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Abstract. Recently 3D volumetric organ segmentation attracts much
research interest in medical image analysis due to its significance in com-
puter aided diagnosis. This paper aims to address the pancreas segmen-
tation task in 3D computed tomography volumes. We propose a novel
end-to-end network, Globally Guided Progressive Fusion Network, as an
effective and efficient solution to volumetric segmentation, which involves
both global features and complicated 3D geometric information. A pro-
gressive fusion network is devised to extract 3D information from a mod-
erate number of neighboring slices and predict a probability map for the
segmentation of each slice. An independent branch for excavating global
features from downsampled slices is further integrated into the network.
Extensive experimental results demonstrate that our method achieves
state-of-the-art performance on two pancreas datasets.

Keywords: Global guidance · Progressive fusion · End-to-end deep
convolution network · Pancreas segmentation · Computed tomography

1 Introduction

Automatic organ segmentation, which is critical to computer aided diagnosis, is
a fundamental topic in medical image analysis. This paper focuses on pancreas
segmentation in 3D computed tomography (CT) volumes which is more difficult
than segmentations of other organs such as liver, heart and kidneys [7].

Driven by the rapid development of deep learning techniques, significant
progress has been achieved on 3D volumetric segmentation [8,10]. State-of-the-
art methods primarily fall into two categories. The first category [13] is based
on segmentation networks originally designed for 2D images, e.g. FCN [5]. How-
ever, only a small number of adjacent slices (usually 3) are stacked together
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Fig. 1. An example of pancreas segmentation in the axial, sagittal and coronal views.
The contour of the ground truth and our result is shown in red and green respectively.
Blended regions indicate the probability map inferred from the global feature map.
(Color figure online)

as the input to take advantage of network weights pretrained on natural image
datasets such as Pascal VOC [3]. Although majority voting [12] can be used to
incorporate pseudo 3D contextual information through 2D segmentation in slices
along different views, powerful 3D features are still not exploited. Methods in
the other category are based on 3D convolution layers, such as V-Net [6] and 3D
U-Net [2,9]. Due to the huge memory overhead of 3D convolutions, the input
is either decomposed into overlapping 3D patches [2], which ignores the global
knowledge, or resized to a volume with a poor resolution [9], which likely gives
rise to missed detections. Coarse-to-fine segmentation is a popular and effective
choice for improving the accuracy [8,10,11]. However, it is severely dependent
on the performance of its coarse segmentation model. Omission of regions of
interest (ROIs) or inaccurate size of ROIs in the coarse segmentation often lead
to irreparable loss. Most of these volumetric segmentation methods have been
applied in pancreas segmentation such as [10,11,13].

In this paper, we focus on one fixed type of organs (pancreas) and the overall
spatial arrangement of organs in any human body is more or less fixed as well.
In such a specialized setting, both local and global contextual information is
critical for achieving highly accurate segmentation results. To tackle the afore-
mentioned challenges, we propose a novel end-to-end network, called Globally
Guided Progressive Fusion Network. The backbone in our method is a progres-
sive fusion network devised to extract 3D local contextual information from a
moderate number of neighboring slices and predict a 2D probability map for
the segmentation of each slice. However our progressive fusion network has lim-
ited complexity and receptive fields, which are inadequate for acquiring global
contextual information. Thus a global guidance branch consisting of convolution
layers is employed to excavate global features from a complete downsampled slice.
We elegantly integrate this branch into the progressive fusion network through
sub-pixel sampling. An example of the segmentation result of our method is pre-
sented in Fig. 1. In summary, the main contributions of our paper are as follows.
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Fig. 2. The main pipeline of our method. More details are illustrated in supplemental
material. (Best viewed in color) (Color figure online)

(1) A progressive fusion network is devised to extract 3D local contextual infor-
mation from a 3D neighborhood. A unique aspect of this network is that the
encoding part performs 3D convolutions while the decoding part performs
2D convolution and deconvolution operations.

(2) A global guidance branch is devised to replenish global contextual informa-
tion to the progressive fusion network. The entire network, including the
global branch, is trained in an end-to-end manner.

(3) Our method has been successfully validated on two pancreas segmentation
datasets, achieving state-of-the-art performance.

2 Method

2.1 Overview

As discussed earlier, both local and global contextual information is critical for
achieving highly accurate segmentation results. On the other hand, segmentation
precision, especially around boundaries, is closely related to the spatial resolu-
tion of the input volume. However the huge memory consumption of 3D volumes
prevents us from loading an entire high-resolution volume at once. Considering
the above factors, we devise a novel end-to-end network, which segments every
slice in a patchwise manner by predicting a probability map for each 2D image
patch. This network consists of two modules: a progressive fusion network is
devised to mine 3D local contextual features for a 2D image patch from its
high-resolution 3D neighborhood; a global guidance branch is devised to replen-
ish a complementary 2D global feature representation extracted from an entire
downsampled slice. The overall architecture is presented in Fig. 2.

Given an l × h × w input volume, where h and w represent the height and
width of axial slices respectively and l is the number of axial slices, we define
Ai (h × w), Si (l × h) and Ci (l × w) as the i-th slice in the axial, sagittal and
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coronal view, respectively. In the remainder of this section, we will use slices
in the axial view to elaborate the aforementioned two modules. Suppose Ai is
decomposed into N overlapping 2D patches {Ai

k|k = 1, · · · , N}.

2.2 Progressive Fusion Network

Local texture and shape features are valuable for organ segmentation, especially
for accurate boundary localization. Hence we devise a progressive fusion network
(Fig. 2(a)) based on the encoder-decoder architecture to extract 3D local con-
textual features for each 2D image patch Ai

k from its 3D neighborhood, which
includes corresponding 2D patches from a moderate number (31) of adjacent
slices, {Ai+t

k |t = −T, · · · , T}. The superscript i will be neglected by default for
conciseness below.

The encoder, taking a 3D patch as the input, consists of 3D convolution
layers and residual blocks [4], which are organized into 4 groups. Between every
two consecutive groups, max pooling is used to reduce the spatial resolution
of the feature map by half, giving rise to feature maps with 4 different scales.
Inspired from [1], our network progressively fuses the slices in the input 3D
patch by not performing the convolution operation in the 2 outmost slices in
every 3D convolution layer because these two slices are of least relevance to
the central slice. We choose T to be the number of 3D convolution layers so
that there exists only one slice (the central slice) in the final group of feature
maps, Ek. The kernel size of each convolutional layer is set to 3 × 3 × 3 and
the overall receptive field of the encoder is 144 × 144, only covering part of the
input patch. The decoder is set up with 2D convolution and deconvolution layers,
producing the final segmentation result for the central slice. As in U-Net [2,9],
there exist skip connections between corresponding encoder and decoder layers.
Since our encoder and decoder as well as residual blocks deal with feature maps
with different dimensionality, central cropping is performed to discard surplus
features in skip connections.

2.3 Global Guidance Branch

Global contextual information is vital for providing absolute and relative posi-
tions with respect to distant objects. For example, the pancreas always lies in the
upper center of the abdomen behind the stomach. To exploit global information,
we devise a global guidance branch (Fig. 2(b)) to extract a global feature map
from Ag with resolution hg × wg, which is downsampled from the original slice
A. This branch consists of 13 convolution layers interleaved with 4 max pooling
layers. The height and width of the global feature map F is hg/32 and wg/32
respectively. For every pixel in the local feature map Ek, sub-pixel sampling is
utilized to calculate a corresponding feature vector from F, resulting a global
feature map Fk for Ak. Ek and Fk are concatenated and fed into the decoder
in the progressive fusion network.
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Algorithm 1. Inference procedure of our network.
Input: Slices: Ai, i = 1, · · · , l.
Output: Probability map: Pi, i = 1, · · · , l.
1: for each slice A in {Ai} do
2: Downsample A to obtain Ag;
3: Compute F from Ag using the global guidance branch (Section 2.3);
4: Decompose A into N overlapping patches {Ak|k = 1, · · · , N};
5: for k = 1 to N do
6: Sample F to obtain a global feature map Fk for Ak;
7: Extract a local feature map Ek from a 3D neighborhood of Ak using the 3D encoder

of our progressive fusion network (Section 2.2);
8: Compute the probability map Pk for Ak by feeding concatenated Ek and Fk through

the 2D decoder in our network;
9: end for

10: Merge {Pk} into P after disregarding peripheral overlapped pixels;
11: end for

2.4 Training Loss

Let P and G be the predicted and groundtruth segmentation of the slice A
respectively. p(x, y), g(x, y) ∈ {0, 1} indicates whether pixel (x, y) belongs to
the predicted and groundtruth target region respectively. Binary cross entropy
is used to measure the dissimilarity between P and G,

C(P,G) = − 1
wh

w−1∑

x=0

h−1∑

y=0

g(x, y) log p(x, y) + (1 − g(x, y)) log(1 − p(x, y)). (1)

We also use a fully connected layer to predict a probability map for each scale
of the feature maps in the encoder. Let P(j)

k be the probability map computed
from the last feature map in the j-th scale. Multiscale supervision is imposed
on these probability maps to enhance the training of the encoder. Likewise we
also use F and the second last scale of feature F′ to infer probability maps Pf

and Pf ′
respectively, then impose additional supervision on the global guidance

branch. The overall loss function can be summarized as follows,

L =
1
N

N∑

k=1

[C(Pk,Gk)+
1
4

4∑

j=1

C(P(j)
k ,G(j)

k )]+ αC(Pf ,Gf )+βC(Pf ′
,Gf ′

), (2)

where α and β are constants; Gk, G
(j)
k , Gf and Gf ′

are ground truths; G(j)
k is

downsampled from Gk; Gf and Gf ′
are downsampled from the full resolution

ground truth of Ag.

The inference procedure is summarized in Algorithm 1. The same algorithm
is applied to the segmentation of the slices from the sagittal and coronal views.
The results for all three views are fused through weighted averaging [12] to
produce the pseudo-3D segmentation result. Let the predictions for the axial,
sagittal and coronal views are Va, Vs and Vc respectively. The final result is
V = waVa + wsVs + wcVc, where wa, ws and wc are constants.
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3 Experiments

3.1 Datasets

Two pancreas datasets are used to validate the performance of the proposed 3D
volumetric segmentation algorithm in this paper.

(1) MSD (short for Medical Segmentation Decathlon challenge) provides 281
volumes of CT with labelled pancreas mask. The spatial resolution is 512 ×
512 and the number of slices varies from 37 to 751. We randomly split them
into 236 volumes for training, 5 for validation and 40 for testing.

(2) NIHC [7] contains 82 abdominal contrast enhanced 3D CT scans with the
spatial resolution equal to 512 × 512 pixels and the number of slices falling
between 181 and 466. We randomly split them into 48 volumes for training,
5 for validation and 29 for testing.

To measure the performance of segmentation algorithms, we first threshold the
segmentation probability map by 0.5. Then Dice similarity coefficient (DSC) is
used to calculate the similarity between the predicted segmentation mask and
the ground truth.

3.2 Implementation

Because a patient’s pancreas only occupies a small percentage of voxels in a CT
volume, we use the following strategy to balance positive and negative training
samples: two patches are cropped out from all slices of each volume; the central
point of the first patch is randomly chosen from the whole volume while that of
the second patch is randomly chosen from the box encompassing the pancreas.
Random rotation and elastic deformation are applied to augment the training
samples. The patch size is set to 256×256 for all views of NIHC and axial view of
MSD. For the sagittal and coronal views of MSD, 128×256 patch size is utilized.
The same patch size is used in validation and the number of overlapping pixels
is set to 64. The global guidance branch is trained alone for 1000 epochs using a
batch size of 32 and α = β = 0.5. The progressive fusion network is also trained
alone for 1000 epochs. Then the whole network is fine-tuned for another 800
epochs with α = 0.01 and β = 0. We adopt a batch size of 4 in the latter two
stages. The training process takes around 60 hours. Adam is adopted to optimize
network parameters with learning rate of 10−4. The model achieving the best
performance on the validation set is chosen as the final version.

Parameters. In MSD, the difficulty of segmenting the sagittal and coronal slices
is higher than segmenting axial slices as the resolution along the z axis varies
much. We empirically set wa = 0.8, ws = 0.1 and wc = 0.1 for MSD. wa, ws and
wc are set as 1/3 for NIHC. hg and wg are set to 224 except for the sagittal and
coronal views in MSD where 128 is used for hg. N is set to 1 during testing.
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Table 1. Comparisons with state-of-the-art segmentation algorithms.

Method MSD NIHC #Params

mean± std min max mean± std min max

3D Unet-Patch [8] 79.98± 7.71 61.14 93.73 78.36± 13.04 23.93 90.25 1.9× 107

3D Unet-Full [9] 81.13± 8.20 61.84 93.49 81.43± 7.53 49.36 89.60 1.3× 107

2D FCN8s-A [5] 82.24± 6.88 62.99 92.61 81.35± 5.87 60.57 88.16 1.3× 108

2D RSTN-A [11] 83.29± 6.58 66.23 92.40 82.56± 5.18 63.36 89.82 2.7× 108

2D GGPFN-A 84.56± 7.95 59.41 95.29 83.71± 5.83 66.33 90.13 1.4× 107

P3D FCN8s [12] 82.52± 7.00 61.75 92.86 83.24± 5.63 61.53 90.13 4.0× 108

P3D RSTN [11] 83.63± 6.65 64.21 93.02 84.45± 4.89 66.47 90.80 8.1× 108

P3D GGPFN 84.71± 7.13 58.62 95.54 85.46±4.80 67.03 92.24 4.2× 107

Table 2. Ablation study on MSD.

Global guidance 3D fusion mode T mean± std min max

� One-off 1 78.56± 8.63 58.76 93.62

� One-off 5 79.62± 7.65 60.01 93.63

� One-off 10 77.30± 8.38 59.21 92.69

� One-off 15 76.96± 9.38 57.67 94.26

� Progressive 5 80.30± 8.41 49.30 93.48

� Progressive 10 83.34± 7.90 54.38 94.70

× Progressive 15 83.46± 8.15 56.94 94.28

� Progressive 15 84.56± 7.95 59.41 95.29

3.3 Experimental Results

Comparisons with State-of-the-Art Segmentation Algorithms. Com-
parisons against state-of-the-art volumetric segmentation algorithms are
reported in Table 1. According to output type, we classify them into three cat-
egories: 3D models which predict 3D probability maps directly (such as UNet-
Patch [8] and UNet-Full [9]), 2D models which produce 2D segmentation results
over slices in the axial view (such as FCN8s [5]), Pseudo-3D (P3D) models
which fuse 2D segmentation results for axial, sagittal and coronal views (such
as RSTN [11]). Our globally guided progressive fusion network (GGPFN) can
be easily integrated into the 2D and P3D segmentation frameworks. All models
used for comparison here are retrained with the datasets adopted in this paper.
Our method consistently performs better than FCN8s and RSTN in both 2D
and P3D segmentation frameworks. For example, in the 2D framework, the mean
DSC of our model is clearly higher than that of RSTN. With the help of the P3D
segmentation framework, our algorithm achieves the best performance among all
considered algorithms. Comparisons of precision-recall curves are presented in
supplemental material.
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Fig. 3. Visualizations of segmentation results (green contours) produced by our
method. The number on the top-left corner of each image indicate DSC metric. (Color
figure online)

Ablation Study. To demonstrate the efficacy of our globally guided progressive
fusion network, we conduct an ablation study (Table 2) on the testing set of the
MSD dataset using slices along the axial view. We implement an one-off fusion
mode, which directly fuses multiple adjacent slices into a single slice by using a
single convolution layer and treating the multiple slices as channels of a single
slice fed into this convolution layer. Our progressive fusion mode is able to make
use of 3D information more effectively. As more slices are used, the advantages of
our progressive fusion network become more prominent while the one-off mode
fails to discover additional useful information when the number of slices exceeds
21. The feature map produced by the global guidance branch is also able to
improve segmentation performance. The mean DSC is decreased by 0.011 when
the global guidance branch is disabled.

Two examples of segmented pancreas organs using our method are visualized
in Fig. 3. More results are shown in supplemental material.

4 Conclusions

In this paper, we have presented a novel end-to-end network for 3D pancreas
segmentation. The proposed network consists of a progressive fusion network
and a global guidance branch. Our new algorithm achieves state-of-the-art per-
formance on two benchmark datasets. In our future work, we will extend the
application of our algorithm to multi-organ segmentation scenes and improve its
boundary locating capability.
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2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS,
vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46723-8 49

https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49


218 C. Fang et al.

3. Everingham, M., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The
PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–
338 (2010)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016)

5. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3431–3440 (2015)

6. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 Fourth International Confer-
ence on 3D Vision (3DV), pp. 565–571 (2016)

7. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for auto-
mated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi,
A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24553-9 68

8. Roth, H.R., et al.: An application of cascaded 3D fully convolutional networks for
medical image segmentation. Comput. Med. Imaging Graph. 66, 90–99 (2018)

9. Roth, H.R., et al.: Deep learning and its application to medical image segmentation.
Med. Imaging Technol. 36(2), 63–71 (2018)

10. Xia, Y., Xie, L., Liu, F., Zhu, Z., Fishman, E.K., Yuille, A.L.: Bridging the gap
between 2D and 3D organ segmentation with volumetric fusion net. In: Frangi,
A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.)
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