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Abstract. Volumetric instance segmentation plays a significant role in
biomedical morphological analyses. The improvement of segmentation
accuracy has been accelerated by the progress of deep learning-based
methods. However, such methods usually rely heavily on plenty of pre-
cise annotation, which is time-consuming and may need some expert
knowledge to label manually. Although there are several studies focusing
on weakly supervised methods in order to save the labeling cost, previ-
ous approaches still more or less require voxel-wise annotation. In this
paper, we propose a weakly supervised instance segmentation method
that needs no voxel-wise labeling. Our approach takes advantage of
two advanced techniques: one is the popular proposal-based framework
(Faster R-CNN in this paper) for instance detection, and the other is
the peak response mapping (PRM) for finding visual cues of instances.
Then a new thresholding method combines detected boxes and visual
cues to generate final instance segmentation results. We conduct exper-
iments on two biomedical datasets, one of which is a large-scale mouse
brain dataset at single-neuron resolution collected by ourselves. Results
on both datasets validate the effectiveness of our proposed method.

Keywords: Biomedical image analysis + Peak response mapping -
Volumetric instance segmentation - Weak supervision

1 Introduction

Instance segmentation is a pixel-level visual analysis task, which seeks to not only
label precise class-aware masks but also produce instance-aware tags to distin-
guish same-class individual regions. With accurately segmented instances (e.g.
somas), the morphological analyses of biomedical images can be made meticu-
lous and more informative. With the progress of exploring deep learning-based
methods for computer vision tasks, the popular multi-task approach [4] achieves
excellent performance for instance segmentation on natural images, which per-
forms object detection first and then generates instance masks by the following
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mask branch. The approach has been extended and its superiority has been ver-
ified for biomedical images [13]. However, exploiting the advanced deep learn-
ing methods on biomedical images still faces challenges. One major problem is
that these methods usually rely heavily on pixel/voxel-wise detailed labeling,
which is laborious and time-consuming especially for volumetric images. Label-
ing biomedical images may also need some expert knowledge, leading to even
higher cost.

Many attempts have been made on biomedical images [1,11,13] aiming at
saving labeling cost with weakly- or semi-supervised learning methods. Yang et
al. [11] present an active learning method for 2D biomedical image segmentation,
which can improve segmentation accuracy through suggesting the most effective
rather than all samples for labeling. In [1], a sparse annotation approach is
proposed for semantic segmentation from volumetric images: only several slices
have pixel-wise labeling because of the structural similarity between sequential
2D images. Zhao et al. [13] apply a modified Mask R-CNN [4] to volumetric
data for instance segmentation, and they use bounding boxes for all instances
and voxel-wise labels for a small proportion of instances. However, the above
mentioned works still more or less demand pixel-wise or voxel-wise annotation.

In fact, there are several existing studies about instance segmentation for nat-
ural images without pixel-wise labeling, i.e. with only bounding boxes or image-
level classes. A commonly used strategy is self-training: the model is trained in
full supervision using labels generated by the model itself in an iterative man-
ner [5], and the rough labels can be refined after several iterations. But these
methods are usually sensitive to the initial approximate labels and the iterative
procedure is a heavy computation burden. In [9], a visualization method for deep
image classification CNN has been explored, which is a top-down attention way.
The saliency maps can be extracted by a single back-propagation, and the maps
are also used as visual cues for weakly supervised semantic segmentation. Sim-
ilarly, Zhou et al. [14] come up with a new idea for instance segmentation with
only image-level class tags. They use locally class-aware peak response mapping
(PRM) results as instance representations, and combine them with a segment
proposal retrieving operation to produce the instance segmentation results.

Inspired by the above works, in this paper, we address the problem of 3D
instance segmentation from volumetric biomedical images with only bounding-
box labeling. We split the task into detection and segmentation, detection can
be fulfilled by a deep network-based detector, while segmentation utilizes visual
cues from PRM results. But the PRM results are usually not complete to pro-
duce segmentation masks, hence we design an advanced thresholding method to
employ PRM for segmentation. Our main contributions are as follows:

e To our best knowledge, we propose the first weakly supervised instance seg-
mentation method for volumetric biomedical images that does not rely on any
voxel-wise annotation. Instead, our model can be trained with only bounding
box annotation.

e We extend the peak response mapping into detection network so as to gen-
erate high-quality visual cues to benefit the following thresholding phase.
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Fig. 1. The pipeline of our approach: Part 1 is the detection phase; Part 2 denotes
the peak response mapping for extracting visual cues, which is fulfilled by the back-
propagation of the anchor locations of the detected boxes through the Conv-layers;
Part 3 shows the local thresholding phase. Best viewed in color.

e We design an advanced thresholding method that employs the visual cues
extracted from deep learning-based model. And experiments verify that our
thresholding method achieves more precise segmentation.

e We provide a mouse brain image dataset at single-neuron resolution, which is
acquired by florescence staining and confocal microscopy imaging techniques.
We label soma with bounding box for training set, but give voxel-wise mask
annotation for testing set.

Our data and code have been published at https://braindata.bitahub.com/.

2 Method

The pipeline of our approach is shown in Fig. 1, the primary component is a
proposal-based detector (denoted in pink background), which can be trained
end-to-end with bounding boxes. Instance segmentation includes three steps:
(1) the instances (e.g. cells) are detected as boxes; (2) the visual cues for each
instance are obtained by PRM, i.e. the back-propagation from score-map layer to
input layer; (3) the final instance masks will be segmented by a local thresholding
method which utilizes the detected boxes, visual cues, and image intensity.

3D Faster R-CNN for Instance Detection. We extend Faster R-CNN [§]
into 3D version for volumetric image task, including conv-body, region proposal
networks (RPN) and region convolutional network (R-CNN). And the roi-align
layer is also changed to 3D using trilinear interpolation among 8 neighbor voxels
for aligning feature maps for each proposal box. Particularly, for the consider-
ation of reducing computing burden for volumetric data, we select a small but
still efficient network as the conv-body of detector for feature extraction, whose
structure inherits the down-stream part of DSN [3]. And we may modify this
network to adapt to different data. Since Faster R-CNN is a proposal-based
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Fig. 2. Mouse brain soma data examples and corresponding PRM results.

detector that depends on the default anchors, it is essential to carefully set sizes
and aspect ratios for anchors to fit the size distribution of targets. Another
important related factor is feature stride, which determines the granularity of
sliding anchors. We decrease stride for smaller targets by adjusting conv-body,
specifically, removing the last pooling layer and the following layers to reduce
stride from 8 to 4. In this way, we can improve the cover rate of anchors and keep
more detailed features for small targets. Note that we do not use more complex
network structure for the sake of computation burden.

Peak Response Mapping for Visual Cues. PRM implemented in [14]
depends on a class peak stimulation layer, which is learnt to predict the class
probability corresponding to spatial locations. Inspired by this, we observe that
due to the characteristics of detector structure, the score map of RPN is a typ-
ical class response map related to locations. Therefore, we assume that those
high scores can also indicate the strongly informative voxels, and we propose
a new PRM way based on object detection framework. RPN predicts the score
and location regression value for each local anchor, which are used to produce
proposal candidates. We call the anchor locations “anchor maps” as in Fig. 1.
(The highlighted points actually locate at multiple channels of score maps and
we only show one channel for visual simplicity.) Then proposals with high scores
will be sent to R-CNN for further classification to filter out false positives and
keep confident boxes as final detection results. During the procedure we record
the source anchor location of each detected box and keep the specific location at
anchor maps as peaks. Later the PRM phase will start from the peaks at score
maps, which is interpreted as a random walker procedure from the peaks to the
bottom layer in [14]. Assuming that U and V are the input and output feature
map of a convolution layer in the forward process, whose filter size is s X h X w.
The visiting probability of the random walker or the correlation between spatial
locations Ujji, and Vg during PRM can be formulated by

it+35 jt+L k+2
Uijk) Z —iz Z _n Z (Uijk|Vpgt) X P (Vpgt) (1)

=j—L4

where the conditional probability is

P (Uijk|Vogt) = Zpgt % UZ]kW(z P)G—q)(k—t) (2)
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ajk denotes the activation value at location (4,7, k) of U during the forward
process. W means that we only reserve the positive weights of filter and Z,; is
normalization factor to ensure -, ;. P (Uijk|Vpqt) = 1. Note that the PRM can
be realized using normal gradient back-propagation during inference and does
not require any extra conditions or constraints for network training.

An Advanced 2D Otsu for Instance Segmentation. Figure 2 shows several
examples of visual cues produced by PRM, from which we can tell the contour
or boundaries of soma instance. But the PRM is not perfect enough as instance
mask for two defects: (1) the regions highlighted as the most discriminative
parts are usually not complete and may be broken; (2) other instances may also
appear around targets in PRM, so only utilizing PRM can not remove such
false regions. Hence, we propose a thresholding method for segmentation that
utilizes the PRM results but in addition utilizes the grayscale information. Our
method is an advanced 2D Otsu algorithm, but different from the traditional
2D Otsu where the second-dimension is using manually crafted features [12], we
use the visual cues extracted from the deep learning-based detection network as
the second dimension, which provides complementary information to the local
intensity. In order to balance the weights between PRM and intensity, we rescale
both into the same dynamic range, and we design a 2D oblique segmentation
on the 2D histogram to leverage the complementary information. Specifically,
assuming G and P are the intensity and PRM values of voxels inside one detected
box, which constitute the two axes of the 2D histogram. Then the thresholding
acts with an oblique decision boundary: sign(G + k x P — b) where k and b
are the slope and bias. And k is set as 1 for the same sale of G and P, and b
is searched in a recursion way aiming to maximize the between-class variance.
Once the decision boundary is fixed, the segmentation can be accomplished by
the thresholding.

3 Experiments and Results

We conduct experiments on two volumetric biomedical datasets, both are opti-
cal microscopy images: mouse brain soma dataset collected by ourselves and
nuclei of HL60 cells [6,10]. Our method uses merely bounding box labels for
training and evaluates instance segmentation performance on voxel-wise labeled
test set. Considering that we aim to tackle both volumetric data and learning
without voxel-wise annotation problems for instance segmentation task, so we
select several competitive methods satisfying both conditions as comparison.

Mouse Brain Soma Data. Our mouse brain soma data is acquired by fluo-
rescence staining and confocal microscopy imaging techniques, whose resolution
is high enough to distinguish each neuron. For the training set, we label soma
with inscribed sphere and get bounding box labels by extending the globules.
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Table 1. Results of average precision with three volumetric mask IoU thresholds on
our mouse brain soma dataset. All of these methods do not require voxel-wise labeling.

Method Instance segmentation AP

IoU 0.3 | IoU 0.4 | IoU 0.5

NeuroGPS [7] 0.4965 | 0.3960 | 0.2705

DSN [2] 0.5459 | 0.4236 | 0.2512
Detection+1D Otsu 0.6563 | 0.5077 | 0.3904
Detection+2D Otsu (w/o PRM) | 0.6741 | 0.5333 | 0.3992
Detection+2D Otsu (w/ PRM) | 0.7024 | 0.5864 | 0.4253

Table 2. Results on the HL60 cells dataset in terms of F1 score (the box IoU threshold
is 0.4). Det denotes detection.

Method Voxel-wise Detection F1 Segmentation F1
labeling | Trackl | Track2 | Mean | Trackl | Track2 | Mean
Mask R-CNN [13] 20% 0.9967 | 0.9599 | 0.9783 | 0.9416 | 0.8437 | 0.8927
VoxResNet [13] 4/13 0.9965 | 0.9221 | 0.9593 | 0.9610 | 0.7873 | 0.8742
Det+1D Otsu 0 0.9970 | 0.9545 | 0.9758 | 0.7708 | 0.5668 | 0.6688
Det+2D Otsu (w/o PRM) 0 0.8792 | 0.6230 | 0.7511
Det+2D Otsu (w/ PRM) 0 0.8902 | 0.7399 | 0.8151

All images are processed into the same size of 128 x 256 x 256 and saved as
16bit images whose physical resolution is 1um3/voxel. Figure?2 shows several
image examples. We have 3000 and 228 images for training and testing respec-
tively. Considering the small soma targets and the memory limitation for CNN
to handle volumetric data, we set feature stride as 4, input size as 64x256x256
and batch size as 4 on two GeForce GTX 1080Ti’s. Note that we can use such
big input size thanks to the compact network structure. During inference, the
detector firstly outputs boxes and corresponding scores. Afterwards the visual
cues are produced by back-propagation for every box. Then the thresholding is
completed off-line.

For there is no existing report on our soma data, we compare our method with
two advanced methods including an optimization-based method NeuroGPS [7]
and a learning-based semantic segmentation method DSN using course mask
label [2], both of which do not need voxel-wise label. NeuroGPS is designed for
neuron images like our soma data, which aims to find the most appropriate center
coordinates and its radius for soma, so we regard the detected solid globules
as instance masks. For DSN we find all the connected components as instance
segmentation results. And for both baselines those too small masks are excluded
to balance precision and recall. In addition, to verify the advantage of our 2D
Otsu algorithm, we also check the results of simple but still powerful thresholding
methods including 1D Otsu with grayscale only and 2D Otsu whose second
dimension is Gaussian filtered grayscale. We evaluate the performance using
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Fig. 3. Our proposed 2D Otsu with PRM produces segmentation results with more fine
details, where IoU is calculated between segmentation result and ground-truth (GT).
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Fig. 4. (A) Detection helps identify instance individual in crowded-instance cases. (B)
Failure cases. Best viewed in color.

Average Precision (AP) with three different IoU thresholds for volumetric masks,
and results are shown in Table 1. Our approach achieves the best performance
for all the metrics. And the ablation study shown in latter three rows indicates
that with PRM as visual cues the segmentation AP can gain up to 5.3%.

Nuclei of HL60 Cells. We also apply our method to nuclei of HL60
cells [6,10], a synthetic dataset that contains two tracks and has full voxel-
wise annotation for all instances. Note that this dataset is synthetic and the
existing reported methods still more or less require voxel-wise labeling, thus the
comparison is not fair. However, this is the only public dataset for our task and
we conduct experiment on this dataset to verify the generality of our method.
We follow the training/test split in [13]. Because the cells in this dataset are
larger than those in our soma data, we use feature stride as 8. Also consider-
ing that this dataset has voxel-wise annotation and the related work from [13] is
more competitive, we compare both detection and instance segmentation perfor-
mance with the results in [13], using the same evaluation metric: F1 score with
ToU threshold of 0.4. We also perform ablation study to verify our PRM-based
2D Otsu algorithm. Table 2 presents F1 scores of all methods. Our approach can
achieve comparable detection performance with [13]. For instance segmentation,
our method performs not as well as [13] because we use no voxel-wise label in
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Fig. 5. Visualized PRM and instance segmentation results, where different instances
are marked with random colors. Best viewed in color.

training, and for fairness the F1 scores in bold shows the best ones without any
voxel-wise label. However, as this dataset is synthetic, it may not reveal the
real-world cases.

Visualization Results. To better understand the effect of PRM and detection
and visually evaluate our method, here we illustrate three groups of soma images
in both 2D and 3D views. Figure 3 shows how PRM benefits thresholding. These
results suggest that with PRM as a guidance the segmented mask has a closer
appearance to the ground truth, especially in fine details. Although the visual
cues from PRM might be not complete, the discriminative regions serve as com-
plementary information to intensity and improve the mask contour. Examples
in Fig. 4 reflect the influence of detection on instance segmentation. Group A
shows that detected boxes help identify soma instances in dense-soma case even
when they touch each other. While in some low-contrast or cropped regions,
the segmentation may be not good enough for the boxes not precisely detected.
Figureb illustrates some results in 3D view. We can see that our method can
detect and segment soma in diverse intensity, density, shapes as well as from
complex background, and the appearance is quite close to the ground truth.

4 Conclusion

In this paper, we propose a weakly supervised instance segmentation method for
volumetric biomedical images not requiring any voxel-wise label. The network
can be trained as a simple detector with bounding boxes only. And instance seg-
mentation can be accomplished by PRM combined with an advanced threshold-
ing algorithm. We design experiments on two datasets and results demonstrate
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the efficiency of the proposed method. Our approach can save considerable label-
ing efforts and has potential to be applied to other related segmentation tasks.
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