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Abstract. Fully convolutional neural networks like U-Net have been
the state-of-the-art methods in medical image segmentation. Practically,
a network is highly specialized and trained separately for each segmenta-
tion task. Instead of a collection of multiple models, it is highly desirable
to learn a universal data representation for different tasks, ideally a sin-
gle model with the addition of a minimal number of parameters steered
to each task. Inspired by the recent success of multi-domain learning
in image classification, for the first time we explore a promising univer-
sal architecture that handles multiple medical segmentation tasks and
is extendable for new tasks, regardless of different organs and imaging
modalities. Our 3D Universal U-Net (3D U2-Net) is built upon sepa-
rable convolution, assuming that images from different domains have
domain-specific spatial correlations which can be probed with channel-
wise convolution while also share cross-channel correlations which can be
modeled with pointwise convolution. We evaluate the 3D U2-Net on five
organ segmentation datasets. Experimental results show that this uni-
versal network is capable of competing with traditional models in terms
of segmentation accuracy, while requiring only about 1% of the param-
eters. Additionally, we observe that the architecture can be easily and
effectively adapted to a new domain without sacrificing performance in
the domains used to learn the shared parameterization of the universal
network. We put the code of 3D U2-Net into public domain (https://
github.com/huangmozhilv/u2net torch/).
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1 Introduction

Image segmentation is crucial for clinical practice and health research. Fully
convolutional neural networks (CNNs) like U-Net [15] have been the dominant
approach in automatic medical imaging segmentation [4,11]. A practical seg-
mentation model is learned by customizing a neural network architecture for a
certain task or dataset and training it from scratch [11,16,18]. [7] learned a single
segmentation CNN for brain datasets acquired with different scanners and/or
protocols. Notwithstanding being powerful, these models are difficult to extend
to new tasks with unseen contents because of the highly specialized design. [6]
took one step further by presenting a self-adapting framework for various tasks,
yielding mutually independent models for each task. On the contrary, human
experts can easily learn to tackle multiple tasks and generalize to new tasks on
the basis of acquired skills. Multiple previous works explored multi-task segmen-
tation, wherein all organs of interest appear in the same image [9,17]. Here we
consider a more realistic and challenging scenario: for a given dataset, only a
local region of the human body is scanned and only one or several anatomical
structures within the image are annotated. [12] focused on a similar topic and
trained one single CNN on three tasks, however, the trained model was designed
as such that it cannot be extended to other tasks. From this point of view, an
effective and efficient method for image segmentation remains an open problem.

Bilen et al. [2,13,14] suggested that there might exist a universal data rep-
resentation across different visual domains. Specifically, they introduced a new
competition called Visual Decathlon Challenge1, aiming to simultaneously model
ten visual domains of different styles and contents, e.g., internet images, hand-
written characters, sketches, planktons, etc. [13]. They referred to such a new
topic as “multi-domain learning” and realized the universal representation by
piggybacking parallel residual adapters on the model pre-trained with ImageNet.
However, their work exclusively focuses on image classification. Naturally, one
question occurs to us: is it possible to build a single neural network that can deal
with medical segmentation tasks from different domains?

To achieve this goal, we draw inspiration from previous studies [3,5], particu-
larly [5] which won the first place in the Visual Decathlon Challenge to date. [5]
believed that [14] ignored the structural heterogeneity of various domains and
attempted to address the issue by leveraging depthwise separable convolution.
While standard convolution conducts the spatial and channel-wise computa-
tion at once, such convolution factors the computation into two sequential steps:
first, depthwise convolution applies an independent convolutional filter per input
channel, and then a pointwise convolution follows to linearly combine the output
across all channels for every spatial location. The basic building block of their
multi-domain network comprises a cohort of parallel channel-wise convolutions,

1 https://www.robots.ox.ac.uk/∼vgg/decathlon/.
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one per domain, followed by one pointwise convolution shared by all domains.
The insight is that the former is better to capture domain-specific spatial pat-
terns while the latter probes the sharable cross-channel interdependencies. In this
paper, we claim to note “depthwise separable convolution” as “separable con-
volution” and “depthwise convolution” as “channel-wise convolution” to avoid
confusion with the depth dimension of the image volume.

Based on the separable convolution as introduced above, our work proposes a
universal architecture for multi-domain medical image segmentation. The main
idea behind is rather intuitive yet powerful: a basic network is first designed on
the ground of 3D U-Net [4,15] (or V-Net [11]), and then any 3 × 3 × 3 standard
convolution with a stride of 1 is substituted by separable convolution similar
to [5]. However, our approach substantially differ from [5] as following: (1) their
work focuses on image classification which is fundamentally different from image
segmentation here. (2) they obtain the ultimate multi-domain architecture in
three steps: First, pre-training a ResNet-26 modified with separable convolution
on ImageNet; Second, freezing and transferring the pointwise convolution weights
to new network; Thirdly, training the new network on each domain separately
and stacking the channel-wise convolutions together while sharing the pointwise
convolution weights from the pre-trained model. Nevertheless, we manage to
train across the domains together to obtain the final model. (3) we further adapt
our universal network to a new domain by simply adding new channel-wise
convolutions. To the best of our knowledge, this is the first time to learn an
extendable universal network for multi-domain medical image segmentation.

2 Methods

2.1 Problem Definition

Let {D1,D2, · · · ,DT } be a set of T image domains, among which domain Dt

consists of two paired image spaces of {Xt, Yt}. Xt ∈ R
Ct×D×H×W is the input

image space and Yt ∈ R
C′

t×D×H×W is the output image space, i.e., segmentation
masks. D, H and W are the spatial depth, height and width. Ct and C ′

t are
the numbers of imaging modalities and segmentation classes specific to each
domain. To work well on all domains, our universal network contains domain-
specific parameters as well as shared parameters. Let θt be the domain-specific
parameters for domain Dt and θu be the universally shared parameters by all
domains. Assuming {xt,i, yt,i} as the ith training pair of domain Dt, then the
output Ŷ of the neural network F (X) is

ŷt,i = F (xt,i; θu, θt). (1)

2.2 Domain Adapter

Domain adapter, the key component to ensure the success of our universal net-
work, consists of both domain-specific parameters and shared parameters and is
built upon separable convolution in place of standard convolution.
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Fig. 1. Domain adapter based on separable convolution.

Fig. 2. The proposed 3D Universal U-Net (3D U2-Net).

In standard convolution with filter W ∈ R
3×3×3×C×C′

applied to an input
tensor U ∈ R

C×D×H×W , the output tensor Û ∈ R
C′×D×H×W is obtained by

applying C ′ filters w ∈ R
3×3×3×C on the input in parallel and concatenating the

C ′ output feature maps. A simple calculation tells that the total number of filter
parameters in the above filters is 27 ∗ C ∗ C ′. Also, when training the models for
the T domains separately, the number of parameters grows T times!

In separable convolution, the computation is factorized into two sequential
steps. The first step applies C channel-wise filters w ∈ R

3×3×3 to each channel of
the input in parallel and concatenate the C output feature maps together. Here,
each domain has its own channel-wise filters. The second step then applies C ′

pointwise filters w ∈ R
1×1×1×C to output the final feature maps of C ′ channels.

Here, all domains share the same pointwise filters. A simple calculation tells that
the total number of weights in the above filters is 27 ∗ C ∗ T + C ∗ C ′. How to
assemble the domain-specific channel-wise convolutions and the shared pointwise
convolution to form a domain adapter is illustrated in Fig. 1.

2.3 3D Universal U-Net (3D U2-Net)

As shown in Fig. 2, our universal network architecture is based on a basic net-
work with six components: (1) input; (2) encoder path; (3) bottleneck block;
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(4) decoder path; (5) deep supervision branch; and (6) output. Channels of
the input and output could vary according to the number of imaging modali-
ties and classes of different domains. In general, the input layer uses 16 filters.
The encoder and decoder paths both contain five levels at different resolutions.
Residual connection is applied within each level. Skip connection is employed to
preserve more contextual information from the encoder counterpart for decoder
path [15]. Inspired by [8], we incorporate a deep supervision branch alongside
the end of decoder path via element-wise sum of multi-level segmentation maps
to boost the final localization performance. To construct the universal network,
domain adapters detailed above are inserted into basic network to replace any
standard 3 × 3 × 3 convolution with a stride of 1.

2.4 Loss Function

A hybrid loss function is employed by combining Lovász-Softmax loss [1], capa-
ble of improving intersection-over-union segmentation scores, and focal loss [10],
aimed to alleviate class imbalance. During training the universal model, we sam-
ple a batch from each dataset in a round-robin fashion, allowing each domain
to contribute to the shared parameters. Assuming that for the nth iteration the
batch data pair {xt, yt} is from domain Dt, the corresponding loss Ln is

Ln = LL(xt, yt; θu, θt) + Lf (xt, yt; θu, θt), (2)

where θt be the domain-specific parameters for domain Dt and θu be the uni-
versally shared parameters of the neural network. LL is the Lovász-Softmax loss
and Lf is the focal loss counterpart.

3 Experimental Results

In this section, we present extensive experiments to evaluate the proposed 3D U2-
Net in dealing with medical multi-organ segmentation: (1) independent models,
aimed to reproduce the traditional methods, are obtained by training the basic
network for each base domain separately; (2) shared model, which aims at inves-
tigating whether all parameters of a model can be shared by all domains and thus
is gained by training the single basic network with all base domains together;
and (3) universal model, which is our ultimate goal and is achieved by training
the universal architecture with all base domains simultaneously. Notably, the
first two represent two extreme multi-organ segmentation approaches and serve
as baselines for the universal model. Additionally, we test the generalizability of
both the shared model and universal model on one new domain.

Datasets: We use six public datasets from the Medical Segmentation Decathlon
challenge2 as introduced by [19]. The first five datasets are considered as base

2 https://decathlon.grand-challenge.org/.

https://decathlon.grand-challenge.org/
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Table 1. Basic characteristics of the datasets.

Task Modality Data size Image shape Voxel spacing

Base01 Heart MRI 20 (90∼130)× 320× 320 1.37× 1.25× 1.25

Base02 Liver CT 131 (74∼987)× 512× 512 (0.7∼5)× (0.557∼1)
× (0.557∼1)

Base03 Hippocampus MRI 260 (24∼47)× (40∼59)
× (31∼43)

1× 1× 1

Base04 Prostate T2, ADC 32 (11∼24)× (256∼384)
× (256∼384)

(3∼4)× (0.6∼0.75)
× (0.6∼0.75)

Base05 Pancreas CT 281 (37∼751)× 512× 512 (0.7∼7.5)× (0.605∼0.977)
× (0.605∼0.977)

New Spleen CT 41 (31∼168)× 512× 512 (1.25∼7.5)× (0.535∼0.977)
× (0.535∼0.977)

domains and are used to train the universal model. On the other hand, the last
dataset is treated as the new domain and is used to test the adaptiveness of the
universal model. Basic characteristics of the datasets are shown (Table 1). For
each dataset, 80% of the samples are randomly extracted for training, while the
remaining 20% are used as testing data.

Preprocessing: The datasets are highly diverse in terms of modality, image
size and voxel spacing. Pre-processing procedures are conducted as below: (1)
all images are cropped to the region of nonzero values, thereby reducing the
image size to alleviate computation burden; (2) all images are resampled to the
median voxel spacing of the corresponding dataset to retain spatial semantics; (3)
for each patient, the image is clipped to the [2.0, 98.0] percentiles of the intensity
values of the entire image, followed by Z-score normalization with the mean and
standard deviation of the image for each modality; and (4) the following data
augmentation are applied: random elastic deformation, random rotation, random
scaling and random mirroring. Data augmentation is done “on-the-fly” during
training with batch generators3, a python package maintained by the Division
of Medical Image Computing at the German Cancer Research Center.

To accommodate the limited GPU memory, we train the network with
patches randomly sampled from the whole images. While for inference, the
patches are generated with a sliding window moving across the entire image
with a stride of half patch size. As for the shared model and universal model,
the input batch is of two patches with a size of 128×128×128 and the number of
down-sampling operations is set to 6. However, for the independent models, we
adjust the input patch size and the resolution levels for each domain considering
the image size in order to maximize the utilization of computation resources. If
the median shape is smaller than 128 × 128 × 128, we toggle between the input
patch size and batch size to have the patch size of the same aspect ratio as the

3 https://github.com/MIC-DKFZ/batchgenerators/.

https://github.com/MIC-DKFZ/batchgenerators/
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Table 2. Quantitative results on base domains.

Base01

Heart

Base02

Liver

Base03

Hippocampus

Base04

Prostate

Base05

Pancreas

(Dice%) Left atrium Liver Anterior Posterior PZ TZ Pancreas Mean

Independent 93.26 95.02 89.62 87.74 58.39 87.18 78.78 84.28

Shared 92.73 93.40 89.25 87.30 68.38 89.30 57.57 82.56

Universal 91.98 93.54 89.34 87.05 68.50 89.21 62.08 83.10

median shape. The number of down-sampling operations per axis is set until
the feature map size of the deepest layer reaches as small as 8. Specifically, to
prepare the patches for shared model and universal model, we first extract a
patch of size as in the independent model and then resize it to the above target
patch size.

Implementation Details: The network is implemented in Pytorch 1.0.1 on an
NVIDIA V100 GPU. The ADAM optimizer is applied with an initial learning
rate of 3 × 10−4 and a weight decay of 10−5. An epoch is defined as an iteration
over 250 batches. Exponential moving average, ltMA, is monitored for training
loss for every 30 epochs. The learning rate is reduced by a factor of 5 as long as
ltMA does not decrease by 5 × 10−4. We terminate the training once the learning
rate is below 10−8. During training the shared and universal models, we apply
a round-robin fashion to feed the network sample batches from each domain in
turn, so as to allow all the domains to contribute to the final model equally. The
results are presented on the testing data.

Quantitative Results of Base Domains: Table 2 lists the mean Dice scores
of the three models on each base domain. Comparing along the columns, we
observe that the independent models obtain the highest scores on most domains
and yield the highest overall mean score. However, strikingly both the shared
model and the universal model achieve moderate performance for most domains
comparable to the independent models, and gains significant increase regarding
to peripheral zone (PZ) and transition zone (TZ) of Base04 Prostate. Compared
to the shared model, we further observe that the universal model is better in
the segmentation of pancreas for Base05 Pancreas. Besides, the universal model
gets an overall higher mean score across all domains in comparison to the shared
model. The increase in overall performance could be attributed to the use of
domain-specific parameters that can agree with each domain well.

Model Complexity: When investigating the complexity of the models, we
exclude the input layer, last layer and deep supervision branch as they are never
shared across domains. The basic network used in the shared model is consid-
ered as reference. The number of parameters are computed and displayed in
Table 3(a). Obviously the proposed 3D U2-Net requires the least parameters,
indicating that it can perform effectively across various domains. The overall
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Table 3. (a) Model complexity. (b) Quantitative results on a new spleen domain.

(a) #Par (a) Ratio (b) New Spleen – Dice% (b) #Added Par

Independent 126.7M 4.1× 92.37 30.7M

Shared 30.7M 1× 90.67 0

Universal 1.7M 0.06× 91.60 0.1M

number of parameters from the universal model is around 1% of that of all
independent models, while the two obtain comparable segmentation accuracy.

Quantitative Results of a New Domain: Furthermore, we conduct exper-
iments to illustrate the effectiveness of adapting the trained shared model or
universal model to a new task, which are implemented by freezing the corre-
sponding shared pointwise convolutions or standard convolutions and adding
and training all other domain-specific modules like input layer and channel-wise
convolutions in parallel to the structures of the same kindred for this domain.
Table 3(b) shows that the universal model performs better for the new domain
‘New Spleen’ in comparison to the shared model, therefore indicating a superior
generalization ability over the latter. This adds further evidence of the effec-
tiveness of the domain-specific parameters. The universal model is adaptive to
new domain with a few extra parameters, i.e., 0.3% compared to the traditional
independent model, which is exactly what we anticipate in this paper.

4 Conclusions

In summary, we present a novel universal neural network named 3D U2-Net for
multi-organ segmentation problem, filling the gap of extendable multi-domain
learning in image segmentation. Experimental results demonstrate that the pro-
posed approach, with only a tiny portion of the parameters, obtains the seg-
mentation performance comparable to the independent models trained in the
traditional manner. As CT and MRI images are routine images on hand and
the amount of human organs is constant, the universal model for multi-organ
segmentation can be fully developed soon in the near future. Besides, the pro-
posed framework could extend to many other multi-domain applications and
thus facilitate the translation of neural networks to clinical practice.
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