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Abstract. Supervised machine learning algorithms, especially in the
medical domain, are affected by considerable ambiguity in expert mark-
ings. In this study we address the case where the experts’ opinion is
obtained as a distribution over the possible values. We propose a soft
version of the STAPLE algorithm for experts’ markings fusion that can
handle soft values. The algorithm was applied to obtain consensus from
soft Multiple Sclerosis (MS) segmentation masks. Soft MS segmentations
are constructed from manual binary delineations by including lesion sur-
rounding voxels in the segmentation mask with a reduced confidence
weight. We suggest that these voxels contain additional anatomical infor-
mation about the lesion structure. The fused masks are utilized as ground
truth mask to train a Fully Convolutional Neural Network (FCNN). The
proposed method was evaluated on the MICCAI 2016 challenge dataset,
and yields improved precision-recall tradeoff and a higher average Dice
similarity coefficient.
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1 Introduction

Manual analysis of medical data is liable to inter-expert performance variability
due to differences of interpretation and level of expertise. Supervised machine
learning algorithms for detection and segmentation in the medical domain are
affected by considerable ambiguity in the expert annotations. The automatic
segmentation task of MS lesions is especially challenging since lesion contours
are not well defined on MRI images which leads to considerable ambiguity in the
expert markings along the lesion contours. Accurate segmentation of MS lesions
is essential for reliable disease onset detection, when tracking its progression
and in evaluating treating efficiency. This makes it crucial to train the model on
the most likely labels that are determined by fusing the annotations of different
experts. A principled way to address the annotations fusion problem is to build
generative probabilistic models of the expert decision processes, and assign labels
using standard inference tools. The expert reliability is viewed as an unknown
parameter. Several works applied the EM algorithm to this task by incorporating
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either simple or more complicated generative models (e.g. [1–5]). The best known
approach in medical imaging is STAPLE (Simultaneous truth and performance
level estimation) [6,7].

In this study we address the problem of combining ground truth labeling from
several human annotators who assign a soft (lesion, non-lesion) value to each
image voxel. In the classical STAPLE setup, the experts provide deterministic
binary decisions. Here we assume that each expert splits his vote among the
possible voxel labels. The opinion of an expert is thus provided in the form of a
distribution over the possible values.

In this paper we propose a modified STAPLE algorithm for experts’ soft
annotations and apply it to create a fusion of soft masks constructed from the
manual binary MS lesions delineations using anatomical knowledge according
to the protocol described in [8]. We used the dataset of the MICCAI 2016 MS
lesions segmentation challenge (MSSEG dataset) [9] that contains seven manual
delineations for each MS patient case. The soft STAPLE created a soft consensus
mask that takes advantage of the anatomical knowledge of the lesions structure.
We show that training a Fully Convolutional Neural Network (FCNN) with the
proposed soft consensus mask enhances the performance compared to the FCNN
trained with the mask created by the classic STAPLE algorithm.

2 A Modified STAPLE Algorithm for Experts’ Soft
Annotations

We start by reviewing the STAPLE algorithm for the simpler and standard
case where the expert human annotators provide binary 0/1 labeling, and then
extend it to soft labeling. Assume x1, ..., xn are random binary variables. In the
segmentation of MS lesions, the value of xi indicates whether the voxel is in a
lesion area or not. The values of x1, ..., xn are not directly observed. Instead, there
is a set of m ‘experts’ and the opinion of expert i on the value xt is denoted
by yit ∈ {0, 1}. We assume that each expert i is associated with sensitivity
and specificity parameters. The sensitivity parameter of the i-th is defined as
θi1 = p(yit = 1|xt = 1) and in a similar way the specificity parameter is defined
as θi0 = p(yit = 0|xt = 0). Let yt = {y1t, ..., ymt} be the experts’ opinions on
the value of xt. Assuming the annotations are independently provided by the m
experts, the probability of the annotations of the t-th voxel is:

p(yt|xt = a; θ) =
m∏

i=1

p(yit|xt = a; θia), a ∈ {0, 1} (1)

such that θ is the parameter set. Given the experts’ annotations we can compute
the posterior distribution of xt. Applying Bayes’ rule, we obtain:

p(xt= 1|yt; θ) =
ppriorp(yt|xt = 1; θ)

(1 − pprior)p(yt|xt = 0; θ) + ppriorp(yt|xt = 1; θ)
(2)

where pprior is the prior probability of a voxel to be a lesion.
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The goal of the STAPLE algorithm is to find both the expert reliability
parameters and the ground truth segmentation using the given expert informa-
tion set y1, ..., yn of the n voxels. The log-likelihood function is:

L(θ) =
n∑

t=1

log p(yt; θ) =
n∑

t=1

log(
∑

a=0,1

p(yt, xt = a; θ)). (3)

The EM algorithm handles the parameter estimation task by iterating
between the E and M steps. The E-step is:

wt(a) = p(xt=a|yt; θ), t = 1, ..., n, a ∈ {0, 1} (4)

where θ is the current value of the parameter set and p(xt = a|yt; θ) is defined
in Eq. (2). The M-step is composed of updating the sensitivity and specificity
parameters:

θi1 =
∑n

t=1 yitwt(1)∑n
t=1 wt(1)

, θi0 =
∑n

t=1(1 − yit)wt(0)∑n
t=1 wt(0)

, i = 1, ...,m. (5)

After the algorithm converges, we can extract a binary labeling from Eq. (2):

x̂t = arg max
a∈{0,1}

p(xt=a|yt; θ), t = 1, ..., n (6)

that can be used as a ground truth for training a lesion segmentation network.
We next extend the problem of combining the opinions of several expert

annotators to the case where the experts provide a soft opinions in the form of
a distribution over the set of possible decisions (either 0 or 1). The opinion of
expert i on the value of xt is thus provided in the form of a distribution:

qit(b) = p(yit = b), b ∈ {0, 1}. (7)

Assuming the experts’ opinions are independently generated, we use the follow-
ing notation for the soft opinions on the binary value of the voxel xt:

qt(B) =
m∏

i=1

qit(bi), s.t. B = (b1, ..., bm) ∈ {0, 1}m. (8)

The modified cost function we optimize here is:

Lsoft(θ) =
n∑

t=1

Eqt log p(yt) =
n∑

t=1

∑

B∈{0,1}m

qt(B) log(
∑

a∈{0,1}
p(yt = B, xt = a; θ)).

The optimal parameter can be found by a modification of the EM algorithm
defined above. The E-step is:

wt(a) =
∑

B∈{0,1}m

qt(B)p(xt = a|yt = B; θ), t = 1, ..., n, a ∈ {0, 1} (9)
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such that θ is the current value of the parameter-set and

p(xt=a|yt=B; θ) =
ppriorp(yt=B|xt=1; θ)

(1 − pprior)p(yt=B|xt=0; θ) + ppriorp(yt=B|xt=1; θ)

where

p(yt = B|xt = a; θ) =
m∏

i=1

p(yit = bi|xt = a; θ).

The M-step remains the same as above. The sensitivity and specificity param-
eters are updated using (5). It can be easily verified that this iterative algorithm
monotonically increases Lsoft(θ). Once we have found the model parameter-set
θ, we can use Eq. (9) to compute a soft ground truth labeling for each voxel xt.

Note that the complexity of computing the expressions wt(a) (9) in the E-step
is exponential in the number of experts (see [10] for an approximation method).
We next describe a simplified likelihood function with an easily computed E-
step. Consider the soft labeling as an observed noisy version zit of the exact
expert opinion yit.

p(zit|xt = a; θ) =
∑

b=0,1

qit(b)p(yit = b|xt = a; θia), a ∈ {0, 1} (10)

i.e. p(zit|xt = 1; θ) = qit(1)θi1 + qit(0)(1 − θi1) and p(zit|xt = 0; θ) = qit(1)(1 −
θi0 + qit(0)θi0. Let zt = {z1t, ..., zmt} be the soft manual annotations regarding
the value of xt. The likelihood function here is:

Lsimple(θ) =
n∑

t=1

log p(zt) =
n∑

t=1

m∑

i=1

log(
∑

a∈{0,1}
p(zit, xt = a; θ)). (11)

The E-step here is easily computed:

wt(1) = p(xt=1|zt; θ) =
ppriorp(zt|xt=1; θ)

(1 − pprior)p(zt|xt=0; θ) + ppriorp(zt|xt=1; θ)
(12)

where

p(zt|xt = a; θ) =
m∏

i=1

p(zit|xt = a; θ). (13)

The M-step remains the same as above. We dub the first label fusion algorithm
the soft-STAPLE and the second algorithm the simplified-soft-STAPLE. In the
next section we show that the former algorithm yields better results.

3 Soft Labeling by Anatomical Knowledge

In this section we describe a situation where expert annotation is given in the
form of soft labeling. In the framework of the MS lesions segmentation task, soft
masks can be created following the protocol described in [8]. This method uses
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the observation that most of the inter-rater variability in MS lesions manual
delineations is found along the MS lesion contour voxels. The true delineations
at these voxels can be extended by adding voxels with soft labels. In order to
create the soft mask, the original binary mask is expanded by 3D morphologi-
cal dilation. Using the clinical observation that lesions appear as hyper-intense
regions in FLAIR images [11], those voxels with a FLAIR intensity value below
a defined threshold are excluded from the dilated region. Selected voxels from
the dilated region are assigned a soft label 0 < γ < 1 which is interpreted as
the probability of the voxel being part of the lesion. The label of the manually
annotated voxels remains 1. Lesion from the same tissue surrounding the marked
pixels may also include some lesion level information. We can thus create a soft
labeling that can be used via the Dice function to provides additional informa-
tion about lesion structure during the training process beyond the ground truth
mask obtained by the expert.

Training with imbalanced data is very problematic especially when the
training evaluation measure is classification accuracy. A well-known alternative
method for evaluating the performance of medical imaging systems is the Dice
measure. The Dice loss function is defined as:

DiceLoss = − TP

TP + 0.5FP + 0.5FN
= −

∑
i(Ti · Pi)

0.5
∑

i Pi + 0.5
∑

i Ti
(14)

where TP is the number of True Positive voxels, FP is the number of False
Positive voxels, FN is the number of False Negative voxels, Ti ∈ {0, 1} is the
true value of the voxel i, and Pi ∈ [0, 1] is the predicted probability of the voxel i.

The results of the soft-STAPLE algorithm described above is soft ground
truth labels. When the ground truth is represented by a soft mask, i.e., Ti is a
soft label in the range [0,1], we can still use the same definition (14) to obtain a
soft version of the Dice score.

4 Experimental Results

We next evaluated the proposed label fusion method on a publicly available MS
lesion dataset. We trained a lesion segmentation FCNN with ground truth masks
constructed by several label fusion methods and compared the performance of
these methods using a cross-validation technique.

Dataset. We used the dataset of the MICCAI 2016 MS lesions segmentation
challenge (MSSEG dataset) [9]. It consists of 15 cases from 3 different sites and
3 different MRI scanners (Philips Ingenia 3T, Siemens Aera 1.5T and Siemens
Verio 3T). Each case consists of 4 series of MRI images, composed of 3D FLAIR,
3D T1-weighted, 3D T1-weighted GADO and 2D PD-/T2-weighted scans. Seven
manual delineations were provided for each MS patient case with the experts split
over the 3 sites providing MR images (Fig. 1). High inter-rater variability was
found among the experts in terms of the Dice overlap measure.

Network Architecture and Training Details. To demonstrate the effective-
ness of the proposed label fusion approach we trained a U-net [12] based FCNN.
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Fig. 1. FLAIR modality slice (left image) and its corresponding 7 MS lesions man-
ual delineations. The data is taken from the MICCAI 2016 MS lesions segmentation
challenge.

Due to the relatively small dataset we reduced the number of network parame-
ters as compared to the original U-Net to prevent over-fitting issue. The input
to the network is a concatenation of 5 2D slices, corresponding to the different
MRI modalities: FLAIR, T1-weighted, T1-weighted GADO, PD-weighted and
T2-weighted. Similar to the U-net, the network architecture we used is divided
into two pathways of corresponding layers which are connected to leverage both
high- and low-level features: A contracting path alternates 3×3 convolution lay-
ers and 2× 2 max-pooling layers with stride 2 for downsampling. The expansion
path alternates 3×3 convolution layers and 2×2 transposed convolution layers.
All the convolution layers, except for the last one, are followed by a rectified
linear unit (ReLU) [13]. Activations of the last convolution layer are fed to a
sigmoid function that produces a probabilistic segmentation map with values in
the range of 0 to 1. The network was trained using the Dice score function (14).

Compared Label Fusion Methods. First we constructed soft masks from the
experts’ manual delineations adopting the protocol and optimal set of parameters
(the dilation size and soft label were 120% and 0.3 respectively) as described in
[8]. We next applied the soft-STAPLE and simplified-soft-STAPLE algorithms
on the created soft masks to obtain the ground truth mask for training. As
a baseline we applied the standard STAPLE algorithm on the original binary
delineations. Finally, we also constructed a dilated-STAPLE soft masking from
the STAPLE masking by applying the protocol that was used to obtain the soft
mask for each expert.

Examples of the different consensus masks are shown in Fig. 2. The proposed
soft-STAPLE algorithm benefits from the anatomical knowledge provided by the
conditionally dilated expert’ annotations. Consequently the soft consensus mask
created by the soft-STAPLE algorithm includes pixels surrounding the lesion
from the most likely experts’ delineations. We suggest that these pixels contain
some additional lesion level information. The simplified-soft-STAPLE algorithm
weights the experts’ annotations in a different way. We observed that a smaller
number of lesion surrounding pixels were included in the soft consensus mask
constructed via this method.

Experiments and Results. We evaluated the proposed methods on the
MSSEG dataset by applying a leave-out cross-validation approach. In each fold
a set of 3 subjects was used for testing, such that subjects within the set were
acquired by a different scanner type. The 5-fold cross-validation results produced
the final performance evaluation measures.



516 E. Kats et al.

Fig. 2. Illustration of consensus masks used as ground truth during FCNN training.
Yellow color denotes pixels with a value of 1, colors gradually changed to violet as
the value of the pixels decreases. From left to right: FLAIR modality, mask crated by
STAPLE and soft masks created by dilated STAPLE, soft-STAPLE and simplified-
soft-STAPLE.

Table 1 summarizes the performance of the FCNN models that were trained
with the compared ground truth masks. The test performance shown in Fig. 1
was evaluated using the constructed STAPLE mask similar to the MSSEG chal-
lenge protocol [9]. In addition we evaluated the test results using the ground
truth of seven experts: the test image results were separately evaluated with
respect to each expert and the average score is reported.

The results show that the consensus mask created with the soft-STAPLE
algorithm provided valuable information about near-contour voxels during the
training phase. The model trained with this mask achieved significant improve-
ment in recall and the highest Dice measure compared to the baseline. The model
trained with the mask created by simple-soft-STAPLE also benefited from the
additional anatomical information, but achieved a smaller performance gain.
This result is consistent with the observation that the mask contains a smaller
number of lesion-surrounding pixels. The masks that are created using the stan-
dard STAPLE algorithm followed by conditionally dilated contribute less bene-
ficial information to the training process; we believe this is due to the fact that
the dilated region is comprised of voxels with the same label - same confidence
weight to be a lesion - from all experts, regardless of their relative performance.

To conclude, in this study we proposed a soft-STAPLE algorithm to generate
ground truth labels from a set of manual labels. The proposed algorithm was
tested on the MS lesion segmentation task, with manual annotations from several
experts. We first extended each expert label mask by adding soft labeled voxels
which were similar to the annotated voxels in both location and intensity. Then
we applied the soft-STAPLE algorithm to obtain an integrated ground truth. We
showed that training the FCNN with the computed labels leads to better model
generalization and performance gain. The soft-STAPLE concept is general and
can be harnessed to improve other medical image segmentation tasks. In this
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Table 1. Results of training with different consensus ground truth masks.

Ground truth Experts STAPLE

Dice Precision Recall Dice Precision Recall

STAPLE 54.3 53.3 60.4 58.3 67.1 53.0

Dilated STAPLE 52.2 51.9 59.3 56.0 65.1 51.6

Soft STAPLE 56.1 53.8 64.0 60.1 67.5 55.7

Soft STAPLE Simplified 55.0 54.3 60.9 59.0 68.4 53.4

paper the soft labels were obtained by extending the manual labels up to an
anatomical border. The soft-STAPLE can be also applied when the expert is an
automatic probabilistic classifier such as a logistic regression or a neural network.
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