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Abstract. Witnessed the development of deep learning, increasing num-
ber of studies try to build computer aided diagnosis systems for 3D volu-
metric medical data. However, as the annotations of 3D medical data are
difficult to acquire, the number of annotated 3D medical images is often
not enough to well train the deep learning networks. The self-supervised
learning deeply exploiting the information of raw data is one of the poten-
tial solutions to loose the requirement of training data. In this paper, we
propose a self-supervised learning framework for the volumetric medical
images. A novel proxy task, i.e., Rubik’s cube recovery, is formulated to
pre-train 3D neural networks. The proxy task involves two operations,
i.e., cube rearrangement and cube rotation, which enforce networks to
learn translational and rotational invariant features from raw 3D data.
Compared to the train-from-scratch strategy, fine-tuning from the pre-
trained network leads to a better accuracy on various tasks, e.g., brain
hemorrhage classification and brain tumor segmentation. We show that
our self-supervised learning approach can substantially boost the accu-
racies of 3D deep learning networks on the volumetric medical datasets
without using extra data. To our best knowledge, this is the first work
focusing on the self-supervised learning of 3D neural networks.

Keywords: Self-supervised learning · Rubik’s cube recovery · 3D
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1 Introduction

Compared with natural images, most medical images, e.g. computed tomogra-
phy (CT) and magnetic resonance imaging (MRI), are volumetric which appear
in a 3D form. A traditional diagnosis approach requires experienced physicians
to manually browse the 3D volume data and search for the traits of abnormality,
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which is laborious and suffers from the problem of inter-observer variation. Due
to the development of deep learning, researchers proposed various 3D network
architectures [1] to assist physicians in increasing the diagnosis accuracy. How-
ever, the training of deep learning models may require a large amount of training
data. As the annotations of 3D medical images are difficult to acquire, i.e., each
3D volume requires experienced physicians to spend a couple of hours or even
days for investigation, the performance of 3D deep learning frameworks suffers
from the limited amount of annotated medical images.

To deal with the deficient annotated data, researchers attempted to exploit
useful information from the unlabeled data with unsupervised approaches
[10,12]. More recently, the self-supervised learning, as a new paradigm of
unsupervised learning, attracts increasing attentions from the community. The
pipeline consists of two steps: (1) pre-train a convolutional neural network (CNN)
on a proxy task with a large non-annotated dataset. (2) fine-tune the pre-trained
network for the specific target task with a small set of annotated data. The proxy
task enforces neural networks to deeply mine useful information from the unla-
beled raw data, which can boost the accuracy of the subsequent target task with
limited training data. Various proxy tasks had been proposed, which include
grayscale image colorization [5], jigsaw puzzle [8], object motion estimation [6]
and rotation prediction [3].

For the applications with medical data, researchers took some prior-
knowledge into account when formulating the proxy task. Zhang et al. [12]
defined a proxy task that sorted the 2D slices extracted from the conventional 3D
CT and MR volumes, to pre-train the neural networks for the fine-grained body
part recognition (the target task). Spitzer et al. [10] proposed to pre-train neu-
ral networks on a self-supervised learning task, i.e., predicting the 3D distance
between two patches sampled from the same brain, for the better segmentation of
brain areas (the target task). However, all of the aforementioned self-supervised
learning frameworks [10,12], including those for natural images [5,6,8], were pro-
posed for 2D networks. As the 3D neural networks integrating the 3D spatial
information usually outperform the 2D networks on volumetric medical data, a
3D-based self-supervised learning approach is worthwhile to develop.

In this paper, we propose a 3D-based self-supervised learning approach for
volumetric medical data. We formulate a novel proxy task, namely Rubik’s cube
recovery, to deeply exploit the rich information from 3D medical data and loose
the requirement of training data to well train a 3D deep learning model. Like
playing a Rubik’s cube, there are two operations in the process of our Rubik’s
cube recovery, i.e., cube rearrangement and cube rotation, which enforce the
network to learn the features invariant to translation and rotation from the raw
data. The pre-trained 3D network is then fine-tuned on two target tasks, i.e.,
brain hemorrhage classification and brain tumor segmentation. Experimental
results show that the proposed approach can significantly improve accuracy of
the 3D CNNs on target tasks, although the model is never explicitly pre-trained
to exploit knowledge of brain hemorrhage and tumors. To our best knowledge,
this is the first work focusing on the self-supervised learning of 3D CNNs.
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Fig. 1. Rubik’s cube recovery. The proxy task has two operations, i.e., cube rearrange-
ment and cube rotation.

2 Method

In this section, we introduce the proposed 3D self-supervised learning approach
in details. The proposed approach aims to address the problem of deficient anno-
tated 3D medical data by deeply exploiting the useful information from the lim-
ited training data. The approach first pre-trains a 3D CNN on the proxy task
and then fine-tunes the pre-trained weights on the target tasks with manual
annotations. Inspired by the jigsaw puzzle [8], a novel proxy task (Rubik’s cube
recovery), is proposed for the 3D neural networks. The pipeline of the proxy task
is illustrated in Fig. 1.

2.1 Rubik’s Cube Recovery

For a 3D medical volume, we first partition it into a grid (e.g., 2×2×2) of cubes,
and then permute the cubes with random rotations. Like playing a Rubik’s cube,
the proxy task aims to recover the original configuration, i.e., cubes are ordered
and orientated.

Compared to the jigsaw puzzle, the Rubik’s cube recovery task has two main
differences: (1) The Rubik’s cube recovery works on 3D volumetric data, while
the jigsaw puzzle is proposed for 2D natural images; (2) The difficulty of recov-
ering Rubik’s cube is increased by adding the cube rotation operation, which
encourages deep learning networks to leverage more spatial information.

Pre-processing. The neural networks are encouraged to learn and use high-
level semantic features for Rubik’s cube recovery rather than the texture infor-
mation close to the cube boundaries. Therefore, we leave a gap (about 10 voxels)
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between two adjacent cubes during volume participation. The cube intensities
are normalized to [−1, 1] by using the mean and maximum intensity.

Network Architecture. As Fig. 1 shows, a Siamese network with M (which is
the number of cubes) sharing weight branches, namely Siamese-Octad, is adopted
to solve Rubik’s cube. The backbone network for each branch can be any widely-
used 3D CNN, e.g., 3D VGG [9]. The feature maps from the last fully-connected
or convolution layer of all branches are concatenated and given as input to the
fully-connected layer of separate tasks, i.e., cube ordering and orientating, which
are supervised by permutation loss (LP ) and rotation loss (LR), respectively.

Cube Ordering. The first step of our Rubik’s cube recovery is the cube
rearrangement. Taking a 2nd-order Rubik’s cube, i.e., 2 × 2 × 2 shown in
Fig. 1, as an example, we first yield all the permutations (P) of cubes, i.e.,
P = (P1, P2, ..., P8!). The permutations control the ambiguity of the task, if two
permutations are too close to each other, the Rubik’s cube recovery task becomes
challenging and ambiguous for networks to learn. Therefore, we iteratively select
the K permutations with the largest Hamming distance from P. Then, for each
time of Rubik’s cube recovery, the eight cubes are rearranged according to one
of the K permutations, e.g., (2, 5, 8, 4, 1, 7, 3, 6) in Fig. 1. To properly reorder the
cubes, the network is trained to identify the selected permutation from the K
options, which can be seen as a classification task with K categories. Assuming
the 1 × K network prediction as p and the one-hot label as l, the permutation
loss (LP ) in this step can be defined as:

LP = −
K∑

j=1

lj log pj . (1)

Cube Orientation. The jigsaw puzzles only involve the translational motion
of image tiles on a 2D plane, which makes the network only extract translational
invariant features. In our 3D Rubik’s cube task, we perform a new operation,
i.e., random cube rotation, to encourage network to learn the rotational invariant
features as well.

As the cubes often have a cuboid shape, free rotations result in 3 (axes) ×
2 (directions)×4 (angles) = 24 configurations. To reduce the complexity of the
task, we limit the directions for cube rotation, i.e., only allowing 180◦ horizontal
and vertical rotations. As Fig. 1 shows, the cubes (5, 7) and (4, 3) are horizon-
tally and vertically rotated, respectively. To orientate the cubes, the network is
required to recognize whether each of the input cubes has been rotated. It can
be seen as a multi-label classification task using the 1 × M (M is the number
of cubes) ground truth (g) with 1 on the positions of rotated cubes and 0 vice
versa. Hence, the predictions of this task are two 1 × M vectors (r) indicating
the possibilities of horizontal (hor) and vertical (ver) rotations for each cube.
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The rotation loss (LR) can be written as:

LR = −
M∑

i=1

(ghori log rhori + gveri log rveri ). (2)

Objective. With the previously defined permutation loss (LP ) and rotation
loss (LR), the full objective (L) for our 3D self-supervised CNN is summarized
as:

L = αLP + βLR. (3)

where α and β are loss weights, adjusting the relative influence of two tasks.
We empirically find that equal weights α = β = 0.5 leads to the best feature
representations of pre-trained networks in the experiments.

2.2 Adapting Pre-trained Weights for Pixel-Wise Target Task

The CNN pre-trained on Rubik’s cube recovery task can achieve a robust fea-
ture representation, which can then be transferred to the target tasks. For the
classification task, the pre-trained CNN can be directly used for finetuning. For
the segmentation of 3D medical images, the pre-trained weights can only be
adapted to the encoder part of the fully convolutional network (FCN), e.g. U-Net
[1]. The decoder of FCN still needs random initialization, which may wreck the
pre-trained feature representation and neutralize the improvement generated by
the pre-training. Inspired by the dense upsampling convolution (DUC) [11], we
propose to apply convolutional operations directly on feature maps yield by the
pre-trained encoder to get the dense pixel-wise prediction instead of the trans-
posed convolutions. The DUC can significantly decrease the number of trainable
parameters of the decoder and alleviate the influence caused by random initial-
ization.

3 Experiment

In this section, we transfer the weights pre-trained on Rubik’s cube recovery to
two 3D medical image analysis tasks, i.e., pathological cause of brain hemorrhage
classification and brain tumor segmentation. The datasets adopted in this study
are randomly separated to training and test sets according to the ratio of 80:20.

3.1 Datasets

Brain Hemorrhage Dataset. We collected 1486 brain CT scan images from a
collaborative hospital, which are used to analyze the pathological cause of brain
hemorrhage. The 3D CT volumes containing brain hemorrhage can be classified
to four pathological causes, i.e., aneurysm, arteriovenous malformation, moy-
amoya disease and hypertension. Each 3D CT volume is of size 230 × 270 × 30
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voxels. The weight pre-trained on Rubik’s cube recovery can be directly trans-
ferred to this target task, i.e., brain hemorrhage classification. The cube size
of Rubik’s cube is 64 × 64 × 12. The average classification accuracy (ACC) is
adopted as metric for the performance evaluation.

BraTS-2018. The BraTS-2018 training set [7] consists of 285 brain tumor MR
volumes, which have four modalities, i.e., native T1-weighted (T1), post-contrast
T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion
Recovery (FLAIR). All MR images are co-registered to the same anatomical
template, interpolated to the same resolution (1mm3) and skull-stripped. The
size of each volume is 240 × 240 × 155 voxels. This dataset is widely-used to
evaluate the accuracy of segmentation methods for brain tumors. The cube size
of Rubik’s cube is 64 × 64 × 64. As the BraTS-2018 has four modalities, we
concatenate the cubes from different modalities and send to each branch of
Siamese-Octad network as input. The mean intersection over union (mIoU) [2]
is adopted as the metric to evaluate the segmentation accuracy.

3.2 Performance on Solving Rubik’s Cube

We evaluate the performance of the Siamese-Octad network on Rubik’s cube
recovery to verify whether the network can deal with the proxy task. The back-
bone of our Rubik’s cube network (Siamese-Octad) is the 3D VGG [9], which is
widely-used in self-supervised studies [8] and 3D medical image processing [1].
The test accuracies of 2×2×2 Rubik’s cube recovery on two datasets are listed in
Table 1. As the random cube rotation increases the difficulty of solving Rubik’s
cube, the test accuracies of cube ordering degrade with −7.7% and −6.6% for
brain hemorrhage dataset and BraTS-2018, respectively. On the other hand, the
Rubik’s cube network can achieve test accuracies of 93.1% and 82.1% for the
cube orientation. The experimental results demonstrate that the cube rotation
enables networks to develop the concept of rotated content, which means more
structural information of brains is extracted compared to the rearrangement-only
approach.

Table 1. The test accuracies of solving 2 × 2 × 2 Rubik’s cube on two datasets.

Dataset Rearrange Rotate Accuracy (%)

Ordering Orientation

Brain hemorrhage dataset � 99.7 -

Brain hemorrhage dataset � � 92.0 93.1

BraTS-2018 � 99.5 -

BraTS-2018 � � 92.9 82.1
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Table 2. Test accuracies of models with different training strategies on target tasks.

Brain hemorrhage
cla. (ACC %)

Brain tumor
seg. (mIoU %)

3D VGG [9] U-Net [1] 3D DUC [11]

Train-from-scratch 72.6 73.3 74.0

Fine-tuned on UCF101 75.3 75.2 76.8

Cube ordering 81.1 73.9 75.0

Rubik’s cube recovery (Ours) 83.8 76.2 77.3

3.3 Fine-Tuning Models on Target Tasks

We fine-tuned the networks pre-trained on the Rubik’s cube recovery for the
target tasks to evaluate the benefit produced by pre-trained weights. The training
strategies, including train-from-scratch, fine-tuning with weights pre-trained on
natural dataset (UCF101 [4]), are involved in comparison experiments. The test
results are listed in Table 2.

Baselines. The train-from-scratch strategy is involved as the baseline. Further-
more, similar to the ImageNet pre-trained weights widely-used for 2D image pro-
cessing, the action recognition dataset, i.e., UCF101, is adopted to pre-train our
3D CNNs. The UCF101 consists of 13320 videos, which can be classified to 101
action categories. We extract frames from videos to form a cube of 112×112×16
to pre-train the 3D network. The pre-trained models are then transferred to the
two target tasks for performance comparison. It is worthwhile to mention that
our Rubik’s cube pre-trained weights are generated by deeply exploiting useful
information from limited training data without using any extra dataset.

Brain Hemorrhage Classification. As Table 2 shows, finetuning from the
pre-trained weights can improve the accuracies of models for brain hemorrhage
classification, compared to the train-from-scratch. Due to the gap between nat-
ural video and volumetric medical data, the improvement yielded by UCF101
pre-trained weights is limited, i.e., +2.7%. In comparison, our Rubik’s cube pre-
trained weights substantially boost the classification accuracy to 83.8%, which
is 11.2% higher than that of train-from-scratch model.

Brain Tumor Segmentation. The mIoU of brain tumors yielded by models
trained with different training strategies is also listed in Table 2. Two kinds of
FCNs, i.e., U-Net [1] and DUC [11], are involved to evaluate the influence caused
by random initialization of decoder. Compared to the models transferred from
UCF101 pre-trained weights, the ones fine-tuned from our Rubik’s cube recovery
paradigm can generate more accurate segmentations for brain tumors, i.e., mIoUs
of 76.2% and 77.3% are achieved by the U-Net and 3D DUC, respectively.
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As the Rubik’s cube recovery task only pre-trains the downsampling layers,
the decoder (upsampling layers) of U-Net needs to be randomly initialized, which
may wreck the feature representations learned by the pre-trained weights and
consequently degrade the performance improvement. To alleviate the influence
caused by random initialization, the DUC module, which significantly reduces
the number of trainable parameters contained in the decoder, is more suitable
for the transfer learning on pixel-wise prediction task. It can be observed from
Table 2 that the 3D DUCs outperform the 3D U-Nets under all pre-training
protocols, i.e., +1.6% and +1.1% for UCF101 and Rubik’s cube pre-trained
weights, respectively.

Comparison of Solving Different Rubik’s Cubes. Table 2 shows the results
of models fine-tuned from Rubik’s cube without cube rotation as well. The mod-
els transferred from our Rubik’s cube significantly outperform the ones only
pre-trained with cube ordering task, i.e., +2.7% and +2.3% for brain hemor-
rhage classification and brain tumor segmentation, respectively. The experimen-
tal result reveals that the difficult Rubik’s cube task may lead to the better
generalization of models. Although the accuracy of cube ordering decreases by
adding the cube rotation (as shown in Table 1), the 3D neural networks pre-
trained on the multi-tasks, i.e., cube ordering and orientation, seem to exploit a
more robustness feature representation, i.e., translational and rotational invari-
ant, from the raw 3D data.

4 Conclusion

In this paper, we proposed a self-supervised learning framework for the vol-
umetric medical images. A novel proxy task, i.e., Rubik’s cube recovery, was
formulated to pre-train 3D neural networks. The proxy task involved two oper-
ations, i.e., cube rearrangement and cube rotation, which enforced networks to
learn translational and rotational invariant features from raw 3D data.

Acknowledgements. The work was supported by the National Key Research and
Development Program of China (No. 2018YFB1601102), the Natural Science Founda-
tion of China (No. 61702339), the Key Area Research and Development Program of
Guangdong Province, China (No. 2018B010111001), and Shenzhen special fund for the
strategic development of emerging industries (No. JCYJ20170412170118573).

References
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