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Abstract. Spatial transformations are enablers in a variety of medical
image analysis applications that entail aligning images to a common coor-
dinate systems. Population analysis of such transformations is expected
to capture the underlying image and shape variations, and hence these
transformations are required to produce anatomically feasible corre-
spondences. This is usually enforced through some smoothness-based
generic metric or regularization of the deformation field. Alternatively,
population-based regularization has been shown to produce anatomically
accurate correspondences in cases where anatomically unaware (i.e., data
independent) regularization fail. Recently, deep networks have been used
to generate spatial transformations in an unsupervised manner, and,
once trained, these networks are computationally faster and as accu-
rate as conventional, optimization-based registration methods. However,
the deformation fields produced by these networks require smoothness
penalties, just as the conventional registration methods, and ignores
population-level statistics of the transformations. Here, we propose a
novel neural network architecture that simultaneously learns and uses the
population-level statistics of the spatial transformations to regularize the
neural networks for unsupervised image registration. This regularization
is in the form of a bottleneck autoencoder, which learns and adapts to the
population of transformations required to align input images by encod-
ing the transformations to a low dimensional manifold. The proposed
architecture produces deformation fields that describe the population-
level features and associated correspondences in an anatomically rele-
vant manner and are statistically compact relative to the state-of-the-art
approaches while maintaining computational efficiency. We demonstrate
the efficacy of the proposed architecture on synthetic data sets, as well
as 2D and 3D medical data.
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1 Introduction

Spatial transformations between sets of images play an important role in medical
image analysis and are usually used for bringing distinct subjects into anatom-
ical correspondence. This has many uses, such as the alignment of a population
into a common coordinate system to compare functional/structural properties
of specific anatomy, alignment of a new subject to an atlas, and in the study
of anatomical shapes, where the transformations among and between images
describe the morphology. In all of these applications, there is an assumption,
either explicit or implicit, that the ideal transformation should bring the images
into an anatomical correspondence such that key parts of the anatomy are col-
located in the transformed image(s). Some methods identify specific anatomical
features and find transformations that ensure their alignment [1]. Others find
transformations that align unidentified image intensities/features, but regularize
the problem with a smoothness penalty on the class of transformations [2,3].
This approach has the advantage of potential generality, but it ignores known
anatomical variability and correspondence. Thus, the metric, regularizations, or
representations used to find these transformations do not incorporate any knowl-
edge of transformations or class of transformations that best align members of
a given population.

Existing body of literature suggests that anatomical correspondences can be
better learned (even in the absence of semantic/functional knowledge) in the
context of populations of images or shapes [4–6]. There is evidence that cor-
rect correspondence produces a population of transformations that is relatively
easy to encode. This paper complements and extends these works by integrat-
ing population statistics (using non-linear models) into a deep neural network
architecture for image registration, which we show is important for accurate
characterization of anatomical correspondence.

Very recently, convolutional neural networks (CNNs) are utilized to regress
coordinate transformations over the space of input images [7,8], in an unsuper-
vised manner, by penalizing a metric of alignment between the input image pairs.
These works are justified on the basis of computational speed or efficiency, as
the feed-forward computation avoids non-linear, iterative optimization required
for conventional image registration methods. However, CNNs for image registra-
tion offer other advantages, which are so far unexploited. In particular, CNNs
do not rely on analytical representations of the coordinate transformation, the
space of allowable transformations, or the optimization. This raises the possibil-
ity of incorporating empirical knowledge of the transformations, derived from a
population of images, into the registration problem.

In this paper, we propose using population-based learning of regularizations
or metrics for controlling the class of transformations that CNN learns. To
achieve this, we introduce a novel neural network architecture that includes two
subnetworks, namely primary and secondary networks, that work cooperatively.
The primary network learns the transformations between pairs of images. The
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secondary network is a bottleneck autoencoder, that learns a low-dimensional
description of the population of transformations, and cooperates with the primary
network to enforce that the transformations adhere to a latent low-dimensional
manifold.

2 Related Work

Deformable image registration has been explored extensively, however, challenges
in generality, robustness, and efficiency remain. For brevity, we only focus below
on the most closely related research.

Deformable registration is generally an ill-posed problem, and hence regu-
larization is required to achieve plausible transformations, avoid non-smooth
transformations, and provide anatomically consistent results. Deformation fields
are a classical way to represent transformations, typically regularized through
smoothness penalty, usually in the form of Dirichlet/elastic penalty on the defor-
mation [9]. For relatively low-dimensional representations, such as b-splines [10],
the basis introduces a degree of smoothness, although some methods apply penal-
ties on the b-spline coefficients. Diffeomorphic registration uses static or dynamic
(with time-dependent velocity), smooth flow fields to represent the deformation
while guaranteeing invertibility, and has been applied to image alignment and
shape analysis [2]. The smoothness in the diffeomorphic setting is typically intro-
duced as part of the metric on the flow field.

Recently, CNNs have been used for image registration to boost the compu-
tational efficiency by avoiding the non-linear, iterative optimization routines of
conventional methods. Supervised methods for CNN training showed promis-
ing results [11], but this requires large amounts of labeled training data (i.e.,
registration examples solved with other techniques). More recent work performs
CNN-based registration in an unsupervised fashion [7,8]. The work of Balakrish-
nan et al. [8] shows promising results on learning 3D brain registration displace-
ment fields, improving the computational cost (after training) over the state-of-
the-art traditional registration methods, such as ANTs [12], while maintaining
registration accuracy. Like most registration methods, this approach also uses
smoothness on the deformation fields as a regularizer.

Early works by [4] considered anatomical landmarks on a set of anatomical
shapes, and suggested that anatomical variability is relatively low-dimensional.
Later work used information-theoretic criteria to parameterize correspondences
on populations of shapes [5]. Deformable transformations between images have
also been confined to a low-dimensional representation that captures population
characteristics [13]. Statistical deformation models [13,14] learn the probability
distribution (subspace or manifold) of the deformation fields for a given popu-
lation to reduce the dimensionality of the solution space and constrain the reg-
istration process. Low-rank representations and spatially varying metrics have
also been proposed for diffeomorphic registration [6,15]. All these methods use
linear models (e.g. PCA or low-rank correlations) to feed population statistics
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back into the registration process. In this paper, we introduce nonlinear models
of the population and integrate these into a network architecture for registration.

This paper proposes a neural network architecture where one network influ-
ences another. Few proposed systems of interacting neural networks include gen-
erative adversarial networks (GAN) [16] and its variants, and domain adaptation
(DA) [17]. In these works, the primary network is competing with the secondary
network as an adversary, and the steady states of these systems (in training) is
a saddle point for the competing energies. In the proposed work, the primary
network is minimizing both its loss as well as the reconstruction loss of the sec-
ondary network, in an unsupervised setting—and thus we call these architectures
cooperative networks.

3 Methods

The proposed cooperative network architecture is depicted in Fig. 1. It consists
of two interacting subnetworks, the primary network aims at solving the primary
registration task, and the secondary network regularizes the solution space of the
primary task. The architecture of the primary network is based on U-Net archi-
tecture (Fig. 2), in line with other registration approaches [8]. Given a source
(IS) and a target (IT ) image pair (2D/3D), the network produces a displace-
ment field φ, corresponding to the warp that ideally should match IS to IT . This
displacement field, with the source image, is passed through a spatial transform
unit [18] to produce a registered image (IR). The primary network uses an image
matching term between IR and IT as the loss function (e.g., L2 norm or normal-
ized cross-correlation). To re-iterate, the displacement fields φ are not required
for training, and hence, this is an unsupervised image registration architecture.

The secondary network is a bottleneck autoencoder, which we call a cooper-
ative autoencoder (CAE), that attempts to reconstruct the displacement field.
The CAE’s output is denoted as φ̂. The CAE is a CNN (Fig. 2) with an h-degrees-
of-freedom bottleneck layer (i.e. the latent space) represents the low dimensional
nonlinear manifold on which the displacement fields should lie (approximately).
We add the CAE’s reconstruction loss (L2 loss given as ||φ− φ̂||2) to the primary
registration loss. CAE acts as a regularizer and pushes the network objective
function so that it prefers, among many possible solutions, displacement fields
that are accurately represented by the CAE.

The final objective function constitutes three terms (Eq. 1). The first term
represents the registration loss, the second term (weighted by α ≥ 0) is smooth-
ness term [8], and, the third term (weighted by β ≥ 0) is the CAE based regu-
larization term.

Q = Loss(IT , IR) + α||∇φ||2 + β||φ − φ̂||2 (1)

CAE training requires an initial set of transformation for a preliminary rep-
resentation, hence, we start training with β = 0 (no CAE input), and a small
smoothness with weight α. We found that this length of initialization phase does
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Fig. 1. Cooperative network architecture, with the primary unsupervised registration
network depicted in the blue box, and the secondary autoencoder based regularizer
network in the red box. (Color figure online)

not significantly affect the results of the system, and we always set it at 5% of
total iterations. After the initialization phase, we turn on the CAE and set β to a
non-zero value and α = 0 (no smoothness), and train the primary and secondary
network jointly (cooperatively).

4 Results

Fig. 2. Left: primary network
architecture (input: pair of
images, output: displacement
field between the images),
which is then fed into the Spa-
tial Transform (Fig. 1). Right:
architecture of the cooperative
autoencoder.

In this paper, we use the proposed method to reg-
ister shapes, represented as binary images and/or
distance transforms. The same method applies
directly to medical images. For each dataset, we
train each network on all pairs of images from
the data, with random 25% of the pairs set aside
for testing. To clarify, this testing set is of com-
pletely held out pairs of images and the remain-
ing 75% of pairs is broken into training and vali-
dation set, Training on all pairs ensures that the
CAE captures the inherent low-dimensional struc-
ture of the displacement fields while avoiding bias.
However, the concept of cooperative networks is
applicable to other training strategies (e.g. train-
ing with a given atlas image) or representations
(e.g. momentum fields).

Linear and Rotating Box-Bump

Our first didactic dataset is a set of 2D box-bump (as in [19]) images, where a
protrusion on the surface of a rectangular shape is parameterized by its position
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along the side. We also use another synthetic dataset representative of rotational
(non-linear) shape variations. Specifically, a protrusion is set atop of a circular
base (parameterized by its angular position, between [−50, +50] degrees from
the center). These linear and rotating box-bump datasets respectively repre-
sent a single linear and rotating (non-linear) mode of variation. We apply the
proposed method on these datasets with the secondary network as coopera-
tive autoencoder (CAE) with the bottleneck of dimension 1 and compare the
resulting displacement fields with unsupervised deformable registration (UnDR)
proposed in [8], which uses a smoothness penalty on the displacement fields
and encodes no population-level information. We use L2 difference as primary
loss, i.e. Loss(IR, IT ) = ||IT − IR||2. The results are shown in Fig. 3, along
with displacement fields and corresponding Dice coefficients, for a test pair of
images. We see that the registration accuracy measured using the Dice coeffi-
cient is comparable for UnDR and the proposed method (UnDR-CAE), but pro-
duces vastly different displacement fields. Cooperating networks capture a single
transverse/rotating component for linear/rotating box bump, respectively, each
derived from population statistics. In comparison, UnDR (for both datasets)
compresses the protrusion for the source and expands it for the target, which
correctly aligns the source and target shapes, but it does not discover the shape
variation of the population. This is an important distinction: unlike UnDR, CAE
leverages information about the population statistics of the data.

Fig. 3. Linear & rotating box-bump results with differ-
ent methods, left figure shows the source with the field
as produced by the network, and the right shows the
false color difference image between the target and the
registration output (white: correct overlap, green and
magenta: mismatched pixels). (Color figure online)

The core idea of coop-
erative networks is to res-
trict displacement fields
to a low dimensional man-
ifold. For comparison, we
also study some alter-
native strategies exploit-
ing the same principle.
The first option is to
reduce the latent space
of the primary network
architecture (UnDR) to
a single dimension bot-
tleneck, which we call
“UnDR-BN”, this repre-
sents a conventional alter-
native to the CAE. The
results for this approach
are shown in Fig. 3
(UnDR-BN). These res-
ults show that UnDR-BN
is similar to UnDR, which
can be explained, in part, by the skip-connections (Fig. 2) in the U-Net architec-
ture used in UnDR. An alternative to UnDR-BN architecture can be to introduce
a L1 penalty on this layer to encourage sparsity. In our experiments, this leads
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to similar results as UnDR-BN, and for brevity, we do not present those results
in this paper. We also provide additional results (in supplementary material)
with UnDR-BN, but with skip-connections of the U-Net architecture removed.

We hypothesize that cooperative networks can discover meaningful corre-
spondences of shape, to validate we define landmarks (analytically) on the family
of box-bump shapes (in correspondence with the bump movement) and we evalu-
ate how well each method aligns these ground truth correspondences (Landmark
error in Table 1), along with Dice coefficients measuring registration accuracy.
The computational cost of discovering displacement fields for a given image
pair (testing step), are similar for both UnDR and the proposed method, i.e.
CAE does not lose any of its speed over UnDR (speed is the main advantage
of UnDR [8]). UnDR-CAE registers with similar accuracy as UnDR (measured
by Dice coefficient), but consistently achieves lower landmark errors due to the
secondary network which learns population statistics. It is also interesting to see
the latent space variations as discovered by the single dimension of CAE and
the additional results for this is provided in supplementary material.

For the CAE, we report the reconstruction error ( ||φ − φ̂||L2
||φ||L2 ) in Table 1. For

comparison, we train a separate autoencoder on the displacement fields produced
by UnDR (Table 1). These results are in agreement with the key idea that the
CAE helps the primary network to produce results closer to a low-dimensional
manifold, as represented by the ability of the bottle-neck AE to accurately recon-
struct its output.

Table 1. Results obtained with Cooperative AutoEncoder networks (CAE, bottleneck
size, β coefficient) compared with Unsupervised Deformable Registration (UnDR) by
[8]. Landmark errors for box-bump datasets are reported as the percentage of bump
width. The AE error for UnDR refers to a separate autoencoder with bottleneck size
same as CAE bottleneck (trained after UnDR). † The AE error is 63.3% for bottleneck
size 1, 54.1% for 2, 49.4% for 4, 38.8% for 8, and 33.5% for 16. We also report the
average test runtime to compute the displacement fields.

Dataset Method AE error Dice coeff. Landmark error Test runtime

Linear Box-Bump CAE (1, β = 8) 6.8% 0.98 26% 0.0185 s

Linear Box-Bump UnDR 66.4% 0.97 124% 0.0184 s

Linear Box-Bump UnDR-BN 65.8% 0.96 122% 0.0190 s

Rotate Box-Bump CAE (1, β = 8) 12.3% 0.98 24% 0.0195 s

Rotate Box-Bump UnDR 63.5% 0.99 101% 0.0193 s

Rotate Box-Bump UnDR-BN 54.9% 0.99 102% 0.0196 s

Corpus Callosum CAE (2, β = 10) 33.2% 0.89 5.7 mm 0.0237 s

Corpus Callosum CAE (4, β = 10) 19.2% 0.93 5.1 mm 0.0237 s

Corpus Callosum CAE (8, β = 10) 18.5% 0.95 4.5 mm 0.0237 s

Corpus Callosum CAE (16, β = 10) 16.3% 0.96 5.2 mm 0.0237 s

Corpus Callosum UnDR 33–63%† 0.93 6.5 mm 0.0234 s

Left Atrium (3D) CAE (5, β = 0.2) 29.8% 0.76 9.9 mm 0.784 s

Left Atrium (3D) UnDR 46.3% 0.75 10.1 mm 0.772 s
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Fig. 4. Two corpus callosum source-target pairs, again one image showing the fields
and the other a falsecolor between target and the registered output; top-row: UnDR,
bottom-row: CAE.

Corpus Callosum (CC)

In this example, we use a dataset of 324 mid-saggital 2D slices of Corpus Cal-
losum (CC) from the OASIS Brains dataset [20]. Unlike synthetic experiments
discussed above, we do not know, apriori, the intrinsic dimensionality of the CC
shapes. Therefore, we train the proposed architecture across a range of CAE
bottleneck dimensions (2, 4, 8 and 16) and compare resulting Dice coefficients,
autoencoder reconstructions, and landmark errors, as in Table 1. Networks are
again trained using L2 difference as the primary loss. Landmarks were identified
using features from the literature [21], and we had multiple raters identify the
posterior and anterior points of the CC, the inferior tip of the splenium, the
posterior tip of the genu, the posterior angle of the genu, and the interior notch
of the splenium. Interrater RMS error is 1.4 mm, and the pixel/voxel size is 1 mm
for these images. We see that the optimal bottleneck size for cooperative net-
works is 8 – increasing the bottleneck to 16 improves the Dice coefficient and AE
error, but leads to worse landmark error, which suggests the CAE starts to over-
fit. The UnDR approach leads to comparable Dice scores, but worse autoencoder
and landmark errors (Table 1). As in the synthetic experiments, to report the
AE error for UnDR, we trained the autoencoder separately after UnDR training.
CAE helps the primary network produce displacement fields that are close to a
low-dimensional manifold—a result that is not achieved with the conventional
smoothness penalty.

Left Atrium Appendage (LAA)

Fig. 5. The results of the 3D LAA registration
produced by cooperative networks and UnDR.

We apply the cooperative net-
work on a 3D dataset of left
atrium appendages (LAA).
These images are represented as
signed distance transforms, and
hence we use the normalized
cross-correlation loss as in [8],
instead of a L2 image loss. The
Dice scores, AE reconstruction
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accuracy and compute times are reported in Table 1. We also show the regis-
tration of a pair of LAA images in Fig. 5, and landmark (manually obtained
clinically validated Ostia landmarks on LAA) reconstruction errors in Table 1.

5 Conclusions

This paper proposes a novel architecture proposed for CNN-based unsupervised
image registration that uses a cooperative autoencoder (CAE) and enforces the
displacement fields to lie in the vicinity of a low-dimensional manifold. CAE
reconstruction loss acts as a regularizer term for unsupervised registration. Coop-
erative networks have comparable registration run times (Table 1) with UnDR,
but much faster as compared to the conventional state-of-the-art registration
methods (as analyzed in [8]). Cooperative networks produce meaningful corre-
spondence representation between shapes as compared to other methods (evident
by landmark reconstruction errors in Table 1), while maintaining the registration
accuracy, making it a viable tool for obtaining fast alignment with anatomically
feasible correspondence.
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