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Abstract. This study investigates a curriculum-style strategy for semi-
supervised CNN segmentation, which devises a regression network to
learn image-level information such as the size of the target region. These
regressions are used to effectively regularize the segmentation network,
constraining the softmax predictions of the unlabeled images to match
the inferred label distributions. Our framework is based on inequal-
ity constraints, which tolerate uncertainties in the inferred knowledge,
e.g., regressed region size. It can be used for a large variety of region
attributes. We evaluated our approach for left ventricle segmentation
in magnetic resonance images (MRI), and compared it to standard
proposal-based semi-supervision strategies. Our method achieves com-
petitive results, leveraging unlabeled data in a more efficient manner
and approaching full-supervision performance.
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1 Introduction

In the recent years, deep learning architectures, and particularly convolutional
neural networks (CNNs), have achieved state-of-the-art performances in a breadth
of visual recognition tasks. These architectures currently dominate the literature
in medical image segmentation [12]. The generalization capabilities of these net-
works typically rely on large and annotated datasets, which, in the case of segmen-
tation, consist of precise pixel-level annotations. Obtaining expert annotations in
medical images is a costly process that also requires clinical expertise. The lack of
large annotated datasets has driven research in deep segmentation models that rely
on reduced supervision for training, such as weakly [8,9,11,17] or semi-supervised
[1,19] learning. These strategies assume that annotations are limited or coarse,
such as image-level tags [15,17], scribbles [20] or bounding-boxes [18].

In this paper, we focus on semi-supervised learning, a common scenario in med-
ical imaging, where a small set of images are assumed to be fully annotated, but an
abundance of unlabeled images is available. Recent progress of these techniques in
medical image segmentation has been bolstered by deep learning [1,2,6,14,19,24].
Self-training is a common semi-supervised learning strategy, which consists of
employing reliable predictions generated by a deep learning architecture to re-train
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it, thereby augmenting the training set with these predictions as pseudo-labels
[1,17,18]. Although this approach can leverage unlabeled images, one of its main
drawbacks is that early mistakes are propagated back to the network, being re-
amplified during training [4,25]. Several techniqueswere proposed to overcome this
issue, such as co-training [24] and adversarial learning [5,13,23]. Nevertheless, with
these approaches, training typically involves several networks, or multiple objec-
tive functions, which might hamper the convergence of such models.

Alternatively, some weakly supervised segmentation approaches have been
proposed to constrain the network predictions with global label statistics, for
example, in the form of target-region size [7,8,17]. For instance, Jia et al. [7]
employed an L2 penalty to impose equality constraints on the size of the tar-
get regions in the context of histopathology image segmentation. However, their
formulation requires the exact knowledge of region size, which limits its applica-
bility. More recently, Kervadec et al. [8] proposed using inequality constraints,
which provide more flexibility, and significantly improves performance compared
to cases where learning relies on partial image labels in the form of scribbles.
Nevertheless, the values used to bound network predictions in [8] are derived
from manual annotations, which is a limiting assumption. Another closely related
work is the curriculum learning strategy proposed in the context of unsupervised
domain adaptation for urban images in [22]. In this case, the authors proposed
to match global label distributions over source (labelled) and target (unlabelled)
images by minimizing the KL-divergence between distributions. Finally, it is
worth noting that the semi-supervised learning technique in [6] embeds seman-
tic constraints on the adjacency graph of a given region.

Inspired by this research, we propose a curriculum-style strategy for deep
semi-supervised segmentation, which employs a regression network to predict
image-level information such as the size of the target region. These regressions
are used to effectively regularize the segmentation network, enforcing the predic-
tions for the unlabeled images to match the inferred label distributions. Contrary
to [22], our framework uses inequality constraints, which provides greater flexi-
bility, allowing uncertainty in the inferred knowledge, e.g., regressed region size.
Another important difference is that the proposed framework can be used for a
large variety of region attributes (e.g., shape moments). We evaluated our app-
roach in the task of left ventricle segmentation in magnetic resonance images
(MRI), and compared it to standard proposal-based semi-supervision strategies.
Our method achieves very competitive results, leveraging unlabeled data in a
more efficient manner and approaching full-supervision performance. We made
our code publicly available1.

2 Self-training for Semi-supervised Segmentation

Let X : Ω ⊂ R
2,3 → R denotes a training image, with Ω its spatial domain.

Consider a semi-supervised scenario with two subsets: S = {(Xi, Yi)}i=1,...,n

1 https://github.com/LIVIAETS/semi curriculum.

https://github.com/LIVIAETS/semi_curriculum


570 H. Kervadec et al.

which contains a set of images Xi and their corresponding pixel-wise ground-
truth labels Yi, and U = {Xj}j=1,...,m a set of unlabeled images, with m � n.
In the fully supervised setting, training is formulated as minimizing the following
loss with respect to network parameters θ:

LY (θ) = −
∑

i∈S

∑

p∈Ω

Yi,p log S(Xi|θ)p (1)

where S(Xi|θ)p represents a vector of softmax probabilities generated by the
CNN at each pixel p and image i. To simplify the presentation, we consider the
two-region segmentation scenario (i.e., two classes), with ground-truth binary
labels Yi,p taking values in {0, 1}, 1 indicating the target region (foreground) and
0 indicating the background. However, our formulation can be easily extended to
the multi-region case. Common approaches for semi-supervised segmentation [1,
15] generate fake full masks (segmentation proposals) Ỹ for the unlabeled images,
which are then used iteratively for network training by adding a standard cross-
entropy loss of the form in Eq. (1): minθ LY (θ)+LỸ (θ). The process consists of
alternating segmentation-proposal generation and updating network parameters
using both labeled data and the new generated masks. Typically such proposals
are refined with additional priors such as dense CRF [20]. However, errors in
such proposals may mislead training as the cross-entropy loss is minimized over
mislabled points and, reinforcing early mistakes during training, as is well-known
in the semi-supervised learning literature [4,25].

3 Curriculum Semi-supervised Learning

The general principle of curriculum learning consists of solving easy tasks first
in order to infer some necessary properties about the unlabeled images. In par-
ticular, the first task is to learn image-level properties, e.g. the size of the target
region, which is easier than learning pixelwise segmentations within an expo-
nentially large label space. Then, we use such image-level properties to facil-
itate segmentation via constrained CNNs. Figure 1 depicts an illustration of
our curriculum semi-supervised segmentation. We first use an auxiliary network
that predicts the target-region size for a given image. Particularly, we train a
regression network R (with parameters θ̃) by solving the following minimization
problem:

min
θ̃

∑

i∈S

⎛

⎝R(Xi|θ̃) −
∑

p∈Ω

Yi,p

⎞

⎠
2

. (2)

This amounts to minimizing the squared difference between the predicted size
and the actual region size.

Now we can define our constrained-CNN segmentation problem using auxil-
iary size predictions R(Xi|θ̃):

min
θ

LY (θ)

s.t. ∀i ∈ U : (1 − γ)R(Xi|θ̃) ≤
∑

p∈Ω

S(Xi|θ)p ≤ (1 + γ)R(Xi|θ̃), (3)
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where the inequality constraints impose the learned image-level information (i.e.,
region size) on the outputs of the segmentation network for unlabeled images,
and γ is a hyper-parameter controlling constraints tightness. We use a penalty-
based approach [8] for handling the inequality constraints, which accommodates
standard stochastic gradient descent. This amounts to replacing the constraints
in (3) with the following penalty over unlabeled samples:

LU (θ) =
∑

i∈U
C

⎛

⎝
∑

p∈Ω

S(Xi|θ)p

⎞

⎠ (4)

C(t) =

⎧
⎪⎨

⎪⎩

(t − (1 − γ)R(Xi|θ̃))2 if t ≤ (1 − γ)R(Xi|θ̃)
(t − (1 + γ)R(Xi|θ̃))2 if t ≥ (1 + γ)R(Xi|θ̃)
0 otherwise

(5)

This gives our final unconstrained optimization problem: minθ LY (θ)+λLU (θ),
with λ a hyper-parameter controlling the relative contribution of each term.

Fig. 1. Illustration of our curriculum semi-supervised segmentation strategy.

4 Experiments

4.1 Setup

Data. Our experiments focused on left ventricular endocardium segmentation.
We used the training set from the publicly available data of the 2017 ACDC
Challenge [3]. This set consists of 100 cine magnetic resonance (MR) exams cov-
ering well defined pathologies: dilated cardiomyopathy, hypertrophic cardiomy-
opathy, myocardial infarction with altered left ventricular ejection fraction and
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abnormal right ventricle. It also included normal subjects. Each exam only con-
tains acquisitions at the diastolic and systolic phases. We sliced and resized the
exams into 256 × 256 images. No additional pre-processing was performed.

Training. For the experiments, we employed 75 exams for training and the
remaining 25 for validation. From the training set, we consider that n images
are fully annotated and the pixel-wise annotations of the remaining 75-n images
are unknown. The n images, and their corresponding ground truth, are employed
to train both the auxiliary size predictor and the main segmentation network, in
a separate way. To validate both networks, we split the validation set into two
smaller subsets of 5 and 20 exams, respectively. The training set undergoes data
augmentation only to train the size regressor, by flipping, mirroring and rotating
(up to 45◦) the original images, obtaining a training set that is 10 times larger.

Implementation Details. We employed ResNeXt 101 [21] as the backbone
architecture for our regressor model, with the squared L2 norm as the objective
function. We trained via standard stochastic gradient descent, with a learning
rate of 5×10−6, a momentum of 0.9 and a weight decay of 10−4, for 200 epochs.
The learning rate was halved at epochs 100 and 150. We used a batch size of
10. We used ENet [16] as the segmentation network, trained with Adam [10], a
learning rate of 5 × 10−4, β1 = 0.9 and β2 = 0.99 for 100 epochs. The learning
rate was halved if validation DSC did not improve for 20 epochs. We used a
batch size of 1, and γ from Eq. (4) is set at γ = 0.1. We did not use any form of
post-processing on the network output.

Comparative Methods. We compare the performance of the proposed semi-
supervised curriculum segmentation approach to several models. First, we train
a network using only n exams and their corresponding pixel-wise annotations,
which is referred to as FS. Then, once this model is trained, and following stan-
dard proposal-based strategies for semi-supervision, e.g., [1], we perform the
inference on the remaining 75-n exams, and include the CNN predictions in the
training set, which serve as pseudo-labels for the non-annotated images (referred
to as Proposals). In this particular case, the training reduces to minimizing the
cross-entropy over all the pixels in the manually annotated images and over the
pixels predicted as left-ventricle in the pseudo-labels. Since we investigate how
to leverage unlabeled data only by learning from the subset of labeled data, we
do not integrate any additional cues during training, such as Conditional Ran-
dom Fields (CRF)2. Finally, we train a model with the exact size derived from
the ground truth for each image, as in [8], which will serve as an upper bound,
referred to as Oracle.

Evaluation. We resort to the common dice (DSC) overlap metric between the
ground truth and the CNN segmentation to evaluate the performances of the seg-
mentation models. More specifically, we report the mean and standard deviation
of the validation DSC over the last 50 epochs of training.

2 Note that the proposal-based methods in [1] use CRF to boost performance.
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4.2 Results

We report in Table 1 and Fig. 2 the quantitative evaluation of the different seg-
mentation models. First, we can observe that integrating the size predicted on
unlabeled images by the auxiliary network improves the performance compared
to solely training from labeled images. The gap is particularly significant when
few annotated images are available, ranging from nearly 15 to 25% of difference
in terms of DSC. As more labeled images are available, the proposed strategy
still improves the performance of the fully supervised counterpart, but by a
smaller margin, which goes from 1 to 3%. Compared to the Oracle, our method
achieves comparable results as the number of training samples increases. This
suggests that, when few annotated patients are available, having a better esti-
mation of the size helps to better regularize the network. It is noteworthy to
mention that in the Oracle, the exact size is known for each image, which results
in extra supervision compared to the proposed method. The proposals method
achieves the same or worse results than its FS counterpart, for all the n values
evaluated. These results indicate that n patients are not sufficient to train an
auxiliary network that generates usable pseudo-labels, due to the difficulty of the
segmentation task. This confirms that training a network on an easier task, e.g.,
learning the size of the target region, can guide the training in a semi-supervised
setting.

Table 1. Quantitative results for the different models. Values represent the mean Dice
(and standard deviation) over the last 50 epochs.

# labeled patients Method

FS Proposals Proposed Oracle [8]

5 24.8 (4.9) 8.1 (0.8) 53.1 (3.0) 74.3 (2.5)

10 44.4 (8.3) 43.9 (2.9) 58.5 (3.6) 75.7 (3.9)

20 71.7 (3.2) 49.1 (5.0) 72.7 (1.6) 79.0 (2.5)

30 73.1 (1.7) 62.6 (4.4) 75.4 (1.6) 77.0 (1.9)

40 75.8 (2.4) 68.8 (5.6) 76.3 (2.1) 80.4 (2.1)

75 81.6 (1.9) NA NA NA

Evolution of DSC on the validation set over training for some models is
depicted in Fig. 3. From these plots, we can observe that the auxiliary network
facilitates the training of a harder task, consistently achieving higher perfor-
mance and better stability than its FS counterpart, especially when few labeled
images are available. Regarding the instability of the FS method, it may be
caused by the small number of samples employed for training, with no other
source of information that regularizes the network.
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Fig. 2. Mean DSC per method and for
several n annotated patients.

Fig. 3. Validation DSC over time, with
a subset of the evaluated models.

Qualitative results are depicted in Fig. 4. Particularly, we show the predic-
tion on the same slice with the different methods and for increasing n. We first
observe that predictions of the FS model are very unstable, not clearly improv-
ing as more labeled images are included in the training, which aligns with the
results found in Fig. 3. Then, the Proposals approach fails to generate visually
acceptable segmentations, even with 30 pixel-wise labeled patients. Although

Fig. 4. Visual comparison for the different methods, with varying number of fully
annotated patients used for training. Best viewed in colors
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its performance improves with the number of labeled patients used in training,
its results are not visually satisfying for any value of n. Our curriculum semi-
supervised segmentation approach achieves decent results from n = 5. It only
requires 20 patients to yield comparable segmentations to those of the Oracle
and the manual ground truth.
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Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS,
vol. 11073, pp. 370–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-00937-3 43

https://doi.org/10.1007/978-3-319-66185-8_29
https://doi.org/10.1007/978-3-319-66179-7_36
https://doi.org/10.1007/978-3-030-00934-2_61
https://doi.org/10.1007/978-3-030-00934-2_61
https://doi.org/10.1007/978-3-030-00931-1_68
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1810.12241
https://doi.org/10.1007/978-3-030-00937-3_43
https://doi.org/10.1007/978-3-030-00937-3_43


576 H. Kervadec et al.

15. Papandreou, G., Chen, L.C., Murphy, K., Yuille, A.L.: Weakly-and semi-supervised
learning of a DCNN for semantic image segmentation. In: ICCV (2015)

16. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network
architecture for real-time semantic segmentation. arXiv preprint: arXiv:1606.02147
(2016)

17. Pathak, D., Krahenbuhl, P., Darrell, T.: Constrained convolutional neural networks
for weakly supervised segmentation. In: ICCV, pp. 1796–1804 (2015)

18. Rajchl, M., et al.: DeepCut: object segmentation from bounding box annotations
using convolutional neural networks. IEEE TMI 36(2), 674–683 (2017)

19. Sedai, S., Mahapatra, D., Hewavitharanage, S., Maetschke, S., Garnavi, R.: Semi-
supervised segmentation of optic cup in retinal fundus images using variational
autoencoder. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins,
D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 75–82. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66185-8 9

20. Tang, M., Perazzi, F., Djelouah, A., Ben Ayed, I., et al.: On regularized losses for
weakly-supervised CNN segmentation. In: ECCV, pp. 507–522 (2018)

21. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: CVPR, pp. 1492–1500 (2017)

22. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic seg-
mentation of urban scenes. In: ICCV, pp. 2020–2030 (2017)

23. Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep
adversarial networks for biomedical image segmentation utilizing unannotated
images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L.,
Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66179-7 47

24. Zhou, Y., et al.: Semi-supervised 3D abdominal multi-organ segmentation via deep
multi-planar co-training. In: IEEE WACV, pp. 121–140 (2019)

25. Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synth. Lect.
Artif. Intell. Mach. Learn. 3(1), 1–130 (2009)

http://arxiv.org/abs/1606.02147
https://doi.org/10.1007/978-3-319-66185-8_9
https://doi.org/10.1007/978-3-319-66179-7_47

	Curriculum Semi-supervised Segmentation
	1 Introduction
	2 Self-training for Semi-supervised Segmentation
	3 Curriculum Semi-supervised Learning
	4 Experiments
	4.1 Setup
	4.2 Results

	References




