.60

3D-RCNN [18] (our data) 0.89 0.85 0.67 0.58 0.94 0.79 0.86 0.59

2D-RCNN+ polar transform 0.86 0.87 0.64 0.68 0.91 0.60 0.93 0.56

Radiomics + XGBoost 0.89 0.84 0.69 0.69 0.90 0.68 0.90 0.58

Radiomics + GRUs 0.96 0.92 0.95 0.94 0.82 0.96 0.75 0.74

methods, data augmentation was performed in form of random rotation, mirror-
ing along the x-axis, translation and additive Gaussian noise, and we resampled
the data during batch generation to achieve class balance. In order to normalize
our data, histogram equalization was performed for each approach before fea-
ture extraction. To evaluate our approaches, we computed the area under the
receiver operating characteristic curve (AUC), accuracy (Acc), F1-score, positive
predictive value (PPV), negative predictive value (NPV), sensitivity, specificity
and the Matthews correlation coefficient (MCC).

4.1 Stenosis Grade Classification

The classification results of the stenosis grade classification for the proposed
methods and the 3D-CNN approach proposed in [18] are shown in Table 1. Com-
pared to the results reported in [18], the performance of the 3D-RCNN approach
on our dataset is lower. The main reason for this is likely the size of the respec-
tive data set, which was much smaller in our case. The proposed 2D-RCNN
and radiomics approach achieved results on par with the 3D-RCNN. However,
our combined approach outperformed all three other methods by a large margin
(AUC 0.96 vs. 0.89 for 3D-RCNN/Radiomics+XGBoost and 0.86 for 2D-RCNN).

4.2 Classification of Revascularization Decision

The metrics for the revascularization prediction can be seen in Table 2. Since
there exists a lot of variance with respect to the reference standard simulated

Table 2. Evaluation results for revascularization decision prediction on lesion-level.

Model/metric AUC Acc F1 PPV NPV Sens Spec MCC

Simulated FFR best [13]a 0.93 0.86 – 0.61 0.95 0.84 0.86 –

Simulated FFR worst [12]a 0.79 0.69 – 0.56 0.84 0.61 0.89 –

3D-RCNN [18] (our data) 0.80 0.76 0.55 0.45 0.91 0.72 0.77 0.42

2D-RCNN+ polar transform 0.84 0.82 0.57 0.60 0.88 0.54 0.91 0.46

Radiomics + XGBoost 0.86 0.86 0.62 0.69 0.89 0.56 0.94 0.54

Radiomics + GRUs 0.88 0.87 0.92 0.90 0.74 0.95 0.61 0.60
aSimulated FFR is compared to abnormal invasive FFR instead of revascularization
decision
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FFR, we compare our approaches to the best [13] and worst [12] results reported
in the review paper of [15]. Note that simulated FFR is compared to an abnor-
mally high invasive FFR value rather than the revascularization decision in the
referenced publications, with both targets being highly correlated. The exper-
iments in [12,13] were performed on different non-publicly available data sets.
Comparing the two RCNN networks, our proposed method performed slightly
better. This indicates that features other than the stenosis degree are relevant
for the revascularization decision, and that transforming the image data into
the polar space was beneficial. The radiomics approach outperformed both deep
learning methods, while our combined approach again performed best.

5 Discussion and Conclusion

Identifying functionally significant stenosis in a non-invasive setup is an impor-
tant task to improve clinical outcomes. We presented and compared three
machine-learning methods for the prediction of stenosis degree and clinical revas-
cularization decision based on CCTA scans: Radiomics combined with boosting
trees, a convolutional recurrent neural network, and an approach that combines
shape-based radiomics and recurrent neural networks. We were able to show
that all methods were able to differentiate stenosis grade > 50% and < 50%,
and reliably identify plaque lesion that were later revascularized. Across both
tasks, the combined approach performed best, also compared to results reported
in literature. The combined approach comes at a cost of a higher computation
time of up to 2 s compared to only milliseconds for the RCNN approaches and
requires a prior segmentation of the vessel lumen in the region of the plague
segment. Still, the additional computation time does not pose a clinical limita-
tion and the lumen segmentation is easily obtainable in an automated fashion.
In contrast to this, simulated FFR requires an exact segmentation of the whole
coronary tree and computation times of several minutes. For classification of
revascularization, we showed that the performance of the proposed methods lies
well within the range of prediction performance obtained by FFR simulation in
literature. Given data with appropriate annotations, we believe that our methods
would also perform well in identifying so-called culprit lesions that cause adverse
cardiac events. Interestingly, the performance difference between the combined
approach and the RCNN methods leads to the conclusion that extracting the
shape-based features is highly relevant for differentiating lesions, but is harder
to achieve for a completely data driven CNN-based feature extractor and may
require a larger training data set. If only limited data is available, the combined
approach proposed here seems to be promising, as predefined features and data-
driven learning are fused. A limitation of the current study is that no simulated
FFR values for the data set under investigation were available, which will be sub-
ject of future work. Additionally, the results will be validated on additional data
collections that also include the invasive FFR measurements for comparison.
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Disclaimer. The methods and information here are based on research and are
not commercially available.
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