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Abstract. Deep learning techniques are often criticized to heavily
depend on a large quantity of labeled data. This problem is even more
challenging in medical image analysis where the annotator expertise is
often scarce. We propose a novel data-augmentation method to regular-
ize neural network regressors that learn from a single global label per
image. The principle of the method is to create new samples by recom-
bining existing ones. We demonstrate the performance of our algorithm
on two tasks: estimation of the number of enlarged perivascular spaces
in the basal ganglia, and estimation of white matter hyperintensities
volume. We show that the proposed method improves the performance
over more basic data augmentation. The proposed method reached an
intraclass correlation coefficient between ground truth and network pre-
dictions of 0.73 on the first task and 0.84 on the second task, only using
between 25 and 30 scans with a single global label per scan for training.
With the same number of training scans, more conventional data aug-
mentation methods could only reach intraclass correlation coefficients of
0.68 on the first task, and 0.79 on the second task.

1 Introduction

Deep learning techniques are getting increasingly popular for image analysis
but are often dependent on a large quantity of labeled data. In case of medical
images, this problem is even stronger as data acquisition is administratively
and technically more complex, as data sharing is more restricted, and as the
annotator expertise is scarce.

To address biomarker (e.g. number or volume of lesions) quantification, many
methods propose to optimize first a segmentation problem and then derive the
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target quantity with simpler methods. These approaches require expensive voxel-
wise annotations. In this work, we circumvent the segmentation problem by opti-
mizing our method to directly regress the target quantity [1–5]. Therefore we
need only a single label per image instead of voxel-wise annotations. Our main
contribution is that we push this limit even further by proposing a data augmen-
tation method to reduce the number of training images required to optimize the
regressors. The proposed method is designed for global image-level labels that
represent a countable quantity. Its principle is to combine real training samples
to construct many more virtual training samples. During training, our model
takes as input random sets of images and is optimized to predict a single label
for each of these sets that denotes the sum of the labels of all images of the set.
This is motivated by the idea that adding a large quantity of virtual samples
with weaker labels may reduce the over-fitting to training samples and improve
the generalization to unseen data.

1.1 Related Work

Data augmentation can act as a regularizer and improve the generalization per-
formance of neural networks. In addition to simple data-augmentations such
as rotation, translation and flipping, the authors of Unet [6] stress for instance
that random elastic deformations significantly improved the performance of their
model. Generative adversarial networks have for instance also been used to gen-
erate training samples, and hence reduce the over-fitting [7].

Recently, data augmentation methods using combinations of training sam-
ples have been published. Zhang et al. [8] proposed to construct virtual training
samples by computing a linear combination of pairs of real training samples.
The corresponding one-hot labels are summed with the same coefficients. The
authors evaluated their method on classification datasets from computer vision
and on a speech dataset, and demonstrate that their method improves the gener-
alization of state-of-the-art neural networks. Simultaneously, Inoue et al. [9] and
Tokozume et al. [10] reached similar conclusions. In case of grayscale volumetric
inputs, summing image intensity values could overlay the target structures, con-
fuse discriminative shapes, and thus harm the performance of the network. With
our method, training samples can be combined without overlaying the intensity
values. The other difference with the above-mentioned approaches is that our
method is also not designed for classification, but for regression of global labels,
such as volume or count in an image. With the proposed combination of samples,
our method computes plausible augmentation.

2 Methods

The principle of the proposed data augmentation method is to create many new
(and weaker) training samples by combining existing ones (see Fig. 1). In the
remainder, the original samples are called real samples, and the newly created
samples are called virtual samples.
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2.1 Proposed Data Augmentation.

During training, the model is not optimized on single real samples I with label

y, but on sets S of n random samples I1, I2, ..., In with label ys =
n∑

i=1

yi, with

yi the label of sample Ii. These sets S with labels ys are the virtual samples.
Consequently, the loss function L is computed directly on these virtual samples
S and not anymore the individual real samples Ii. This approach is designed for
labels describing a quantitative element in the samples, such as volume or count
in an image.

Fig. 1. Creating virtual training samples by recombining real training sam-
ples for regression tasks. The real training samples are displayed on the left, and
the virtual samples on the right. The label is indicated under each sample, and cor-
responds to the number of white blobs. By recombining samples, we can significantly
increase the size of the training dataset. For example, by recombining the real samples
with labels 3 and 2, we can create a new sample with label 5 (arrows). All possible
combinations are shown in blue. For the illustration, we show only combinations of two
samples, but any number of samples can be combined. In our experiments, we used
combinations of maximum 4 samples. (Color figure online)

To create the sets S, the samples Ii are drawn without replacement from
the training set at each epoch. To create more combinations of samples, and to
allow the model to use the real samples for its optimization, the size of the sets
S can randomly vary in {1, n} during training. If the training set contains m

samples, with our method, we can create
n∑

i=1

(
m
i

)
possible different combinations

(the order of the samples Ii in S has no effect on the optimization).

Difference with Mini-batch Stochastic Gradient Descent (SGD). In mini-batch
SGD, the model is also optimized on sets of random samples, but the loss function
L is computed individually for each sample of the batch, and then summed
(averaged). For the proposed method, the predictions are first summed, and the
loss function is then computed a single time. For non-linear loss functions, this
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is not equivalent:
n∑

i=1

L(ŷi, yi) �= L(
n∑

i=1

ŷi,
n∑

i=1

yi), with ŷi the model’s prediction

for sample Ii.

Regularization Strength. The regularization strength can usually be modulated
by at least one parameter, for instance the degree of rotation applied to the
input image, or the percentage of neurons dropped in Dropout [14]. In the pro-
posed method, the regularization effect can be controlled by varying the average
number of samples used to create combinations.

2.2 Implementation

We optimize a regression neural network with a 3D image for input, and global
label representing a volume or count for output. There are at least two possible
implementations of the proposed method. The first implementation could consist
of modifying the computation of the loss function across samples in a mini-batch,
and provide mini-batches of random size. Alternatively the model’s architecture
could be adapted to receive the set of images. We opted for the second approach.

Base Regressor. Figure 2 left shows the architecture of the base regression neu-
ral network. It is both simple (196 418 parameters) and flexible to allow fast
prototyping. There is no activation function after the last layer. The output ŷ
can therefore span R and the network is optimized with the mean squared error
(MSE). We call this regression network f , such that f(x) = ŷ, with x the input
image.

Combination of Samples. To process several images simultaneously, we replicate
n times the regressor f during training (Fig. 2 right), resulting in n different
branches f1, f2, ..., fn that receive the images I1, I2, ..., In. The weights of each
head fi are shared such that fi = f . A new network g is constructed as:

g(S) = g(I1, I2, ..., In) =
n∑

i=1

fi(Ii) =
n∑

i=1

f(Ii) =
n∑

i=1

ŷi. (1)

To allow the size of the sets S to randomly vary in {1, n} during training,
each element of S has a chance p to be a black image B of zero intensities only
(Fig. 1 right column). With f(B) = 0, the following situation becomes possible:

g(S) = f(Ij) +
n∑

i=1,i �=j

fi(B) = f(Ij) + (n − 1)f(B) = f(Ij). (2)

For this implementation, the batch size b has to be a multiple of the number
of branches n. We chose b = n due to constraints in GPU memory. The regular-
ization strength is controlled by the averaged number of samples used to create
combinations, hence depends on n and p. During inference, to predict the label
for a single input image, the input of all other branches is set to zero.
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3 Experiments

Enlarged perivascular spaces (PVS) and white matter hyperintensities (WMH)
are two types of brain lesions associated with small vessel disease. The method is
evaluated for the estimation of number PVS in the basal ganglia, and estimation
of WMH volume. We compare the performance of our method to that of the base
regressor f with and without and Dropout, and for different sizes of training set.

Fig. 2. Architectures. On the left, architecture of the base regressor f . ‘Conv’ stands
for 3D convolutions, followed by the number of feature maps, and the kernel size. After
each convolution, there is a ReLU activation. The round arrows are skip connections
with concatenated feature maps. GAP stands for Global Average Pooling layer, and
FC for Fully Connected layer. On the right, example of our data augmentation method
with n = 4 replications. Each replication fi is a copy of the base regressor f on the
left. Once the training is done, all fi but one can be removed, and the evaluation is
performed using the original architecture.

The PVS dataset contains T2-weighted scans, from 2017 subjects, acquired
from a 1.5T GE scanner. The scans were visually scored by an expert rater who
counted the PVS in the basal ganglia in a single slice. The WMH dataset is the
training set of the MICCAI2017’s WMH challenge [11]. We use the available
2D multi-slice FLAIR-weighted MRI scans as input to the networks. Scans were
acquired from 60 participants from 3 centers: 20 scans from Amsterdam (GE
scanner), 20 from Utrecht (Philips) and 20 from Singapore (Siemens). Although
the ground truths of the challenge are pixel-wise, we only used the number of
WMH voxels as ground truth during training.

For the regression of PVS in the basal ganglia, a mask of the basal ganglia is
created with the subcortical segmentation algorithm from FreeSurfer [12], and
smoothed with a gaussian filter (standard deviation of 2 voxels) before being
applied the image. The result is subsequently cropped around the basal ganglia.
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For the WMH dataset, we only crop each image around its center of mass,
weighted by the voxel intensities. For both tasks the intensities are then rescaled
between 0 and 1.

During training, for all methods, the images are randomly augmented on-
the-fly with standard methods. The possible augmentations are flipping in x, y
or z, 3D rotation from −0.2 to 0.2 rad and random translations in x, y or z from
−2 to 2 voxels. Adadelta [13] is used as optimizer. The networks are trained with
batch-size b = 4. For the proposed method, the network’s architecture has then
four branches (n = b = 4). During an epoch, the proposed method gets as input
m/n different combinations of n training samples, were m is the total number
of training images. During the same epoch, the base regressor f simply gets the
m images separately (in batches of size b = 4). For the proposed method p was
set to 0.1. In some experiments with Dropout [14] we included a dropout layer
after each convolution and after the global pooling layer. The code is written in
Keras with Tensorflow as backend, and the experiments were run on a Nvidia
GeForce GTX 1070 GPU.

For the PVS dataset, we experiment with varying size of training set, between
12 and 25 scans. The validation set always contains the same 5 scans. All methods
are evaluated on the same separated test set of 1977 scans. For the WMH dataset,
the set is split into 30 training scans and 30 testing scans. Six scan from the
training set are used as validation scans. In both cases, the dataset is randomly
(uniform distribution) split into training and testing sets. For the PVS dataset,
once the dataset has been split into 30 training scans and 1977 testing scan, we
manually sample scans to keep a pseudo-uniform distribution of the lesion count
when decreasing the number of training scans.

To compare the automated predictions to visual scoring (for PVS) or volumes
(for WMH), we use two evaluation metrics: the mean squared error (MSE), and
the intraclass correlation coefficient (ICC).

Fig. 3. Comparison between the proposed method with n = 4 and the base
regressor on the PVS dataset. MSE is displayed on the left, and ICC on the right.
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3.1 Results

Enlarged Perivascular Spaces (PVS). Figure 3 compares the proposed method
to the base regressor f on the PVS datasets, and for an increasing number of
training samples. Their performance is also compared to the average interrater
agreement computed for the same problem and reported in [2]. The proposed
method always reaches a better MSE than the conventional methods for all
training set sizes. The proposed method also significantly outperforms the base
regressor in ICC (Williams’ test p-value < 0.001) when averaging the predictions
of the methods across the four points of their learning curve.

Table 1. Results on the WMH dataset. We conducted three series of experiments
with different training set sizes and loss functions. In the two first rows, we repeated
the experiments with three random initializations of the weights (on the same split),
and report mean and standard deviation. MAE is an acronym for mean absolute error.

Method Training scans Testing scans Loss Performance (ICC)

Base network f 30 30 MSE 0.79 ± 0.12

Proposed method 30 30 MSE 0.84 ± 0.02

Base network f 30 30 MAE 0.78

Proposed method 30 30 MAE 0.87

Base network f 40 20 MSE 0.89

Proposed method 40 20 MSE 0.86

White Matter Hyperintensities (WMH). We conducted three series of experi-
ments, and trained in total five neural networks (Table 1). When using small
training sets, the proposed method outperforms the base network f , when opti-
mized either for MSE or for mean absolute error. With larger training sets, the
difference of performance reduces, and the base regressor performs slightly better
on the ICC.

4 Discussion and Conclusion

With the proposed data augmentation method, we could reach the inter-rater
agreement performance on PVS quantification reported by Dubost et al. [2] with
only 25 training scans, and without pretraining.

Dubost et al. [2] also regressed the number of PVS in the basal ganglia with
a neural network. We achieve a similar result (0.73 ICC) while training on 25
scans instead of 1000. Zhang et al. [8] also proposed to combine training samples
as a data augmentation method. In their experiments, combining more than
n = 2 images does not bring any improvement. With the proposed method,
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training with combinations of four images brought improvement over only using
pairs of images. We did not experiment with values of n larger than 4 due to
GPU memory constraints. Contrary to the expected gain in generalization, on
both PVS (Fig. 3) and WMH datasets, using Dropout [14] worsened the results
when training on very little data, even with low dropout rates such as 0.3. As
dropout already did not improve the performance of the baseline, we do not
expect improvement by including dropout in the proposed method.

To create combination of images for the proposed method, images where
drawn without replacement for the sake of implementation simplicity. The reg-
ularization strength could be increased by drawing samples with replacement,
which could be beneficial for small training sets. We also mentioned two possible
implementations of the proposed method: (1) changing the computation of the
loss over mini-batches, (2) replicating the architecture of network. In this work
we used the second approach, as it was simpler to implement with our library
(Keras). However with this approach, all samples used in a given the combi-
nation have to be simultaneously processed by the network, which can cause
GPU memory overload in case of large 3D images or large values of n. The first
approach does not suffer from this overload, as the samples can be successively
loaded, while only saving the individual scalar predictions in the GPU memory.
In case of large 3D images, we would consequently recommend implementing the
first approach.
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