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Abstract. The Dice score and Jaccard index are commonly used metrics
for the evaluation of segmentation tasks in medical imaging. Convolu-
tional neural networks trained for image segmentation tasks are usually
optimized for (weighted) cross-entropy. This introduces an adverse dis-
crepancy between the learning optimization objective (the loss) and the
end target metric. Recent works in computer vision have proposed soft
surrogates to alleviate this discrepancy and directly optimize the desired
metric, either through relaxations (soft-Dice, soft-Jaccard) or submod-
ular optimization (Lovász-softmax). The aim of this study is two-fold.
First, we investigate the theoretical differences in a risk minimization
framework and question the existence of a weighted cross-entropy loss
with weights theoretically optimized to surrogate Dice or Jaccard. Sec-
ond, we empirically investigate the behavior of the aforementioned loss
functions w.r.t. evaluation with Dice score and Jaccard index on five
medical segmentation tasks. Through the application of relative approx-
imation bounds, we show that all surrogates are equivalent up to a multi-
plicative factor, and that no optimal weighting of cross-entropy exists to
approximate Dice or Jaccard measures. We validate these findings empir-
ically and show that, while it is important to opt for one of the target
metric surrogates rather than a cross-entropy-based loss, the choice of
the surrogate does not make a statistical difference on a wide range of
medical segmentation tasks.
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1 Introduction

The Dice score and Jaccard index have become some of the most popular per-
formance metrics in medical image segmentation [1–3,11,18]. Zijdenbos et al.
were among the first to suggest the Dice score for medical image analysis by
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evaluating the quality of automated white matter lesion segmentations [22]. In
scenarios with large class imbalance, with an excessive number of (correctly clas-
sified) background voxels, they show that the Dice score is a special case of the
kappa index, a chance-corrected measure of agreement. They further note that
the Dice score reflects both size and localization agreement, more in line with
perceptual quality compared to pixel-wise accuracy.

Risk minimization principle says we should minimize during training time the
loss that we will be using to evaluate the performance at test time [21]. This has
motivated the introduction of differentiable approximations for Dice score (e.g.
soft Dice [19]) and Jaccard index (e.g. soft Jaccard [16,20] or its more recent
convex extension Lovász-softmax [5]) in order to incorporate it into gradient-
based training schemes, such as stochastic gradient descent (SGD). These can be
used for training segmentation models, including convolutional neural networks
(CNNs) [19]. Nevertheless, training with the pixel-wise cross-entropy loss, or its
weighted variant, remains highly popular, even when the evaluation is performed
using the Dice score or Jaccard index [6,11]. In the MICCAI 2018 proceedings,
47 out of 77 learning-based segmentation papers used such a per-pixel loss even
though the evaluation was performed with Dice score.

This raises the question to what extent a loss function has impact on the
prediction quality, and whether there are principled reasons for choosing one
set of loss functions over another. In this work, we consider from a theoretical
perspective the relationship between Dice score and Jaccard index, and work out
that one approximates the other under risk minimization. We further question
the existence of a well-weighted cross-entropy loss as a surrogate for Dice or
Jaccard. We find an approximation bound between Dice and Jaccard losses,
but no such approximation exists for cross-entropy. We are able to validate our
findings empirically on five medical tasks, finding that all of the metric-sensitive
losses are favourable over (weighted) cross-entropy, but that generally no mutual
statistical difference can be observed among the former.

2 Risk Minimization with Dice and Related Similarities

When performing discriminative training of machine learning methods, such as
SGD for a CNN [9], we are performing risk minimization. To learn a mapping
f from an observed input x to a hidden variable y, empirical risk minimization
optimizes the expectation of a loss function over a finite training set:

arg min
f∈F

1
n

n∑

i=1

�(f(xi), yi)

︸ ︷︷ ︸
=:R̂(f)

, (1)

where � is a loss function and F is a function class of interest, e.g. the set of
functions that can be represented by a neural network with a given topology. We
will denote the bootstrap distribution arising from a sample S := {(xi, yi)}1≤i≤n

of size n as Pn, and we may equivalently denote R̂(f) = E(x,y)∼Pn
[�(x, y)].
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In binary medical image segmentation, y can be thought of as a set of pixels
labeled as foreground. It is therefore well defined to consider set theoretic notions
such as y ∩ ỹ for two different segmentations. This motivates the use of multiple
set theoretic similarity measures between two segmentations y and ỹ including
the Dice score D, the Jaccard index J , the Hamming similarity H, and what we
will call the weighted Hamming similarity Hγ :

D(y, ỹ) :=
2|y ∩ ỹ|
|y| + |ỹ| , J(y, ỹ) :=

|y ∩ ỹ|
|y ∪ ỹ| , H(y, ỹ) := 1 − |y \ ỹ| + |ỹ \ y|

d
, (2)

Hγ(y, ỹ) := 1 − γ
|y \ ỹ|

|y| − (1 − γ)
|ỹ \ y|
d − |y| , (3)

where d denotes the number of pixels and 0 ≤ γ ≤ 1. We note that all these
similarities are between 0 and 1, and that Hγ generalizes H with equality when
γ = |y|

d . A further important relationship is that between the Jaccard index and
the Dice coefficient. It is well known that

J(y, ỹ) =
D(y, ỹ)

2 − D(y, ỹ)
and D(y, ỹ) =

2J(y, ỹ)
1 + J(y, ỹ)

. (4)

Indeed, in the risk minimization framework for medical image segmentation,
there are numerous examples where each of these measures are optimized [8,15,
19].

In risk minimization, we replace a similarity S : Y × Y → [0, 1] with its
corresponding loss 1 − S, and aim at minimizing this loss in expectation. To
train a neural network by backpropagation [9] it is necessary to replace this
value with a differentiable surrogate. For the Hamming similarity, cross-entropy
loss and other convex surrogates are statistically consistent [4,13]. To optimize
the weighted Hamming similarity, one may employ weighted loss functions [14]
such as weighted cross entropy. Similarly, differentiable surrogates have been
proposed both for the Dice score (e.g. soft Dice [19]) and Jaccard index (e.g. soft
Jaccard [17] and Lovász-softmax [5]). Next, we hereby discuss the absolute and
relative approximations between Dice and Jaccard and inspect the existence of
an approximation through a weighted Hamming similarity.

Definition 1 (Absolute approximation). A similarity S is absolutely
approximated by S̃ with error ε ≥ 0 if the following holds for all y and ỹ:

|S(y, ỹ) − S̃(y, ỹ)| ≤ ε. (5)

Definition 2 (Relative approximation). A similarity S is relatively approx-
imated by S̃ with error ε ≥ 0 if the following holds for all y and ỹ:

S̃(y, ỹ)
1 + ε

≤ S(y, ỹ) ≤ S̃(y, ỹ)(1 + ε). (6)

We note that both notions of approximation are symmetric in S and S̃.
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Proposition 1. J and D approximate each other with relative error of 1 and
absolute error of 3 − 2

√
2 = 0.17157 . . . .

Proof. The relative error between J and D is given by (cf. Eq. (4))

min
ε≥0

ε, s.t. x ≤ x

2 − x
(1 + ε), ∀ 0 ≤ x ≤ 1. (7)

x ≤ x

2 − x
(1 + ε) =⇒ 1 − x ≤ ε =⇒ ε = 1. (8)

The absolute error between J and D is given by

ε = sup
0≤x≤1

∣∣∣∣x − x

2 − x

∣∣∣∣ = 3 − 2
√

2, (9)

which can be verified straightforwardly by first order conditions:

∂

∂x

(
x − x

2 − x

)
= 0 =⇒ (2 − x)2 − 2 = 0 =⇒ x = 2 −

√
2. 
� (10)


�
Proposition 2. D and Hγ (where γ is chosen to minimize the approximation
factor between D and Hγ) do not relatively approximate each other, and abso-
lutely approximate each other with an error of 1. We note that the absolute error
bound is trivial as D and Hγ are both similarities in the range [0, 1].

Proof. For relative error, consider the case that |y \ ỹ| = 0, |ỹ \ y| = αd, and
|y ∩ ỹ| = α2d for some 0 ≤ α <

√
5−1
2 :

inf
γ

sup
y,ỹ

1 − γ
|y \ ỹ|

|y| − (1 − γ)
|ỹ \ y|
d − |y| − 2|y ∩ ỹ|

|y�ỹ| + 2|y ∩ ỹ| (1 + ε) ≤ 0 (11)

=⇒ sup
0≤α<

√
5−1
2

1 − α

1 − α2
− 2α2

α + 2α2
(1 + ε) ≤ 0 (12)

If we let α → 0, it must be the case that ε → ∞. To show that the absolute
approximation error is 1, we similarly take

lim
α→0

1 − α

1 − α2
− 2α

1 + 2α
= 1. (13)


�
Corollary 1. D and H do not relatively approximate each other, and absolutely
approximate each other with an error of 1.

From these bounds, we see that a (weighted) binary loss can be an arbitrarily
bad approximation for Dice when segmenting small objects, while the Jaccard
loss gives multiplicative and additive approximation guarantees. Furthermore,
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Eq. (4) implies that 1 − D(y, ỹ) ≤ 1 − J(y, ỹ) =⇒ E(x,y)∼Pn
[1 − D(y, f(x))] ≤

E(x,y)∼Pn
[1 − J(y, f(x))] and optimization with risk computed with the Jac-

card loss minimizes an upper bound on risk computed with the Dice loss. Simi-
larly setting ϕ(x) = 2x/(1 + x), by application of Jensen’s inequality we arrive
at E(x,y)∼Pn

[1 − J(y, f(x))] = E(x,y)∼Pn
[ϕ(1 − D(y, f(x)))] ≤ ϕ(E(x,y)∼Pn

[1 −
D(y, f(x))]) and optimizing the Dice loss minimizes an upper bound on the
Jaccard loss as ϕ is a monotonic function over [0, 1].

3 Empirical Setup

To test the aforementioned properties empirically, we investigate the perfor-
mance of segmentation networks trained with different loss functions: cross-
entropy (CE), weighted cross-entropy (wCE), soft Dice (sDice), soft Jaccard
(sJaccard), and Lovász-sigmoid. We validate by cross-validation on five medi-
cal binary segmentation tasks. Three tasks are publicly available 3D datasets:
BRATS 2018 (limited to whole tumor segmentation [2]; BR18, 285 images),
ISLES 2017 (follow-up stroke lesion segmentation [1]; IS17, 43 images) and ISLES
2018 (acute stroke lesion segmentation [3]; IS18, 94 images). Furthermore, we
expand the empirical setup with two in-house 2D datasets: lower-left third molar
segmentation from panoramic dental radiographs (MO17, 400 images) and seg-
mentation of colorectal polyps from colonoscopy images (PO18, 1166 images).

Network Architectures and Preprocessing. For BR18, IS17 and IS18 we
implement a U-Net-like [18] architecture with 3D convolutions, starting from a
top-ranked implementation during last year’s BRATS challenge [10] with less
filters and an encoder depth of 7 layers. For MO17 the same architecture with
2D convolutions is used. For PO18 a VGG16 backbone architecture with atrous
convolutions and pretrained on ImageNet [7] is used. We use all image modalities
available in each dataset as input, excluding perfusion data for IS17 and IS18. In
order to fit memory, these inputs are resized and cropped. Data augmentation
consisted of Gaussian noise, translations, flips, and in-plane rotations.

Training Procedure. We perform an initial training of the CNNs with cross-
entropy loss. We use Adam [12] with an initial learning rate of 10−3 for the
randomly initialized networks, and 10−4 for the ImageNet-initialized network.
This learning rate is decreased when the validation loss stagnates. We stop the
training when the validation loss starts increasing. Batch sizes are 40 for MO17,
16 for PO18, and 4 for all public datasets. After initial convergence with cross-
entropy, we continue training using one of the five different loss functions: CE,
wCE, sDice, sJaccard and Lovász. For wCE, theory suggests that no optimal
approximation w.r.t. Dice or Jaccard can be derived before training (see Sect. 2).
To set the weights, we therefore resort to the common heuristic of balancing fore-
ground and background equally [19]. Thus, the weight applied to the foreground
class is 1/(2p) and the weight applied to the background class is 1/(2−2p), with
p the foreground prior. We use the same optimization procedure as described for
the initial training, with an initial learning rate of 10−3 for MO17 and 10−4 for
all other datasets, which lead to appropriate convergence.
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4 Results and Discussion

In the following discussion, we distinguish between two groups of losses. First,
CE and wCE losses, which are surrogates for the (weighted) Hamming loss.
Second, sDice, sJaccard and Lovász losses, which are surrogates either for the
Dice score or Jaccard index, and which we group as metric-sensitive losses.
Table 1 lists the average Dice scores and Jaccard indexes obtained after five-fold
cross-validation for each dataset and loss under study. For each fold, we choose
the best performing model w.r.t. the validation loss. We perform a pairwise
non-parametric significance test (bootstrapping) with a p-value of 0.05 to assess
inferiority or superiority between pairs of optimization methods.

Table 1. Dice scores and Jaccard indexes obtained for each dataset with the different
losses. Values in italic point to a significant lower result compared to each of the
metric-sensitive losses. Underlined values point to a significant lower result within the
two groups of losses considered: the group of CE and wCE losses, and the group of
metric-sensitive losses. Values in bold point to a significant better result compared to
all other losses. Values in parentheses are dataset sizes.

Dataset loss → CE wCE sDice sJaccard Lovász

Dice score BR18 0.768 0.735 0.823 0.823 0.827

IS17 0.260 0.311 0.331 0.321 0.305

IS18 0.463 0.474 0.538 0.528 0.508

MO17 0.930 0.860 0.932 0.931 0.932

PO18 0.635 0.602 0.656 0.651 0.649

Jaccard index BR18 0.654 0.602 0.717 0.720 0.722

IS17 0.177 0.212 0.227 0.217 0.204

IS18 0.345 0.344 0.407 0.399 0.382

MO17 0.873 0.769 0.877 0.875 0.877

PO18 0.541 0.488 0.559 0.554 0.553

Equivalence of J and D. The theory suggests an equivalence between Dice
and Jaccard metrics (Proposition 1). This equivalence appears in our results: in
particular, we found the rankings of the performance of the different losses to
be the same in terms of Dice score and in terms of Jaccard index.

Performance of the Surrogates. It is clear that CE and wCE lead to lower
Dice scores and Jaccard indexes than the metric-sensitive losses (highlighted in
italic). Only for MO17 does CE lead to similar performance compared to the
metric-sensitive losses, likely due to a more uniform distribution of foreground
and background pixels for this dataset. This trend was expected due to the the-
oretical divergence between cross-entropy losses and the metric-sensitive losses
and holds with current works optimizing Dice or Jaccard measures directly via
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(a) BRATS 2018 (b) ISLES 2018 (c) MO17 (d) PO18

Fig. 1. Dice score as a function of the relative ratio of foreground pixels for four
datasets. The scores are averaged within the 10 regions bordered by the dashed lines;
each region contains 1/10 of the dataset. Metric-sensitive losses perform as well or
better than cross-entropy over most of the relative area ranges. ISLES 2017 omitted
for lack of statistical relevance given its lower number of samples.

their surrogates. Moreover, we found in general no statistically significant dif-
ference within the group of metric-sensitive losses w.r.t. Dice or Jaccard. This
further confirms our theoretical findings and leaves the researcher a free choice.

Weighting of Cross-Entropy. We note that wCE is generally performing
poorly compared to CE (inferior performances are underlined). A better choice
of weights might lead to a better performance of wCE. However, it is clear from
our results that the weighting is highly task-dependent. Finding a better weight-
ing is therefore non-trivial, compared to using one of the metric-sensitive losses.
Moreover, as highlighted in our subsequent scale-specific study, wCE does yield
a better performance within some restricted ranges of object scales. In accor-
dance with theory, it is likely that no single weighting would yield appropriate
surrogates to the target metrics across all datasets and scales.

Scale-Specific Study. In general, a segmentation dataset contains objects of
variable size. It is generally assumed that Dice or Jaccard-sensitive losses have
most impact for refining the segmentations of samples of small size, thanks to
their invariance to scale, which cross-entropy does not have [5]. The dependence
of the approximation bound on the Hamming loss in Eq. (3) on the number of
positive pixels in the ground truth |y| also points towards a loss of segmentation
accuracy in terms of Dice score in the small-sample regime when optimizing with
Hamming loss or cross-entropy. We study this dependence in Fig. 1, showing the
average Dice scores as a function of the ground truth object size for the different
optimization methods. We found that the applicability of metric-sensitive losses
goes beyond the small-size regime, and that it is possible for CE to perform
poorly across almost all scales. This is most evident in BR18 and IS18; even in
the other datasets, the cross-entropy curve is dominated by other optimization
methods. Furthermore, while wCE improves on CE on some datasets and area
ranges, it can also vastly underperform the metric-sensitive losses as in BR18
and MO17, further indicating that a simple re-weighting of cross-entropy is not
sufficient to capture the target metric across all object scales and datasets.
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5 Conclusion

We compared optimization with five different loss functions from both theoreti-
cal and empirical perspectives. We find Jaccard and Dice approximate each other
relatively and absolutely, while no approximation by a weighted Hamming simi-
larity (i.e. a set theoretical equivalent for weighted cross-entropy) can be found.
We confirm these findings empirically by evaluation on five medical segmenta-
tion tasks. We can show that there is generally no significant difference between
the use of either of the metric-sensitive loss functions. Cross-entropy and its
weighted version are however inferior to the latter when evaluated on Dice and
Jaccard. This is in line with theory, which predicts that Jaccard controls the
Dice loss. Nevertheless, the use of per-pixel losses remains highly popular. Of
the 77 learning-based segmentation papers in the MICCAI 2018 proceedings that
perform evaluation with Dice, 47 trained using a per-pixel loss. The theory and
empirical results presented here suggest that wider adoption of metric-sensitive
losses like Dice and Jaccard is warranted.
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