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Abstract. Despite the recent improvements in overall accuracy, deep
learning systems still exhibit low levels of robustness. Detecting possible
failures is critical for a successful clinical integration of these systems,
where each data point corresponds to an individual patient. Uncertainty
measures are a promising direction to improve failure detection since they
provide a measure of a system’s confidence. Although many uncertainty
estimation methods have been proposed for deep learning, little is known
on their benefits and current challenges for medical image segmentation.
Therefore, we report results of evaluating common voxel-wise uncertainty
measures with respect to their reliability, and limitations on two medi-
cal image segmentation datasets. Results show that current uncertainty
methods perform similarly and although they are well-calibrated at the
dataset level, they tend to be miscalibrated at subject-level. Therefore,
the reliability of uncertainty estimates is compromised, highlighting the
importance of developing subject-wise uncertainty estimations. Addi-
tionally, among the benchmarked methods, we found auxiliary networks
to be a valid alternative to common uncertainty methods since they can
be applied to any previously trained segmentation model.
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1 Introduction

Deep learning-based methods have led to impressive improvements in medical
image segmentation over the past years. For many tasks, the performance is
comparable to human-level performance, or even surpasses it [11]. Nonetheless,
despite improvements in accuracy, the robustness aspects of these systems call
for significant improvements for a successful clinical integration of these technolo-
gies, where each data point corresponds to an individual patient. This highlights

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-32245-8 6) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2019
D. Shen et al. (Eds.): MICCAI 2019, LNCS 11765, pp. 48–56, 2019.
https://doi.org/10.1007/978-3-030-32245-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32245-8_6&domain=pdf
http://orcid.org/0000-0001-8327-4653
https://doi.org/10.1007/978-3-030-32245-8_6
https://doi.org/10.1007/978-3-030-32245-8_6
https://doi.org/10.1007/978-3-030-32245-8_6


Reliability and Challenges of Uncertainty Estimations 49

the importance of having mechanisms to effectively monitor computer results
in order to detect and react on system’s failures at the patient level. Among
others, uncertainty measures are a promising direction since uncertainties can
provide information as to how confident the system was on performing a given
task on a given patient. This information in turn can be used to leverage the
decision-making process of a user, as well as to enable time-effective corrections
of computer results by for instance, focusing on areas of high uncertainty.

Different approaches have been proposed to quantify uncertainties in deep
learning models. Among the most popular approaches are: (a) Bayesian uncer-
tainty estimation via test-time dropout [5], (b) aleatoric uncertainty estimation
via a second network output [9], and (c) uncertainty estimation via ensembling
of networks [10]. In medical image segmentation, uncertainty measures are of
interest at three levels. The first, most fine-grained level, is the voxel1-wise
uncertainty, which provides a measure of uncertainty for the predicted class
of each voxel. This level of uncertainty is especially useful for the interaction
with humans, be it by providing additional information to foster comprehensi-
bility or as guidance for correction tasks. The second level is the uncertainty
at the level of a segmented instance (or object). Nair et al. [12] and Graham
et al. [6] used instance-level uncertainty to reduce the false discovery rate of
brain lesions and cells, respectively. In both approaches voxel-wise uncertainties
were aggregated to obtain an instance-wise uncertainty. Similarly, Eaton-Rosen
et al. [4] aggregated voxel-wise uncertainties of brain tumor segmentations to
obtain confidence intervals for tumor volumes. The third level is the subject-
level uncertainty, which informs us whether the segmentation task was successful
(e.g., above a certain metric). Having information about success or failure would
be sufficient for many tasks, e.g., high-throughput analysis or selection of cases
for expert review. As proposed by Jungo et al. [8], task-specific aggregation of
the voxel-wise uncertainties could be used to obtain subject-level uncertainties.
In contrast, DeVries et al. [3] and Robinson et al. [13], proposed an auxiliary
neural network that predicts segmentation performance at the subject-level. A
current challenge to use these latter type of approaches is that considerable large
training datasets are necessary in practice to ensure their reliability [3].

In order to better understand the benefits and current challenges in uncer-
tainty estimation for medical image segmentation, we evaluated common uncer-
tainty measures with respect to their reliability, their benefit, and limitations2.
Additionally, we analyzed the requirements for uncertainties in medical image
segmentation and we make practical recommendations for their evaluation.

2 Material and Methods

2.1 Data

We selected two publicly available, and distinct datasets for the experiments.
The first dataset is the brain tumor segmentation (BraTS) challenge dataset
1 For simplicity, we use voxel even if it could be a two-dimensional image.
2 Code available at https://github.com/alainjungo/reliability-challenges-uncertainty.

https://github.com/alainjungo/reliability-challenges-uncertainty


50 A. Jungo and M. Reyes

2018 [1] consisting of 265 subjects. Each subject features four magnetic reso-
nance images (T1-weighted, T1-weighted post-contrast, T2-weighted, FLAIR)
of a size of 240 × 240 × 155 isotropic (1 mm3) voxels. We split the dataset into
100 training, 25 validation, and 160 testing subjects, combined the three tumor
sub-compartment labels to segment the whole tumor, and performed a z-score
intensity normalization (μ = 0, σ = 1) on each subject and image individually.
The second dataset is the international skin imaging collaboration (ISIC) lesion
segmentation dataset 2017 [2] consisting of 2000 training, 150 validation, and
600 testing images. We resized the color images to a size of 256 × 192 pixels and
normalized the intensities to the range [0, 1].

2.2 Experimental Setting

Our aim is to evaluate the reliability of uncertainty measures for deep learning-
based segmentation of medical images. Rather than building a specific fine-tuned,
top-performing segmentation model, we used a U-Net-like architecture [14] due
to its popularity, simplicity, and to minimize architectural influences on the
outcomes3. The architecture consists of four pooling/upsampling steps and has
dropout regularization (p = 0.05) and batch normalization after each convolu-
tion. We used a common training scheme consisting of a cross-entropy loss with
Adam optimizer (learning rate: 10−4), and applied early stopping with respect
to the validation set Dice coefficient. Any adaptation to this architecture and
training scheme was performed to fit the needs of each studied uncertainty app-
roach.

2.3 Uncertainty Methods

We evaluated the following five different uncertainty measures:

Baseline Uncertainty: Softmax Entropy. Although the softmax output of a
model is arguably a probability measure [5], we considered it as reference compar-
ison as it is implicitly generated by segmentation networks. We named this strat-
egy baseline. We used the normalized entropy H = − ∑

c∈C pclog(pc)/log(|C|) ∈ [0, 1]
as a measure of uncertainty, where pc is the softmax output for class c and C is
the set of classes (C = {0, 1} in our case).

MC Dropout. Test time dropout can be viewed as an approximation of a
Bayesian neural network [5]. T stochastic network samples can be interpreted as
Monte-Carlo samples of the posterior distribution of the network’s weights and
result in a class probability of pc = 1/T

∑T
t=1 pt,c. We employed the normalized

entropy of these probabilities as a measure of uncertainty. For the experiments,
we used T = 20 and considered two different dropout layer positioning strategies.
First, we applied MC dropout on the base model (see Sect. 2.2), which uses
minimal dropout (p = 0.05) after each convolution. Second, we applied more

3 We also conducted experiments with a DenseNet-like architecture with no notable
differences in the outcome and therefore omit it here for space and clarity reasons.
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prominent dropout (p = 0.5) at the center positions (i.e., before pooling and
after upsampling, similar to [12]). Accordingly, we name these two strategies as
baseline+MC and center+MC.

Aleatoric Uncertainty. In contrast to the model uncertainty (captured by
e.g. MC dropout), the aleatoric uncertainty is said to capture noise inherent in
the observation [9]. It is obtained by defining a network f with two outputs
[x̂, σ2] = f(x) and input x, where the outputs x̂ and σ2 are the mean and
variance of the logits perturbed with Gaussian noise. The aleatoric loss optimizes
both outputs simultaneously by MC sampling (ten samples in our case) of the
perturbed logits. We used x̂ for the class predictions and the variance σ2 as a
measure of uncertainty. We normalized the variance to [0, 1] over all predictions.

Ensembles. Another way of quantifying uncertainties is by ensembling multiple
models [10]. We combined the class probabilities of each network k by the average
pc = 1/K

∑K
k=1 pk,c over all K = 10 networks and used the normalized entropy as

uncertainty measure. The individual networks share the same architecture (see
Sect. 2.2) but were trained on different subsets (90%) of the training dataset and
different random initialization to enforce variability.

Auxiliary Network. Inspired by [3,13], where an auxiliary network is used
to predict segmentation performance at the subject-level, we apply an auxiliary
network to predict voxel-wise uncertainties of the segmentation model by learn-
ing from the segmentation errors (i.e., false positives and false negatives). For the
experiments, we considered two opposing types of auxiliary networks. The first
one, named auxiliary feat., consists of three consecutive 1 × 1 convolution layers
cascaded after the last feature maps of the segmentation network. The second
auxiliary network, named auxiliary segm., is a completely independent network
(same U-Net as described in Sect. 2.2) that uses as input the original images
and the segmentation masks produced by the segmentation model (generated by
five-fold cross-validation). We normalized the output uncertainty subject-wise to
[0, 1] for comparability purposes.

2.4 Assessing Quality of Uncertainties

We adopted three metrics to evaluate the quality of uncertainties. Additionally,
we computed the Dice coefficient to also verify segmentation performance as
uncertainty methods typically link both tasks.

Calibration. Model calibration is important when not only the predicted class
but also its corresponding confidence is of interest. In this regards, calibration
has been used as a surrogate to asses the reliability of uncertainties [9]. A model
is said to be perfectly calibrated if its predictions f(x) with confidence p do
occur with a fraction p of the time (P (y = 1|f(x) = p) = p for the binary
case). Meaning for example that for 100 predictions with a confidence of 0.7, 70
predictions are expected to be correct [7]. We assessed calibration of uncertain-
ties by reliability diagrams and expected calibration error (ECE) [7]. Reliability
diagrams show the deviation of the perfect calibration by plotting the binned



52 A. Jungo and M. Reyes

predicted confidences against the accuracy obtained for each bin (fraction of
positives). The ECE is defined as the absolute error of these bins (i.e., the gap
between confidence and accuracy) weighted by the number of samples in the
bins, where a lower ECE (close to zero) indicates a better calibration. In our
experiments, we used a bin size of ten and used the model output probabilities
as confidence. For methods not providing segmentation probabilities but direct
segmentation uncertainty estimates (i.e., auxiliary and aleatoric), we translated
the uncertainties by y(1 − 0.5q) + (1 − y)(0.5q) to confidences, where y ∈ {0, 1}
is the segmentation label and q ∈ [0, 1] is the normalized uncertainty.

Uncertainty-Error Overlap. In a practical setting, perfect calibration of a
model is impossible [7]. Often, segmentation tasks do not require perfect cali-
bration but it would be sufficient for a model to be uncertain where it makes
mistakes and certain where it is correct. To assess this condition, we used the
overlap (determined by the Dice coefficient) between the segmentation error and
the thresholded uncertainty, termed uncertainty-error overlap (U-E ). This met-
ric is not influenced by the true negatives from background areas, which are
typically enormous in medical image segmentation. It is therefore an alternative
for the ECE, which includes foreground as well as background areas.

Corrections. Motivated by previous works using uncertainty estimations, we
assessed the quality of uncertainties by evaluating their benefit to correct seg-
mentations. We define TPU, TNU, FPU, FNU as uncertainty in the true posi-
tives (TP), true negatives (TP), false positives (FP), and false negatives (FN).
A beneficial correction is said to improve the Dice coefficient, hence, to benefit
from removal of false positives, the relation FPU (TP ) > TPU (TP +FP +FN)
needs to be satisfied (for the accuracy FPU > TPU is sufficient). Similarly, in
order to benefit from adding voxels (i.e., correct false negatives), the relation
FNU (TP + FP + FN) > TNU (TP ), needs to be satisfied. However, the
latter relation is not practically applicable due to large backgrounds and thus
typically large TNU . Since voxel-wise corrections (as opposed to instance-wise
corrections) might be more harmful than beneficial, we calculated the proportion
of subjects that fulfill the benefit condition for false positive removal, BnF, as
means of comparison to other methods.

3 Results

Figure 1 compares the calibration at the dataset level (i.e., all voxels in the
dataset) with the calibration at the subject level (i.e., voxels of one subject). It
shows the miscalibration that can occur at subject level (S1 and S2) while the cal-
ibration at dataset level is good. We found approximately 28%/46% underconfi-
dent and 32%/18% overconfident calibrations for the subjects of the BraTS/ISIC
dataset. This underlines the special caution needed when using the calibration-
based metrics (e.g., ECE) at the dataset level, as it can lead to mispercep-
tion on the actual calibration quality of a model, and hence, the reliability of
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Fig. 1. Calibration at the dataset level (D) compared to the (mis)calibration at the
subject level (S1, S2, S3) for the different uncertainty methods. S1, S2, S3 correspond to
exemplary subjects for which the models are underconfident (S1), overconfident (S2),
and well-calibrated (S3). Rows correspond to results on the BRATS and ISIC datasets.

its uncertainty estimations. Noticeable is also the agreement among the uncer-
tainty methods at subject-level, suggesting only little benefit in selecting one
uncertainty method over another.

In Table 1, we report for BraTS and the ISIC dataset the following metrics:
average subject-level ECE (dataset-level ECE in supplementary material A),
uncertainty-error overlap (U-E), proportion of correction-benefiting test sub-
jects (BnF), and Dice coefficient. For a fair comparison, we selected the best-
performing threshold for each method whenever the metric required an uncer-
tainty threshold (i.e., U-E and BnF). Overall for both datasets, no uncertainty
method outperforms and stands out over the others. Particularly, the aleatoric
method and methods with large dropout (center/+MC ) yield worst perfor-
mance. The aleatoric method fails to produce uncertainty at the locations of
segmentation errors (i.e., low U-E) and is therefore unable to improve segmen-
tation results through corrections, whereas the large dropout mainly negatively
affects segmentation performance and ECE. The results further show that MC
dropout (baseline+MC and center+MC ) typically improves ECE, U-E, and Dice
coefficient over the non-MC versions (baseline and center), but larger amounts
of dropout (baseline<center and baseline+MC<center+MC ) results in worse
performances, which suggests using MC dropout in the regimes where the ben-
efit with respect to the uncertainty is minimal compared to standard softmax.
We could confirm this finding through intermediate dropout strategies (see sup-
plementary material B). We also observe good performances of the auxiliary
networks, which are typically well-calibrated and profit from a good segmenta-
tion performance of their segmentation network (i.e., baseline model). In regards
to the metrics, we note that low ECE values stem from large amount of low-
confident background areas that positively affects the ECE. This also explains
the lower ECE values for the BraTS dataset, which contains more background
(even with applied brain mask) than the ISIC dataset, due to the additional
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image dimension. Additionally, the BnF only considers TPU and FPU uncer-
tainties and is therefore favorable for methods with low precision (more FP
typically yields more FPU). We found this to be the reason for the bad cor-
rection performance of the ensemble on the BraTS dataset, even though the
uncertainty-error overlap was good.

Table 1. Performances of the different uncertainties with respect to expected calibra-
tion error (ECE), uncertainty-error overlap (U-E), proportion of correction-benefiting
test subjects (BnF), and Dice coefficient. Values are presented as mean (rank). Stan-
dard deviation is omitted due to marginal differences. Upwards and downwards arrow
indicate desired higher and lower metric values, respectively. Horizontal separation
group types of uncertainty methods.

BraTS ISIC

ECE % ↓ U-E ↑ BnF ↑ Dice ↑ ECE % ↓ U-E ↑ BnF ↑ Dice ↑
Baseline 0.925 (4) 0.432 (2) 0.39 (3) 0.874 (2) 7.256 (4) 0.424 (4) 0.26 (4) 0.814 (3)

Center 1.758 (7) 0.409 (5) 0.5 (1) 0.866 (5) 9.415 (8) 0.411 (6) 0.27 (3) 0.78 (6)

Baseline+MC 0.9 (1) 0.433 (1) 0.36 (4) 0.874 (2) 7.36 (5) 0.428 (3) 0.24 (5) 0.813 (4)

Center+MC 1.233 (6) 0.433 (1) 0.27 (6) 0.868 (4) 8.766 (7) 0.428 (3) 0.17 (6) 0.794 (5)

Ensemble 0.919 (2) 0.433 (1) 0.32 (5) 0.879 (1) 7.131 (1) 0.431 (2) 0.31 (2) 0.831 (1)

Auxiliary feat 0.923 (3) 0.427 (3) 0.48 (2) 0.874 (2) 7.216 (3) 0.421 (5) 0.33 (1) 0.814 (3)

Auxiliary segm 0.925 (4) 0.412 (4) 0.48 (2) 0.874 (2) 7.212 (2) 0.433 (1) 0.27 (3) 0.814 (3)

Aleatoric 1.134 (5) 0.054 (6) 0.06 (7) 0.872 (3) 7.837 (6) 0.058 (7) 0.12 (7) 0.82 (2)

4 Discussion

The results show that although current voxel-wise uncertainty measures are
rather well-calibrated at the dataset level (i.e., all voxels in the dataset) they
tend to fail at the subject level (Fig. 1). This observation is to be expected since
subject-level calibration errors (under- or overcalibration) can average out at the
dataset level. Based on the proposed calibration-based metric, no overall best
uncertainty measure was found among the studied methods. From our experi-
ments we can conclude that methods that aggregate voxel-wise uncertainty to
provide subject-level estimations are not reliable enough to be used as a mech-
anism to detect failed segmentations. We thus conclude on the importance of
developing subject-level uncertainty estimation in medical image segmentation
that can cope with the issue of High-Dimension-Low-Sample-Size (HDLSS) to
ensure their reliability in practice.

Unsurprisingly, the ensemble method yields rank-wise the most reliable
results (Table 1) and would typically be a good choice (if the resources allow it).
The results also revealed that methods based on MC dropout are heavily depen-
dent on the influence of dropout on the segmentation performance. In contrast,
auxiliary networks turned out to be a promising alternative to existing uncer-
tainty measures. They perform comparable to other methods but have the benefit
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of being applicable to any high-performing segmentation network not optimized
to predict reliable uncertainty estimates. No significant differences were found
between using auxiliary feat. and auxiliary segm.. Through a sensitivity analysis
performed over all studied uncertainty methods (see supplementary material C),
we could confirm our observations that different uncertainty estimation methods
yield different levels of precision and recall. Furthermore, we observed that when
using current uncertainty methods for correcting segmentations, a maximum
benefit can be attained when preferring a combination of low precision segmen-
tation models and uncertainty-based false positive removal.

Our evaluation has several limitations worth mentioning. First, although the
experiments were performed on two typical and distinctive datasets, they feature
large structures to segment. The findings reported herein may differ for other
datasets, especially if these consists of very small structures to be segmented.
Second, the assessment of the uncertainty is influenced by the segmentation
performance. Even though we succeeded in building similarly performing models,
their differences cannot be fully decoupled and neglected when analyzing the
uncertainty.

Overall, we aim with these results to point to the existing challenges for
a reliable utilization of voxel-wise uncertainties in medical image segmenta-
tion, and foster the development of subject/patient-level uncertainty estima-
tion approaches under the condition of HDLSS. We recommend that utiliza-
tion of uncertainty methods ideally need to be coupled with an assessment of
model calibration at the subject/patient-level. Proposed conditions, along with
the threshold-free ECE metric can be adopted to test whether uncertainty esti-
mations can be of benefit for a given task.
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