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Abstract. Brain midline shift is often caused by various clinical condi-
tions such as high intracranial pressure, which can be deadly. To facilitate
clinical evaluation, automated methods have been proposed to classify
whether midline shift is severe or not, e.g., larger than 5 mm away from
the ideal midline. There are only limited methods using landmark or
symmetry, attempting to provide more intuitive results such as midline
delineation. However, landmark- or symmetry-based methods could be
easily affected by anatomical variability and large brain deformations. In
this study, we formulated the midline delineation as a skeleton extrac-
tion task and proposed a novel regression-based line detection network
(RLDN) for the robust midline delineation especially in largely deformed
brains. Basically, the proposed method includes three parts: (1) multi-
scale line detection, (2) weighted line integration, and (3) regression-
based refinement. The first two parts were used to capture high-level
semantic and low-level detailed information to extract deformed mid-
line, while the last part was utilized to regress more accurate midline
positions. We validated the RLDN on 100 training and 28 testing sub-
jects with a mean midline shift of 7 mm and the maximum shift of 16 mm
(induced by hemorrhage). Experimental results show that our proposed
method achieves state-of-the-art accuracy with a mean line difference
of 1.17 ± 0.72 mm and F1-score of 0.78 from manual delineations. Our
proposed robust midline delineation method is also beneficial for other
cases such as midline deformation from tumor, traumatic brain injury,
and abscess.
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1 Introduction

The anatomical structure of human brain consists of two cerebral hemispheres
that are roughly symmetric and separated by the ideal midline (IML), which is
a straight line connecting the most anterior and posterior visible points on the
flax as shown in Fig. 1. However, high or unbalanced intracranial pressure (ICP)
could distort the IML into deformed midline (DML), as also presented in Fig. 1.
Such midline shift (MLS) can be deadly and is usually caused by conditions such
as traumatic brain injury (TBI), stroke or hematoma. In fact, the degree of MLS
serves as a quantitative indication for neurosurgeons to monitor and control ICP.

Clinically, the visual inspection of MLS on head CT images has become a
widely applied practice. However, comprehensive and quantitative MLS evalua-
tion is still challenging and time-consuming for many health care providers (i.e.
emergency physicians). Thus, the computer-aided methods are of research value
and practical significance given they could improve the accuracy and efficiency
of this evaluation.

In the literature, limited works [1,5,6] have tried to facilitate this clinical
evaluation. Liao et al. [5] considered the midline as three isolated segments and
then utilized mathematical curves to fit these segments using local intensity
symmetry. Liu et al. [6] employed a landmark detection method to locate some
relatively-stable key points (i.e. falx, septum pellucidum) to build DML. Using
an enhanced voigt model to simulate this shift process, Chen et al. [1] proposed a
method to transform IML to DML. However, most aforementioned methods lack
of robust in the CT images with largely deformed brain due to the following two
aspects: (a) The midline is relatively difficult to be distinguished in CT images
given the low soft tissue contrast, especially when affected by TBI or stroke; (b)
The shape of DML varies a lot depending on the brain deformations.

To address such issues, we formulated the midline delineation as a skeleton
extraction task and proposed a novel regression-based line detection network
(RLDN) for the robust delineation especially in largely deformed brains. Our
method enables end-to-end training and includes three parts: (1) multi-scale
line detection; (2) weighted line integration; and (3) regression-based refinement.
Specifically, we proposed a novel multi-scale feature integration strategy over
whole scales to better capture high-level semantic and low-level detailed infor-
mation to generate midline probability maps. Then the weighted line integration
module fused these maps together to generate a final map. Finally, we proposed
a regression-based refinement module to refine and thin the final map to gen-
erate the coordinates of midline. Experimental results show that our proposed
method can improve the line detection accuracy and achieves the state-of-the-
art performance. Moreover, to our knowledge, this is the first work employing
fully-convolutional approach for midline delineation on CT images.

2 Method

As mentioned above, the proposed RLDN includes three parts: (1) multi-scale
line detection; (2) weighted line integration; and (3) regression-based refinement,
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Fig. 1. Examples of ideal midlines (IML, green line) and deformed midlines (DML,
red dotted line) on head CT images, represented as green lines and red dotted lines,
respectively. The P1 and P2 represent the anterior and posterior flax points. (Color
figure online)

with the architecture shown in Fig. 2. First, the multi-scale line detection network
(LDN) takes a 2D CT image I ∈ RH×W as input, and outputs the probability
map Ŷ ∈ RH×W×S corresponding to S = 5 scale levels. The loss Lŷi

for each
output ŷi ∈ Ŷ is computed with the ground truth Y ∈ RH×W . Second, Ŷ is
merged by the weighted line integration module to yield better line detection
result ŷfuse ∈ RH×W with the loss Lfuse to Ŷ . Finally, Ŷ and ŷfuse are utilized
to train the regression-based refinement module with loss Lregress to regress
ŶR ∈ R(H+4)×1, which represents the coordinates of midline and its two flax
points. The following subsections elaborate each module of our method.

2.1 Multi-scale Line Detection Network

The proposed LDN includes the down-sampling branch and the multi-scale bidi-
rectional integration module (MSBI). Specifically, the down-sampling branch
adopts convolutional parts of VGG [8] except following different settings: (1)
number of channels halved, and (2) the addition of pyramid pooling module [12]
connected with the last convolution layer in the initial three conv-blocks. More-
over, it follows the side-output manner in HED [9] to output probability maps
Ŷ including features of five different scales. Then, the MSBI module is utilized
to integrate these features.

As we all known, low-level features focus more on local detailed structures,
while high-level features are rich in conceptual semantic information [13]. In
our line detection task, not only the high-level semantic information but also the
high-resolution details are required. Thus, we propose the MSBI module inspired
by [10] to integrate all scale features to overcome above semantic vs resolution
conflict. Specifically, this module takes feature maps fi in scale i as input and
produces the same resolution feature map ŷi ∈ Ŷ as output. The MSBI consists
of two directional pathways (shallow-to-deep and deep-to-shallow pathways) so
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Fig. 2. Overview of the architecture of the proposed RLDN, which consists of three
parts: (1) multi-scale line detection, where (A) denotes the multi-scale bidirectional
integration module; (2) weighted line integration in (B); and (3) regression-based refine-
ment in (C).

that features of each scale can be obtained from both semantic and detailed
information.

The shallow-to-deep pathway starts from the first conv-block and ends with
the last one. Specifically, the current scale feature fi updates itself by encoding
the learned representation hSD

fi−1
of its previous scale:

hSD
fi =

{
F

(
fi, Ri

(
hSD
fi−1

))
, i ≥ 2

fi, i = 1,
(1)

where hSD
fi

represents the updated feature map in current scale, and R (·) denotes
the bilinear interpolation operation due to the mismatched size over different
scale. F (·) represents the concatenate operation followed by 1 × 1 convolution
to keep the number of channels unchanged. Then, we use additional convolution
and ReLU to encode hSD

fi
to form the learned feature map hSD

fi
.

On the other hand, the deep-to-shallow pathway gathers the multi-scale fea-
tures from high-level to low-level. This process can be formulated as:

hDS
fi =

{
F

(
fi, Ri

(
hDS
fi+1

))
, i ≤ (S − 1)

fi, i = S,
(2)

where hDS
fi

denotes the updated feature map. Other operations are the same as
these in shallow-to-deep pathway.

Then, we merge the learned representations (hSD
fi

and hDS
fi

) of each scale to
form the fused feature representation Mi:

Mi = σ
(F (

hSD
fi , hDS

fi

))
, (3)
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where σ denotes the non-linear activation function ReLU, and the meaning of
other symbols are consistent with these in any directional pathway. Then the
1 × 1 convolution and interpolation are adopted to generate the side-output
prediction ŷi in the current scale with one channel.

For the each side-output ŷi, the prediction error is computed by using the
weighted cross-entropy (WCE) [9] loss function:

Lŷi
= −γ

∑
j∈Y+

Yj logŷij − (1 − γ)
∑

j∈Y−
(1 − Yj)log(1 − ŷij), (4)

where Y+ and Y− denote the object and background ground-truth label sets,
respectively. γ = |Y−|/|Y | represents the class weight used to balance object
and background. Yj and ŷij denote the label and the prediction value at pixel
j = 1, ..., |Y | for specific scale i.

2.2 Weighted Line Integration

The weighted line integration module receives Ŷ produced by LDN and generates
the fused probability map ŷfuse. Specifically, we first construct the learnable
weight WH ∈ RH×W×S and use it to do Hadamard product with the input to
generate S channel maps. Then, the 1 × 1 convolution is adopt to produce the
fused prediction ŷfuse. Finally, the following loss is introduced to compute the
error with the ground truth Y :

Lfuse = WCE (ŷfuse, Y ) . (5)

2.3 Regression-Based Refinement

The regression-based refinement module takes Ŷ and ŷfuse as inputs to regress
the coordinates of midline and its two flax points. It should be noted that, since
the direct line regression focuses more on the overall trend, instead of its end-
points, we decide to adopt an additional network layer to regress endpoints. Basi-
cally, this module consists of two branches: (1) the convolution branch and (2)
the soft-argmax branch. The convolution branch includes three residual blocks
[3] and four fully-connected layers. This branch takes Ŷ as input and produces
a 1D vector ŶR ∈ R(H+4)×1, where the sub-vector ŶR−midline ∈ RH×1 in the
middle of ŶR denotes the column coordinates of midline. The remaining top-2
and bottom-2 elements represent the coordinates of two endpoints.

The soft-argmax branch consists of only soft-argmax [11] layer and takes
the ŷfuse as input to generate a H × 1 vector, which is then utilized to update
ŶR−midline by element-wise addition:

ŶR−midline(i) = ŶR−midline(i) +
∑W

j

exp (μ · ŷfuse(i, j))∑W
m exp (μ · ŷfuse (i,m))

j, (6)
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where ŷfuse(i, j) denotes the prediction value of location (i, j), and μ = 10 is
a hyper-parameter controlling the smoothness of the soft-argmax. Finally, the
Mean Squared Error (MSE) loss function is employed to compute the error:

Lregress = MSE(ŶR, YR), (7)

where YR ∈ R(H+4)×1 denotes the ground truth of the regression task.

2.4 Cost Function and Optimization

We simultaneously optimize all the side-outputs ŷi, the fused prediction ŷfuse,
and the regression output ŶR in an end-to-end way. The loss function of the
whole framework is given as:

Lall = γLfuse + ξLregress +
∑S

i
λiLŷi

, (8)

where γ, ξ and λi represent the balance weights.
In the inferring phase, an input CT image I simply forwards through the

aforementioned steps to generate the coordinates of midline and its two flax
points. Then, we draw it into the zero-value map to get the final full-resolution
midline map, as shown in Fig. 2.

3 Experiments

3.1 Data

Our dataset was derived from public CQ500 [2]. We selected all 64 midline shift
cases and the same number of health subjects in this study. Specifically, a total
of 5 CT slices with the largest brain area in each subject were selected to be
manually delineated for the midline (total 128 subjects with 640 slices). From
the subject-level, we randomly selected 100 subjects as training set and the rest
28 subjects as testing set. For pre-processing, each CT slice was resampled to
uniform resolution (0.5 × 0.5mm2), applied intensity normalization from (−100,
200) to (0, 1), and then cropped into a patch with the size of 400×288 to contain
only the brain region utilizing a simple thresholding segmentation algorithm.
Finally, we augmented training set by randomly rotating, left-right flipping, and
brightness changing.

To evaluate the line detection task, we introduced two standard measures [9]:
F1-score (the harmonic mean of precision and recall) when choosing threshold
based on optimal dataset scale (ODS) or optimal image scale (OIS). For the
evaluation of the regression task, we defined the following distance-related met-
rics: line distance error (LDE), max shift distance error (MSDE), anterior flax
point distance error (AFDE), and posterior flax point distance error (PFDE).
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3.2 Experimental Setting

The proposed method was implemented based on the publicly available plat-
form Pytorch. During the training phases, the stochastic gradient descent (SGD)
algorithm was used to optimize the whole network. The network weights were
initialized by the Xavier algorithm and the weight decay was set to be 1e−4.
In Eq. (8), we set λi = γ = 1 and ξ = 2. The remaining hyper-parameters
and corresponding values were: mini-batch size (32), base learning rate (1e−4),
momentum (0.9), and maximal iteration (400). We decreased the learning rate
every 200 iterations with factor 0.1. The experiments were implemented on a
NVIDIA Titan Xp with 12 GB memory.

Table 1. The ODS and OIS F1-score
on the testing dataset by different
methods. Higher is better.

Method ODS OIS

HED [9] 0.36 0.36

SRN [4] 0.37 0.37

RCF [7] 0.43 0.44

HiFi [13] 0.40 0.40

MSB-FCN [10] 0.38 0.38

LDN (our) 0.72 0.74

RLDN (our) 0.78 0.79

Table 2. The mean and standard devi-
ation of distance error (mm) on the
testing dataset. Lower is better.

Metric VGG-16 [8] RLDN (our)

LDE 5.60 (1.13) 1.17 (0.72)

MSDE 8.31 (3.34) 2.27 (2.70)

AFDE 4.42 (2.84) 2.01 (1.58)

PFDE 7.85 (4.46) 2.47 (1.65)

3.3 Results

Our proposed method conducts two tasks: (1) line detection task and (2) regres-
sion task. For the line detection task, we compared the result ŷfuse in RLDN
with other five leading CNN-based methods designed for the similar skeleton
extraction tasks in natural images including HED [9], SRN [4], RCF [7], HiFi
[13] and MSB-FCN [10]. For the regression task, the VGG-16 [8] was used as the
baseline method in our experiments.

Visual Inspection: Visual inspection for line detection probability maps are
shown in Fig. 3. Obviously, our method achieved thinner and more accurate line
detection results than all of the other methods for the severely-deformed cases
(especially for the cases in the first row). This shows the superiority of our
proposed method.
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Fig. 3. Qualitative comparisons of our proposed method and the other five state-of-
the-art CNN-based methods on some challenging cases. As shown, some lines by other
methods are broken or quite thick, which indicate unsatisfactory results.

Quantitative Comparison: The performance of line detection task is shown
in Table 1, where our RLDN achieved the best performance in terms of ODS or
OIS. Specifically, RLDN improved the current best ODS to 0.78, mainly owing
to the obtained precise line detection result, as shown in Fig. 3. Compared with
LDN and RLDN in Table 1, the effectiveness of the regression task is further
verified by the improved performance, e.g., 6%, and 5% F1-score performance
for the line detection task. In the same way, the benefit of the line detection task
to regression is also verified from the Table 2. In summary, our proposed RLDN
obtained the state-of-the-art performance in the task of DML delineation.

4 Conclusion

In this paper, we have proposed a novel regression-based line detection network
(RLDN) for delineation and measurement of largely deformed brain midline.
Specifically, the algorithm was based on multi-scale line detection and weighted
line integration to capture high-level semantic and low-level detailed information
for extracting midline. Finally, the midline was obtained by using regression-
based refinement. Comparative results demonstrated that our proposed method
achieves a clear performance boost in terms of both accuracy and robustness.
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