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Abstract. Bipolar Disorder (BP) is a mental disorder that affects 1–
2% of the population. Early diagnosis and targeted treatment can benefit
from associated biological markers (biomarkers). The existing methods
typically utilize biomarkers from anatomical MRI or functional BOLD
imaging but lack the ability of revealing the relationship between inte-
grated modalities and disease. In this paper, we developed an Edge-
weighted Graph Attention Network (EGAT) with Dense Hierarchical
Pooling (DHP), to better understand the underlying roots of the disorder
from the view of structure-function integration. EGAT is an interpretable
framework for integrating multi-modality features without loss of predic-
tion accuracy. For the input, the underlying graph is constructed from
functional connectivity matrices and the nodal features consist of both
the anatomical features and the statistics of the connectivity. We inves-
tigated the potential benefits of using EGAT to classify BP vs. Healthy
Control (HC), by examining the attention map and gradient sensi-
tivity of nodal features. We indicated that associated with the abnor-
mality of anatomical geometric properties, multiple interactive patterns
among Default Mode, Fronto-parietal and Cingulo-opercular networks
contribute to identifying BP.

1 Introduction

Bipolar disorder (BP) is a mental health condition that causes extreme mood
swings. Despite decades of research, the pathophysiology of BP is still not well
understood. Some of the most commonly prescribed presentation for patients
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with BP have also been associated with structural or functional brain differences.
For example, [7] found adults with BP had widespread bilateral patterns of
reduced cortical thickness in the frontal, temporal and parietal regions. Some
studies have also shown evidence of reductions in functional connectivity within
the cortical control networks [1,20].

Many brain imaging techniques including functional MRI (fMRI), structural
MRI (sMRI), provide information on different aspects of the brain. However,
most models favor only one data type or do not combine data from different imag-
ing modalities effectively, thus missing potentially important differences which
are only partially detected by single modality [2,3]. Combining modalities may
thus uncover previously hidden relationships that can unify disparate findings in
neuroimaging. To the best of our knowledge, no previous work has been done to
combine structural and functional connectivity data to analyze BP. We hold the
hypothesis that with joint information, the better representation can be learned
to describe BPs’ characteristics and validate this hypothesis in our experiment.
A main challenge in multimodal data fusion comes from the dissimilarity of
the data types being fused and result interpretation. Traditional multi-modality
studies on neuroimaging mainly use principal component analysis (PCA), inde-
pendent component analysis (ICA), canonical correlation analysis (CCA), and
partial least squares (PLS) [17]. However, the model’s intrinsic dependence on
the shape and scale of the data distribution causes ambiguity in components
discovery and harms the easiness of interpretation.

Graph-based approach for multi-modality is a powerful technique to char-
acterize the architecture of human brain networks using graph metrics and has
achieved great success in explaining the functional abnormality from the net-
work [16]. However, this family of methods lacks accuracy in the prediction task
due to the model-driven methodology. Graph attention networks (GAT) [19], are
novel neural network architectures that have been successfully applied to tackle
problems such as graph embedding and classification. Different from CNN-based
neurodisorders interpretation [9], one of the benefits of attention mechanisms is
that they allow for dealing with variable-sized inputs, focusing on the most rele-
vant parts of the input to make decisions, which can then be used for interpreting
the salient input features. Motivated by this, we propose an innovative Edge-
weighted Graph Attention Network (EGAT) with Dense Hierarchical Pooling
(DHP), where the underlying graphs are constructed from the functional con-
nectivity matrices and the node features consist of both anatomical features and
statistics of the nodal connectivity. Our contribution is summarized as follows:

• We propose a novel multi-modality analysis framework combining the sMRI
and fMRI imaging in a graph classification task with workable settings.

• Our model outperforms the existing methods with a 10–20% improvement,
showing the necessity of multi-modality and attention infrastructures.

• We provide an interpretable visualization to understand the co-activation
pattern of sMRI and fMRI from their activation maps.
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Fig. 1. Schemata of EGAT-DHP classification network

2 Methodology

2.1 Construction of Graphs

On a labeled graph set C = {(G1, y1), (G2, y2), ...}, the general graph classifica-
tion problem is to learn a classifier that maps Gi to its label yi. In practise, the
Gi is usually given as a triple G = (V,E,X) where V = {v1, . . . vN} is the set of
N nodes, E = {eij}N×N is the set of edges with eij denoting the edge weight,
and X ∈ R

N×F is the set of node features.
In our BP vs. HC binary classification setting, the nodes are defined by the

region of interest (ROI) from some given atlas. For the edges, we utilize the
densely connected graph rather than setting a threshold that dismisses the weak
connectivity. The edge weight is then defined as the correlation-induced sim-
ilarity given by eij = 1 − √

(1 − rij)/2, where rij is the Pearson’s correlation
between the region-averaged BOLD time-series for region i and j. For each node,
we construct a dim-11 feature vector combining the structural and functional
MRI. The seven anatomical features are Number of Vertices (NumVert), Surface
Area (SurfArea), Gray Matter Volume (GrayVol), Average Thickness (Thick-
Avg), Thickness Standard Deviation (ThickStd), Integrated Rectified Mean Cur-
vature (MeanCurv) and Integrated Rectified Gaussian Curvature (GausCurv) [6],
which provide the geometric information of brain surface. The four functional
features are from connectivity statistics: mean, standard deviation, kurtosis and
skewness of the node’s connectivity vector to all the other nodes, which summa-
rize the moments of the regional time-series.

2.2 Graph Neural Network (GNN) Classifier

The architecture of our proposed GNN network is shown in Fig. 1. Each graph G
is first fed to a 5-heads EGAT layer, followed by two pooling layers that coarsen
129 nodes to 32/16 then to 4 for graph feature embedding. The extracted features
are then fed to 2 fully-connected layers for classification.

Edge-Weighted Graph Attention Layer (EGAT). The Graph Attention
Layer takes a set of node features X = {x 1,x 2...xN}, x i ∈ R

F as input, and
maps them to Z = {z 1, z 2...zN}, z i ∈ R

F ′
. The idea is to compute an embedded

representation of each node v ∈ V , by aggregating its 1-hop neighborhood nodes
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{x j ,∀j ∈ N (x i)} following a self-attention mechanism Att: RF ′ ×R
F ′ → R [19].

Different from the original [19], we leverage the edge weights of the underlying
graph. The modified attention map α ∈ R

N×N×P can be expressed as a single
feed-forward layer of x i and x j with edge weight eij :

αp
ij = Att(W px i,W

px j) = LeakyReLU((ap)T [W px i‖W px j ])eij , (1)

where αp is the attention weight for the p-th attention head and αp
ij indi-

cates the importance of node j’s features to node i in head p. It allows every
node to attend all the other nodes on the graph based on their node features,
weighted by the underlying connectivity. The W p ∈ R

F ′×F is a learnable lin-
ear transformation that maps each node’s feature vector from dimension F
to the embedded dimension F ′. With P attention heads, attention mechanism
Att is implemented by a nodal attributes learning vector ap ∈ R

2F ′
and

LeakyRelu with input slope = 0.2. Then, the aggregation operation is defined as
z i =

∣∣∣∣P
p=1

∑
j∈N (xi)

αp
ijW

px j , symbol ‖ represents the concatenation operation.

Dense Hierarchical Pooling (DHP). To aggregate the information across
nodes for graph level classification, we incorporate Dense hierarchical Pooling
(DHP [21]) to reduce the number of nodes passing to the next layer. At the last
level, the graph nodes are reduced to a few and features are flatten to a single
vector, which is then passed to MLPs to generate graph label. The pooling
procedure is performed by an assignment matrix S ∈ R

N×N ′
that coarsens both

the node and edge information: z out = ST z in,Eout = STEinS to a graph of
N ′ nodes. The assignment S is learned through another EGAT layer with the
regularization loss Lreg = ‖E,SST ‖F , where ‖ ·‖F denotes the Frobenius norm.

Neurological Motivation of Network Designing. Compared to the GCNs
[8] with spectral convolution, our proposed GNN architecture allows for a bet-
ter description of local integration of node features, which is more biologically
consistent with the findings of the community structure of brain networks [12].
Secondly, the efficiency of hierarchical pooling lays on the implicit assumption
that the underlined graph possesses the inferred structure. Thus, considering
the typical numbers of communities discovered in previous literature [14] and
the fact that the brain consists of four lobes, we add two pooling layers in our
network where the first one pools the node-set into 16/32 clusters and the second
one pools the node-set into 4 clusters. In addition, considering the heterogeneity
of the brain networks in local signal processing, multiple heads are employed in
the first layer of EGAT convolution.

2.3 Interpretation from Attention Map

Characterizing BP from anatomical MRI and task-fMRI and interpreting the
brain features captured by the proposed model can help neuroscientists better
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understand BP. The attention map α in the EGAT layer learns salient cere-
bral cortex functional connectivity to identify BP by stacking layers in which
nodes are able to attend over their neighborhoods’ features. By exploring the
gradient sensitivity sp

ij = ∂((ap)T [Wpx i‖Wpxj ])
∂[x i,xj ]

∈ R
F×2, we can disentangle

the relationship among node features (from different modalities) in identifying
BP by examining the co-activation.

3 Experiment and Results

3.1 Image Acquisition and Processing

Data for this study consisted of 106 subjects (59 patients, 47 health controls)
each subject has 2 paired scans over 6 months (212 pairs in total), each pair
consist of 1 structural T1 MR scan (sMRI, dimension 192 × 256 × 256, voxel
size 1× 1× 1mm3, fov = 192 mm) and 1 functional MR scan (BOLD, dimension
64 × 64 × 30 × 244, voxel size 4 × 4 × 5mm3, fov 256, TR = 3 s), acquired on a
GE 3-T scanner. During the fMRI scans, subjects performed “N-back” task in
a block design manner (30 s/block, 11 blocks in total). We ended in 150 sMRI
and fMRI pairs (half BP pairs and half HC pairs) after removing high-motion
data (≥0.2 relative mean). Data was split into 5 folds (80% training and 20%
validation set) based on subjects for cross-validation.

We preprocessed sMRI and extracted anatomical statistics by FreeSurfer.
fMRI was reprocessed using FEAT pipeline of FSL, including steps of motion
correction, spatial smoothing (FWHM 5), and registration to standard NMI
space. A 0.01 Hz high-pass filter was applied. We extracted regional mean BOLD
time series with the N = 129 region in Lausanne atlas [4] and calculated the edge
weights, connectivity matrices and functional features as described in Sect. 2.1.
The functional connectivity matrices was then used as the underlined graph for
EGAT. We also normalized each node feature separately by z-scores manner
considering the heterogeneity for different measurements.

3.2 BP vs. Healthy Control Classification

The experiment was run on 8 GTX Titan Xp (batch size = 8) with Adam opti-
mizer (learning rate = 1e−4, betas = (0.9, 0.999)). We investigated the effect of
tuning the number of kernels of EGAT and showed the performance on the val-
idation sets of all the splits (see Table 1, row 1–4). The optimal solution was
achieved when the first pooling layer output 32 communities and the fully con-
nected layer consisted of 32 nodes. The accuracy varied yet not too much when
we changed the community size to 16 and the number of nodes in the FC-layer.

To illustrate the importance of integrating multi-modality data, we compared
the performance of using single modality (see Table 1, row 9–10). First, to show
the necessity of including anatomical features, we replaced the anatomical fea-
tures as dummy variable ones (namely fMRI only) and performed the task with
the same infrastructure as EGAT. The performance decreased, suggesting that
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Table 1. Classification performance of different models (mean(std)%)

Model Accuracy f1-score Precision Recall

EGAT DiffPool(32-4) 32FC (*) 82.00(3.80) 82.76(3.80) 79.46(4.45) 86.67(6.67)

EGAT DiffPool(16-4) 32FC 81.33(5.05) 80.84(5.95) 82.38(4.26) 80.00(10.54)

EGAT DiffPool(32-4) 64FC 80.67(2.79) 81.39(2.67) 80.27(11.61) 85.33(12.82)

EGAT DiffPool(32-4) 16FC 80.00(4.71) 79.67(5.79) 80.31(4.22) 80.00(11.15)

GraphSAGE DiffPool(32-4) 32FC 69.33(7.96) 66.43(14.46) 70.74(4.56) 66.67(25.39)

MLP 32FC 72.66(1.49) 73.11(3.50) 73.19(7.68) 76.00(3.13)

Random Forest 62.00(5.81) 61.62(5.43) 63.19(7.26) 61.33(8.84)

Linear SVM 58.67(8.84) 59.84(7.55) 60.20(10.13) 62.67(16.11)

Our Model * (only fMRI) 70.67(2.79) 71.05(5.16) 70.08(3.58) 73.73(13.03)

MLP 32FC (only sMRI) 68.04(5.66) 67.71(12.24) 68.35(7.74) 73.21(23.42)

the anatomical features provided additional information. For the necessity of
functional connectivity, we adopted a 2-layer MLP to classify the two groups
based on the vectorized anatomical features of all regions (namely sMRI only).
The decreased performance showed the advantage of combining functional data
in our proposed model.

To prove that our model better embedded both structural and functional fea-
tures, we compared with Random Forest, SVM with Linear kernel and Graph-
SAGE, whose best parameters are chosen by grid search (see Table 1, row 5–8).
Our EGAT outperformed the three alternative models. The improvement may
come from two causes. First, due to intrinsic complexity of sMRI and fMRI,
complex models with more parameters is desired, which also explained why the
MLP performed better than the other two. Second, our model utilized the spe-
cific topology of the community structure in the brain network thus potentially
modeled the local integration more effectively.

3.3 Biomarkers Discovery from Structural and Functional Features

One obstacle of applying complex models in diagnosis is the lack of interpre-
tation. Here we utilize activation map and gradient sensitivity to show that
our method can provide interpretable visualization of effective features on both
group and individual levels in addition to the better prediction accuracy shown
above. First of all, in panel (a) of Fig. 2, we showed the reordered attention maps
averaged on all subjects. The chord diagram displayed the location and weight
of edge-attention. We assigned colors to different brain regions and labeled their
name at the bottom of panel (a) of Fig. 2. Second, in panel (b) of Fig. 2, we pre-
sented the gradient sensitivity of different node features. The gradient sensitivity
on the node feature displayed two modes, one having weights on the source and
target nodes with opposite signs and the other with same signs. We can see that
the activation patterns are spatially selective, suggesting that the abnormality
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Fig. 2. (a) Activation maps and (b) node feature gradient sensitivity of the five atten-
tion heads

of biomarkers happened in a heterogeneous way on the brain network, except
for Attention 4 that gave a quantification of the overall effect.

Attention 1 and 3 placed strong weight on the connectivity statistics in the
node features with opposite modes. This indicated that these two attentions
emphasized the heterogeneity of functional connectivity in two modes, mean of
variance for Attention 3 and variance of variance for Attention 1. Combined with
the spatial preference on the default mode network (DMN), fronto-parietal (FP)
and cingulo-opercular (CO) networks, this supports the previous finding on the
increase of regional homogeneity in the BD patients [11] and suggests potential
sub-types in this deficit. While the focus on DMN in Attention 1 suggested that
the integration and segregation of DMN could play a central role in psychiatry
[13], the strong co-activation of connectivity and anatomical measurements sug-
gested that the abnormality for DMN, FP and CO in functional networks could
be associated with the deficit of anatomical properties [10,18].

For Attention 2 and Attention 5, the highest node weight was on the Gaussian
curvature and complemented each other on the sign. Gray matter volume and
thickness were also emphasized in these two attentions. While previous literature
found widespread of gray matter deficit [10,18] but not atrophy in the white
matter, our results here suggest that the white matter abnormality might be
better represented by the curvature information [5]. Also, the spatial highlight
on the cingulo-opercular (CO) besides the DMN supports the hypothesis that
the deficit of CO integrity could be a reason for the deficit of cognition [15].

4 Conclusion

In this work, we proposed a novel graph-attention based method for cerebral
cortex analysis that integrates sMRI and fMRI using GNN to classify BP v.s.
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HC. It helps to identify the unique and shared variance associated with each
imaging modality that underlies cognitive functioning in HC and impairment
in BP. Thus, our model shows superiority over alternative graph learning and
machine learning classification models. By investigating the attention mecha-
nism, we show that the proposed method not only provides spatial information
supporting previous findings in the network-based analyses but also suggested
potential associations of anatomical deficit and the abnormality of the func-
tional network. This method can be generalized on multi-modality learning on
neuroimaging.
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