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Abstract. Emotion detection in conversations has become a very important and
challenging task. Most of previous studies do not distinguish different speakers
in a dialogue and fail to characterize inter-speaker dependencies. In this paper,
we propose Speaker Influence-aware Neural Network model (SINN) to predict
the emotion of the last utterance in a conversation, which explicitly models the
self and inter-speaker influences of historical utterances with GRUs and hier-
archical attention matching network. Moreover, the empathy phenomenon is
also considered by an emotion state tracking component in SINN. Finally, the
target utterance representation is enhanced by speaker influence aware context
modeling, where the attention mechanism is used to extract the most relevant
features for emotion classification. Experiment results on DailyDialog dataset
confirm that our model consistently outperforms the state-of-the-art methods.
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1 Introduction

Since the explosive growth of social media, massive conversations are produced
through platforms (e.g., WeChat, Twitter and Weibo) on the Internet every day.
Conversational emotion recognition plays a critical role in many applications such as
cyber-crime investigation, human-robot interaction, customer service and so on. Thus,
how to effectively detect emotions in conversations has attracted increasing attention
from both academic and commercial communities.

A conversation consists of a sequence of utterances (2 at least) and each utterance is
produced by a participant (the speaker). In this paper, we focus on the dyadic con-
versation between two speakers. It is generally known that the emotional dynamics in
conversations are driven by two factors: self and inter-speaker emotional influence [1].
Self-influence reflects the speakers’ own willingness to keep or change their emotions
during dialogue. That means the emotion of the current utterance is closely related to
the emotions of the speaker’s past utterances. On the other hand, inter-speaker influ-
ence relates to emotional dynamics induced by the counterparts in the dialogue.
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Despite the complex interactive emotional states of speakers in dialogue, most of
the previous literature does not distinguish different speakers in a conversation and treat
the context utterances only as a textual sequence. Recently, Hazarika et al. proposed
CMN model to feed speakers’ historical utterances into memory network [2], where
each speaker is associated with a separate memory cell. Following this idea, Hazarika
et al. further utilized GRU to model the influence between speakers [3]. Although these
methods have achieved promising results, the inter-speaker influences are modeled by
linear GRU utterance sequence or memory network, which could not fully capture the
dependencies between the speakers during the dialogue.

To tackle these challenges, we propose a Speaker Influence-aware Neural Network
model (dubbed as SINN) for emotion detection in conversations, which models the self
and inter-speaker emotional influences explicitly and comprehensively. Specifically,
SINN first adopts GRUs to deal with historical utterances of the target utterance based
on each speaker. Furthermore, to incorporate inter-speaker influences, these histories
are fed into two separate sections, which will extract speakers’ interactive emotional
features and track empathic states simultaneously. After that, the interactions between
self as well as inter-speaker influence features with the target utterance are calculated
by the attention mechanism to synthesize important contextual features. Eventually, the
target utterance and the weighted contextual features are concatenated as a final rep-
resentation which is used to predict the emotion category on the target.

To sum up, the main contributions of this paper are as follows:

• We propose a novel framework called Speaker Influence-aware Neural Network
(SINN) to detect emotions in conversations. SINN leverages a hierarchical
matching network to explicitly model self and inter-speaker influence and utilizes
integrated components to comprehensively model the inter-speaker influence.

• We propose an attention mechanism to dynamically weight the speaker influence
features, and learned an enhanced contextual representation.

• Extensive experimental results on benchmark dataset confirm that our SINN model
outperforms state-of-the-art comparative methods for the emotion detection task.

2 Related Work

Most of the contextual sentiment analysis studies utilize some kinds of contextual
information in the conversation. Huang et al. proposed a hierarchical LSTM model
with two levels of LSTM networks to model the retweeting/replying process and
capture the long-range dependencies between a tweet and its contextual tweets [4]. Ren
et al. utilized two sub-modules to study features from conversation-based context,
author-based context and topic-based context about a target tweet, respectively [5].
Andrea et al. employed a model named SVMhmm using Markovian formulation of the
SVM to predict the sentiment polarity of entire sequences of tweets [6].

A large section of researches tends to regard a tweet/microblog as a conversation
with sequential characteristics. However, conversations in the real world contain quite
different contextual information. Zhang et al. built a large-scale human-computer
conversation data and adopted a single-level architecture by using Convolutional
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Neural Networks (CNNs) for sentiment classification [7]. Gupta et al. proposed a
model consisting of two LSTM layers using two different word embedding matrices,
Glove and SSWE, for detecting emotions in textual conversations [8]. Luo et al.
proposed a self-attentive bidirectional long short-term memory network, which used
self-attention to extract the dependence of all the utterances in the conversation [9].

However, the main shortage of these methods is that they do not treat the speakers
in a conversation individually. Hazarika et al. utilized a Conversational Memory
Network (CMN) to amend this shortcoming [2]. CMN considers utterance histories of
each speaker to model emotional memories and uses memory network to capture inter-
speaker dependencies. Then, Hazarika et al. proposed another improved model named
as Interactive COnversational memory Network (ICON) [3]. Different from CMN,
ICON adopts an interactive scheme that incorporates self and inter-speaker influences
simultaneously and adopts a multiple hop scheme on them. Our model is inspired by
ICON partially while quite different with ICON, where we adopt a more comprehen-
sive approach to model the inter-speaker influences from two aspects, namely inter-
active dependency as well as empathy.

3 Proposed Model

Suppose there are n utterances in a dyadic two-person conversation, where the com-
munication between two speakers PA and PB goes on alternately. Here, a conversation
C¼ðu1A; u2B; u3A; u4B; . . .; unkÞ is ordered temporally, where unk is the nth utterance spoken
by person Pk, k 2 {A, B}. Our goal is to predict the emotion (Anger, Happiness,
Sadness, Surprise and Neutral) of the last utterance in the conversation. The schematic
overview of our proposed model SINN is shown in Fig. 1.

U1 U2 U3 U4 U5 U6

GRU GRU GRU

GRUGRUGRU

GRUS

Un

...

HA

HB

s

αs

Pe
rs

on
 B

Pe
rs

on
 A

ŷ
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Fig. 1. The architecture of Speaker Influence-aware Neural Network (SINN)
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As illustrated in Fig. 1, our SINN network can be divided into three main parts:
(1) self-influence modeling, (2) inter-speaker influence modeling, and (3) the interac-
tion with the utterance to be predicted. The second part can be further broken down into
two components: (a) interactive dependency matching and (b) empathy tracking.

3.1 Self-Influence Modeling

In this part, the first thing to do is to encode an utterance with distributed represen-
tation. For the nth utterance in the conversation C, pre-trained d-dimensional ELMo
embeddings are adopted to represent each word of it. An utterance with m words is then
represented as Un¼ ðx1;x2; . . .;xmÞ, where xi is d-dimensional word embedding for
the ith word in the utterance, and we can get a m� d embedding matrix W. Then we
use CNNs and GRUs to extract features of matrix W.

CNNs are effective in extracting representations of a sentence based on its consti-
tuting words. In this paper, we use a simple CNNwith a single convolutional layer to deal
with W. The outputs are then fed into a max-pooling layer followed by a concatenation
operation. In addition, we also employ GRU to extract sequential characteristics of an
utterance. Each GRU cell computes a hidden state ht ¼ GRUðht�1; xtÞ, where xt is the
current input and ht�1 is the previous GRU state.Wewill explain the detail of GRU in the
subsequent modules. The input of GRU here is individual words, and the hidden state of
the last word is taken as the features of the entire utterance via GRU.

Eventually, the representation of an utterance Un is a concatenation of the features
from CNN and GRU, which enriches the representation of the utterance.

After the single utterance representation, we need to capture the self-influence on
all historical utterances separately. The dialogue in C goes on alternately between two
interlocutors. Here, for a C ¼ ðu1A; u2B; u3A; u4B; . . .; unkÞ, we split it into two series
according to each speaker, getting CA ¼ ðu1A; u3A; . . .; uiAÞ and CB ¼ ðu2B; u4B; . . .; u j

BÞ
defined as new sequence Ck ¼ ðuk;1; uk;2; . . .; uk;TÞ, where k 2 fA;Bg, i\n, j\n,
T 2 fi; jg. For each Ck 2 fCA; CBg, we feed it into the GRUk to grasp the temporal
history respectively. Specifically, at each timestep t, we get hidden state ht as follows:

rt = sigmod(Wrht�1 þVrxt þ brÞ ð1Þ

zt = sigmod(Wzht�1 þVzxt þ bzÞ ð2Þ

ct = tanh(Wcðht�1 � rtÞþVcxt þ bcÞ ð3Þ

ht ¼ zt � ht�1 þð1 � ztÞ � ct ð4Þ

whereW, V and b are parameter matrices and vector, and � is dot product operation. xt
is the current input, which is the current utterance’s representation Ut ðt 2 ½1; T�Þ
obtained from the approach mentioned above.

These hidden states of all timesteps can be concatenated together to form self-
influence matrix Hk ¼ hk;1; hk;2; . . .; hk;T

� �
, Hk 2 HA;HBf g. HA or HB represents the

historical information of a speaker with his own previous utterances. After that, we
encode two matrices HA and HB to further explore correlations between utterances.
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3.2 Inter-Speaker Influence Modeling

It is a remarkable fact that each speaker or even an utterance in C will affect the
progress of a conversation. In this part, we will introduce a novel approach to distill
these influential factors through two components, interactive dependency matching
component and empathy tracking component synchronously.

Interactive Dependency Matching: Since utterances constantly interfere with each
other, we introduce an interactive mechanism to condense the hidden interplays
between them. Figure 2 depicts the detail architecture of it. In order to compute features
that are interdependent, we first calculate the confusion matrix H ¼ HA �HT

B. Given
the confusion matrix H, we apply it with attention mechanism [10] from two directions,
which could be seen as a B-to-A attention and an A-to-B attention. Therefore, attention
mechanism can help us to mine the significant interactive information between HA and
HB. Particularly, we need to calculate the attention scores of both sides involved, aB-to-A
(the effect of person PB on PA) as well as aB-to-A (the effect of person PA on PB) which is
inspired by [11]. Explicitly, the computations are as follows:

uA = tanh(Ww1H
T þ bw1Þ ð5Þ

aB-to-A = softmax(uTAuw1Þ ð6Þ

H
0
A¼ HAaB-to-A ð7Þ

where Ww1 ; bw1 ; uw1 are weight matrices and vector, and aB-to-A 2 R
lA (lA is the length

of preceding utterances of PA) is the attention weight vector implying the influence of
person PB’s utterances on PA. More precisely, each element in aB-to-A is the score that
represents the importance of each utterance among PA’s previous utterances. More than
that, due to the joining of HB, which represents the history of PB, aB-to-A can also
indicates the hidden trails of how PB acts on PA interactively. After this attention, we
get a weighted matrix H

0
A of PA’s history based on the attention scores aB-to-A.

GRUH

HA

HB

αB-to-A

αA-to-B

SH sH

Fig. 2. Schematic overview of Interactive Dependency Matching
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We can get H
0
B by using the following formulas with different parameters:

uB = tanh(Ww2H þ bw2Þ ð8Þ

aA-to-B = softmax(uTBuw2Þ ð9Þ

H
0
B ¼ HBaA-to-B ð10Þ

Then, we use Eq. 11 to integrate H
0
A and H

0
B into a complete interactive distribution

of all previous utterances. Intuitively, we recover the original sequences of C ignoring
speakers. SH temporally denotes the interdependent abstract of each utterance and
evaluates its importance at the same time. However, for extracting features more
effectively, we adopt GRUH to refine SH and the output is viewed as a portion of our
inter-speaker influence, which is expressed by sH .

SH¼ ½H0
A;1;H

0
B;1;H

0
A;2;H

0
B;2; . . .. . .;H

0
k;n�1� ð11Þ

Empathy Tracking: In this component, we model the emotional tracking of those
historical utterances. The main purpose of this module is to ensure that we can maintain
the empathic trend of C, which will play a great role in inferring the final emotion.
Since the emotion is extremely straightforward, we don’t need to achieve it with such
complicated process as component introduced above. For the sake of simplicity, HA

and HB are first aggregated by Eq. 12 along the temporal dimension, which incorpo-
rates with respective emotional labels at the same time.

SL¼ ½HA;1LA;1;HB;1LB;1;HA;2LA;2;HB;2LB;2; . . .. . .;Hk;n�1Lk;n�1� ð12Þ

Similarly, we adopt another GRUL to refine SL to sL denoting empathic features as
another portion of our inter-speaker influence.

From the above two components, we can get a comprehensive historical features of
Un. Eventually, we combine both the sH and sL through a GRUS to merge them forming
the inter-speaker influence features for further progress.

s ¼ GRUSðsH � sLÞ ð13Þ

3.3 The Interaction with Un

After accumulating the speaker influences of entire history, this step calculates the
attentional weight of s with respect to target utterance Un. In Eqs. 5, 6, 8, 9, attention
scores are got by considering the inner relevance of one input only. While quite
different with aforementioned attentions, here we adopt an interactive mechanism to

292 J. Wei et al.



yield attention vector. In order to capture the attentive dependence of s relevant to Un,
we perform a mutual calculation between them, which can be expressed as follows:

as = softmax (sTUnÞ ð14Þ
e ¼ ðas � sÞ � Un ð15Þ

From Eq. 14, we get the attention scores as based on the Un, which assigns higher
attention to the information relevant to Un. We update the s according to as and
concatenate it with Un to be our final emotional representation e. The e contains the
information about the Un along with its context from entire previous utterances. To
generate the final prediction of Un, e is fed into a fully-connected layer followed by a
softmax layer to predict the target emotion.

The model is trained by minimizing the cross-entropy along with a L2 regular-
ization term. We also adopt dropout and early stopping to ease overfitting.

4 Experiments

4.1 Dataset

We conduct experiments on the DailyDialog dataset [12], which is a high-quality
multi-turn dialog dataset reflecting our daily communication way. As far as we know,
DailyDialog dataset is rarely used in the field of conversation sentiment analysis. On
the original dataset, each utterance in a dialogue is annotated with one of seven emotion
labels, which are Anger, Disgust, Fear, Happiness, Sadness, Surprise, and Neutral.
Moreover, we find that Disgust and Fear emotions account for only a small proportion,
with merely 353 (0.34%) and 174 (0.17%) utterances. In order to relieve the severe
imbalance of data, we remove the dialogue that contains Disgust or Fear. Moreover, we
split a dialogue with n utterances into n-1 sub dialogues that each sub dialogue includes
at least two utterances, namely one historical utterance. After that, we get a modified
dataset with 5 emotion labels, the distribution is shown in Table 1.

From Table 1 we can see that Neutral and Happiness appear more frequently,
which is truly in accordance with our daily life. Other details can be counted that the
speaker turns are roughly 8, and the average words per utterance is about 15.

Table 1. The statistics of the modified DailyDialog dataset

Emotion Train Dev Test Proportion

Neutral 61028 6140 5248 72416 (82.7%)
Anger 645 58 92 795 (0.9%)
Happiness 10113 642 914 11669 (13.3%)
Sadness 861 65 93 1019 (1.2%)
Surprise 1458 96 100 1654 (1.9%)
Total 74105 7001 6447 87553 (100%)
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4.2 Experimental Setup

To initialize the word embedding matrix, we use the pre-trained 1024-dimension
ELMo embedding of the output of second LSTM layer in ELMo model. All weight
parameters are initialized using the default Tensorflow initializer and we use Adam
optimization algorithm to train them with learning rate of 0.001. The number of
convolutional filters is set 128 and the filter sizes are set as 2, 3 and 4. The number of
GRU cells is 128 for all GRU modules except GRUS, which contains 256 GRU cells.
The weight of L2 regularization term k is set 0.001. Dropout rate of 0.5 is set to obtain
better performance. Batch size is 128 finally.

We evaluate our experiments in terms of accuracy, and F1-score of the 5 emotion
labels individually. Macro-averaged accuracy (Acc for short) and F1-score (F1 for
short) are also reported on the whole data. Because the dataset has unbalanced classes
as shown in Table 1, weighted averaged accuracy and F1-score are displayed for better
contrast, as did in CMN [2] as well as ICON [3].

4.3 Baselines

In our experiments, we compare our proposed SINN network with the following
baseline methods with the same word embeddings for fair comparison:

• Hierarchical GRU-GRU (HGG for short): This baseline contains two-level GRU
networks. The first level is a word-level GRU, which can generate a representation
of a single utterance. And the second level is an utterance-level GRU, which can
model all the utterances in conversation temporally.

• Hierarchical CNN-GRU (HCG for short): Similar with HGG, HCG is also a two-
level network, while we replace the first level GRU with CNN to model the word-
level representation of an utterance.

• CMN [2]: This model uses GRUs to extract both speakers’ utterances as historical
memories. Then the current utterance is sent to two memory networks as a query
with historical memories and employs attention mechanism on them. This step is
performed R hops on these memories. In the original experiment, CMN gets its best
performance when the number of hops is 3. Thus for a better comparison, we also
set hops as 3 to apply CMN model to our dataset.

• ICON [3]: ICON is built based on CMN by the same authors. It also utilizes
separate memory networks for both speakers’ historical utterances. The difference
with the CMN is that ICON incorporates self and inter-speaker influences in a
dialogue with fewer trainable parameters. The hops are also set 3 on the memories.

4.4 Results and Discussion

The experimental results are shown in Table 2. As expected, our proposed model
SINN, with novel approach to grasp speaker influence features, outperforms other
baseline models obviously.

From Table 2, we can find that as a multi-level network, HGG performs relatively
poorly compared with HCG. The reason may be due to the fact that CNNs is more
efficient in extracting the features of a sentence than GRUs. That supports the way that
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we adopt CNN to extract the features of an utterance in our model. However, we still
can not ignore the sequential characteristics of an utterance, so we use GRU to deal
with it too. Both HGG and HCG perform worse than other baselines, the main reason
can be that a simple two-layer architecture fails to excavate the deep dependencies
between speakers which is extraordinary important in conversations.

ICON is the state-of-the-art model in [3], while on DailyDialog dataset CMN gets
much advantage over ICON but is still not as good as our model. Both the ICON and
CMN consider the interactions between speakers in conversation, and ICON incor-
porates self and inter-speaker influences in a conversation with fewer trainable
parameters which may be the reason why ICON is inferior to CMN. That is to say,
ICON is not guaranteed to work well in all situations.

Our final SINN model outperforms all the baseline models significantly by merging
the self-influence with the inter-speak influence jointly to improve the representations
of historical utterances and interacting with the target utterance by attention mecha-
nism. We can see that the improvement is more than 20% on the macro averaged
accuracy and F1-score, which confirms our initial assumption that utilizing the self and
inter-speaker emotional influences is helpful for emotion prediction.

For each category in Table 2, we notice that SINN outperforms all the compared
models except for Anger emotion on Acc and F1, and Sadness emotion on Acc. This
situation may be caused by the fact that the number of training data of these two
categories is not enough due to data imbalance, so that predicting emotion of Anger or
Sadness is harder than the other emotions. However, in terms of weighted averaged
accuracy and F1-score, our SINN acquires great improvement (more than 20%)
compared with all other baselines, which can still support our view in the weighted
condition. As CMN and ICON did in their experiments, we also use weighted averaged
accuracy and F1-score to demonstrate the performance of our model.

4.5 Ablation Experiments

In this section, we implement several model variants for ablation experiments to verify
how our model operates in various parts. The results are also shown in Table 2.

Table 2. Comparison with the baseline models. Acc means accuracy, F1 means F1-score.

Model Neutral Anger Happiness Sadness Surprise Macro Avg Weighted
Avg

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

HGG 0.887 0.900 0.383 0.259 0.570 0.535 0.198 0.184 0.269 0.279 0.461 0.431 0.816 0.819

HCG 0.882 0.903 0.343 0.289 0.584 0.521 0.203 0.173 0.467 0.350 0.496 0.447 0.816 0.821

CMN 0.883 0.908 0.518 0.392 0.628 0.525 0.349 0.282 0.398 0.423 0.555 0.506 0.826 0.830

ICON 0.879 0.902 0.533 0.350 0.578 0.509 0.276 0.249 0.420 0.394 0.537 0.481 0.816 0.821

SINN-IDM 0.882 0.913 0.649 0.372 0.662 0.540 0.356 0.313 0.506 0.453 0.611 0.518 0.834 0.836

SINN-ET 0.899 0.915 0.295 0.315 0.728 0.562 0.289 0.327 0.481 0.425 0.536 0.509 0.842 0.840

SINN 0.899 0.919 0.490 0.350 0.691 0.611 0.327 0.345 0.470 0.426 0.575 0.530 0.849 0.851
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• SINN-IDM: Due to the fact that baselines above don’t consider the previous emotion
labels of the target utterance, here we eliminate the empathy tracking component of
our model for a better comparison.

• SINN-ET: It is SINN without interactive dependency matching component.

As shown in Table 2, we can observe that both SINN-IDM and SINN-ET outperform
baseline models on average, indicating that either SINN-IDM or SINN-ET can provide
important inter-speaker clues to enhance the representations of historical utterances.
And SINN-IDM outperforms SINN-ET on several categories, which are Anger, Sadness
and Surprise with less samples, and some even better than final SINN. This situation is
caused by the data imbalance since any negligible difference may arouse great margin
on these categories. However, both SINN-IDM and SINN-ET’s performance are still
lower than SINN in terms of weighted averaged accuracy and F1-score, which means
that the integrated entirety owns more ability than separate parts and each part plays an
indispensable role on the whole SINN model.

5 Conclusion

In this paper, we propose a novel SINN modeling the self and inter-speaker influences
to identify the emotions in the conversations. Our proposed SINN can extract the deep
inter-speaker influences from two effective components and merge them with the target
utterance in an intricate way. Moreover, we adopt multiple attention mechanism to help
our model to pick up important information for predicting the final emotion. We
demonstrated the effectiveness of our model on the high-quality conversational data
DailyDialog and the results show that our model is superior to the state-of-the-art
methods largely. This work can also be extended to multi-participant conversation
which is left to our future work.
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