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Abstract. We propose to adapt segmentation networks with a con-
strained formulation, which embeds domain-invariant prior knowledge
about the segmentation regions. Such knowledge may take the form of
simple anatomical information, e.g., structure size or shape, estimated
from source samples or known a priori. Our method imposes domain-
invariant inequality constraints on a network output of unlabeled tar-
get samples. It implicitly matches prediction statistics between target
and source domains with permitted uncertainty of prior knowledge. We
address our constrained problem with a differentiable penalty, fully suited
for conventional gradient descent approaches, removing the need for com-
putationally expensive Lagrangian optimization with dual projections.
Unlike current two-step adversarial training, our formulation is based on
a single loss in a single network, which simplifies adaptation by avoid-
ing extra adversarial steps, while improving convergence and quality of
training. The comparison of our approach with state-of-the-art adversar-
ial methods reveals substantially better performance on the challenging
task of adapting spine segmentation across different MRI modalities. Our
results also show a robustness to imprecision of size priors, approaching
the accuracy of a fully supervised model trained directly in a target
domain. Our method can be readily used for various constraints and
segmentation problems.
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1 Introduction

Convolutional neural networks (CNNs) are currently dominating segmentation
problems, yielding outstanding performances in a breadth of medical imaging
applications [14]. A major impediment of such supervised models is that they
require large amounts of training data built with scarce expert knowledge and
labor-intensive, pixel-level annotations. Typically, segmentation ground truth is
available for limited data, and supervised models are seriously challenged with
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Fig. 1. Visualization of 2 aligned slice pairs in source (Wat) and target modality (IP).

new unlabeled samples (target data) that differ from the labeled training sam-
ples (source data) due, for instance, to variations in imaging modalities and
protocols, vendors, machines and clinical sites; see Fig. 1. Unsupervised domain
adaptation (UDA) tackles such substantial domain shifts between the distribu-
tions of the source and target data by learning domain-invariant representations,
assuming labels are available only for the source. The subject is currently attract-
ing substantial efforts, both in computer vision [7,20,21] and medical imaging
[4,11,18,23]. While a large body of works focused on image classification [19,21],
there is a rapidly growing interest into adapting segmentation networks [11,20],
more so because building segmentation labels for each new domain is cumber-
some.

In the recent literature, adversarial techniques have become the de facto
choice in adapting segmentation networks, for medical [5,9,11,24] and color
[3,7,8,20] images. These techniques match the feature distribution across
domains by alternating the training of two networks, one learning a discrimina-
tor between source and target features and the other generating segmentations.
While adversarial training achieved excellent performances in image classifica-
tion [21], our experiments suggest that it may not be sufficient for segmentation,
where learning a discriminator is much more complex than classification as it
involves predictions in an exponentially large label space. This is in line with a
few recent works in computer vision [22,25], which argue that adversarial for-
mulations of classification may not be appropriate for segmentation, showing
that better performances could be reached via other alternatives, e.g., self train-
ing [22] or curriculum learning [22,25]. Furthermore, a large label space might
invalidate the assumption that the source and target share the same feature rep-
resentation at all the abstraction levels of a deep network. In fact, recently, Tsai
et al. [20] proposed adversarial training in the softmax-output space, outper-
forming feature-matching techniques in the context of color images. Such output
space conveys domain-invariant information about segmentation structures, for
instance, shape and spatial layout, even when the inputs across domains are sub-
stantially different. Finally, it is worth mentioning the recent classification study
in [19], which argued that adversarial training is not sufficient for high-capacity
models, as is the case for segmentation. For deep architectures, the authors of
[19] showed experimentally that jointly minimizing source generalization error
and feature divergence does not yield high accuracy on the target task.

We propose a general constrained domain adaptation formulation, which
embeds domain-invariant prior knowledge about the segmentation regions. Such
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knowledge takes the form of simple anatomical information, e.g., region size or
shape, which is either estimated from the source ground truth or known a pri-
ori. For instance, in the application we tackle in our experiments, we can use
human-spine measurements that are well known in the literature [1] for con-
straining the sizes of the inter-vertebral discs in axial MRI slices. By imposing
domain-invariant inequality constraints on the network outputs of unlabeled
target samples, our method matches implicitly some prediction statistics of the
target to the source, and allows uncertainty in the prior knowledge. We address
our constrained problem with a differentiable penalty, which can be fully handled
with SGD, removing the need for computationally expensive Lagrangian opti-
mization with dual projections. Unlike two-step adversarial training, our method
uses a single loss/network, which simplifies adaptation by avoiding extra adver-
sarial steps, while improving training quality and efficiency. We juxtapose our
approach to the state-of-art adversarial method in [20] on the challenging task
of adapting spine segmentation across different MRI modalities. Our method
achieves significantly better performances using simple and imprecise size priors,
with a 16% improvement, approaching the performance of a supervised model.
It can be readily used for various constraints and segmentation problems. Our
code is publicly (and anonymously) available1.

2 Formulation

Let Is : Ωs ⊂ R
2,3 → R, s = 1, . . . , S, denote the training images of the

source domain. Assume that each of these has a ground-truth segmentation,
which, for each pixel (or voxel) i ∈ Ωs, takes the form of binary simplex vector
ys(i) = (y1

s(i), . . . , yK
s (i)) ∈ {0, 1}K , with K the number of classes (segmentation

regions).
Given T unlabeled images of the target domain, It : Ωt ⊂ R

2,3 → R,
t = 1, . . . , T , we state unsupervised domain adaptation for segmentation as the
following constrained optimization w.r.t parameters θ:

min
θ

∑

s

∑

i∈Ωs

L(ys(i),ps(i, θ))

s.t. fc(Pt(θ)) ≤ 0 c = 1, . . . , C; t = 1, . . . , T

(1)

where px(i, θ) = (p1x(i, θ), . . . , pK
x (i, θ)) ∈ [0, 1]K is the softmax output of the

network at pixel/voxel i in image x ∈ {t = 1, . . . , T} ∪ {t = 1, . . . , S}, and
Px(θ) is a K × |Ωx| matrix whose columns are the vectors of network outputs
px(i, θ), i ∈ Ωx. In problem (1), L is a standard loss, e.g., the cross-entropy:
L(ys(i),ps(i, θ)) = −∑

k yk
s (i) log pk

s(i, θ), computed on the source domain S.
The inequality constraint can embed very useful prior knowledge that is invari-
ant across domains and modalities, and is imposed on the network outputs for
unlabeled target-domain data. Assume, for instance, that we have prior knowl-
edge about the size (or cardinality) of the target segmentation region (or class) k.
1 https://github.com/CDAMICCAI2019/CDA.

https://github.com/CDAMICCAI2019/CDA
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Such a knowledge is invariant w.r.t modalities, and does not have to be precise;
it can be in the form of lower and upper bounds on region size. For instance,
when we have an upper bound a on the size of region k, we can impose the
following constraint:

∑
i∈Ωt

pk
t (i, θ)− a ≤ 0. In this case, the corresponding con-

straint c in the general-form constrained problem (1) uses particular function
fc(Pt(θ)) =

∑
i∈Ωt

pk
t (i, θ) − a. In a similar way, one can impose a lower bound

b on the size of region k using fc(Pt(θ)) = b−∑
i∈Ωt

pk
t (i, θ). Priors a and b can

be learned from the ground-truth segmentations of the source domain (assuming
such priors are invariant across domains). Also, depending on the application,
such priors may correspond to anatomical knowledge. For instance, in the appli-
cation we tackle in our experiments, we can use human spine measurements that
are well known in the clinical literature [1] for constraining the sizes of the inter-
vertebral discs in axial MRI slices. Our framework can be easily extended to
more descriptive constraints, e.g., invariant shape moments [13], which do not
change from one modality to another2.

Even when the constraints are convex with respect to the network probability
outputs, the problem in (1) is challenging for deep segmentation models that
involve millions of parameters. In the general context of optimization, a standard
technique to deal with hard inequality constraints is to solve the Lagrangian
primal and dual problems in an alternating scheme [2]. For problem (1), this
amounts to alternating the optimization of a CNN for the primal with stochastic
optimization, e.g., SGD, and projected gradient-ascent iterates for the dual.
However, despite the clear benefits of imposing hard constraints on CNNs, such a
standard Lagrangian-dual optimization is avoided in the context of modern deep
networks due, in part, to computational-tractability issues. As pointed out in [15,
17], there is a consensus within the community that imposing hard constraints on
the outputs of deep CNNs that are common in modern image analysis problems is
impractical: The use of Lagrangian-dual optimization for networks with millions
of parameters requires training a whole CNN after each iterative dual step.

In the context of deep networks, equality or inequality constraints are typi-
cally handled in a “soft” manner by augmenting the loss with a penalty function
[6,10,12]. The penalty-based approach is a simple alternative to Lagrangian
optimization, and is well-known in the general context of constrained optimiza-
tion; see [2], Sect. 4. In general, such penalty-based methods approximate a con-
strained minimization problem with an unconstrained one by adding a term,
which increases when the constraints are violated. This is convenient for deep
networks because it removes the requirement for explicit Lagrangian-dual opti-
mization. The inequality constraints are fully handled within stochastic opti-
mization, as in standard unconstrained losses, avoiding gradient ascent iter-
ates/projections over the dual variables and reducing the computational load
for training. For this work, we pursue a similar penalty approach, and replace
constrained problem (1) by the following unconstrained problem:

2 In fact, region size is the 0-order shape moment; one can use higher-order shape
moments for richer descriptions of shape.
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min
θ

∑

s

∑

i∈Ωs

L(ys(i),p(i, θ)) + γF(θ) (2)

where γ is a positive constant and F a quadratic penalty, which takes the fol-
lowing form for the inequality constraints in (1):

F(θ) =
C∑

c=1

T∑

t=1

[fc(Pt(θ))]2+ (3)

with [x]+ = max(0, x) denoting the rectifier linear unit function.

3 Experiments

3.1 Experimental Set-Up

Dataset. The proposed method was evaluated on the publicly available MIC-
CAI 2018 IVDM3Seg Challenge3 dataset. This dataset contains 16 3D multi-
modal magnetic resonance (MR) scans of the lower spine, with their correspond-
ing manual segmentations, collected from 8 subjects at two different stages in a
study investigating intervertebral discs (IVD) degeneration. In our experiments,
we employed the water (Wat) modality as the labeled source domain S and the
in-phase (IP) modality as the unlabeled target domain T , and the setting is
binary classification (K = 2). While 13 scans were used for training, the remain-
ing 3 scans were employed for validation.

Constrained versus Adversarial Domain Adaptation. We compared our
constrained DA model to the adversarial approach proposed in [20], which
encourages the output space to be invariant across domains. To do so, the penalty
F in (2) is replaced by an adversarial loss, which enforces the alignment between
the distributions of source and target image segmentations. During training,
pairs of images from the source and target domain are fed into the segmentation
network. Then, a discriminator uses the generated masks as inputs and attempts
to identify the domain from which the masks come from (source, or target). In
this setting, we focused on a single-level adversarial learning for simplicity (see
[20] for more details).

Diverse Levels of Supervision. We used the penalty term in (3) on the size of
the target region (the IVDs) bounded by two prior values, which were estimated
from the ground truth. This setting is later on referred to as Constraint. We also
experimented with three different levels of tightness of the bounds, ±10%, ±50%
and ±70% of variations with respect to the actual size, so as to evaluate the
behaviour of our method in the case of imprecise prior knowledge. In addition,
we employed a model trained on the source as the lower baseline –without any
adaptation strategy– and a model trained on the target data, referred to as
Oracle, which serves as an upper bound.
3 https://ivdm3seg.weebly.com/.

https://ivdm3seg.weebly.com/
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Training and Implementation Details. As suggested in [20], we employ
pairs of images from both domains, Is and It, to train the deep models, which
in our case correspond to the same 2D axial slice but from different modalities.
For the segmentation network, we employ ENet [16], but any CNN segmenta-
tion network could be used. Regarding the DA adversarial approach, we employ
the same segmentation network and include the discriminator proposed in [20].
Both the segmentation and the discrimination network were trained with Adam
optimizer and a batch size of 1, for 100 epochs, and an initial learning rate of
5×10−4 and 10−4, respectively. A baseline model trained on the source with full
supervision was used as initialization. The γ parameter in (2) was set empirically
to 2.5 in the proposed constrained adaptation model and to 0.1 in the adversarial
approach.

Evaluation. In all our experiments, the Dice similarity coefficient (DSC) and
the Hausdorff distance (HD) were employed as evaluation metrics to compare
the different models.

3.2 Results

Quantitative metrics are reported in Table 1. First, we can observe that employ-
ing a model trained on source images to segment target images yields poor
results, demonstrating the difficulty of CNNs to generalize well on a new
domain. Adopting the adversarial strategy substantially improves the perfor-
mance over the lower baseline, achieving a mean DSC of 65.3%. The pro-
posed constrained DA models achieve a DSC value of 81.1%, 78.5% and 70.0%
with tight (Constraint10) and loose bounds (Constraint50 and Constraint70),
respectively. This shows that, even with relaxed constraints, the proposed con-
strained DA model clearly outperforms the adversarial approach. Compared to
the Oracle, the two best models –i.e., Constraint10 and Constraint50– reach
98% and 95% of its performance, demonstrating the efficiency of the proposed
method and its robustness to the loosening of bounds. Regarding the HD val-
ues, we observe a similar pattern across the different models. Even though the
adversarial approach reduces the HD to almost the half (1.67 pixels) compared
to the lower baseline model (2.99 pixels), it is still far from the results obtained
with our constrained models (1.10, 1.09 and 1.23 pixels). These findings are in
line with the plots in Fig. 2, where the evolution of the training in terms of val-
idation DSC is shown. In Fig. 2, left we can observe that the gap between the
proposed and the adversarial approach holds during the whole training, with our
constrained formulation yielding rapidly high validation Dice measures (first 20
epochs). This suggests that integrating the constraints help the learning process
in domain adaptation.

Qualitative segmentations from the validation set are depicted in Fig. 3, from
the easiest to the hardest subject. It can be observed that, if no adaptation
is adopted, or even with the adversarial learning strategy, the network fails to
successfully detect the 7 IVDs on all the subjects. While the adversarial approach
segments 6 IVDs in the easiest subject (top), it is not able to correctly identify
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Table 1. Quantitative comparisons of performance on the target domain for the dif-
ferent models.

Source−→Target Target−→Target

No adaptation Adversarial [20] Constraint10 Constraint50 Constraint70 Oracle

DSC 42.8 ± 5.29 65.3 ± 5.54 81.1 ± 0.59 78.5 ± 1.94 70.0 ± 4.11 82.9 ± 2.29

HD 2.99 ± 1.55 1.67 ± 1.64 1.10 ± 1.34 1.09 ± 1.36 1.23 ± 1.51 1.08 ± 1.35

Fig. 2. Evolution of validation DSC over training for the different models. Comparison
of the proposed model to the lower and upper bounds, as well as to the adversarial
strategy is shown in the left figure, while an ablation study on the bounds is depicted
in the right.

Fig. 3. Visual results in the validation set for several models. For better visibility
results are depicted in the sagittal plane.

separate structures on harder cases. The segmentations achieved by the proposed
constrained DA model present much better compactness and shape, where the
7 IVDs are distinguishable in all the subjects.

4 Conclusion

In this paper, we proposed a simple constrained formulation for domain adapta-
tion in the context of semantic segmentation of medical images. Particularly, the
proposed approach employs domain-invariant prior knowledge about the object
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of interest, in the form of target size, which is derived from the source ground
truth. Unlike adversarial strategies, which are based on two-step training, our
method tackles the UDA problem with a single constrained loss, simplifying
the adaptation of the segmentation network. As demonstrated in our experi-
ments, the performance is significantly improved with respect to a state-of-the
art adversarial method, and is comparable to the upper baseline supervised on
the target. The proposed learning framework is very flexible, being applicable to
any architecture and capable of incorporating a wide variety of constraints.
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