
Local and Global Consistency
Regularized Mean Teacher

for Semi-supervised Nuclei Classification

Hai Su1, Xiaoshuang Shi1, Jinzheng Cai1, and Lin Yang1,2(B)

1 Department of Biomedical Engineering,
University of Florida, Gainesville, FL 32611, USA

{hsu224,xsshi2015,jimmycai}@ufl.edu
2 Department of Electrical and Computer Engineering,

University of Florida, Gainesville, FL 32611, USA
lin.yang@bme.ufl.edu

Abstract. Nucleus classification is a fundamental task in pathology
diagnosis for cancers, e.g., Ki-67 index estimation. Supervised deep
learning methods have achieved promising classification accuracy. How-
ever, the success of these methods heavily relies on massive manually
annotated data. Manual annotation for nucleus classification are usu-
ally time consuming and laborious. In this paper, we propose a novel
semi-supervised deep learning method that can learn from small portion
of labeled data and large-scale unlabeled data for nucleus classification.
Our method is inspired by the recent state-of-the-art self-ensembling
(SE) methods. These methods learn from unlabeled data by enforcing
consistency of predictions under different perturbations while ignoring
local and global consistency hidden in data structure. In our work, a
label propagation (LP) step is integrated into the SE method, and a
graph is constructed using the LP predictions that encode the local and
global data structure. Finally, a Siamese loss is used to learn the local
and global consistency from the graph. Our implementation is based on
the state-of-the-art SE method Mean Teacher. Extensive experiments
on two nucleus datasets demonstrate that our method outperforms the
state-of-the-art SE methods, and achieves F1 scores close to the super-
vised methods using only 5%–25% labeled data.

Keywords: Nucleus classification · Semi-supervised learning · Deep
learning

1 Introduction

Nucleus type information is essential in many pathology diagnoses [4,9]. In many
settings, the presence and portion of certain types of nucleus are used to assess
the proliferation rate, subtypes or grade of the diseases [4,13]. Traditionally,
nucleus classification is treated as a supervised classification problem [3,4,9]
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and deep neural networks have achieved rather satisfactory performance. How-
ever, the superiority of supervised deep learning usually heavily relies on the
availability of massive manually annotated data. As well known that large- scale
annotation for medical data is expensive and time consuming, e.g., diagnostic
pathology images, while large-scale unlabeled data are relatively easy to obtain.
To alleviate the high demand for manual annotation, semi-supervised deep learn-
ing (SSDL) has been developed to learn from a small portion of labeled data and
large-scale unlabeled data. Recently, self-ensembling (SE) based semi-supervised
learning has attracted broad attention [7,8,11]. The intuition of SE method is to
enforce a prediction consistency for each training sample under different pertur-
bations. Such consistency is not dependent on label information, and is able to
extract extra semantic information from the unlabeled data. One of the success-
ful SE method is called temporal ensembling (TE) [5]. In TE, for each unlabeled
sample, an exponential moving average (EMA) of the prediction within multiple
previous training epochs is computed as the proxy target. A mean square error
(MSE) between the predictions and the proxy targets is used as the consistency
loss. The proxy targets are the ensembled predictions of those from many pre-
vious epochs, thus serve as stronger proxy labels that provide extra semantic
information in addition to the labeled data. However, TE requires to maintain a
matrix of size N ×C, where N denotes the number of training samples, including
labeled and unlabeled data, and C is the number of classes. This requirement
makes TE model heavy when learning on large datasets. To alleviate this prob-
lem, Mean Teacher (MT) [10] utilizes two models (student and teacher models).
Instead of maintaining the EMA of the proxy labels, MT method maintains a
teacher model as the EMA of the student model. In each minibatch evaluation,
the output of the teacher model is used as the proxy target. Since such proxy
target is generated by the EMA model aggregated from many student models,
it provides better proxy targets.

One aspect ignored by the aformentioned SE methods is the intrinsic struc-
ture of data. That is the local and global consistency widely existing in many
datasets [2,12]. Local consistency refers to that samples from the same class are
likely to lie in the same vicinity in the feature space. Global consistency means
that samples from the same global structure are likely to share the same label.
To enforce the local and global consistency, in this paper, we propose a novel loss
function that is computed over a graph constructed via label propagation (LP)
[14]. Specifically, we utilize the LP algorithm to iteratively propagate the label
information from the labeled samples to the unlabeled ones based on the local
structure until a global stable state is reached, then construct a graph based on
the LP predicted labels. Next, Siamese loss is employed to pull the data from
same class closer and push those from different classes further away. Therefore,
the two consistencies are enforced. Experiments on two nucleus classification
datasets illustrate the superior performance of the proposed method over the
recent state-of-the-art SE methods.
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Fig. 1. Each minibatch consists of both labeled and unlabeled samples. The LP pre-
dicted labels and the ground truth labels are used to construct a graph capturing
the local and global structure of the data. A Siamese loss is computed based on the
graph. The student network is updated by a hybrid loss consisting of classification loss,
consistency loss and the Siamese loss.

2 Mean Teacher with Label Propagation

2.1 Preliminaries

Since our method is based on mean teacher (MT) [10], we first briefly introduce
mean teacher in this subsection. Let Xl = {x1, x2, · · · , xn} ⊂ R

m denote the
labeled data and Xu = {xn+1, xn+2, · · · , xN} ⊂ R

m denote the unlabeled data.
The system consists of two networks, i.e., the student network and the teacher
network. The parameters of the teacher network is the EMA of the student
network computed by: θ′

τ = αθ′
τ−1 + (1 − α)θτ , where α denotes the EMA

coefficient, and θ and θ′ represent the parameters of the student model and
the teacher model, respectively. τ represents the global training iteration. The
student network is updated by the following loss:

Lossmt =
1
n

n∑

i

(−yi log fθ(xi)) + w(τ)λEMAEx,η,η′ [‖fθ′(xj , η
′) − fθ(xj , η)‖],

(1)
where λEMA is the coefficient controlling the strength of consistency between
predictions of the same sample under different perturbations represented by η
and η′. w(τ) is a ramp function of the global iterations τ . The first term is
the cross-entropy loss for the labeled data and the second term enforces the
consistency between the predictions of the student network fθ(x, η) and the
teacher network fθ′(x, η′). The consistency term is computed on all the data.

2.2 Local and Global Consistency Regularized Mean Teacher

As mentioned before, the MT method ignores the connection between the sam-
ples thus fails to extract more semantic information from the unlabeled data. In
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the proposed method, for each minibatch, LP is first conducted on the intermedi-
ate level features from the teacher network. This is because the teacher network
is an ensemble model that is supposed to generate better feature embedding.
Then a graph is constructed using the ground truth labels and the LP predicted
labels. Next, a Siamese loss is calculated based on the graph using the features
generated from the student network. Finally, a novel hybrid loss, including the
loss Eq. (1) and the Siamese loss, is used to update the student network. An
overview of our proposed system is depicted in Fig. 1.

Label Propagation: Label propagation [14] is a transductive semi-supervised
learning algorithm. It propagates label information from the labeled data to the
unlabeled data based on the affinity matrix of the data. The basic idea is that
the data close to each other are more likely to share the same label. Therefore,
the LP procedure computes the label of an unlabeled data as the weighted sum
of the labels of its neighbors. Through an iterative procedure, the label can
be propagated from the labeled data to their neighbors, and the neighbors of
neighbors. Finally, the unlabeled data are assigned labels that respect the global
structure of the data. The LP algorithm is proven to converge. More details of
the proof can be found in [14].

Graph Based Clustering Loss: With the LP predicted labels for the unla-
beled data, the pairwise connection information between the data points are
known. With this information a graph can be built by:

Aij =

{
1, if yi = yj ,

0, otherwise,
(2)

where yi denotes the LP predicted labels for unlabeled data (j ≤ n < i ≤ N) and
the ground truth labels for the labeled data (i, j ≤ n). To enforce the local and
global consistencies, we propose to use the contrastive Siamese loss [1] to pull
the samples within the same class closer and push those from different classes
further away:

Ls =

{
‖zi − zj‖2, if Aij = 1,

max(0,m − ‖zi − zj‖2), if Aij = 0,
(3)

where zi represents the feature vector from the intermediate layers of the student
network and m is a hyperparameter. The final proposed loss function is:

Ltotal = Lossmt + w(τ)(λg1

∑

xi,xj∈Xl

Ls1 + λg2

∑

xi∈Xl,xj∈Xu

Ls2), (4)

where λg1 denotes the weight of the Siamese loss computed on the labeled sam-
ples, and λg2 represents the weight of the Siamese loss computed on both unla-
beled and labeled data. Since the LP does not change the labels of the labeled
samples, the Siamese loss Ls1 ensures that there is always some correct informa-
tion for learning. Note that we do not compute Siamese loss between the unla-
beled samples. This is because the LP-predicted labels are very noisy. Including
them in the loss could harm the training.
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Epithelial Inflammatory Fibroblast others

Fig. 2. (a) Some sample nuclei from the two datasets. (b) The F1 scores of each class
in the MoNuseg data obtained using 25% training data.

3 Experiments

To evaluate our method, we conduct experiments on two datasets, including the
MoNuseg dataset [9] and our own Ki-67 nucleus dataset. In the MoNuseg dataset,
there are four types of nucleus, (i.e., Epithelial, Inflammatory, Fibroblast, Mis-
cellaneous). In the Ki-67 dataset, there are also four types of nucleus, including
immunopositive (non-)tumor nucleus and immunonegative (non-)tumor nucleus.
The MoNuseg dataset contains 22462 nuclei and the Ki-67 dataset contains 17516
nuclei. For both datasets, 80% nuclei images are used for training, 20% of the
training data is used for validation, and the rest are used for testing. A few
samples of each type of nucleus are shown in Fig. 2(a).

We compare our method against two state-of-the-art SSDL methods, i.e.,TE
[5] and MT [10], and a baseline fully supervised training method using the labeled
data only. For each comparison, we train the different methods using only x%
(x = {5, 10, 25, 50} for the MoNuseg dataset, and x = {1, 5, 10} for the Ki-67
dataset) of the training data as labeled data and the rest as unlabeled data.
In fully supervised setting, the same network is trained using the labeled data
only. Additionally, since the MoNuseg dataset is a publicly available dataset, we
also show two results reported in [9], i.e., CNN-SSPP and CNN-NEP. These two
methods are fully supervised methods. In all the comparisons, weighted average
F1 score is used as evaluation metric. For the semi-supervised settings, and we
report the average F1 scores and their standard deviations of 5 runs on the
testing data. In each of the 5 runs, a different set of labeled data are randomly
selected.

3.1 Implementation Details

Network Architecture. In this paper, we adopt a network similar to the one
used in [10]. The difference is the kernel size of the last two convolutional layers
are set to 3. The input noise layer, ZCA layer, mean-only batch normalization
are omitted. The advantage of our choice is that every component in our network
can be implemented using standard Pytorch functions and scikit-learn package.
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Table 1. Hyperparameter selection.

Hyperparameters Value Hyperparameters Value

LP number of neighbors 7–10 Margin m in Eq. (3) 1.0

LP α 0.7 λg1 1.0

Initial learning rate 0.001 λg2 0.5

Weight decay 2e–4 Random translation (η, η′) 2

λEMA 40 Random rotation (η, η′) Yes

Minibatch size 100 # of labeled samples per minibatch 31

LP iteration k 30 # of classes C 4

The features used in label propagation and Siamese loss are extracted from
the intermediate layer (Fig. 1). Such design is chosen empirically. LP is conducted
for each minibatch to build a connection graph. The Siamese loss based on the
graph is computed in two terms Eq. (4). Specifically, the summation on Ls1 is
computed on 30 labeled data, and the summation on Ls2 is from this 30 labeled
data and 30 randomly selected unlabeled data. The coefficients for these two
terms are shown in Table 1. The time complexity of LP is kO(CN2), where k
denotes the number of iterations, and C denotes the number of classes, and N
denotes the minibatch size. With such overhead, our model can still be trained
within 6 h on a GTX 1080 Ti GPU.

Hyperparameter Selection. Mostly we follow the parameter settings used in
MT method [10]. The learning rate and the ramp function w(τ) are ramped up
and down during the 150000 global steps. Specifically, they are ramped up in
the first 40000 global steps, then kept constant for the following 85000 global
steps, and finally decreased to 0 in the last 25000 global steps. We use w(τ) =
e−5(1−τ/150000)2 as the ramp-up function and w(τ) = e−12.5(τ/150000)2 as the
ramp-down function. The other parameter setting in our method are shown in
Table 1.

3.2 Results and Analysis

Tables 2 and 3 illustrate that our method outperforms the state of the arts,
especially when using less labeled data. For the MoNuseg dataset (Table 2), our
method achieves around 2% higher F1 scores compared to MT and TE methods
when using 5% and 10% of the training data. Along with the increase of labeled
data used, the performance of all the semi-supervised methods converges. In
comparison with the baseline fully supervised method using labeled data only,
our performance is higher by large margin. In contrast to the results reported
in [9], our method outperforms CNN-SSPP using only 5% labeled data and
achieves the performance close to CNN-NEP using only 25% labeled data. It is
worth note that our method and CNN-SSPP take the nucleus patch as the sole
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Fig. 3. Embeddings of the MoNuseg testing data projected to 2D space using UMAP
[6]. (a) The feature embedding obtained by MT. (b) The embedding obtained by our
method.

input while CNN-NEP takes into account the contextual information around the
nucleus. This means CNN-NEP is actually using more labeled data. Moreover,
the contextual information around the nucleus may not be a general approach
for all nucleus classification problems. CNN-SSPP and CNN-NEP are both fully
supervised methods. They are listed in the column 50% labels in Table 2, because
they are based on two-fold cross validation [9]. Since the MoNuseg dataset is an
imbalanced dataset, we show a comparison of the F1 scores for each class in
Fig. 2(b). Finally, to demonstrate the effect of the graph based clustering loss,
we show the feature embedding of the MoNuseg testing data in Fig. 3.

For the Ki-67 dataset, we observed similar behavior. Our method outperforms
the MT, TE and fully supervised method. Ablation studies are designed to show
the effect of our proposed graph based clustering loss. Since the graph based
clustering loss consists of two parts: (i) Ls1 computed on the labeled data only;
and (ii) Ls2 computed between the unlabeled data and the labeled data. We
train our model with one of the two losses removed and show the performance
in Table 3. It can be seen that the performance drops if either one of them is
removed. This shows the advantage of learning from a graph constructed on both
labeled and unlabeled data.

Table 2. F1 ± std over 5 runs on MoNuseg dataset [9].

Supervised methods 5% labels 10% labels 25% labels 50% labels All labels

Labeled data only 63.21± 1.92 64.97± 1.72 73.04± 0.54 74.5± 0.72 78.15± 0.25

CNN-SSPP [9] - - - 74.8 -

CNN-NEP [9] - - - 78.4 -

Semi-supervised 5% labels 10% labels 25% labels 50% labels All labels

TE [5] 73.2± 0.51 74.01± 0.85 76.46± 0.24 76.48± 0.21 76.57± 0.26

MT [10] 73.07± 0.56 74.35± 0.54 76.42± 0.56 76.59± 0.33 78.1± 0.29

Ours 75.02± 0.55 75.79± 0.23 76.72± 0.17 76.89± 0.25 78.3± 0.23
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Table 3. F1 ± std over 5 runs on Ki-67 dataset.

Methods 1% labels 5% labels 10% labels All labels

Labeled data only - 75.99 ± 3.05 75.87 ± 1.02 79.06 ± 0.37

TE [5] 72.62 ± 4.47 76.02 ± 2.34 78.25 ± 0.48 79.22 ± 0.49

MT [10] 72.69 ± 4.7 76.92 ± 2.02 78.69 ± 0.47 79.41 ± 0.52

Ours 74.9± 3.41 79.32± 0.73 79.79± 0.59 79.91± 0.39

Ours w/λg1 = 0 73.46 ± 3.59 77.72 ± 1.65 77.95 ± 0.59 -

Ours w/λg2 = 0 73.2 ± 3.31 77.84 ± 1.27 78.15 ± 0.46 79.19 ± 0.83

4 Conclusion

In this paper, we presented a novel semi-supervised deep learning method for
nucleus classification. The proposed method is a type of self-ensembling based
deep learning methods with additional regularization from the local and global
consistency criteria. The consistencies enable the framework to learn a better
distance metric such that the resultant model outperforms the state-of-the-art
self-ensembling methods on two nucleus classification datasets. The proposed
approach is general for image classification, thus can be easily adapted for many
other image classification tasks.
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