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Abstract. Tissue deformation during the surgery may significantly
decrease the accuracy of surgical navigation systems. In this paper, we
propose an approach to estimate the deformation of tissue surface from
stereo videos in real-time, which is capable of handling occlusion, smooth
surface and fast deformation. We first use a stereo matching method to
extract depth information from stereo video frames and generate the
tissue template, and then estimate the deformation of the obtained tem-
plate by minimizing ICP, ORB feature matching and as-rigid-as-possible
(ARAP) costs. The main novelties are twofold: (1) Due to non-rigid
deformation, feature matching outliers are difficult to be removed by
traditional RANSAC methods; therefore we propose a novel 1-point
RANSAC and reweighting method to preselect matching inliers, which
handles smooth surfaces and fast deformations. (2) We propose a novel
ARAP cost function based on dense connections between the control
points to achieve better smoothing performance with limited number of
iterations. Algorithms are designed and implemented for GPU parallel
computing. Experiments on ex- and in vivo data showed that this app-
roach works at an update rate of 15 Hz with an accuracy of less than
2.5 mm on a NVIDIA Titan X GPU.
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1 Background

Tissue visualization during surgery is typically limited to the anatomical surface
exposed to the surgeon through an optical imaging modality, such as laparo-
scope, endoscope or microscope. To identify the critical structures lying below
the tissue surface, surgical navigation systems need to register the intraopera-
tive data to preoperative MR/CT imaging before surgical resection. However,
during surgery, tissue deformation caused by heartbeat, respiration and instru-
ments interaction may make the initial registration results less accurate. The
ability to compensate for tissue deformation is essential for improving the accu-
racy of surgical navigation. In this paper, we propose an approach to recover the
deformation of tissue surface from stereo optical videos in real-time.
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In recent years, several groups have investigated methods to recover tissue
deformation from optical videos, and most methods are based on the minimiza-
tion of non-rigid matching and smoothing costs [1]. For example, Collins et
al. proposed a monocular vision-based method that first generated the tissue
template and then estimated the template deformation by matching the tex-
ture and boundaries with a non-rigid iterative closet points (ICP) method [2].
In this method, the non-rigid ICP-based boundary matching algorithm signif-
icantly improves the accuracy. However, during surgery, only a small area of
the target tissue may be exposed and the boundaries are often invisible, which
makes it difficult to match the template. Object deformation recovery in the
computer vision field is also a suitable approach to recover tissue deformation.
For example, Zollhfer et al. proposed to generate the template from an RGB-D
camera and then track the deformation by minimizing non-rigid ICP, color and
smoothing costs [3]. Newcombe et al. have developed a novel deformation recov-
ery method that does not require the initial template and uses sparse control
points to represent the deformation [4]. Guo et al. used forward and backward
L0 regularization to refine the deformation recovery results [5]. To date, most
deformation recovery methods [6,7] are based on the non-rigid ICP alignment to
obtain matching information between the template and the current input, such as
monocular/stereo videos or 3D point clouds from RGB-D sensors. However, non-
rigid ICP suffers from a drawback that it cannot track fast tissue deformation
and camera motion, and obtain accurate alignment in the tangential directions
on smooth tissue surfaces. During surgery, the endo/laparoscope may move fast
or even temporally out of the patient for cleaning, which makes non-rigid ICP
difficult to track the tissue. In addition, smoke and blood during the surgery may
cause significant occlusion and interfere with the tracking process. Hence, the
ability to match the template and the input video when non-rigid deformation
exists is essential for intraoperative use of deformation recovery methods.

A natural idea to obtain additional information is to match the feature
points between the template and the input video. Among many types of fea-
ture descriptors, ORB [8] has been widely used in real-time applications due to
its efficiency. To handle feature matching outliers, RANSAC-based methods have
proven effective in rigid scenarios but are difficult to handle non-rigid deforma-
tion [9]. Another common method to address outliers is to apply robust kernels
to the cost function, which cannot handle fast motion. In this paper, we propose
a novel method that combines 1-point-RANSAC and reweighting methods to
handle matching outliers in non-rigid scenarios. In addition, we propose a novel
as-rigid-as-possible (ARAP) [10] method based on dense connections to achieve
better smoothing performance with limited number of iterations.

2 Method

As shown in Fig. 1, we proposed a GPU-based stereo matching method, which
includes several efficient post-processing steps to extract 3D information from
stereo videos in real-time. Readers may refer to Ref. [11] for more details on this
stereo matching method.
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Fig. 1. The process of our stereo matching method with a pair of stereo microscopy
images captured during neurosurgery.

In our system, the initial template of the tissue surface is generated by the
stereo matching method, then we track the deformation of the template by repre-
senting the non-rigid deformation with sparse control points on the template, and
estimating the parameters of the control points to make the deformed template
match the output of the GPU-based stereo matching method. The algorithms
are parallelized and run on the GPU. Similar to DynamicFusion [4], we employ
dual-quaternion to represent deformation and each control point i is assigned a
dual-quaternion W t

i to represent its warp function at time t, and the template
points are deformed according to the interpolation of neighboring control points.
Then, the deformation recovery problem is to estimate W t

i , i = 1, . . . , N , and we
use the Levenberg-Marquardt algorithm to minimize the following cost function

fTotal(W t
i ) = fICP + wORBfORB + wARAPfARAP, (1)

where fICP and fORB are based on non-rigid ICP and ORB matches between the
template and the current stereo matching results respectively. The as-rigid-as-
possible (ARAP) cost fARAP smoothes the estimated warp functions W t

i , which
is especially important for the estimation of occluded areas. wORB and wARAP

are user defined weights. In our experiments, we use wORB = 10.0 and wARAP

is dynamically adjusted due to the varying number of valid points in fICP and
ORB matching inliers in fORB. We sum up the related weights of ICP and ORB
terms for each W t

i , and scale up or down wARAP accordingly.
A GPU-based parallel Levenberg-Marquardt (LM) algorithm was developed

to minimize the cost (1). We update each W t
i independently in the LM iterations.

For the computation of the Jacobian matrix J related to each W t
i , multiple par-

allel GPU threads are launched to compute rows of J, then we perform Cholesky
decomposition to update W t

i , i = 1, . . . , N .
The non-rigid ICP term fICP is determined by the distances between the

deformed template and the stereo matching results. The Tukey’s penalty function
is employed to handle outliers. We have developed a rasterization process that
re-projects the template points to the imaging plane to build correspondences
between template points and the stereo matching results, which is parallelized to
each template point and runs on the GPU. This rasterization step is faster than
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kd-tree-based closest points search in the 3D space. Only the distance component
in the normal directions are considered, which avoids the problem that non-rigid
ICP is inaccurate in the tangential directions when aligning smooth surfaces.

2.1 ORB Feature Matching and Inliers Pre-selection

As shown in Fig. 2(a)–(b), standard ORB feature detection concentrates on rich
texture areas, which may lead to the lack of matching information at low texture
areas. Hence, we first develop a method to detect uniform ORB features to
improve the accuracy of deformation recovery, which uses GPU to detect FAST
corners and suppresses those if a neighboring pixel has larger corner response
in parallel. Then, the ORB features of the initial template are matched to the
live video frames. Two corresponding 3D point clouds are obtained, which may
include incorrect matches.

Since at least three matches are needed to determine the rigid relative pose
between two 3D point clouds, traditional RANSAC methods only work when the
three matches are all inliers and have similar deformation [9]. Another common
method to handle outliers is to apply robust kernels to the cost function, which
is effective but cannot handle fast camera motion or tissue deformation. Under a
reasonable assumption that local deformations at small areas of the tissue surface
are approximate to rigid transforms, we propose a novel 1-point-RANSAC and
reweighting method to pre-select potential matching inliers following the idea
of Ref. [12], as shown in Fig. 2(c). Denoting the two sets of corresponding 3D
ORB features as o1k and o2k, k = 1, . . . , N , a random match k0 is selected as the
reference, and rectify the coordinates with respect to k0 by

Sl
k0 =

[
ol1 − olk0, · · · , olN − olk0

]
3×N

, l = 1, 2. (2)

For a reference k0, we denote the local rigid transform as o2k0 = Ro1k0 + T,
where R ∈ SO(3) is the rotation matrix and T is the translation vector. Rigid
transform for a neighboring match inlier k should satisfy

S2
k0(k) ≈ RS1

k0(k), (3)

where Sk0(k) is the kth column of Sk0, and R can be obtained from matches
that satisfy (3). We propose a reweighting method to eliminate the impacts of
other matches, that is

dk =
∥
∥S2

k0(k) − RS1
k0(k)

∥
∥ , wk = min (H/dk, 1) , (4)

where dk is the distance related to the kth match. wk is the weight of the kth
ORB match and if the kth match is either an outlier, or an inlier that does not
satisfy (3), wk is small. H is a predefined threshold. With a selected reference k0,
we alternatively update R from weighted S1

k0 and S2
k0, and update wk according

to (4). In experiments we perform 10 iterations with each k0. A small sum of wk

suggests that few matches satisfy (3) and k0 may be an outlier, and we omit the
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Fig. 2. (a)–(b) ORB feature detection results on laparoscopy images captured during
a lung surgery using (a) OpenCV (b) Our method. (c) Matching inliers pre-selection
results with a deforming phantom. The blue lines are selected inliers and black lines
are identified as outliers. (d) Dense connections between control points with a silicon
heart phantom. (Color figure online)

results with reference k0. In our experiments, we randomly select 30 different
matches as the reference k0.

We first apply this 1-point-RANSAC + reweighting method to assign weights
to ORB matches, the results of which will be used in the subsequent LM algo-
rithm to minimize term fORB in (1). It should be clarified that we are not
implying that this 1-point-RANSAC + reweighting method is able to find all
inliers. To take into account all inliers, in the LM algorithm we assign the pre-
selected matches the same weight as wk, and assign other ORB matches weight
according to wk = −1/(5H)dk + 1, wk ∈ [0, 1].

2.2 As-Rigid-As-Possible Smoothing

Traditional ARAP methods are based on sparse connections, such as triangular
meshes. This type of connection is too sparse to propagate the smoothing impact
fast enough, and in practice we found that it cannot perform well with the
limited number of iterations in the LM algorithm. Hence, we propose to use
dense connections as shown in Fig. 2(d). The weights of connections in traditional
ARAP methods are sensitive and need to be specifically designed based on the
angles of the triangular mesh [10], hence the ARAP cost function has to be
redesigned to handle the dense connections as follows:

fARAP =
∑

i1,i2

wi1,i2 (flength,i1i2 + wanglefangle,i1i2 + wrotationfrotation,i1i2) (5)

where i1 and i2 are two control points. wi1,i2 is the weight of connection between
i1 and i2, and a smaller distance between points i1 and i2 at time 0 suggests
larger wi1,i2. We use wangle = 20.0 and wrotation = 100.0.

For control points i1 and i2,

flength,i1i2 =
(‖pti2 − pti1‖ − ∥

∥p0i2 − p0i1
∥
∥)2

fangle,i1i2 = acos(W t
i1(p

0
i2) − pti1, p

t
i2 − pti1)

frotation,i1i2 = ‖W t
i1(1, 2, 3, 4) − W t

i2(1, 2, 3, 4)‖2
(6)
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(a) (b)

(d) (e)

(c)

Fig. 3. Qualitative experiments. First row: input video frames. Second row: the
deformed template and the control points (green dots). (a) Phantom. (b) Ex vivo
porcine liver. (c) Hamlyn in vivo data with deformation caused by instrument interac-
tion (d) Hamlyn in vivo data with respiration and heartbeat. (e) In vivo kidney data
with deformation caused by respiration. (Color figure online)

where pti is the coordinate of point i at time t. fangle,i1i2 equals to the angle
between the normalized vectors W t

i1(p
0
i2) − pti1 and pti2 − pti1, where W t

i1(p
0
i2)

suggest to apply W t
i1 to p0i2. frotation,i1i2 is introduced because W t

i has 6-DoFs,
which is determined by the differences between the first four components of
dual-quaternion W t

i1 and W t
i2.

3 Experiments

Algorithms were implemented with CUDA C++ running on a desktop with Intel
Xeon 3.0 GHz CPU and NVIDIA Titan X GPU. We first conducted qualitative
experiments on ex- and in vivo data. As shown in Fig. 3(a), we deformed a
smooth phantom with lung surface texture and captured 960×540 stereo videos
with a KARL STORZ stereo laparoscope. We removed intermediate video frames
between the two frames in Fig. 3(a) to simulate fast deformation, and our method



Real-Time Surface Deformation Recovery from Stereo Videos 345

RMSE = 0.68      0.74                            0.71            0.63 (mm)  
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Fig. 4. Quantitative experiments. (a) Hamlyn heart Phantom data. First row: colored
models are the deformed templates, white points are the ground truth. Second row:
distance maps. Average runtime: stereo matching 3.8 ms, ORB feature detection and
matching 10.6 ms, inliers pre-selection 4.1 ms, LM 14.2 ms. (b)–(d) Experiment with the
EM tracking system. (b) Hardware. (c) 3D trajectories. (d) Errors. Average runtime:
stereo matching 17.6 ms, ORB feature detection and matching 11.6 ms, inliers pre-
selection 3.1 ms, LM 30.7 ms. (Color figure online)

is capable of tracking the large deformation. The second experiment was con-
ducted with ex vivo porcine liver as shown in Fig. 3(b). The deformation was
caused by instrument interaction, and our method is able to handle instrument
occlusion. For the in vivo experiments shown in Fig. 3(c)–(e), we used both the
Hamlyn data [13] and our data, in which the videos have camera motion and
tissue deformation. We generated the tissue template before instrument inter-
action and then track the deformation of the template. The algorithm detected
key inlier ORB features on the reconstructed surface and tracked these template
features robustly in spite of respiratory and pulsatile motions, and instrument
occlusions. These results highlight the robustness of tracking in spite of physio-
logical motions and varying illumination.

We conducted two quantitative experiments. The first experiment was con-
ducted on Hamlyn data as shown in Fig. 4(a). The Hamlyn data consists of stereo
video images of a silicon phantom simulating heartbeat motion and correspond-
ing ground truth was obtained using CT scan. The template was generated from
the first video frame. Results show an RMSE of less than 1 mm and the average
runtime of 32.7 ms per frame. In the second experiment, we used the EM tracking
system (medSAFE Ascension Technologies Inc.) as the ground truth, as shown
in Fig. 4(b)–(d). The porcine liver was placed in an abdominal phantom (The
Chamberlain Group) and a medSAFE EM sensor was attached to the liver sur-
face. We deformed the liver manually and recorded the EM sensor measurements
and compared it with that of the our method. Deformation estimation results
on 420 video frames (Fig. 4(c)–(d)) show a mean error of 1.06 mm and standard
deviation of 0.56 mm. As shown in Fig. 4(c), the maximum distance between the
trajectory points is 15.7 mm. The average runtime was 63.0 ms per frame.
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4 Conclusion

We propose a novel deformation recovery method that integrates the ORB fea-
ture, which is able to handle fast motion, smooth surfaces and occlusion. The
limitation of this work is that it strongly relies on ORB feature matching, which
may fail when the deformation is extremely large and different light reflection
may make it difficult to obtain enough number of ORB matching inliers.
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