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Abstract. Segmentation of anatomical structures and pathologies is
inherently ambiguous. For instance, structure borders may not be clearly
visible or different experts may have different styles of annotating. The
majority of current state-of-the-art methods do not account for such
ambiguities but rather learn a single mapping from image to segmenta-
tion. In this work, we propose a novel method to model the conditional
probability distribution of the segmentations given an input image. We
derive a hierarchical probabilistic model, in which separate latent vari-
ables are responsible for modelling the segmentation at different reso-
lutions. Inference in this model can be efficiently performed using the
variational autoencoder framework. We show that our proposed method
can be used to generate significantly more realistic and diverse segmen-
tation samples compared to recent related work, both, when trained with
annotations from a single or multiple annotators. The code for this paper
is freely available at https://github.com/baumgach/PHiSeg-code.

1 Introduction

Semantic segmentation of anatomical structures and pathologies is a crucial step
in clinical diagnosis and many downstream tasks. The majority of recent auto-
mated segmentation methods treat the problem as a one-to-one mapping from
image to output mask (e.g. [6]). However, medical segmentation problems are
often characterised by ambiguities and multiple hypotheses may be plausible [10].
This is in part due to inherent uncertainties such as poor contrast or other restric-
tions imposed by the image acquisition, but also due to variations in annotation
“styles” between different experts. To account for such ambiguities it is crucial
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Fig. 1. (Left) Example of hierarchical segmentation generation with segmentation out-
put at each level (ŝ�) in the top row, right to left, and corresponding residual refine-
ments to the prostate peripheral zone class in the bottom row. (Right) Corresponding
graphical model (for N independent samples).

that prediction systems provide access to the full distribution of plausible out-
comes without sacrificing accuracy. Predicting only the most likely hypothesis
may lead to misdiagnosis and may negatively affect downstream tasks.

Recent work proposed to account for the uncertainty in the learned
model parameters using an approximate Bayesian inference over the network
weights [2]. However, it was shown that this method may produce samples that
vary pixel by pixel and thus may not capture complex correlation structures in
the distribution of segmentations [4]. A different line of work accounts for the
possibility of different outcomes by training an ensemble of M networks [5] or
by training a single network with M heads [7]. Both approaches, however, can
only produce a fixed number of hypotheses. This problem is overcome by the
conditional variational autoencoder (cVAE), an extension of [3] for modelling
conditional segmentation masks given an input image [8]. Finally, the recently
proposed probabilistic U-NET combines the cVAE framework with a U-NET
architecture [4]. The authors showed that, given ground-truth annotations from
multiple experts, the method can produce an unlimited number of realistic seg-
mentation samples. Moreover, the method was shown to outperform various
related methods including network ensembles, M -heads [7] and the Bayesian
SegNet [2].

However, as we will show, the probabilistic U-NET produces samples with
limited diversity. We believe this may be due to the fact that stochasticity is
only introduced in the highest resolution level of the U-NET, and because the
network can choose to ignore the random draws from the latent space since it is
only concatenated to the channels. In this work, we propose a novel hierarchical
probabilistic model which can produce segmentation samples closely matching
the ground-truth distribution of a number of annotators. Inspired by Lapla-
cian Pyramids, the model generates image-conditional segmentation samples by
generating the output at a low resolution and then continuously refining the
distribution of segmentations at increasingly higher resolutions. In contrast to
prior work, the variations on each resolution level are governed by a separate
latent variable, thereby avoiding the problems mentioned above. This process is
illustrated in Fig. 1. We show that compared to recent work, our proposed Prob-
abilistic Hierarchical Segmentation (PHiSeg) produces samples of significantly
better quality for two challenging segmentation tasks, both, when trained with
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multiple annotations, and a single annotation per image. Furthermore, the mean
prediction of our model performs on par with the standard U-NET in terms of
segmentation accuracy.

2 Methods

We start by assuming that the segmentations s given an input image x are
generated from L levels of latent variables z� according to the graphical model
shown in Fig. 1. Thus, the conditional distribution p(s|x) is given by the following
expression for the general case of L latent levels:

p(s|x) =
∫

p(s|z1, . . . , zL)p(z1|z2,x) · · · p(zL−1|zL,x)p(zL|x)dz1 · · · dzL. (1)

We further assume that each latent variable z� is responsible for modelling the
conditional target segmentations at 2−�+1 of the original image resolution (e.g.
z1 and z3 model the segmentation at the original and at 1/4 of the original
resolution, respectively.). This does not result from the graphical model itself but
is rather enforced by our implementation thereof as will become clear shortly.

We aim to approximate the posterior distribution of p(z|s,x) using a vari-
ational approximation q(z|s,x) where we used z to denote {z1, . . . , zL}. It can
be shown that log p(s|x) = L(s|x) + KL(q(z|s,x)||p(z|s,x)), where L denotes
the evidence lower bound, and KL(·, ·) the Kullback-Leibler divergence [3,4,8].
Since KL(·, ·) ≥ 0, L is a lower bound on the conditional log probability with
equality when the approximation q matches the posterior exactly. Using the
decomposition in Eq. 1 we find that for our model

L =Eq(z1,...,zL|x,s) [log p(s|z1, . . . , zL)] − αL KL [q(zL|s,x)||p(zL|x)]

−
L−1∑
�=1

α� Eq(z�+1|s,x) [KL [q(z�|z�+1, s,x)||p(z�|z�+1,x)]] ,
(2)

with α� = 1. A complete derivation can be found in Appendix A. The α� are
additional heuristic variables which we introduced to help account for dimension-
ality differences between the z� (explained below). Following standard practice
we parametrise the prior and posterior distributions as axis aligned normal dis-
tributions N (z|μ, σ). Specifically, we define

p(z�|z�+1,x) = N
(
z|φ(μ)

� (z�+1,x), φ(σ)
� (z�+1,x)

)
(3)

q(z�|z�+1,x, s) = N
(
z|θ(μ)� (z�+1, s,x), θ(σ)� (z�+1, s,x)

)
, (4)

where the φ, θ are functions parametrised by neural networks. Note that in con-
trast to the variational autoencoder [3], the p(z�|·,x) are also parametrised by
neural networks similar to [4,8]. Lastly, we model p(s|z) as the usual categorical
distribution with parameters (i.e. softmax probabilities) predicted by another
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neural network. By parametrising all distributions using neural networks, this
can be seen as a hierarchical conditional variational autoencoder with the poste-
riors q(z�|·, s,x) and priors p(z�|·, s) encoding x and s into latent representations
z�, and the likelihood p(s|z) acting as the decoder. Our implementation of this
model using a neural network for L = 3 is shown in Fig. 2. In that figure it can
be seen that the total number of resolution levels of the network (i.e. number
of downsampling steps plus one) can be larger than the number of latent levels.
The example in Fig. 2 has a total of 4 resolution levels, of which only L = 3 are
latent levels. We obtained the best results with 7 total resolution levels of which
L = 5 are latent levels. The prior and posterior nets have identical structure
but do not share any weights. Similar to previous work, all three subnetworks
are used for training but testing is performed by using only the prior and the
likelihood networks [3,4,8].

From Fig. 2 it can be seen that latent variables z� will form the skip con-
nections in a U-NET-like architecture. However, unlike [6] and [4], each skip
connection corresponds to a latent variable z� such that no information can flow
from the image to the segmentation output without passing a sampling step. We
do not map the latent variables to a 1-D vector but rather choose to keep the
structured relationship between the variables. We found that this substantially
improves segmentation accuracy. As a result, latent variable z� has a dimension-
ality of rx2−�+1 × ry2−�+1 × D, where D is a hyper-parameter and D = 2 for
all experiments, and rx, ry are the dimensions of the input images. The latent
variable z� is limited to modelling the data at 2−�+1 of the original resolution
due to the downsampling operations before it. It then passes up the learned rep-
resentation to the latent space embedding above (z�−1) to perform a refinement
at double the resolution. This continues until the top level is reached. To fur-
ther enforce this behaviour the likelihood network is designed to generate only
residual changes of the segmentation masks for all z� except the bottom one.
This is achieved through the addition layers before the outputs (see Fig. 2). Our
model bears some resemblance to the Ladder Network [9] which is also a hier-
archical latent variable model where inference results in an autoencoder with
skip connections. Our work differs substantially from that work in how inference
is performed. Furthermore, to our knowledge, the Ladder Network was never
applied to structured prediction problems.

Training and Predictions: We aim to find the neural network parameters
which maximise the lower bound L in Eq. 2. The analytical form of the individual
terms is prescribed by our model assumptions: since the posterior and prior both
are modelled by normal distributions, the KL terms can be calculated analyti-
cally [3]. Our choice of likelihood results in a cross entropy term CE(ŝ1, sgt), with
ŝ1 the predicted segmentation and sgt the corresponding ground-truth. Similar
to previous work we found that it is sufficient to evaluate all of the expectations
using a single sample [3]. Two deviations from the above theory were necessary
for stable training. First, the magnitude of the KL terms depends on the dimen-
sionality of z�. However, since the dimensionality of z� in our model grows with
O(2�), this led to optimisation problems. To counteract this, we heuristically set
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Fig. 2. Schematic network architecture of the proposed method for L = 3 latent levels
and 4 resolution levels.

the weights α� = 2�−1 in Eq. 2. Secondly, to enforce the desired behaviour that
z� should only model the data at its corresponding resolution, we added deep
supervision to the output of each resolution level (ŝ� in Fig. 2). The cost function
used for this is again the cross entropy loss, CE(ups(ŝ�), sgt) for � > 1, where
ups(·) denotes a nearest neighbour upsampling to match the size of sgt. While z�

can only model the data at a certain resolution, it may ignore this responsibility
and focus only on matching the prior and posterior. Deep supervision effectively
prevents this behaviour.

We trained the model using the Adam optimiser with a learning rate of 10−3

and a batch-size of 12. We used batch-normalisation on all non-output layers.
All models were trained for 48 h on a NVIDIA Titan Xp GPU and the model
with the lowest total loss on a held-out validation set was selected.

After the model is trained, segmentation samples for an input image x can
be generated by first obtaining samples z� using the prior network and then
decoding them using the likelihood network.
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3 Experiments and Results

We evaluated our method on two datasets: (1) the publicly available LIDC-IDRI
dataset which comprises 1018 thoracic CT images with lesions annotated by 4
radiologists [1]. Similar to [4] we extracted square 2D patches of size 128 × 128
pixels such that each patch was centred on a lesion. (2) We also evaluated our
method on an in-house prostate MR dataset of 68 patients acquired with a trans-
verse T2-weighted sequence (in-plane resolution 0.1875 × 0.1875 mm2 and slice
thickness 3.3 mm). The transition and peripheral zones were manually annotated
by 4 radiologists and 2 non-radiologists. We processed the data slice-by-slice
(approx. 25 slices per volume), where we resampled each slice to a resolution of
0.6×0.6 mm2 and took a central crop of size 192×192. We divided both datasets
into a training, testing and validation set using a random 60-20-20 split.

For all experiments we compared our method (PHiSeg) with L = 5 latent
levels and a total of 7 resolution levels to the probabilistic U-NET [4]. In order
to exclude network capacity as an explanation for performance differences, we
aimed to model our network components as closely as possible after the prob-
abilistic U-NET. We used batch normalisation layers for both methods which
deviates from [4] but did not affect the results negatively. Furthermore, to demon-
strate that modelling the segmentation problem at multiple resolution levels is
beneficial, we also compared against a variation of PHiSeg with only L = 1
latent levels (i.e. no skip connections or latent space hierarchy). Lastly, for some
experiments we compared to a deterministic U-NET using the same architecture
as for the probabilistic U-NET but with no stochastic components.

We evaluated the techniques in two experiments. First, we trained the meth-
ods using the masks from all available annotators, where in each batch we
randomly sampled one annotation per image. We were interested in assessing
how closely the distribution of generated samples matched the distribution of
ground-truth annotations. To this end, we used the generalised energy distance
D2

GED(pgt, ps) = 2E[d(s,y)] − E[d(s, s′)] − E[d(y,y′)], where d is 1 minus the
intersection over union, i.e. d(·, ·) = 1− IoU(·, ·), and s, s′,y,y′ are samples from
the learned distribution ps, and ground-truth distribution pgt [4]. The GED
reduces the sample quality to a single, easy-to-understand number but, as a
consequence, cannot be interpreted visually. Therefore, we additionally aimed to
produce pixel-wise maps showing variability among the segmentation samples.
We found the expected cross entropy between the mean segmentation mask and
the samples to be a good measure, i.e. γ(si) = E[CE(s̄i, si)] with i the pixel
position and s̄i the mean prediction. γ is statistically similar to variance with
the L2-distance replaced by CE. However, we believe it is more suitable for
measuring segmentation variability. Examples of our γ-maps along with sample
segmentations are shown in Fig. 3. We quantify how well the γ-maps for each
method predict regions with large uncertainty using the average normalised cross
correlation (NCC) between the γ-maps and the CE error maps obtained with
respect to each annotator:

SNCC(pgt, ps) = Ey∼pgt
[NCC(Es∼ps [CE(s̄, s)],Es∼ps [CE(y, s)])] . (5)
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Fig. 3. Ground-truth annotations and samples for two of the evaluated methods trained
with masks from 6 or 1 experts(s). Average error maps Ey,s[CE(y, s)] and γ-maps
(E[CE(s̄, s)]) for each model are shown in the left and right-most column, respectively.

Results for both D2
GED and SNCC are shown in the top part of Table 1. All

measures were evaluated with 100 samples drawn from the learned models.
Secondly, we set out to investigate the models’ ability to infer the inherent

uncertainties in the annotations from just one annotation per training image.
To this end, we trained the above models by using only the annotations of
a single expert. For the evaluation we then computed the D2

GED and SNCC

using all available annotators. Additionally, we evaluated the models in terms
of conventional Dice score evaluated with masks from the single annotator as
ground-truth. To get a single prediction from the probabilistic models we used s̄.
This allowed us to obtain an indication of conventional segmentation accuracy.
The results are shown in the bottom part of Table 1.

We observed that when using all annotators for training, PHiSeg (L = 5)
produced significantly better D2

GED and SNCC scores compared to all other
methods. This can be observed qualitatively in Fig. 3 for a prostate slice with
large inter-expert disagreements. Both, the prob. U-NET and PHiSeg (L = 5)
produced realistic samples but PHiSeg (L = 5) was able to capture a wider vari-
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Table 1. Quantitative results for all metric. Statistically significant improvements
(p < 0.01 with paired student’s t-test) over all other methods are indicated in bold.

# experts LIDC-IDRI Prostate dataset

D2
GED SNCC Dice D2

GED SNCC Dice

Prob. U-NET All 0.2393 0.7749 – 0.1322 0.7763 –

PHiSeg (L = 1) All 0.2934 0.7944 – 0.1608 0.7452 –

PHiSeg (L = 5) All 0.2248 0.8453 – 0.0864 0.8185 –

Det. U-NET 1 – – 0.5297 – – 0.8364

Prob. U-NET 1 0.4452 0.5999 0.5238 0.2198 0.6022 0.8290

PHiSeg (L = 1) 1 0.4695 0.6013 0.5275 0.2462 0.6683 0.7942

PHiSeg (L = 5) 1 0.3225 0.7337 0.5408 0.2044 0.6917 0.8540

ability. Furthermore, as indicated by the high SNCC values, PHiSeg’s (L = 5)
γ-maps were found to be very predictive of where in the image the method’s
average prediction errors will occur. Similar results were obtained when train-
ing with only one annotator. We noticed that in this scenario the prob. U-NET
may in some cases fail to learn variation in the data and revert back to an
almost entirely deterministic behaviour (see fourth row in Fig. 3). We believe
this can be explained by the prob. U-NET’s architecture which, in contrast to
our method, allows the encoder-decoder structure to bypass the stochasticity.
While our method also predicted smaller variations in the samples, they were
still markedly more diverse. The lower performance of PhiSeg (L = 1) indicates
that using multiple resolution levels is crucial for our method. More samples for
the prostate and LIDC-IDRI datasets can be found in Appendix B. From Table 1
it can be seen that no significant differences between the Dice scores were found
for any of the methods (except PHiSeg’s (L = 1)), including the det. U-NET.
From this we conclude that neither PhiSeg (L = 5) nor the prob. U-NET suffer
in segmentation performance due to their stochastic elements.

4 Discussion and Conclusion

We introduced a novel hierarchical probabilistic method for modelling the condi-
tional distribution of segmentation masks given an input image. We have shown
that our method substantially outperforms the state-of-the-art on a number of
metrics. Furthermore, we demonstrated that PHiSeg was able to predict its own
errors significantly better compared to previous work. We believe that proper
modelling of uncertainty is indispensable for clinical acceptance of deep neural
networks and that having access to the segmentation’s probability distribution
will have applications in numerous downstream tasks.
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