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Abstract. Dynamic magnetic resonance imaging (MRI) exhibits high
correlations in k-space and time. In order to accelerate the dynamic MR
imaging and to exploit k-t correlations from highly undersampled data,
here we propose a novel deep learning based approach for dynamic MR
image reconstruction, termed k-t NEXT (k-t NEtwork with X-f Trans-
form). In particular, inspired by traditional methods such as k-t BLAST
and k-t FOCUSS, we propose to reconstruct the true signals from aliased
signals in z- f domain to exploit the spatio-temporal redundancies. Build-
ing on that, the proposed method then learns to recover the signals by
alternating the reconstruction process between the x-f space and image
space in an iterative fashion. This enables the network to effectively cap-
ture useful information and jointly exploit spatio-temporal correlations
from both complementary domains. Experiments conducted on highly
undersampled short-axis cardiac cine MRI scans demonstrate that our
proposed method outperforms the current state-of-the-art dynamic MR
reconstruction approaches both quantitatively and qualitatively.

1 Introduction

Dynamic Magnetic Resonance Imaging (MRI) is a non-invasive imaging tech-
nique to monitor dynamic processes such as cardiac motion by acquiring data in
a k-t space that contains both temporal and spatial information. However, the
acquisition speed is limited due to both physical and physiological constraints.
It is well known that in dynamic MRI there exists significant correlations in
k-space and time. In order to increase the acquisition rate, most strategies have
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been designed to acquire part of the desired k-t measurements and then recon-
struct the images by exploiting spatio-temporal redundancies within the data.

Inspired by traditional k-t methods from the area of compressed sensing
[8,9,15] for accelerated dynamic MR imaging, here we propose a novel dynamic
MR image reconstruction NEtwork with X-f Transform, termed k-t NEXT,
which exploits the signal redundancies in both z-f domain and image domain.
In particular, the proposed k-t NEXT formulates the reconstruction process in
an iterative fashion, where in each iteration, it consists of two sub-modules:
a xf-CNN that learns to recover the true signals from aliased signals in a-f
domain, and a convolutional recurrent neural network (CRNN) that exploits
spatio-temporal redundancies in image domain. The dynamic reconstruction
process thus alternates between z-f space and image space, which potentially
enables the network to learn complementary features simultaneously from both
domains. Experiments were performed on highly undersampled short-axis car-
diac cine MR scans, where we show that the proposed model outperforms the
current state-of-the-art dynamic MR reconstruction methods.

1.1 Related Work

Over the years, a number of approaches have been proposed for the reconstruc-
tion of accelerated dynamic MR images. In general, these methods can be mainly
divided into three categories, based on exploiting correlations in k-space, in time,
and in both k-space and time [15]. The first class of approaches exploit the corre-
lations between k-space points at the same time frame, and then reconstruct each
frame independently from other time frames, such as reduced field-of-view (FOV)
[6] and parallel imaging methods [3], while the second group of strategies is to
exploit redundancies in time, where the missing data at a given position can be
interpolated or extrapolated from the measured data at other time points, such
as keyhole imaging [7] and data sharing [18]. Relevant to our method, the third
type of approaches is based on exploiting correlations in both k-space and time.
One of the examples is the model-based k-t BLAST and k-t SENSE method [15],
which takes advantage of a-priori information about the z-f support obtained
from the training stage and then to remedy the aliasing artefacts during acqui-
sition stage. Based on that, k-t FOCUSS [8,9] then formulated the problem in a
compressed sensing MRI framework, which enforced the sparsity in z-f domain
for the signal recovery. Similarly, a low rank and sparse reconstruction scheme (k-
t SLR) [10] was proposed to exploit correlations between the temporal profiles of
the voxels by introducing non-convex spectral norms and spatio-temporal total
variation norm. In more recent years, deep learning approaches have gained their
popularity for MR image reconstruction [2,12,13,16]. Most approaches investi-
gate on exploiting information in a single frame (or static image) either in image
domain [4,11,14] or in k-space domain [1,5,17], where each frame (or image)
is reconstructed independently. In order to exploit the temporal redundancies,
Schlemper et al. [13] proposed a data sharing (DS) layer in an image space
cascaded 3D convolutional network to utilise the similar information contained
in neighboring k-space samples. Qin et al. [12] also proposed a bidirectional
CRNN model to exploit the temporal dependencies of dynamic sequences in
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image domain. In contrast, our approach proposes to reconstruct the images
in both z-f and image domains, where complementary information from two
different domains can be fully exploited.

2 Methods

2.1 Problem Formulation

Consider a Cartesian k-space trajectory where k, denotes the phase encod-
ing direction, k, denotes the readout direction, while o(z,t) denotes the image
domain content at x and time t. The k-space measurement v(k,t) is then for-
mulated as:

oit) = [otwtiedo = [ [ ow pem = asay, )

where p(z, f) is the 2D spectral signal in 2-f domain. This can also be repre-
sented in a matrix form: v = Fp, in which v and p stand for the stacked k-t
space measurement vectors and z-f image respectively, and F is the 2D Fourier
transform along the x-f direction. From the perspective of compressed sensing,
the problem can be formulated by exploiting the sparsity of the unknown signal:

min [|pfl1, st [[v = Fpll2 <, (2)

where e denotes the noise level. In k-t FOCUSS [8,9], the underdeter-
mined inverse problem was solved via a sparse reconstruction algorithm called
FOCUSS. The solution then can be expressed as the form that consists of a
baseline signal p and its residual encoding for the n-th estimate of the - f signal
p:

p™) = p+FOCUSS(p = — p, pl"~1)). (3)

Here the mathematical form of FOCUSS algorithm is omitted for simplicity. For
details, please refer to [8,9].

2.2 k-t NEXT for Dynamic MRI Reconstruction

Motivated by k-t BLAST [15] and k-t FOCUSS [9], we propose a dynamic image
reconstruction NEtwork with X-f Transform (k-t NEXT) to exploit the spatio-
temporal correlations from both z-f space and image space. Specifically, k-t
NEXT formulates the iterative reconstruction process in an unfolded cascading
way, as it has been shown to be a powerful technique in MR reconstruction
[12,13]. In each iteration, our proposed approach learns to reconstruct the true
images by alternating between z- f and image spaces, so that the spatio-temporal
redundancies can be jointly exploited from these two complementary domains.
In particular, a zf-CNN is proposed for the recovery of signals in z-f domain
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Fig. 1. The k-t NEXT reconstruction diagram. True signals can be recovered by itera-
tively updating the reconstruction in both (a) z-f and (b) image domains via learning
the z f-CNN and CRNN jointly. For mathmetical notations, please refer to Eq. 4.

inspired by the traditional k-t method, and a variation of the CRNN-MRI [12]
network is adopted for the subsequent image space reconstruction. We can com-
pactly represent a single iteration of the k-t NEXT as follows:

p™ =DC(p{n V) + a f-CNN(pln oY) — ple )y, (4a)
o) = CRNN(F;p™;v(@),  pln) = FH50), (4b)

where oﬁ;‘Z € CP denotes the complex-valued reconstructed image sequence at

iteration n, and aﬁﬂl = 0, is the acquired zero-filled undersampled images. Here
D = D,D,T, in which D, and D, are width and height of the frame and T'
is the number of frames. F; denotes the Fourier transform along f dimension,

and pEJ.;i is the z-f spectral signal transformed from o—ﬁ’;g, while p(™ stands for

the intermediate reconstructed signal from xf-CNN. Also ﬁgﬁc b denotes the
temporally averaged z-f signal (see Eq. (5)), DC stands for the data consistency
layer [13], and v(?) € CM (M < D) is the acquired raw data. An illustrative

diagram of k-t NEXT is shown in Fig. 1. We will introduce it in the following.
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zf-CNN Exploiting Spatio-Temporal Correlations in z-f Domain. Fol-
lowing the formulation in Eq. (3), here we propose to formulate the zf-CNN
reconstruction as Eq. (4a), where instead of using model-based [15] or com-
pressed sensing [9] algorithms to recover the true signals, we employ a stack
of CNN layers to estimate the missing data based on other available points, typ-
ically within its vicinity in z-f space. In particular, here the z-f baseline signal

—(n) . .
pge(): is a temporal average of a sequence, i.e.,

in which v(") is the k-space data that is Fourier transformed from aﬁzg, and the
./ and max operation is performed element-wise. Thereby, zf-CNN learns to
reconstruct residuals of each frame, which further exploits the signal sparsity.

The illustrative diagram of z-f reconstruction is shown in Fig. 1(a). Specif-
ically, we formulate the k-t to z-f transformation process as a x-f transform
layer in the network. In details, the z-f transform layer receives input from
k-t space data. For iteration n, the acquired k-space data is firstly averaged
along t to yield a temporal average (Eq. (5)), which is then subtracted from data
at each time frame. To ensure data fidelity for the baseline estimate, here we
propose to incorporate a data consistency (DC) term for ﬁ%; D at each frame
separately. Then the subtracted data and temporally averaged data are inverse
Fourier transformed to image space to obtain a sequence of aliased images and a
data-consistent temporally averaged sequence. Each frequency-encoding position
is then processed separately hereafter. The image columns from aliased images
or baseline images are then gathered and inverse Fourier transformed along ¢
to yield an z-f image, corresponding to p&’;; b_ p&ﬁg D and DC(ﬁSZC_ 1)) respec-
tively, which are then fed as inputs to xzf-CNN for z-f space reconstruction
(Eq. (4a)). After the signal de-aliasing in 2-f domain, another Fourier transform
along f is adopted to transform the estimated - f signal p(™ back to dynamic
image space for the subsequent image space reconstruction (Eq. (4b)).

k-t NEXT Exploiting Spatio-Temporal Redundancies in Complemen-
tary Domains. Previous approaches [2] have shown that exploring cross-domain
knowledge is beneficial for MR reconstruction task. Inspired by this, with the aim
of exploiting redundancies in complementary domains, here we propose to learn
a dynamic MR reconstruction network in both z-f and image spaces jointly.
In particular, we employ the CRNN model for image space reconstruction due
to its effectiveness in exploiting temporal redundancies with a relatively smaller
network capacity [12]. Thus, in each cascade, the proposed k-t NEXT consists
of a zf-CNN and a CRNN block, where it employs all 2D convolutions across
spatial and temporal dimensions, in contrast to 3D convolutions used in the
baseline method [13]. This enables the network to be more efficient and effective
in learning useful and complementary features in z- f, spatial and temporal space
simultaneously.
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Given the training data S with undersampled data as input and fully sampled
data as target, i.e., (o4, 0¢) in image space and (py, p¢) in a-f space, the network
is trained end-to-end by minimising the pixel-wise mean squared error (MSE)
between the reconstructed data and the ground truth fully sampled data:

£ O == 3 ([l = A2+ o - o). ()
)

where oﬁii and p(V) denote the predicted image and z-f array at iteration N,
i.e., the final output in image domain and x-f domain respectively, @ is the set
of network parameters, and ng is the number of training samples.

3 Experiments and Results

3.1 Dataset and Implementation Details

The dataset used in our experiments consists of 10 fully sampled complex-valued
short-axis cardiac cine MRI. Each scan contains a single slice SSFP acquisi-
tion with 30 temporal frames. The raw data has 32-channel data with sampling
matrix 192 x 190, which was zero-filled to 256 x 256, and the raw multi-coil data
was then reconstructed to produce a single complex-valued image. In experi-
ments, images were transformed back to k-space to simulate a fully sampled
single-coil acquisition. A shear grid k-t Cartesian sampling pattern with four
central lines (see Fig.3(b)) was employed to undersample the k-space data to
generate the undersampled input image sequences. The undersampling rate men-
tioned is stated with respect to the matrix size of the data, which is 192 x 190.

In the proposed k-t NEXT, xzf-CNN is composed of 5 layers of 2D CNN
with a residual connection from the baseline estimate. For the CRNN model, a
variation of architecture [12] is employed which consists of 4 layers of bidirec-
tional CRNN;, 1 layer of 2D CNN, a residual connection and a DC layer. We
used dilated convolutions with kernel size 3 x 3 and dilation factor (3,3), and
the number of cascade N was set to 4 for all comparison methods. For detailed
network architecture, please refer to supplementary materials. The network was
implemented in PyTorch. During training, ADAM optimiser was employed with
a learning rate of 10~%. Data augmentation was performed on-the-fly, with ran-
dom rotation, scaling, and elastic transformation. All evaluations were done via
a 3-fold cross validation.

3.2 Results

In experiments, we compared our proposed approach (k-t NEXT) with different
dynamic MR reconstruction methods, including compressed sensing method k-t
FOCUSS [9], deep learning method CRNN-MRI [12], and DS+3DCNN [13] that
incorporates data sharing (DS). To investigate the effectiveness of z f-CNN, an
additional baseline approach is proposed which replaces all x-f reconstruction
in k-t NEXT with DS component, termed DS4+CRNN. In DS methods, we set



Table 1. Comparison results of different methods on dynamic cardiac cine MRI with
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high undersampling rate 9 and 12. Best results are indicated in bold.

Method  |k-t FOCUSS | CRNN-MRI |DS+3DCNN |DS+CRNN | k-t NEXT

Capacity |- 260,866 352,770 265,474 374,020

9x |PSNR |29.52 (1.58) |32.45 (1.33) |33.47 (1.41) |33.24 (1.38) |34.23 (1.44)
SSIM |0.951 (0.013)|0.969 (0.008) |0.975 (0.006) |0.975 (0.006) | 0.979 (0.005)
HFEN [0.340 (0.033)]0.249 (0.032) 0.214 (0.026) |0.215 (0.027)|0.196 (0.030)

12x |PSNR|28.14 (1.56) |31.30 (1.32) |32.46 (1.36) |32.34 (1.35) |33.18 (1.40)
SSIM |0.937 (0.016) | 0.962 (0.009) |0.969 (0.007)|0.970 (0.007)|0.975 (0.005)
HFEN 0.382 (0.035)|0.282 (0.034) 0.242 (0.027) |0.239 (0.029)|0.225 (0.031)

N = 1O T T T T A

Fig. 2. Comparison results on spatial and temporal dimensions with their error maps.
A dynamic video is shown in supplementary materials for better visualisation.

(e) x-f Error R
004
002
0.00

Fig. 3. Visualisation in z- f domain. (a) Ground Truth (b) k-t sampling pattern (c) 9x
undersampled data (d) Reconstructed z-f image (e) Error between (c) and (d).

the number of neighbouring frame as n.q; € {0,1,...5} as in [13]. Note that
for a fair comparison with our k-t NEXT, we modified the baseline approaches
DS+3DCNN and DS+CRNN to learn the residual of a temporally averaged
frame as well. Quantitative comparison results of different methods on dynamic
cardiac data with undersampling rates 9 and 12 are presented in Table 1, where it
compares the network capacity per cascade, peak-to-noise-ratio (PSNR), struc-
tural similarity index (SSIM) and high frequency error norm (HFEN) [12]. Net-
works for different undersampling factors were trained separately in this case. It
can be seen that our proposed k-t NEXT can outperform other baseline meth-
ods by a large margin in terms of all these measures at different undersampling
rates, with roughly the same level of network capacity. In particular, k-t NEXT
performs better than its corresponding DS pair, which indicates the merits of
exploiting correlations in z-f space and complementary domains.
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Additionally, we compared the qualitative results on 9x undersampled data
in Fig. 2, where it shows the reconstructed images along both spatial and tem-
poral dimensions, as well as their corresponding error maps. It can be observed
that our proposed model can faithfully recover the images with smaller errors
especially around dynamic regions compared with other baseline methods. In
particular, k-t NEXT produced visually sharper images than DS methods. This
is reflected by the fact that, in contrast to DS approaches which fill in k-space
data from neighboring frames and therefore could possibly generate averaged
and smooth images, k-t NEXT directly estimates the missing data in z-f space.
A visualisation of z- f reconstruction is also presented in Fig. 3, where it displays
the reconstructed z- f image and its error map in comparison to the input aliased
data. It can be observed that the aliasing artefacts were largely removed and the
undersampled data were recovered to approximate the ground truth signals.

4 Conclusion

In this paper, we have presented a novel deep learning based method, k-t NEXT
(k-t NEtwork with X-f Transform), for highly undersampled dynamic MR image
reconstruction. z f-CNN is proposed to exploit correlations in k-t space via recon-
structing the true signals from aliased signals in z-f domain. Based on that, k-t
NEXT is then proposed to learn to iteratively recover the images by alternating
between the complementary z-f and image domains, where networks from both
domains were trained jointly. Experimental results have shown that the proposed
k-t NEXT outperforms state-of-the-art dynamic MR reconstruction methods in
terms of both quantitative and qualitative performance. For the future work, we
will extend the method for dynamic 3D applications.
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