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Abstract. Pancreatic ductal adenocarcinoma (PDAC) is one of the
most lethal cancers with an overall five-year survival rate of 8%. Due to
subtle texture changes of PDAC, pancreatic dual-phase imaging is rec-
ommended for better diagnosis of pancreatic disease. In this study, we
aim at enhancing PDAC automatic segmentation by integrating multi-
phase information (i.e., arterial phase and venous phase). To this end,
we present Hyper-Pairing Network (HPN), a 3D fully convolution neural
network which effectively integrates information from different phases.
The proposed approach consists of a dual path network where the two
parallel streams are interconnected with hyper-connections for intensive
information exchange. Additionally, a pairing loss is added to encourage
the commonality between high-level feature representations of different
phases. Compared to prior arts which use single phase data, HPN reports
a significant improvement up to 7.73% (from 56.21% to 63.94%) in terms
of DSC.

1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the 4th most common cancer of
death with an overall five-year survival rate of 8%. Currently, detection or seg-
mentation at localized disease stage followed by complete resection can offer the
best chance of survival, i.e., with a 5-year survival rate of 32%. The accurate
segmentation of PDAC mass is also important for further quantitative analysis,
e.g., survival prediction [1]. Computed tomography (CT) is the most commonly
used imaging modality for the initial evaluation of PDAC. However, textures
of PDAC on CT are very subtle (Fig. 1) and therefore can be easily neglected
by even experienced radiologists. To our best knowledge, the state-of-the-art on
this matter is [17], which only reports an average Dice of 56.46%. For better
detection of PDAC mass, dual-phase pancreas protocol using contrast-enhanced
CT imaging, which is comprised of arterial and venous phases with intravenous
contrast delay, are recommended.
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(a) Arterial Image (b) Arterial Label (c) Venous Image (d) Venous Label

Fig. 1. Visual comparison of arterial and venous images (after alignment) as well as the
manual segmentation of normal pancreas tissues (yellow), pancreatic duct (purple) and
PDAC mass (green). Orange arrows indicate the ambiguous boundaries and differences
of the abnormal appearances between the two phases. Best viewed in color. (Color figure
online)

In recent years, deep learning has largely advanced the field of computer-
aided diagnosis (CAD), especially in the field of biomedical image segmentation
[4,10,11,16]. However, there are several challenges for applying existing seg-
mentation algorithms to dual-phase images. Firstly, these algorithms are opti-
mized for segmenting only one type of input, and therefore cannot be directly
applied to handle multi-phase data. More importantly, how to properly handle
the variations between different views requires a smart information exchange
strategy between different phases. While how to efficiently integrate information
from multi-modalities has been widely studied [3,6,15], the direction on learning
multi-phase information has been rarely explored, especially for tumor detection
and segmentation purposes.

To address these challenges, we propose a multi-phase segmentation algo-
rithm, Hyper-Pairing Network (HPN), to enhance the segmentation performance
especially for pancreatic abnormality. Following HyperDenseNet [3] which is
effective on multi-modal image segmentation, we construct a dual-path network
for handling multi-phase data, where each path is intended for one phase. To
enable information exchange between different phases, we apply skip connec-
tions across different paths of the network [3], referred as hyper-connections.
Moreover, by noticing that a standard segmentation loss (cross-entropy loss,
Dice loss [8]) only aims at minimizing the differences between the final predic-
tion and the groundtruth thus cannot well handle the variance between different
views, we introduce an additional pairing loss term to encourage the common-
ality between high-level features across both phases for better incorporation of
multi-phase information. We exploit three structures together in HPN including
PDAC mass, normal pancreatic tissues, and pancreatic duct, which serves as an
important clue for localizing PDAC. Extensive experiments demonstrate that
the proposed HPN significantly outperforms prior arts by a large margin on all
3 targets.
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Fig. 2. (a) The single path network where only one phase is used. The dash arrows
denote skip connections between low-level features and high-level features. (b) HPN
structure where multiple phases are used. The black arrows between the two single path
networks indicate hyper-connections between the two streams. An additional pairing
loss is employed to regularize view variations, therefore can benefit the integration
between different phases. Blue and pink stand for arterial and venous phase, respec-
tively. (Color figure online)

2 Methodology

We hereby focus on dual-phase inputs while our approach can be generalized
to multi-phase scans. With phase A and aligned phase B by the deformable
registration, we have the set S = {(XA

i ,XB
i ,Yi

) |i = 1, ...,M}, where XA
i ∈

R
Wi×Hi×Li is the i-th 3D volumetric CT images of phase A with the dimension

(Wi × Hi × Li) = Di and XB
i ∈ R

Di is the corresponding aligned volume of phase
B. Yi = {yij |j = 1, ...,Di} denotes the corresponding voxel-wise label map of the
i-th volume, where yij ∈ L is the label of the j-th voxel in the i-th image, and L
denotes the label of the target structures. In this study, L = {normal pancreatic
tissues, PDAC mass, pancreatic duct}. The goal is to learn a model to predict
label of each voxel Ŷ = f(XA,XB) by utilizing multi-phase information.

2.1 Hyper-connections

Segmentation networks (e.g., UNet [2,10], FCN [7]) usually contain a contracting
encoder part and a successive expanding decoder part to produce a full-resolution
segmentation result as illustrated in Fig. 2(a). As the layer goes deeper, the out-
put features evolve from low-level detailed representations to high-level abstract
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semantic representations. The encoder part and the decoder part share an equal
number of resolution steps [2,10].

However, this type of network can only handle single-phase data. We con-
struct a dual path network where each phase has a branch with a U-shape
encoder-decoder architecture as mentioned above. These two branches are con-
nected via hyper-connections which enrich feature representations by learn-
ing more complex combinations between the two phases. Specifically, hyper-
connections are applied between layers which output feature maps of the same
resolution across different paths as illustrated in Fig. 2(b). Let R1,R2, ...,RT

denote the intermediate feature maps of a general segmentation network, where
Rt and RT−t share the same resolution (Rt is on the encoder path and RT−t

is on the decoder path). Hyper-connections are applied as follows: RA
t −→ RB

t ,
RB

t −→ RA
t , RA

t −→ RB
T−t, RB

t −→ RA
T−t, RA

T−t −→ RB
T−t, RB

T−t −→ RA
T−t,

while maintaining the original skip connections that already occur within the
same path, i.e., RA

t −→ RA
T−t, RB

t −→ RB
T−t.

2.2 Pairing Loss

The standard loss for segmentation networks only aims at minimizing the dif-
ference between the groundtruth and the final estimation, which cannot well
handle the variance between different views. Applying this loss alone is inferior
in our situation since the training process involves heavy integration of both
arterial information and venous information. To this end, we propose to apply
an additional pairing loss, which encourages the commonality between the two
sets of high-level semantic representations, to reduce view divergence.

We instantiate this additional objective as a correlation loss [13]. Mathe-
matically, for any pair of aligned images (XA

i , XB
i ) passing through the corre-

sponding view sub-network, the two sets of high-level semantic representations
(feature responses in later layers) corresponding to the two phases are denoted
as f1(XA

i ;Θ1) and f2(XB
i ;Θ2), where the two sub-networks are parameterized

by Θ1 and Θ2 respectively. The outputs of two branches will be simultaneously
fed to the final classification layer. In order to better integrate the outcomes
from the two branches, we propose to use a pairing loss which exploits the con-
sensus of f1(XA

i ;Θ1) and f2(XB
i ;Θ2) during training. The loss is formulated as

following:

Lcorr(XA
i ,XB

i ;Θ) = −
∑N

j=1

(
f1(X

A
ij)−f1(XA

i )
)(

f2(X
B
ij)−f2(XB

i )
)

√
∑N

j=1

(
f1(XA

ij)−f1(XA
i )

)2 ∑N
j=1

(
f2(XB

ij)−f2(XB
i )

)2
, (1)

where N denotes the total number of voxels in the i-th sample and Θ denotes
the parameters of the entire network. During the training stage, we impose this
additional loss to further encourage the commonality between the two interme-
diate outputs. The overall loss is the weighted sum of this additional penalty
term and the standard voxel-wise cross-entropy loss:

Ltotal = − 1
N

[
N∑

j=1

K∑

k=0

1(yij = k) log pkij

]
+ λLcorr(XA

i ,XB
i ;Θ), (2)
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where pkij denotes the probability of the j-th voxel be classified as label k on the
i-th sample and 1(·) is the indicator function. K is the total number of classes.
The overall objective function is optimized via stochastic gradient descent.

3 Experiments

3.1 Experiment Setup

Data Acquisition. This is an institutional review board approved HIPAA
compliant retrospective case control study. 239 patients with pathologically
proven PDAC were retrospectively identified from the radiology and pathol-
ogy databases from 2012 to 2017 and the cases with ≤4 cm tumor (PDAC mass)
diameter were selected for the experiment. PDAC patients were scanned on a
64-slice multidetector CT scanner (Sensation 64, Siemens Healthineers) or a
dual-source multidetector CT scanner (FLASH, Siemens Healthineers). PDAC
patients were injected with 100–120 mL of iohexol (Omnipaque, GE Healthcare)
at an injection rate of 4–5 mL/sec. Scan protocols were customized for each
patient to minimize dose. Arterial phase imaging was performed with bolus trig-
gering, usually 30 s post-injection, and venous phase imaging was performed 60 s.

Evaluation. Denote Y and Z as the set of foreground voxels in the ground-
truth and prediction, i.e., Y = {i | yi = 1} and Z = {i | zi = 1}. The accu-
racy of segmentation is evaluated by the Dice-Sørensen coefficient (DSC):
DSC (Y,Z) = 2× |Y ∩ Z|

|Y|+ |Z| . We evaluate DSCs of all three targets, i.e., abnor-
mal pancreas, PDAC mass and pancreatic duct. All experiments are conducted
by three-fold cross-validation, i.e., training the models on two folds and testing
them on the remaining one. Through our experiment, abnormal pancreas stands
for the union of normal pancreatic tissues, PDAC mass and pancreatic duct. The
average DSC of all cases as well as the standard deviations are reported.

3.2 Implementation Details

Our experiments were performed on the whole CT scan and the implementa-
tions are based on PyTorch. We adopt a variation of diffeomorphic demons with
direction-dependent regularizations [9,12] for accurate and efficient deformable
registration between the two phases. For data pre-processing, we truncated the
raw intensity values within the range [−100, 240] HU and normalized each raw
CT case to have zero mean and unit variance. The input sizes of all networks
are set as 64 × 64 × 64. The coefficient of the correlation loss λ is set as 0.5. No
further post-processing strategies were applied.

We also used data augmentation during training. Different from single-phase
segmentation which commonly uses rotation and scaling [5,17], virtual sets [14]
are also utilized in this work. Even though arterial and venous phase scan-
ning are customized for each patient, the level of enhancement can be differ-
ent from patients by variation of blood circulation, which causes inter-subject
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Table 1. DSC (%) comparison of abnormal pancreas, PDAC mass and pancreatic
duct. We report results in the format of mean ± standard deviation.

Method Abnormal pancreas PDAC mass pancreatic duct

3D-UNet-single-phase (Arterial) 78.35± 11.89 52.40± 27.53 38.35± 28.98

3D-UNet-single-phase (Venous) 79.61± 10.47 53.08± 27.06 40.25± 27.89

3D-UNet-multi-phase (fusion) 80.05± 10.56 52.88± 26.97 39.06± 27.33

3D-UNet-multi-phase-HyperNet 82.45± 9.98 54.36± 26.34 43.27± 26.33

3D-UNet-multi-phase-HyperNet-aug 83.67± 8.92 55.72± 26.01 43.53± 25.94

3D-UNet-multi-phase-HPN (Ours) 84.32 ± 8.59 57.10 ± 24.76 44.93 ± 24.88

3D-ResDSN-single-phase (Arterial) 83.85± 9.43 56.21± 26.33 47.04± 26.42

3D-ResDSN-single-phase (Venous) 84.92± 7.70 56.86± 26.67 49.81± 26.23

3D-ResDSN-multi-phase (fusion) 85.52± 7.84 57.59± 26.63 48.49± 26.37

3D-ResDSN-multi-phase-HyperNet 85.79± 8.86 60.87± 24.95 54.18± 24.74

3D-ResDSN-multi-phase-HyperNet-aug 85.87± 7.91 61.69± 23.24 54.07± 24.06

3D-ResDSN-multi-HPN (Ours) 86.65 ± 7.46 63.94 ± 22.74 56.77 ± 23.33

enhancement variations on each phase. Therefore we construct virtual examples
by interpolating between venous and arterial data, similar to [14]. The i-th aug-
mented training sample pair can be written as: X̃

A

i = λXA
i + (1 − λ)XB

i , X̃
B

i =
λXB

i + (1 − λ)XA
i , where λ ∼ Beta(α, α) ∈ [0, 1]. The final outcome of HPN

is obtained by taking the union of predicted regions from models trained with
the original paired sets and the virtual paired sets. We set the hyper-parameter
α = 0.4 following [14].

3.3 Results and Discussions

All results are summarized in Table 1. We compare the proposed HPN with the
following algorithms: (1) single-phase algorithms which are trained exclusively
on one phase (denoted as “single-phase”); (2) multi-phase algorithm where both
arterial and venous data are trained using a dual path network bridged with
hyper connections (denoted as “HyperNet”). In general, compared with single-
phase algorithms, multi-phase algorithms (i.e., HyperNet, HPN) observe signif-
icant improvements for all target structures. It is no surprise to observe such a
phenomenon as more useful information is distilled for multi-phase algorithms.

Efficacy of Hyper-connections. To show the effectiveness of hyper-connections,
output from different phases (using single-phase algorithms) are fused by tak-
ing at each position the average probability (denoted as “fusion”). However,
we observe that simply fusing the outcomes from the different phases usually
yield either similar or slightly better performances compared with single-phase
algorithms. This indicates that simply fusing the estimations during the infer-
ence stage cannot effectively integrate multi-phase information. By contrast,
hyper-connections enable the training process to be communicative between the
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Fig. 3. Qualitative comparison of different methods, where HPN enhances PDAC mass
segmentation (green) significantly compared with other methods. (Best viewed in color)
(Color figure online)
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Fig. 4. Qualitative example where HPN detects the PDAC mass (green) while single-
phase methods for both phases fail. From left to right: venous and arterial images
(aligned), groundtruth, predictions of single-phase algorithms, HyperNet prediction,
HPN prediction (overlayed with venous and arterial images). (Best viewed in color)
(Color figure online)

two phase branches and thus can efficiently elevate the performance. Note that
directly applying [3] yield unsatisfactory results. Our hyper-connections are not
densely connected but are carefully designed based on previous state-of-the-art
on PDAC segmentation [17] for better segmentation of PDAC. Meanwhile, we
show much better performance of 63.94% compared to 56.46% reported in [17].

Efficacy of Data Augmentation. From Table 1, compared with HyperNet,
HyperNet-aug witnesses performance gain especially for PDAC mass (i.e., from
60.87% to 61.69% for 3D-ResDSN; from 54.36% to 55.72% for 3D-UNet), which
validates the usefulness of using virtual paired sets as data augmentation.

Efficacy of HPN. We can observe additional benefit of our HPN over hyperNet-
aug (e.g., abnormal pancreas: 85.87% to 86.65%, PDAC mass: 61.69% to 63.94%,
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pancreatic duct: 54.07% to 56.77%, 3D-ResDSN). Overall, HPN observes an
evident improvement compared with HyperNet, i.e., abnormal pancreas: 85.79%
to 86.65%, PDAC mass: 61.69% to 63.94%, pancreatic duct: 54.07% to 56.77%
(3D-ResDSN). The p-values for testing significant difference between hyperNet
and our HPN of all 3 targets are p < 0.0001, which suggests a general statistical
improvement. We also show two qualitative examples in Fig. 3, where HPN shows
much better segmentation accuracy especially for PDAC mass.

Another noteworthy fact is that 11/239 cases are false negatives which failed
to detect any PDAC mass using either phase (Dice = 0%). Out of these 11 cases,
7 cases are successfully detected by HPN. An example is shown in Fig. 4—the
PDAC mass is missing from both single phases and almost missing in the original
HyperNet (DSC = 0.27%), but our HPN can detect a reasonable portion of the
PDAC mass (DSC = 61.5%).

The deformable registration error by computing pancreas surface distances
between two phases is 1.01 ± 0.52 mm (mean ± standard deviations) which can
be considered as acceptable for this study. However, the effects between different
alignments can be described as a further study.

4 Conclusions

Motivated by the fact that radiologists usually rely on analyzing multi-phase
data for better image interpretations, we develop an end-to-end framework,
HPN, for multi-phase image segmentation. Specifically, HPN consists of a dual
path network where different paths are connected for multi-phase information
exchange, and an additional loss is added for removing view divergence. Exten-
sive experiment results demonstrate that the proposed HPN can substantially
and significantly improve the segmentation performance, i.e., HPN reports an
improvement up to 7.73% in terms of DSC compared to prior arts which use
single phase data. In the future, we plan to examine the behaviour of HPN when
using different alignment strategies and try to extend the current approach to
other multi-phase learning problems.
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