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Abstract. Deep neural networks have achieved tremendous success in
image recognition, classification and object detection. However, deep
learning is often criticised for its lack of transparency and general inabil-
ity to rationalise its predictions. The issue of poor model interpretability
becomes critical in medical applications: a model that is not understood
and trusted by physicians is unlikely to be used in daily clinical practice.
In this work, we develop a novel multi-task deep learning framework for
simultaneous histopathology image classification and retrieval, leveraging
on the classic concept of k-nearest neighbours to improve model inter-
pretability. For a test image, we retrieve the most similar images from
our training databases. These retrieved nearest neighbours can be used
to classify the test image with a confidence score, and provide a human-
interpretable explanation of our classification. Our original framework
can be built on top of any existing classification network (and therefore
benefit from pretrained models), by (i) combining a triplet loss function
with a novel triplet sampling strategy to compare distances between sam-
ples and (ii) adding a Cauchy hashing loss function to accelerate neigh-
bour searching. We evaluate our method on colorectal cancer histology
slides and show that the confidence estimates are strongly correlated
with model performance. Nearest neighbours are intuitive and useful for
expert evaluation. They give insights into understanding possible model
failures, and can support clinical decision making by comparing archived
images and patient records with the actual case.
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1 Introduction

Since the overwhelming success of deep learning in the ImageNet challenge in
2012 [1], image recognition techniques are now based on deep learning. This is
also true for histopathological image analysis, with deep learning based methods
developed for mitosis detection [2], cancer classification [3], mutation prediction
[4] and survival prediction [5].

Despite the breakthroughs they have made, the adoption of deep neural net-
works in daily clinical practice is slow. One bottleneck is that deep neural net-
works are often perceived as ‘black-box’ models, as it is very difficult to under-
stand how networks make their predictions with their millions of model param-
eters. This issue becomes critical in computational pathology, as pathologists
need to understand the rationale of a network’s decision to use it for diagnostic
purpose. Moreover, recent studies have found that deep neural networks are par-
ticularly vulnerable to adversarial examples [6]: with a small amount of image
pixel permutations that are imperceptible to human, adversarial inputs can eas-
ily fool deep neural network and result in completely wrong classification, which
suggests that it is dangerous to use deep neural networks without expert control.

In this paper, we aim to improve model interpretability of deep neural net-
works to pathologists without the need of a computational background. Inspired
by the decision making process of pathologists, i.e. relating the current case to
similar cases stored in their brains, we design a multi-task learning framework
for simultaneous image classification and retrieval. In addition to cross-entropy
loss used for the classification task, we add a triplet loss function to compare the
distance between samples [7] and a Cauchy hashing loss function to accelerate
nearest neighbour search in Hamming space [8]. Through deeply retrieved near-
est neighbour images, we can provide pathologists with intuitive explanations
of model predictions by visualizing the embedding space that is close to human
perception, and calculate confidence by measuring the variations of the retrieved
neighbours. This approach pushes classification networks in histopathology for
the first time towards confident, interpretable and efficient image retrieval and
hence will have a big impact on the quickly growing field of computational
pathology.

2 Method

A schematic of our proposed multi-task learning framework for k-nearest neigh-
bour retrieval is shown in Fig. 1. Each compartment of the framework is explained
in the following subsections.

2.1 Triplet Loss with Batch-Hard Sampling

The triplet loss has been first introduced for face recognition [7]. In contrast
to Siamese networks that measure pairwise distance, triplet loss considers the
triangular relationship between three samples: an anchor instance x, a positive
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instance x+ that is similar to x (usually belonging to the same class), and a
negative instance x− that is different from x (usually belonging to a different
class). The network is then trained to learn an embedding function f(.), with a
loss function defined in [9]:

La(d+, d−) = ‖(d+, d− − 1)‖2 (1)

where:

d+ = e‖f(x)−f(x+)‖2

e‖f(x)−f(x+)‖2+e‖f(x)−f(x−)‖2
, d− = e‖f(x)−f(x−)‖2

e‖f(x)−f(x+)‖2+e‖f(x)−f(x−)‖2
. (2)

Fundamental to triplet networks is the right sampling strategy. Random sam-
pling is usually not sufficient as most random negative images radically differ
from the anchor image in the embedding space and no longer contribute to the
gradients in the optimisation process. Hence, [7] proposed a batch-hard strategy
which selects for each anchor sample the most distant positive (hard-positive)
sample and the closest negative (hard-negative) sample. Here we propose an
improved batch-hard strategy: (1) sample a balanced data set of k samples from
each of the n classes; (2) compute embedding for each sample; (3) choose each
sample to be an anchor, and match it with all k − 1 positive samples; (4) for

Fig. 1. A multi-task learning framework for simultaneous image classification and
retrieval. (a) Our network consists of a convolutional neural network backbone for
learning a deep representation of each image as a feature vector and a multi-loss func-
tion for simultaneous image retrieval and classification. (b) During training, we use a
triple loss function which brings close samples from same class and push apart samples
from different classes and Cauchy loss function to encoder every image into a binary
code. (c) During testing, for each query image, we first make a rapid image retrieval
based on binary codes and then make a finer retrieval based on feature vectors.
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each anchor sample, choose k closest negative (hard-negative) samples, hence
matching all anchor-positive pairs. This strategy results in n∗k ∗ (k −1) triplets
when computing n ∗ k embeddings only, which is more computational efficient
than the original strategy where three embeddings were computed for one triplet.
Moreover, sampling k hard-negative samples instead of one makes our approach
more robust against outliers.

2.2 Cauchy Loss for Efficient Image Retrieval in Hamming Space

Although the triplet network can train an efficient embedding function that pre-
serves similarity, the resulted embedding vectors are continuous and need a L2
distance comparison for neighbour searching. A more efficient searching method
is hashing, which compares binary codes in hamming space [10]. Recent works
have focused on combining convolutional neural network with hashing meth-
ods, yielding an end-to-end framework that jointly preserves pairwise similarity
and controls the quantization error [10]. Here we use the Deep Cauchy Hashing
proposed in [8], which achieves superior performance over other state-of-the-
art hashing approaches such as Hashnet [11]. In combination with our triplet
sampling, we write the Cauchy loss function as:

Lb(x, x+, x−) = log ‖f(x)−f(x+)‖2
γ + log

(
1 + γ

‖f(x)−f(x+)‖2

)
+ log

(
1 + γ

‖f(x)−f(x−)‖2

)
(3)

Lc(x, x+, x−) = log
(
1 + ‖f(x)−1‖2

γ

)
+ log

(
1 + ‖f(x+)−1‖2

γ

)
+ log

(
1 + ‖f(x−)−1‖2

γ

)
(4)

where Lb is the cross-entropy term that preserves similarities and Lc measures
the quantification error before and after discretization, where we generate a
binary hashing code by taking the sign of each neuron of the hashing vector.
The scale parameter γ controls the decaying speed of the probability of the
Cauchy distribution: a smaller γ will impose more force to concentrate similar
samples into a small Hamming radius. Here we choose γ to be K/2, where K is
the bit number of our hashing code.

2.3 Cross-entropy Loss as an Auxiliary Classification Task

To enable our framework for classification, we add a classification layer after
the hashing layer, in which a cross-entropy loss is used to minimize the discrep-
ancy between prediction and ground-truth labels. The addition of a classification
function also allows us to compare the performance of our framework to previous
work of [5], which use standard classification networks.

2.4 Hierarchical Image Retrieval

In the testing phase, for each query image, we adopt a coarse-to-fine search
strategy for rapid and accurate image retrieval (see Fig. 1c). We first retrieve
a candidate pool with similar binary hashing codes after discretisation within a
small Hamming radius (e.g. of 1) from the query image. To further filter images
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with similar appearance, we extract the feature vector (one layer before the
hashing vector, see Fig. 1a) and rank the retrieved samples using a L2 distance
of the feature vector. In our implementation, we use the built-in functions Ball-
Tree and cKDTree of the Scikit-learn toolbox for nearest neighbour searching
in Hamming space and Euclidean space, respectively. As one important purpose
of our image retrieval is for expert evaluation, we limit the number of retrieved
images for each query image to be 10.

2.5 Confidence Measure

The retrieved nearest neighbours of a given query image also provide a straight-
forward confidence measure of our prediction on that image by simply counting
the frequency of the predicted class in the retrieved neighbourhood.

3 Results and Discussions

3.1 Experimental Data

To evaluate our framework we use the colorectal cancer (CRC) histology dataset
[5]. It contains more than 100,000 hematoxylin-eosin (HE)-stained image patches
from 86 CRC tissue slides from the NCT biobank and the UMM pathology
archive (NCT-CRC-HE-100K) and a testing data set of 7,180 image patches from
25 CRC patients from an independent cohort (CRC-VAL-HE-7K). Both datasets
are created by pathologists by manually delineating tissue regions in whole slide
images into the following nine tissue classes: adipose tissue, background, cellular
debris (comedonecrosis), lymphocytes, extracellular mucus, smooth muscle (lam-
ina muscularis mucosae), normal colon mucosa, cancer-associated stroma, and
neoplastic cell population (CRC epithelium). CRC epithelium was exclusively
derived from human CRC specimen (primary and metastatic). Normal tissue
such as smooth muscle and adipose tissue was mostly derived from CRC surgical
specimen, but also from upper gastrointestinal tract specimen (including smooth
muscle from gastrectomy) in order to maximize variability in this training set.
The created non-overlapping image patches are 224 × 224 px (112 × 112µm)
and have a approximately equal distribution among the nine tissue classes. [5]
trained a classification network on NCT-CRC-HE-100K and reach 98.8% accu-
racy on the test split of the dataset and 94.3% accuracy on the independent test
set (CRC-VAL-HE-7K).

3.2 Evaluation of Image Classification

To train our framework we split the training data (NCT-CRC-HE-100K) into
70% training set, 15% validation set and 15% test set. The independent cohort
(CRC-VAL-HE-7K) is used for testing purpose only. We choose convolutional
neural networks of different architectures and replace the last layer of each net-
work with our hashing and classification layers (see Sect. 2 and Fig. 1). To train
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each network, we initiate it with ImageNet pretrained weights, train our added
layers first and then fine tuning the entire network. In addition to different
network architectures, we also examine the influence of multi-task learning by
comparing the classification performance when training with multi-task loss vs.
training with cross-entropy loss for classification only. The classification accuracy
we achieve is comparable to the results reported in [5], suggesting our networks
are properly trained (see Table 1). Moreover, we demonstrate that the multi-task
learning improves the classification performance on an unseen test set, suggest-
ing the advantage of using our multi-task loss combination. It also illustrates
that there is a domain shift between the histology images from the two different
cohorts, so the network that achieves the best performance on the internal test
set of NCT-CRC-HE-100K does not generalize best on the independent CRC-
VAL-HE-7K test set.

3.3 Evaluation of Image Retrieval

To evaluate image retrieval, we use the entire NCT-CRC-HE-100K set as
our database and the independent CRC-VAL-HE-7K set as query images. As
explained in Sect. 2.4, for a query image, we use the coarse-to-fine strategy to
retrieve its nearest neighbours. To make a comparison, we formulate a baseline
neighbour searching method for our classification network: we amend our coarse
search to compare hashing vectors without discretisation using L2 distance and
to retrieve 100 neighbours as the candidate pool for the next fine search. We
measure our retrieval precision for each query image by counting the number
of true neighbours, i.e. belonging to the same class, among the top 10 retrieved
samples, as proposed in [8,11]. Over 6000 images out of our 7180 query images
reach a perfect retrieval precision of 10 true neighbours by using our multi-
task network (Fig. 2), which is around 30% higher than that achieved by the
baseline classification network (4697 images). This suggests that the embedding
space created by the multi-task framework is more compact, i.e. a sample is
surrounded predominantly by neighbours of its own class. By contrast, in the
embedding space created by the baseline classification, a sample is more mixed
with neighbours of different classes. A dispersed embedding could be one reason
that classification networks are vulnerable to attacks of adversarial samples [6].

Figure 4 shows exemplary results of our image retrieval. The first query image
is a patch of the cancer-associated stroma. While the classification network con-
fuses it with patches of smooth muscle in healthy tissue due to their similar

Table 1. Evaluation of classification accuracy on both test set of NCT-CRC-HE-100K
and an independent test set of CRC-VAL-HE-7K.

Testing accuracy Multitask Resnet18 Resnet18 Resnet34 Resnet50 VGG19a

NCT-CRC-HE-100K (%) 98.6 98.5 98.8 99.4 98.8

CRC-VAL-HE-7K (%) 95.0 94.4 94.2 93.6 94.3
aThe results of VGG19 is directly quoted from [5] and are shown here as a comparison.
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Fig. 2. Multi-task learning retrieves
more correct images than simple clas-
sification.

Fig. 3. Our confidence measure is
highly correlated with their testing
accuracy (variations come from multi-
ple testing of batches of size 50).

Fig. 4. The top 10 retrieved images returned by our multi-task framework as compared
to a baseline classification network for exemplary cases. See text for explanation.

colour appearance, our multi-task network, by contrast, is not fooled by the
colour variations and is able to reach perfect retrieval. The second query image
is a patch of colorectal adenocarcinoma epithelium, which is mixed with normal
colon mucosa by the classification network but not by the multi-task network.
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Figure 3 shows that the confidence measurement of our framework is highly
correlated with the actual performance of our classification on the testing set.
One exemplary low confident retrieval case captured by our framework is shown
in the last row of Fig. 4, the query image is annotated as normal colon mucosa
yet is considered to be mostly lymphocytes, debris, cancer-associated stroma and
colorectal adenocarcinoma epithelium by our framework. An expert pathologist
also reviewed the case and did not agree with its original annotation as normal
colon mucosa, though a more definite conclusion could not be reached due to the
limited context provided by this patch. Our framework can be used to highlight
these uncertain cases for review by more than one pathologists.

4 Conclusion

We propose a novel multi-task learning framework for simultaneous image classi-
fication and retrieval. Our objective function is composed of a triplet loss function
to compare distance between samples, a Cauchy hashing loss function to acceler-
ate nearest neighbour search in Hamming space and a classic cross-entropy loss to
assess classification performance. We demonstrate that such a multi-task learning
framework learns a more compact and accurate embedding space as compared
to classic classification networks and allows medical experts to explore and check
the embedding space without the need of in-depth machine learning knowledge.
Moreover, we illustrate that the confidence measure provided by the variations
of the retrieved neighbourhood is highly correlated with the model performance
and hence can be used to select low confident predictions for expert review. Our
framework can be turned into a very useful tool to support clinical decision mak-
ing of pathologists by comparing archived images and patient records with the
actual case.
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