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Abstract. Cardiac segmentation from late gadolinium enhancement MRI is an
important task in clinics to identify and evaluate the infarction of myocardium.
The automatic segmentation is however still challenging, due to the heteroge-
neous intensity distributions and indistinct boundaries in the images. In this
paper, we propose a new method, based on deep neural networks (DNN), for
fully automatic segmentation. The proposed network, referred to as SRSCN,
comprises a shape reconstruction neural network (SRNN) and a spatial con-
straint network (SCN). SRNN aims to maintain a realistic shape of the resulting
segmentation. It can be pre-trained by a set of label images, and then be
embedded into a unified loss function as a regularization term. Hence, no
manually designed feature is needed. Furthermore, SCN incorporates the spatial
information of the 2D slices. It is formulated and trained with the segmentation
network via the multi-task learning strategy. We evaluated the proposed method
using 45 patients and compared with two state-of-the-art regularization schemes,
i.e., the anatomically constraint neural network and the adversarial neural net-
work. The results show that the proposed SRSCN outperformed the conven-
tional schemes, and obtained a Dice score of 0.758 ± .227 for myocardial
segmentation, which compares with 0.757 ± .083 from the inter-observer
variations.
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1 Introduction

Analysis of myocardial (Myo) viability is crucial to better understand the physiological
and pathological processes for patients suffering from myocardial infarction (MI). Late
gadolinium enhancement (LGE) MRI is a valuable tool for MI assessment, because it
can visualize the important pathological information. For quantitative assessment,
segmentation of the myocardium is a prerequisite.

Manual segmentation can be time-consuming and suffer from inter-observer vari-
ations, thus automating this process is desirable in the clinic. Rajchl et al. proposed to
segment the myocardium indirectly using a multi-region approach [1]. Many automatic
methods use cine MRI as prior knowledge, and the image registration techniques are
applied for more accurate segmentations [2]. These methods generally require an
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accurate registration between the cine MRI and LGE MRI. However, this registration
can also be challenging, considering the intra-image misalignments as well as inter-
image misregistration. Therefore, manual interaction is commonly used. Liu et al.
employed the multi-component Gaussian mixture model to automatically segment the
myocardium from a single LGE MRI sequence [3]. The coupled level set is employed
as a spatial constraint, which can be iteratively adapted according to the image
characteristics.

Fully automated segmentation of LGE MRI is challenging due to the heterogeneous
intensity distributions of images and the large shape variation of the heart. Furthermore,
the annotated data are meanwhile limited; thus, the attempt to solve this problem
automatically is still rarely reported. In the field of medical imaging, anatomical priors
can be essential in assisting the segmentation task in the deep neural network (DNN)-
based algorithms. Therefore, in this work we propose an enhanced DNN model with
shape reconstruction (SR) and spatial constraint (SC) to tackle the challenging seg-
mentation task, particularly with a small set of annotated training data. The resulting
network is expected to be able to constrain the segmentation to generate results with
realistic heart shapes.

We first propose a shape reconstruction neural network (SRNN). SRNN can be pre-
trained by anatomical priors such as a set of label images, and it works as a shape
constraint to regularize the results. Hence, SRNN can maintain a realistic heart shape of
the segmentation result. Furthermore, we propose the spatial constraint network
(SCN) to solve the large variation of the 2D slices across different positions of a 3D

Fig. 1. Overall structure of SRSCN, whose loss comes from three parts: the segmentation loss is
specially design as a function of cross entropy and Dice, the spatial constraint (SC) loss to assist
segmentation, and the shape reconstruction (SR) loss for shape regularization.
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cardiac MRI. This is because the 2D slices may come from any position, from the apex
to the base of the ventricles. The shape and appearance of these slices can vary
considerably if they come from different positions. SCN is designed to incorporate this
information. By combining the learning task of spatial information with the segmen-
tation problem and formulating them as a two-task-learning problem, one can expect
the SCN to significantly improve the general performance of the network, opposed to
the separate training for the two tasks. In addition, we investigate two state-of-the-art
alternatives for shape regularization, i.e. the anatomical constraint neural network
(ACNN) [4] and the generative adversarial network (GAN) [5], though neither of them
has been used for this segmentation task, to the best of our knowledge.

2 Method

Figure 1 presents the structure of the proposed network, i.e., SRSCN, which is based
on an enhanced U-Net [6]. SRSCN includes two modules to incorporate the prior
knowledge, i.e., the SR module and the SC module. The models solely combining U-
Net with SR and SC are denoted as SRNN and SCN, respectively.

2.1 Architecture of the Segmentation Network

Ronneberger et al. proposed U-Net for medical image segmentation, which has two
key modules, i.e. the feature extraction and up sampling module [6]. Based on the fully
connected network (FCN), it has the advantage of utilizing multi-scale information of
the images. U-Net has a symmetric pyramid structure, where an input image is com-
pressed into higher semantic features and then unsampled to its original resolution. The
combination of local and contextual information enables a good segmentation of
medical images.

In our work, we adopted the Exponential Logarithmic Loss [7] as the loss function
to measure the result of the segmentation. This loss function combines cross entropy
and Dice score in a balanced fashion to facilitate training, and it takes the label balance
into account to accelerate convergence, i.e.,

LSeg ¼ kDiceLDice þ kCrossLCross; ð1Þ

where, kDice and kCross are the balancing parameters, respectively for the weighted Dice
score term, LDice ¼ E � ln Diceið Þð Þc1½ �, and the weighted cross entropy term, LCross ¼
E wl � ln pl xð Þð Þð Þc2½ � with x the pixel position, i the label, and l the ground-truth label at
x; c1 and c2 are two hyperparameters that control the nonlinearities of the loss
functions.

DNN, however, generally requires a large set of annotated data to train the network.
With limited training data, the generalization capacity of the network could be
impaired. Therefore, constraints from prior knowledge should be included to enhance
the performance of the DNN.
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2.2 SRNN for Prior Knowledge of Shapes

SRNN aims to learn an intermediate representation, from which the original inputs can
be reconstructed. Internally, by several down sampling operations, it can compress the
information or knowledge of original input into some codes acting as a compact
representation of the input image. Through this information compression, features of
the inputs are captured and mapped into a high-density space.

Hence, an SRNN model, pre-trained from a set of shape images, is able to function
as a constraint to regularize a segmentation result into a desired realistic shape. The
architecture of this SRNN is illustrated in Fig. 1, where the SR module (in dark red) is
connected, as an extended network to U-Net. During the optimization process, a reg-
ularization term produced by SRNN is in charge of constraining segmentation output.
The loss function for training SRNN is formulated as follows,

LSRNN ¼ LSeg þ kSRLSR; ð2Þ

where kSR is the balancing parameter; LSR is the SR module loss and is defined from
Frobenius norm,

LSR ¼
Xn

i¼1
bRi � Ri

���
���
2

F
: ð3Þ

Here, n is the number of training samples, Ri indicates the reconstructed gold standard
segmentation, and bRi denotes the reconstructed segmentation from the SRNN pre-
diction; �k kF is the Frobenius norm of an m� n matrix, and it is defined as the square
root of the sum of the absolute squares of matrix elements.

2.3 SCN for Prior Knowledge of Spatial Constraints

The idea of utilizing spatial information comes from the fact that the shapes and
appearance of the heart in the basal and apical slices can vary significantly. Therefore,
we develop an SC module to include the prediction of the spatial information of each
slice. At the same time, the segmentation task cooperates with spatial information
prediction task, which forms a multi-task learning problem. Multi-task learning has
been shown to be able to significantly improve the performance in contrast to learning
each task independently, both empirically [8] and theoretically [9, 10]. This is the case
not only when a few data per task are available but also when two tasks can intuitively
strengthen each other.

As Fig. 1 shows, we propose the SC module (in dark blue), connected to the
bottom of the U-Net, to predict the position of an LGE MRI slice. The SC loss is
designed to penalize the erroneous prediction of the spatial positions,

LSC ¼
Xn

i¼1
bPi � Pi

���
���
2

F
; ð4Þ

where Pi is the ground truth spatial information of slice i, and bPi is the prediction.
Similarly, the SCN loss is formulated with the weighted loss terms,
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LSCN ¼ LSeg þ kSCLSC: ð5Þ

By incorporating SC, the network can combine two tasks, i.e., the regression of
position and the segmentation of images, to form a two-task-learning problem.

2.4 The Proposed SRSCN

Finally, we combine the SRNN and SCN to obtain the SRSCN, as shown in Fig. 1,
whose loss function is then defined as follows,

LSRSCN ¼ LSeg þ kSCLSC þ kSRLSR: ð6Þ

These two techniques can strengthen each other and result in better segmentation. The
two weights, kSC and kSR, balance the regularization effect of these two terms.

2.5 Alternative Technology for Shape Constraints

For comparisons, we further investigate the two state-of-the-art networks for shape
regularization, i.e., ACNN and GAN.

ACNN takes a series of cardiac label images as the inputs [4]. Through the pre-
trained auto-encoder network, the shape features are encoded as the compact codes of
the network. In contrast to the proposed SRNN using the reconstruction to assist
segmentation, ACNN solely uses the codes created by the encoder. Specifically, one
can obtain the ACNN by replacing the regularization term in SRNN with the L2-norm
between the codes coming from the segmentation result and gold standard.

GAN trains a discriminator to distinguish the authenticity of the inputs [5]. The
generator of GAN is responsible for producing more realistic inputs to fool the dis-
criminator. Integrating this idea into the segmentation task, it is quite natural to train a
discriminator whose task is to identify gold standard and segmentation results. Our main
purpose is to guide the segmentation network, that is U-Net to obtain better segmen-
tation results under this regularization. Specifically, two major modifications have been
performed on the U-Net to obtain the GAN-regularized U-Net segmentation. Firstly,
these segmentation results to be distinguished and gold standard are fed to GAN as it
plays the role of predicting a probability determining whether the current input is gold
standard label or not. The Sigmoid cross entropy used for GAN penalizes this dis-
criminator for wrong predictions. Secondly, the cost function includes a regularization
term created by GAN, with fixed parameters and an input of gold standard label.

3 Experiment

3.1 Data, Experimental Setup and Implementation Details

The LGE MRI used in the study were collected from 45 patients, of which 25 patients
were randomly selected for training, 5 selected for validation and 15 for testing. Note
that one of the 15 test cases failed all the methods, due to the particularly poor image
quality. Hence, the statistics of the results reported here exclude this outlier. To
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augment the training data, we registered the training images to other image spaces
using a set of artificially generated rigid, affine and deformable transformations,
resulting in 1,350 augmented 3D images and 20,405 2D slices.

We used Dice coefficient, average symmetric surface distance (ASD) and Hausdorff
Distance (HD) as metrics for evaluation of segmentation accuracy. ASD measures the
average of all the distances from points on the boundary of segmentation (Seg) to the
boundary of gold standard (GS),

ASD ¼ 1
BSeg

�� ��þ BGSj j �
X

x2BSeg
d x;BGSð Þþ

X
y2BGS

d y;BSeg
� �� �

:

The HD metric measures how far two subsets of a metric space are from each other,
HD ¼ max

x2Seg
min
y2GS

x� yk k.
For SRSCN, we used 5e-4 for the weight of SRNN and 1e-6 for SCN as default.

Note that it is possible to obtain better performance if an exhaustive search for the
optimal value could be employed. The inputs to the networks were 2D slices of size
240� 240 in pixels; the size of mini-batch was 32; the learning rate was 0.001. We
trained each model for 30 epochs. GAN was trained for 10 epochs with manual
monitoring of convergence, due to the particularly expensive training. The codes and
models were implemented using TensorFlow [11], and the optimizer for training was

Table 1. Segmentation performance of SRSCN for cardiac LGE MRI.

Metrics Myo (Epi) LV (Endo) RV (Endo)

Dice 0.812 ± 0.105 0.915 ± 0.052 0.882 ± 0.084
ASD (mm) 1.480 ± 0.997 1.749 ± 1.512 1.619 ± 1.748
HD (mm) 11.04 ± 5.818 12.25 ± 6.455 18.07 ± 14.17

Fig. 2. Visualization of three typical slices. Here, GS denotes gold standard segmentation.

564 Q. Yue et al.



AdamOptimizer [12]. We used one GPU of type GTX 1080ti for training and testing.
Each model required 5 to 8 h to train and the testing of a subject took 2 to 3 s.

3.2 Performance of the Proposed Method

Table 1 presents the statistics of the three metrics of the proposed SRSCN. Dice score
for myocardium segmentation reaches 0.812 ± .105, which compares the inter-
observer Dice of 0.757 ± .083. Note that the mean Dice score drops to 0.758 ± .227 if
the one failure case is included.

3.3 Study of Constraints

3.3.1 Ablation Study of SRSCN
The results of the ablation study are presented in Table 2. SCN outperforms U-Net by
8% in terms of generalized Dice score. SRNN further improves Dice performance by
3%. The proposed model, which consists of both of the SR and SC modules achieves
more than 13% improvement. Figure 2 visualizes three typical slices, i.e. from apical,

Table 2. Dice scores of the different methods from the study of shape constraints.

Methods LV RV Myo Mean

U-Net 0.816 ± 0.177 0.712 ± 0.272 0.682 ± 0.200 0.737 ± 0.216
SCN 0.885 ± 0.119 0.797 ± 0.170 0.773 ± 0.156 0.818 ± 0.148
SRNN 0.910 ± 0.051 0.825 ± 0.122 0.796 ± 0.115 0.844 ± 0.096
SRSCN 0.915 ± 0.052 0.882 ± 0.084 0.812 ± 0.105 0.870 ± 0.080
ACNN 0.913 ± 0.044 0.835 ± 0.102 0.800 ± 0.088 0.849 ± 0.078
GAN 0.885 ± 0.109 0.792 ± 0.190 0.781 ± 0.154 0.819 ± 0.151

Fig. 3. Box plots of the Dice scores of the different methods.
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middle and basal ventricle, and Fig. 3 compares the distributions of Dice scores of
different methods. The segmentation improvements are evident in the ablation study.

3.3.2 Comparisons with Two State-of-the-Art Models
Table 2 and Fig. 3 also present the segmentation results from the two state-of-the-art
deep-learning-based algorithms, i.e. ACNN [4] and GAN [13]. Compared to ACNN,
SRSCN obtains marginally better mean Dice; compared to GAN, it achieves more than
5% improvement. Compared to U-Net without shape regularization, SRSCN has evi-
dently and significantly better Dice scores in all categories (p < 0.01).

4 Conclusion

In this work, we propose the SRSCN for cardiac segmentation of LGE MRI. SRSCN
incorporates the shape and spatial priors via the SC and SR modules. SC module is
introduced as a spatial constraint for 2D slices and is formulated in the unified loss
function as a multi-task-learning problem. SR aims to maintain a realistic shape of the
resulting segmentation. We have evaluated the proposed method using 45 patients, and
compared it with two state-of-the-art regularization schemes, i.e., ACNN and GAN.
The results have demonstrated the effectiveness of the SR and SC regularization terms,
and showed the superiority of segmentation performance of the proposed SRSCN over
the conventional schemes.
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