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Abstract. We present a deep learning tractography segmentation
method that allows fast and consistent white matter fiber tract iden-
tification across healthy and disease populations and across multiple dif-
fusion MRI (dMRI) acquisitions. We create a large-scale training trac-
tography dataset of 1 million labeled fiber samples (54 anatomical tracts
are included). To discriminate between fibers from different tracts, we
propose a novel 2D multi-channel feature descriptor (FiberMap) that
encodes spatial coordinates of points along each fiber. We learn a CNN
tract classification model based on FiberMap and obtain a high tract
classification accuracy of 90.99%. The method is evaluated on a test
dataset of 374 dMRI scans from three independently acquired popu-
lations across health conditions (healthy control, neuropsychiatric dis-
orders, and brain tumor patients). We perform comparisons with two
state-of-the-art white matter tract segmentation methods. Experimen-
tal results show that our method obtains a highly consistent segmenta-
tion result, where over 99% of the fiber tracts are successfully detected
across all subjects under study, most importantly, including patients
with space occupying brain tumors. The proposed method leverages deep
learning techniques and provides a much faster and more efficient tool
for large data analysis than methods using traditional machine learning
techniques.
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1 Introduction

Diffusion MRI (dMRI) allows the estimation of white matter fiber tracts in the
brain via a process called tractography [1]. White matter tract segmentation, i.e.
identifying tractography fibers (streamline trajectories) belonging to anatomi-
cally meaningful fiber tracts, is an essential step to enable tract quantification
and visualization. Automated tract segmentation can enable the analysis of new,
large dMRI datasets that are being acquired to study neural systems [7].

Recent studies have applied deep learning techniques to perform automated
white matter tract segmentation (refer to [13] for a detailed review), which can
be divided into voxel-based strategies and fiber-based strategies based on the
input data provided to the network. The voxel-based strategies use a fiber ori-
entation volume, where each voxel in this volume indicates the direction and
the presence of a fiber tract. Simultaneous tractography and tract segmenta-
tion is performed by fiber tracking following the fiber directions in the predicted
tract orientation volume [14,16,17]. For example, in the TractSeg method, fiber
tracking is performed within a mask containing fiber orientation distribution
function peaks [16,17]. On the other hand, the fiber-based strategies directly
segment tractography fibers by classifying them using neural networks trained
on fiber feature descriptors [4–6,8,18]. Previously proposed fiber feature descrip-
tors include curvature, torsion and distances to anatomical landmarks [8], and
spatial coordinates of fiber points [4–6,18].

Deep learning tract segmentation methods have achieved good performance,
but challenges remain, particularly in generalization to dMRI data from different
sources (e.g. across different acquisitions and across healthy and disease popula-
tions). Voxel-based methods leverage an intermediate tract orientation volume,
which is robust to different acquisitions, so a trained tract segmentation model
can be applied to data from multiple acquisitions [17]. However, for data from
subjects with high anatomical variability, e.g., brain tumor patients, a voxel-
based method could be problematic due to displacement of tracts by mass effect
from the tumor as well as effects of surrounding edema. Fiber-based strategies
based on fiber clustering techniques can handle this large across-subject anatom-
ical variability using traditional machine learning approaches [3,10,15,19]. But,
such methods usually require multiple time-consuming processing steps.

The goal of this study is to propose a fiber-based deep learning method
(Fig. 1) for fast and consistent white matter tract segmentation across healthy
and disease populations, as well as different dMRI acquisitions. This paper has
three main contributions. First, we create a large-scale training dataset of a mil-
lion labeled tractography fibers from 100 subjects, including fibers from anatom-
ical fiber tracts and those from false positive tracking. Second, we propose a novel
2D multi-channel fiber feature descriptor (FiberMap) that is insensitive to the
order of points along fibers and is robust to fiber local region differences (e.g. due
to effects of tumors and edema). Third, we demonstrate successful tract segmen-
tation on a large test dataset (374 subjects). We believe the proposed method
is the first fiber-based deep learning tract segmentation method that can gen-
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eralize to dMRI data with different acquisition parameters and from different
populations, including brain tumor patients.

2 Methods

2.1 Datasets

Training Dataset: We created a large tractography training dataset of 1 million
fiber samples labeled into 54 anatomical fiber tracts (see Supplementary Table
S1 for the full tract list), as well as a tract category of “other fibers” including,
most importantly, those from false positive tracking. To do this, we leveraged
the ORG-800FC-100HCP white matter tractography atlas [19] (Fig. 1(a)). This
atlas includes clustered and neuroanatomically expert labeled tractography data
(computed using a two-tensor unscented Kalman filter (UKF) method [9]) from
100 healthy Human Connectome Project (HCP) [2] subjects. In the present
study, we used training fiber samples from a total of 54 tracts of interest, such
as arcuate fasciculus (AF) and corticospinal tract (CST), for a total of 273379
fibers. We grouped the fibers from all other clusters and the rejected false positive
fibers into the category of “other fibers” (a total of 726621 fibers). In total, we
had 55 tract classes in the training dataset. We note that false positive fibers
were not provided in the ORG atlas. Therefore, we computed these fibers from
whole-brain UKF tractography from each of the 100 training HCP subjects by
applying atlas-based clustering followed by outlier fiber identification [19].

Three Independently Acquired Test Datasets (374 Subjects): (1) HCP
test dataset: dMRI data from 100 HCP subjects (different from the ones included

Fig. 1. Method overview. A training tractography dataset (a) is created, where each
fiber is associated with an anatomical tract label (e.g. AF and CST) or a category
of “other fibers,” including false positive fibers (in red). A 2D multi-channel feature
descriptor (FiberMap) (b) is extracted for each fiber. A CNN tract classification model
(c) is trained based on the FiberMap descriptors. Subject-specific tract segmentation
(d) is performed by FiberMap feature extraction of each fiber, followed by tract label
prediction using the trained CNN model. (Color figure online)
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in the training dataset) with 18 b = 0 and 90 b = 3000 images, TE/TR =
89/5520 ms, resolution = 1.25× 1.25× 1.25 mm3. (2) Consortium for Neuropsy-
chiatric Phenomics (CNP) test dataset: dMRI data from 41 ADHD patients,
49 bipolar disorder patients, 50 schizophrenia patients and 125 healthy con-
trols from the CNP [12], with 1 b = 0 and 63 b = 1000 images, TE/TR =
93/9000 ms, resolution = 2× 2× 2 mm3. (3) BTP test dataset: dMRI data from
39 brain tumor patients (BTPs) acquired at Brigham and Women’s Hospital,
Boston, with 1 b = 0 and 30 b = 2000 images, TE/TR = 98/12700 ms, resolu-
tion = 2.3× 2.3× 2.3 mm3. We computed whole brain tractography (Fig. 1(d))
including about 1 million fibers per subject, using the same two-tensor UKF
method as in generating the training data. (See Supplementary Fig. S1 for addi-
tional tract segmentation results from tractography data generated using other
fiber tracking methods)

2.2 FiberMap Tractography Fiber Feature Descriptor

A fiber feature descriptor should discriminate between fibers from different
tracts, while handling the following challenges. First, a good descriptor should
capture the similarity between fibers regardless of the order of points along the
fibers. For example, a fiber in CST could be tracked either from the cortex to the
brainstem or from the brainstem to the cortex. Second, anatomical variability
across subjects can result in local fiber differences within a tract. A descriptor
should properly capture the similarity of such fibers to enable a tract segmenta-
tion method to generalize to data from different populations. Considering these
two challenges, we propose a new feature descriptor for tractography fibers,
which we refer to as FiberMap. FiberMap represents a fiber streamline as a 2D
feature map with 3 channels that encode the spatial coordinates of points along
the fiber. The FiberMap is computed by repeating and flipping the coordinates
of the points along a fiber (as described in detail in the caption of Fig. 2). Due to
this repetition, FiberMap is relatively insensitive to the order of points along a
fiber (Fig. 2(b)) and robust to local fiber differences (Fig. 2(c)). In addition, the
FiberMap descriptor is analogous to a 2D RGB image (Fig. 2(d)) for easy input
to CNNs. In our experiments, we extracted n = 15 points per fiber, a reason-
able number for fiber representation [11], leading to a 30× 30× 3 dimensional
FiberMap feature descriptor for each fiber (analogous to a square RGB image).

2.3 CNN Tract Segmentation Model Training

After extracting the FiberMap descriptor of each fiber in the training tractog-
raphy data, we train a CNN model for tract segmentation. We tested multiple
kernel sizes and layers and here we present the most successful architecture. This
network contains 4 convolutional layers (32, 64, 128 and 256 filters, respectively)
with kernel size 3, where each convolutional layer is followed by a ReLU activa-
tion layer. A max pooling layer of size 2 and a dropout layer of 2.5 are used to
prevent overfitting. The last convolutional layer is followed by 3 fully connected
layers of size 128, 256 and 512, and then a softmax layer with 55 outputs for
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the 54 anatomical tracts and the category of “other fibers.” RMSprop is used
for optimization with a loss function of categorical cross-entropy. The CNN is
implemented using TensorFlow (1.12.0). In our experiments, we split the training
dataset, where 80% of the fibers were used for training and 20% for validation.

2.4 Tract Segmentation of Unlabeled Tractography Data

First, subject-specific tractography is transferred to the atlas space by perform-
ing an affine registration between the baseline (b = 0) image of the subject
(moving image) and the atlas population mean T2 image (reference image) using
3D Slicer (https://www.slicer.org). The obtained transform is applied to the
subject-specific tractography data. Next, FiberMap feature extraction is per-
formed and each fiber is classified based on the trained CNN model (Fig. 2(d)).
Source code and the trained CNN model will be available online at https://
github.com/SlicerDMRI/DeepWMA.

Fig. 2. (a) illustrates the proposed FiberMap feature descriptor. Given a fiber com-
posed of a sequence of points (P1 to P5; red rectangle), a flipped copy (green rectangle)
is created by reversing the order of the points. This flipped copy is repeated twice, once
to the right and once below, and the original sequence is repeated once below to the
right. These steps result in a two-row sequence of points (blue rectangle), which is
further repeated to generate a 2D map, i.e. the FiberMap descriptor. The repetition is
performed n times (i.e. the number of points per fiber, n = 5 in this example), which
results in a square feature map. (b) shows an example of the insensitivity of FiberMap
to the order of points along a fiber. If the original sequence of points along the fiber
in (a) is reversed to that in (b), the FiberMap descriptors of these two fibers are the
same except for a difference of one row (the part that is the same between the two
FiberMap descriptors is highlighted in gray). (c) shows an example of the robustness
of FiberMap to local fiber differences. The fiber in (c) is similar to that in (b), but
with a local difference at point P2. Because the neighboring points of P2 on FiberMap
(highlighted in yellow in (b) and (c)) are similar, the difference at P2 will have a small
influence on the computation of fiber similarity. (d) illustrates that FiberMap includes
three channels, analogous to a 2D RGB image. The channels encode the spatial Right-
Anterior-Superior (RAS) coordinates of the fiber points. (Color figure online)

https://www.slicer.org
https://github.com/SlicerDMRI/DeepWMA
https://github.com/SlicerDMRI/DeepWMA
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2.5 Experimental Evaluation

Comparison of Fiber Feature Descriptors: We compared the following fiber
feature descriptors: a 1D-RAS descriptor that concatenated the RAS coordinates
of all points along each fiber into a 1D vector (size: 3n× 1), a 2D-RAS descriptor
that concatenated the RAS coordinates of all points along each fiber into a
2D matrix (size: n× 3) [18], a CurTor descriptor that concatenated curvature
and torsion at each point along a fiber (size: n× 2) [8], a 2D-RAS+CurTor
descriptor that concatenated the CurTor and Orig-RAS descriptors (size: n× 5)
[18], and the proposed FiberMap descriptor (size: 2n× 2n× 3). n = 15 points
per fiber was used across all descriptors. For each compared descriptor, a CNN
classification model was used and the parameters were well tuned. The overall
fiber classification accuracy (i.e. the percentage of fibers that were correctly
classified into their ground truth tract category), as well as the mean recall and
the mean precision across all tract categories, were compared across the methods
using the same training and validation splits of the training tractography dataset.

Comparison of State-of-the-art Methods: We evaluated our proposed
method with comparison to a fiber-based method using spectral clustering
(WMA) [11,19] and a voxel-based method using CNN (TractSeg) [16,17]. We
conducted a quantitative evaluation by measuring the percentage of tracts that
were successfully detected for each test dataset under study. We note that
WMA performed tractography segmentation by applying the same anatomically
curated atlas (see [19] for details) as we used for generating our training data,
while TractSeg was built upon different training data that defined different sets
of white matter tracts. Therefore, we used 34 tracts that were commonly defined
across all three methods for this evaluation. A tract was considered to be success-
fully detected if there were at least 20 fibers (as proposed in [19]). This metric of

Fig. 3. Visual comparison of two example tracts (AF and CST) obtained using Tract-
Seg, WMA and the proposed method. Results from five subjects from the HCP, the
CNP and the BTP datasets were selected for visualization.
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successful detection could be straightforwardly applied to all methods and was
not affected by any small differences in the shape or location of anatomical tracts
as defined by different methods. In addition, we performed a visual inspection
of tracts obtained across the compared methods.

3 Experimental Results

Comparison of Fiber Feature Descriptors (Table 1): The 1D-RAS
and CurTor descriptors had low fiber classification accuracies (around 50%),
while the 2D-RAS and 2D-RAS+CurTor descriptors obtained higher accuracies
(around 87%). The FiberMap descriptor obtained the highest accuracy (about
91%), as well as the highest mean recall and precision (85.67% and 88.47%,
respectively).

Comparison of State-of-the-art Methods (Table 2, Fig. 3): Table 2 shows
the percentage of successfully detected tracts for each method. For the HCP and
CNP datasets, all three methods performed well, where over 98.8% of the tracts
could be successfully detected. For the BTP dataset, the proposed method per-
formed better than the other two methods, by detecting over 99% of the tracts.
Additionally, Fig. 3 gives a visual comparison of example tracts obtained for
each method. The visual/qualitative performance of all methods was reasonable
for AF and CST tracts in the healthy HCP subject, the healthy CNP subject,
the CNP subject with schizophrenia, and the brain tumor patient with rela-
tively small tumor and edema. However, unlike the two fiber-based approaches,
the voxel-based TractSeg method did not detect the AF and CST tracts in the
patient with larger tumor and edema.

Table 1. Comparison across different fiber feature descriptors.

1D-RAS 2D-RAS CurTor 2D-RAS+CurTor FiberMap

Accuracy 47.26% 87.18% 48.98% 7.06% 90.99%

Recall 22.54±15.46% 75.57±10.8% 34.16±17.67% 75.22±10.65% 85.67±5.72%

Precision 1.70±0.92% 87.53±4.99% 1.7±0.63% 86.38±7.38% 88.47±5.19%

4 Discussion

We demonstrated that the proposed FiberMap feature descriptor improved tract
segmentation performance compared to several other descriptors from the liter-
ature. The 1D-RAS descriptor was not successful, while the 2D-RAS descriptor
improved classification performance. This was most likely because the CNN fil-
ters could access the 3 RAS coordinates of a point and those of its neighbors
together when using the 2D-RAS descriptor. The CurTor descriptor obtained
very low classification accuracy, and combining it with the 2D-RAS descrip-
tor did not achieve improvement compared to using 2D-RAS only. This could
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be because fibers from different tracts could have highly similar curvature and
torsion values (e.g. different corpus callosum tracts), causing the fiber feature
descriptors to be less discriminative, which is in line with the finding in [18].
Using the proposed FiberMap descriptor, an accuracy of over 90% was obtained,
which was the highest across all compared descriptors.

We performed a visual inspection of the misclassified fibers for each tract in
our method and found that most of them were at the boundary between the anno-
tated anatomical fibers in the atlas and the false positive fibers. Such fibers are
difficult, even impossible, to be definitively delineated in tractography because
of a lack of ground truth. Therefore, we believe that the obtained 90.99% accu-
racy represents a good whole brain tractography segmentation performance. An
additional preprocessing step could be applied during fiber tracking to improve
tractography, e.g., filtering out false positive streamlines as applied in [18], and
then applying this data as input to our tract segmentation model. However,
such preprocessing would need additional anatomical information, e.g., from a
T1-weighted image, as well as inter-modality image registration.

In this work, we demonstrated the first fiber-based deep learning method
that allowed consistent tract segmentation across multiple dMRI acquisitions
and across different populations including patients with space occupying brain
tumors. (See supplementary Figs. S2 and S3 for additional results of all 54
tracts of one example HCP subject and the left AF tracts of all 39 brain tumor
patients.) In related work, only one voxel-based deep learning method (i.e. Tract-
Seg) was demonstrated to able to generalize to datasets acquired with different
scanners and with multiple pathologies [16,17]. Our results agreed with this
finding in the HCP and CNP datasets. (Additional results to show that the pro-
posed method has a good spatial coverage relative to TractSeg are provided in
Supplementary Table S2.) Nevertheless, improved performance was obtained on
the BTP dataset using our fiber-based deep learning approach by successfully
detecting fiber tracts that were affected by tumors and edema. One possible rea-
son could be that our fiber-based method worked directly on tractography data
obtained using a two-tensor fiber tracking method that has been demonstrated
to be sensitive in tracking through peritumoral edema [19].

Table 2. Percentage of tracts that were suc-
cessfully detected in each method.

Dataset TractSeg WMA DeepWMA

HCP 100.0% 100.0% 100.0%

CNP 98.87% 99.35% 99.66%

BTP 94.42% 98.27% 99.17%

The proposed method provides a
fast and efficient tool for large-scale
dMRI analysis. While achieving sim-
ilar results to the WMA method
in terms of the segmentation con-
sistency, the proposed method per-
formed much faster by leveraging
GPU computation. For segmenta-
tion of whole brain tractography data that contained a million fibers, the WMA
method (including tractography registration, fiber clustering, and tract identifi-
cation) took about 1.5 h using 4 CPU cores, while the proposed method (includ-
ing volume registration, FiberMap extraction, and CNN classification) required
a shorter time of 41 min on the same 4-core CPU, or 8 min using the 4-core CPU
plus 1 GPU.
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5 Conclusion

We present a deep learning tractography segmentation method that allows fast
and consistent tract segmentation across dMRI acquisitions and different pop-
ulations. Future work could include an investigation of more advanced network
architectures. In addition, a more comprehensive training dataset could be cre-
ated, e.g., further subdividing “other fibers” into anatomically meaningful tracts
(e.g. fornix, anterior commissure, and superficial fiber tracts).
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15. Tunç, B., et al.: Individualized map of white matter pathways: connectivity-based
paradigm for neurosurgical planning. Neurosurgery 79(4), 568–577 (2015)

16. Wasserthal, J., et al.: TractSeg - fast and accurate white matter tract segmentation.
NeuroImage 183, 239–253 (2018)

http://arxiv.org/abs/1710.05158
https://doi.org/10.1007/978-3-319-66182-7_63
http://arxiv.org/abs/1807.01068


608 F. Zhang et al.

17. Wasserthal, J., et al.: Combined tract segmentation and orientation mapping for
bundle-specific tractography. arXiv:1901.10271 (2019)

18. Xu, H., et al.: Objective detection of eloquent axonal pathways to minimize post-
operative deficits in pediatric epilepsy surgery using diffusion tractography and
convolutional neural networks. IEEE Trans. Med. Imaging 38(8), 1910–1922 (2019)

19. Zhang, F., et al.: An anatomically curated fiber clustering white matter atlas for
consistent white matter tract parcellation across the lifespan. NeuroImage 179,
429–447 (2018)

http://arxiv.org/abs/1901.10271

	Deep White Matter Analysis: Fast, Consistent Tractography Segmentation Across Populations and dMRI Acquisitions
	1 Introduction
	2 Methods
	2.1 Datasets
	2.2 FiberMap Tractography Fiber Feature Descriptor
	2.3 CNN Tract Segmentation Model Training
	2.4 Tract Segmentation of Unlabeled Tractography Data
	2.5 Experimental Evaluation

	3 Experimental Results
	4 Discussion
	5 Conclusion
	References




