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Abstract. Probabilistic atlas priors have been commonly used to derive
adaptive and robust brain MRI segmentation algorithms. Widely-used
neuroimage analysis pipelines rely heavily on these techniques, which are
often computationally expensive. In contrast, there has been a recent
surge of approaches that leverage deep learning segmentation tools that
are computationally efficient at test time. However, most of these strate-
gies rely on supervised learning from manually annotated images and
are therefore sensitive to the intensity profiles in the training dataset. A
deep learning-based segmentation model for a new image dataset (e.g., of
different contrast), usually requires a new labeled training dataset, which
can be prohibitively expensive, or suboptimal ad hoc adaptation or aug-
mentation approaches. In this paper, we propose an alternative strategy
that combines conventional probabilistic atlas-based segmentation with
deep learning, enabling training of a segmentation model for new MRI
scans without the need for any manually segmented images. Our exper-
iments include thousands of brain MRI scans and demonstrate that the
proposed method achieves good accuracy for a brain MRI segmentation
task for different MRI contrasts, requiring only approximately 15s at
test time on a GPU. The code is freely available at http://voxelmorph.
mit.edu.
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1 Introduction

Bayesian segmentation of medical images, particularly in the context of brain
MRI, is a well-studied problem. Probabilistic models for image segmentation fre-
quently exploit atlas priors, and account for variations in contrast and imaging
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artifacts such as MR inhomogeneity [19,21]. Most of the popular neuroimage pro-
cessing pipelines rely on segmentation algorithms based on these ideas [2,8,15].
While these tools achieve high robustness to changes in MRI contrast of the input
scan, they are computationally demanding (e.g., 23 min per image using a multi-
threaded setup [16]), which limits their deployment at scale and in time-sensitive
applications. Therefore, there is a need for computationally efficient methods
that are contrast-adaptive, requiring no additional labeled training images to
segment a new dataset.

Recently, there has been a surge in the application of deep learning (DL)
techniques to medical image segmentation, often based on convolutional neural
networks (CNN) that excel at learning contextually important multi-scale fea-
tures. An advantage of these methods is their computational efficiency at test
(segmentation) time, offering the potential to use automatic segmentation in new
application areas, and large datasets [11,17]. Moreover, these algorithms can be
combined with atlas priors for increased robustness [5,12,13]. However, DL based
techniques are notoriously sensitive to changes in the image intensity data dis-
tribution. For example, upgrades to MRI scanners or changes in pulse sequence,
field strength, or RF coils, can alter contrast properties and dramatically reduce
the performance of a CNN-based segmentation model [10]. This issue can be
alleviated via domain adaptation or data augmentation, which requires simulat-
ing expected variations. However, even with additional data, these methods only
partially close the gap with the fully supervised setting [14]. Furthermore, the
dependency on manually annotated datasets means that existing DL approaches
are only applicable if enough resources are available to compile the required
training data. This is often infeasible, for example in the context of continuously
upgrading imaging technologies.

In this paper, we consider the scenario in which we have a general proba-
bilistic atlas prior and a collection of images with no manual delineations. The
probabilistic atlas is a volume where each voxel has an associated vector with the
prior probabilities of observing the various segmentation labels at that location.
Our approach assumes the availability of such an atlas (in brain imaging, they
are readily available), and is independent of how it was created. For example, it
could have been obtained by averaging a collection of manually annotated vol-
umes of a different imaging modality, or derived from an anatomical template
after applying spatial blurring to account for spatial variability.

The main contribution of this paper is the integration of mathematical ideas
from the Bayesian segmentation literature with an unsupervised deep learning
framework, to achieve fast, contrast adaptive brain MRI segmentation. Specifi-
cally, we assume a probabilistic model, which requires estimation of parameters
comprising an atlas deformation and image intensity statistics. The estimation
of the atlas warp has traditionally relied on classic deformable registration algo-
rithms [18], which are based on iterative optimization, and are therefore com-
putationally expensive. Instead, we leverage recent advances in learning-based
registration [3,4,20] to efficiently estimate the warp jointly with the intensity
parameters. We use a novel interpretable loss function from the probabilistic
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model via Bayesian inference. Integrating DL with Bayesian segmentation, we
attain two highly desirable features. First, given a probabilistic atlas, the method
is unsupervised and contrast adaptive. Training it does not require any ground
truth segmentations. Second, the segmentation is efficient, requiring approxi-
mately 15s on a GPU.

2 Method

2.1 Segmentation as Bayesian Inference

Let I represent the intensities of a 3D brain MRI scan, defined over a discrete
domain Q C R3. Let S be a corresponding discrete segmentation into L neu-
roanatomical labels. Bayesian segmentation relies on Bayes’ rule to derive the
posterior probability distribution of the segmentation given the input image.
Then, the segmentation S is estimated as the mode of this posterior:

S = arg max p(S|I) = arg max p(I|S)p(S). (1)
s s

The posterior distribution p(S|I) depends on two terms: a prior p(S) and a
likelihood p(I|S), in contrast to discriminative approaches which model p(S|TI)
directly. The prior represents knowledge about the spatial distribution of seg-
mentation labels (i.e., underlying anatomy), and typically has the form of a
probabilistic atlas endowed with a deformation model. The likelihood models
the relationship between the segmentation and image intensities, including image
artifacts such as noise and bias field. Both the prior and likelihood may have
associated parameters, which we define as 8g and 6;, respectively. The former
describes attributes such as label probabilities and an atlas deformation, while
the latter typically includes image intensity statistics as a function of label.

The likelihood parameters may be learned from a training dataset, or esti-
mated specifically for each test scan. We build on Bayesian segmentation models
that follow the latter approach [2,16,19,21,22], enabling models to adapt to the
intensity characteristics of input scans, making them robust to changes in MRI
contrast. Expanding Eq. (1) to include model parameters, which we treat as
random variables, yields:

§ —arg max [ [ p(165.61,1p(0s, 61 1)d6s). (2)
S 0s JO;

which is intractable. A standard approximation uses point estimates for
the parameters. First, one estimates the mode of the parameter posterior
distribution:

{65,601} = arg max p(8s,0;|T) = arg maxp(0s)p(8;) > p(I]S,07)p(S|0s),
{65,601} {65.,01} S
(3)
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where we assume independence between the parameters of the prior and of the
likelihood. The computation often requires estimating an atlas deformation in O¢
and intensity parameters in 0; and is typically achieved with a combination of
numerical optimization and the Expectation Maximization (EM) algorithm [6].
Given point estimates, the final segmentation is computed as:

§ = arg maxp(S|ds, 07, 1) = arg maxp(|S, 6;)p(S|s). (4)
S S

2.2 Proposed Model

Our model instantiation builds on existing work [2,16,19]. The prior is defined by
a given probabilistic atlas A, where A(l, x) provides the probability of observing
each neuroanatomical label [ = 1,...,L at each location x € (). The atlas is
deformed by a transform ¢, parameterized by a stationary velocity field v, (i.e.,
¢, = explv], which guarantees differomorphic ¢ [1]). Therefore, the prior is
parametrized by 8g = v. Assuming independence over voxels:

p(S16s; A) = p(S|v; A) = [T A(S;, 60 (=), (5)
JEQ
where S is the segmentation at voxel j, and x; is its spatial location. We dis-
courage strongly varying deformations by penalizing the spatial gradient Vu, of
displacement w,,, where ¢, = Id+u,, i.e., p(0s; \) = p(v; \) x exp[—\||Vu,|?].
The hyperparameter A controls the strength of the penalty.
Conditioned on a segmentation, we assume that the observed intensities at
different voxel locations are independent samples of Gaussian distributions:

p(I|S,01):p(I|S,,u,02): HN(Ij;/’LSj7U§’j)7 (6)
JjEQ

where N(:; i, 02) is the Gaussian distribution, I ;j is the image intensity at voxel
4, and the likelihood parameters 8; = {u, 0?} are L means j; and variances le,
each associated with a different label I. We complete the model with a flat prior
for these parameters: p(€7) o< 1. The model can be easily extended to the multi-
spectral case (i.e., inputs with multiple MRI contrasts) by replacing means and
variances by mean vectors and covariance matrices, respectively.

Learning. To avoid the computationally expensive optimization typically
required for maximum a posteriori (MAP) estimation in Eq. (3), we propose
to train a CNN to estimate model parameters directly from an input scan.
Specifically, we design a CNN gg.(I,A) = (05,0;) = (v,u,0?%) with global
convolutional parameters 8¢ that takes as input a scan I and probabilistic atlas
A, and outputs model parameters v, i, o2 for that scan. To learn the network

parameters Oc, we use a pool of N unlabeled scans {I"}N_; to minimize the
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Fig. 1. Method overview. The network block gy (-, ) outputs a stationary velocity
field v, enabling alignment of the probabilistic atlas to the input volume, and likelihood
Gaussian parameters pt, o2, which yield likelihood maps for each label.

negative log posterior distribution of the image-specific parameters given the
training images:

N
=Y logp(v", u™, [0°]"|T"; A, ) (7)
n=1
N L
3 S log | SN oM A(L b () | + AT + const
n=1jeq =1

The network outputs different parameters v, u, and o for each test image I.
We design the CNN gy, (-, ) based on a 3D UNet-style architecture [17] and
the VoxelMorph implementation [3]. The network consists of downsampling con-
volutional layers with 32 filters, 3 x 3 kernels, stride of 2, and LeakyReLu activa-
tions, followed by mirror upsampling layers and skip-connections. An additional
convolutional layer is used to output v, a dense 3D velocity field defined over
Q; and an additional pair of convolutional layers followed by global max pooling
yield the Gaussian parameters u, o?. We compute ¢, = exp(v) using a scaling
and squaring integration layer [1,4], enabling the computation of the loss regu-
larization term. Combining the Gaussian parameters with the input image yields
likelihood maps. These maps, together with a warped probabilistic atlas A via a
spatial transform layer, enable computation of the first term in Eq. (7) (Fig. 1).

Efficient Segmentation. Given a test scan, the trained network efficiently pro-
vides the image-specific parameter point estimates ¥ and @; in a single forward
pass. The optimal segmentation is efficiently computed for each voxel j:

S'j = arg lmaxN(-’ﬁ ﬂb&lz)A(l, ¢ﬁ(wj)>' (8)
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3 Experiments and Results

Data. We evaluate our approach on three different image sets. The first (“multi-
site”) includes 8,332 T1-weighted scans from several public datasets.! We ran-
domly selected 7,332 scans to train and validate, and the remaining 1,000 were
held out for testing. Manual delineations are not available for these scans, but we
used automated segmentations produced by FreeSurfer [8] as a silver standard.
The second dataset (“T1”) consist of 38 T1-weighted scans, used only for testing,
each with 36 manually delineated brain structures [8]. The third dataset (“PD”)
consists of eight proton density-weighted (PD) scans, manually segmented with
the same protocol [9]. All scans were preprocessed with FreeSurfer, including
skull stripping, bias field correction, intensity normalization, affine registration
to Talairach space, and resampling to 1 mm? isotropic resolution [7].

Experimental Setup. We perform three experiments, one for each dataset. In
the first, we fit our network to the T1-weighted training scans of the multi-site
dataset, and use the resulting model to segment the 1,000 test scans. Despite the
lack of manual gold standard, this experiment enables assessment of performance
on a large, heterogeneous dataset. In a second experiment, we use the model
already trained in the first to segment test scans from the separate T1 dataset.
This enables evaluation with manual ground truth on scans from a scanner and
pulse sequence not observed during training. In the third experiment, we train
a network on the PD dataset, and then use it to segment the 8 PD scans. This
is a different scenario than the first two experiments, since we learn to segment
the test dataset directly. This experiment enables us to assess the ability of our
algorithm to segment a substantially different MRI contrast, and fit datasets of
reduced size. In all experiments, we use our method with the publicly available
atlas from [16]. We emphasize that all networks are trained in an unsupervised
fashion, and segmentation maps are only used for evaluation.

Baseline. We compare our method to a reimplementation of [19], which solves
Eq. (7) with no deformation (i.e., w = 0, ¢, = Id) via the EM algorithm. Since
the model does not include deformation, using the nonrigid version of the atlas
would yield low performance, and instead it relies on an affine version of the
aforementioned atlas and Gaussian likelihood functions.

Evaluation. We used Dice scores for a subset of structures of interest (Fig. 2),
and also focus on deep structures such as the hippocampus, which is the target
of many neuroimaging studies due to its significance in dementia.

Implementation. We implement our method using Keras with a Tensorflow
backend and the ADAM optimizer. We predict the velocity field v and resulting
deformation field ¢ at every second voxel in each dimension, due to memory
constraints. We obtain a final dense deformation field via linear interpolation.

! Obtained online via: OASIS (oasis-brains.org), MCIC (central.xnat.org/data/proj
ects/MCIC), PPMI (ppmi-info.org), HABS (nmr.mgh.harvard.edu/lab/harvardagin
gbrain), GSP (neuroinfo.org/gsp), ABIDE (fcon_1000.projects.nitrc.org/indi/
abide/), and ADHD200 (fcon_1000.projects.nitrc.org/indi).
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https://central.xnat.org/data/projects/MCIC
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https://nmr.mgh.harvard.edu/lab/harvardagingbrain
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Fig. 2. Segmentation Statistics. Dice scores for: cerebral cortex (CT) and white
matter (WM); lateral ventricle (LV); cerebellar cortex (CC) and white matter (CW);
thalamus (TH); caudate (CA); putamen (P); pallidum (PA); brainstem (BS); hip-
pocampus (HP); and amygdala (AM). Scores of contralateral structures are averaged.
The number of outliers under the z axis is shown in red (baseline) and blue (ours).
(Color figure online)
Initial atlas Our method Baseline Ground truth

Input scan Warped atlas

T1 scan

PD scan

Fig. 3. Example Results. Coronal slices of two scans (one from each of the T1 and
PD datasets), along with the initial and deformed probabilistic atlas, and corresponding
segmentations. In the atlas, the color of each pixel is a combination of the colors of
different labels, weighted by their probabilities. In the segmentations, we show the
contour of the labels in the corresponding colors. We use the FreeSurfer color map [7].
(Color figure online)

For all experiments, we set A = 10, the only free parameter, having visually
evaluated segmentation results for several validation subjects (held out from
training). We also group anatomical labels with similar intensity properties into
eleven merged labels, forcing groups of original labels to share Gaussian param-
eters, increasing robustness [16]. Specifically, we group: contralateral structures
(in general), gray matter structures (cerebral gray matter, hippocampus, amyg-
dala, caudate, accumbens), and cerebrospinal fluid structures.
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Results. Our method requires only 15s per scan on an NVIDIA Titan Xp GPU.
Figure 2 reports segmentation statistics for all experiments. Our method achieves
considerably higher Dice scores than the baseline on the multi-site dataset (aver-
age over all structures 83.5% wvs. 79.0%), especially in deep brain structures such
as the hippocampi (81.1% wvs. 73.1%). Moreover, it largely reduces the num-
ber of outliers with very poor segmentation (e.g., there are over 100 cases with
Dice < 50% in the caudate for the baseline approach, and none for our method).
In the T1 dataset, the test intensity distribution is slightly different that of
the training dataset. However, our approach successfully generalizes and outper-
forms the baseline (average 81.9% wvs. 79.4%, hippocampi 79.9% vs. 73.5%). The
results of the third experiment illustrate the ability of our method to adapt to
contrasts other than T1, even when the data are limited, and outperform the
baseline (average 80.5% vs. 78.3%, hippocampi 76.6% wvs. 69.8%).

Figure 3 shows two segmentations from the T1 and PD datasets. In the T1
scan, the atlas successfully deforms to match the large ventricles of the subject,
producing more accurate segmentations than the baseline — not only for the
ventricles (purple), but also for surrounding structures, e.g., thalami (green).
In the PD scan, our method manages to segment all structures including the
amygdalae (light blue), which are missed by the baseline.

4 Conclusion

We propose a principled approach for unsupervised segmentation, which enables
training a CNN for a dataset without the need for any manually annotated
images. The likelihood model may be extended to incorporate more complex
functions (such as mixtures of Gaussians) and artifacts such as partial voluming
and bias fields. In addition to segmentations, the method produces a dense non-
linear deformation field that is a useful output by itself, e.g., for tensor-based
morphometry. Using a large dataset, we demonstrate that the proposed approach
achieves state-of-the-art accuracy for unsupervised brain MRI segmentation in
different MRI contrasts. Our method runs in under 15s on a GPU, facilitating
deployment on large studies and in time-sensitive applications.
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