
How Question Generation Can Help
Question Answering over Knowledge Base

Sen Hu, Lei Zou(B), and Zhanxing Zhu

Peking University, Haidian Qu, China
{husen,zoulei,zhanxing.zhu}@pku.edu.cn

Abstract. We study how to improve the performance of Question
Answering over Knowledge Base (KBQA) by utilizing the factoid Ques-
tion Generation (QG) in this paper. The task of question generation
(QG) is to generate a corresponding natural language question given the
input answer, while question answering (QA) is a reverse task to find
a proper answer given the question. For the KBQA task, the answer
could be regarded as a fact containing a predicate and two entities from
the knowledge base. Training an effective KBQA system needs a lot of
labeled data which are hard to acquire. And a trained KBQA system still
performs poor when answering the questions corresponding with unseen
predicates in the training process. To solve these challenges, we propose
a unified framework to combine the QG and QA with the help of knowl-
edge base and text corpus. The models of QA and QG are first trained
jointly on the gold dataset, then the QA model is fine tuned by utilizing
a supplemental dataset constructed by the QG model with the help of
text evidence. We conduct experiments on two datasets SimpleQuestions
and WebQSP with the Freebase knowledge base. Empirical results show
that our framework improves the performance of KBQA and performs
comparably with or even better than the state-of-the-arts.

Keywords: Question answering · Question generation · Knowledge
graph

1 Introduction

Question Answering over Knowledge Base (KBQA), which allows users to ask
questions in natural languages over a knowledge base, is a fundamental task of
artificial intelligence and natural language processing. Generally, given a natural
language question q, we can translate it into a triple t = 〈subj, rel, obj〉, where obj
is the final answer while subj and rel are the topic entity and relation detected
from the question q. Once we find the entity and relation phrases in q and link
them into entities and predicates in KB, the answers of q could be found.

One of main challenges of KBQA is it requires large-scale training data to
achieve satisfying performance. Especially in the open domain scenarios, various
questions asked by users may be unseen in the training process of QA model. This
c© Springer Nature Switzerland AG 2019
J. Tang et al. (Eds.): NLPCC 2019, LNAI 11838, pp. 80–92, 2019.
https://doi.org/10.1007/978-3-030-32233-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32233-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-32233-5_7

How Question Generation Can Help Question Answering 81

significantly hinders the performance of existing KBQA approaches. However, it
is prohibitively expensive or even impossible to label a large-scale dataset that
can cover the whole knowledge base. As relation detection is more difficult than
entity linking in KBQA task [21], a QA model typically fails to answer a question
because of unseen predicates or phrases. On one hand, a QA model usually tends
to give a lower score to the unseen predicates. On the other hand, even if the
training set contains the predicate rel, it is difficult for QA model to answer q
if the corresponding paraphrases are unseen.

Question Generation (QG) can be regarded as a reverse task of QA, which
generates a corresponding question q given the answer a. In different QA/QG
tasks the answer a can be different such as a sentence in a document or a fact in
knowledge base. Inspired by the success of leveraging Question Generation (QG)
to help reading comprehension [16] and answer sentence selection [14] tasks, we
attempt to improve the performance of KBQA by employing the factoid QG.

In this work, we propose a unified framework to combine QA and QG through
two components including dual learning and fine tuning. Similar with [14], we
first train the models of QA and QG jointly by utilizing the probabilistic cor-
relation between them. As the answer a is a sentence in [14] but a triple in our
KBQA task, we design different methods to calculate the corresponding terms
in the probability formula. To solve the challenges of unseen predicates and
phrases, we propose a fine tuning component. By utilizing the copy action [10]
and text evidence from Wikipedia, we train a sequence-to-sequence model that
can generate questions of unseen predicates based on the extracted triples from
knowledge base. Further, the QA model could be fined tuned by feeding the
generated questions and the extracted triples from KB.

Our contribution is three-fold. First, different from previous works on reading
comprehension or answer sentence selection tasks, we study how to help KBQA
task by utilizing the factoid QG. Second, the fine tuning component in our
framework can solve the challenges of unseen predicates and phrases in KBQA
task. Third, empirical results show that the KBQA system improved by our
framework performs comparably with or even better than the state-of-the-arts.

2 Our Approach

In this section, we first formulate the task of QA and QG, and then present our
combination framework which utilizes QG to improve QA performance.

This work involves two tasks including question answering (QA) and question
generation (QG). In natural language processing community, QA tasks can be
categorized into Knowledge based and Text based. The answer in KBQA is a
fact from the knowledge base while the answer in Text QA is a sentence from
the given document. In this work, we focus on KBQA [7,17] and consider it as
a scoring and ranking problem, formulated by fqa(q, a), where q is the given
question and a is a triple 〈s, p, o〉 in the KB. The function outputs a scalar to
estimate the relevance between q and a. For convenience, we reduce the QA task
to a relation detection task, which takes a question q and candidate relations R

82 S. Hu et al.

= {r1, r2, ..., rn} as input, and outputs a relation ri ∈ R which has the largest
probability to be the correct relation p. In other words, we suppose the topic
entity s has already been detected. Once the relation p is confirmed, we could
easily obtain the answer fact a by querying KB using s and p. The task of
QG takes a sentence or fact a as input, and outputs a question q which could
be answered by a. In this work, we regard QG as a generation problem and
develop a sequence-to-sequence model to solve it. Our QG model is abbreviated
as Pqg(q|a), of which the output is the probability of generating a question q.

Generally, our framework consists of two components. The first is dual learn-
ing component, which tries to lead the parameters of QA/QG models to a more
suitable direction in training process by utilizing the probabilistic correlation
between QA and QG. The second is fine tuning component, aiming to enhance
the ability of QA model to tackle the unseen predicates and phrases by involving
the QG model with textual corpus and KB triples. Our framework is flexible and
does not rely on specific QA or QG models.

2.1 Dual Learning

Recent work [14] proposes a dual learning framework to jointly considering ques-
tion answering (QA) and question generation (QG) by leveraging the probabilis-
tic correlation between QA and QG as the regularization term to improve the
training process of both tasks. The intuition is that QA-specific signals could
enhance the QG model to generate not only literally similar question strings,
but also the questions that could be answered by the answer. In turn, QG could
improve QA by providing additional signals which stands for the probability of
generating a question given the answer. The training objective is to jointly learn
the QA model parameterized by θqa and the QG model parameterized by θqg by
minimizing their loss functions subject to the following constraint.

Pa(a)P (q|a; θqg) = Pq(q)P (a|q; θqa) (1)

Specifically, given a correct 〈q, a〉 pair, QA and QG models should minimize
their original loss function as well as the following regularization term:

ldual(a, q; θqa, θqg) = [log Pa(a) + log P (q|a; θqg)

− log Pq(q) − log P (a|q; θqa)]2
(2)

where Pa(a) and Pq(q) represent the marginal possibility of the sentence a
and q, which can be calculated by the language models. While P (q|a; θqg) and
P (a|q; θqa) represent the conditional possibility, which can be calculated by the
QA model and QG model, respectively.

However, the answer a in KBQA task is a fact rather than a sentence. It is
impossible to calculate Pa(a) by utilizing the language model directly. To solve
this problem, we propose three methods.

How Question Generation Can Help Question Answering 83

q1: Where did Saki live?
t1: <Saki, place_of_birth, Sittwe>
q2: What is Nina Dobrev nationality?
t2: <Nina Dobrev, nationality, Bulgaria>

……

Question
Answering

Model

Question
Generation

Model
Knowledge

Base

Dobrev was born in Sofia, Bulgaria, ...
Leonardo's drawing of the Vitruvian
Man is also regarded as a cultural icon ...

……

ts
1: <Gautama Buddha, nationality, Nepal>

ts
2: <Leonardo da Vinci, artworks, Vitruvian Man>

……

qg
1: Where was Gautama Buddha born in?

ts
1: <Gautama Buddha, nationality, Nepal>

qg
2: What is the drawing of Leonardo?

ts
2: <Leonardo da Vinci, artworks, Vitruvian Man>

……

Training

Prediction

Sampling

Fine
Tuning

Gold
Training

Data

Wiki
Document

Supplemental
Training Data

Training

Fig. 1. The fine tuning component of our unified framework (we abbreviate the pred-
icates for simplicity)

– predicate frequency. As Pa(a) represents the marginal possibility of a,
the most straightforward idea is to simulate it using the frequency1 of a. In
this task, we can regard all triples in the training data as the sample space.
However, the frequency of each triple in the dataset typically has no significant
difference, since the dataset organizer would like to cover more entities and
predicates which leads to less repetitive triples. On the other hand, we find
that predicates plays a more important role than subject and object in the
inference process of QA/QG models. Therefore, we utilize the frequency of
predicates to represent Pa(a).

– translate by templates. [14] employs language models to calculate the
relative likelihood of question q and answer a since they are both natu-
ral languages. Thus another solution to obtaining Pa(a) is to translate the
triple a into a natural language sentence sa and then utilize the pre-trained
language model to calculate the probability of sa. To translate the triple
a = 〈subj, rel, obj〉 to a sentence sa, we first try a template-based method.
As most KB predicates represent equivalent meanings with their word repre-
sentation, we can split the predicate rel to a sequence of words and utilize it
to construct the sentence sa according to predefined templates.

– translate by NAG model. To improve the diversity of translated questions,
we try to translate the triple a to sentence sa by utilizing a pretrained Natural
Answer Generation model [9].

2.2 Fine Tuning

Training KBQA systems relies on high-quality annotated datasets that are not
only large-scale but also unbiased. However, it is difficult to build such a dataset
which covers equally a large number of triples in the knowledge base.

Therefore, we propose a fine tuning framework to supplement the QA
dataset and improve the capacity of QA models. Figure 1 shows the frame-
work. We first train the QA model and QG model using the whole training
set T = {(q1, a1), (q2, a2), ..., (qn, an)}.For each triple ai = 〈subj, rel, obj〉, we
collect a set of textual evidence from wiki documents to help the training and
inference of QG model.
1 According to the Law of Large Numbers, the frequency can represent the probability

if the sample space is large enough.

84 S. Hu et al.

Collecting Textual Evidence. Following the distant supervision setup for
relation extraction [11], we first select the sentences containing both the subject
subj and the object obj from the Wikipedia articles of the entity subj. Then
those sentences are reduced to relation paraphrases by reserving the words those
appear on the dependency path between subj and obj. We collect the list of
entity types of subj and obj by querying the knowledge base. If an entity has
multiple types we pick the type which occurs in the selected sentence s or the
predicate rel. Finally we replace the subj and obj mentions with their types
to learn a more general relation representation in syntactic level. In Fig. 1, a
possible textual evidence generated from the sentence “Dobrev was born in Sofia,
Bulgaria, ...” is “Person was born in Country”. With the help of text evidence,
the QG model is able to generate questions for unseen predicates.

After the normal training process2, we build a set of supplemental question-
answer pairs to fine tune the QA model. Specifically, we sample a set of triples
from the knowledge base and collect the text evidences of these triples from
the Wiki documents. Then the QG model generates corresponding questions by
feeding the triples and text evidences. We can regard the generated questions and
the sampled triples as the supplemental training set. The remaining problem is
how to sample the triples from the knowledge base. Intuitively, the more triples
we sample from knowledge base the better capacity can be enhanced of QA
model. However, the total number of triples in KB is too large, it is necessary
to study how to sample appropriate triples, as described in the following.

Sampling KB Triples. The straightforward strategy is to select triples ran-
domly. We first obtain the candidate predicate set R containing predicates with
top k frequencies. Then we select predicate m times from R. For each selected
predicate reli, we query the KB to find a corresponding pair of subject subji
and obji randomly, after that we get a triple 〈subji, reli, obji〉. Finally the sup-
plemental triple set T is built completely when it has m triples, where m is a
hyper parameter. To avoid tuning the parameter m, we propose a method to
sample an unbiased triple set with the same distribution of the original data set.
As a premise, we suppose the test set has the same distribution with knowledge
base while has a little difference with the training set. In order to supplement
the training set, we create a predicate set R by random selecting. The selecting
process is terminated when each predicate reli in the original training set has
occurred in R. After that we discard all these redundant predicates and regard
the remaining predicates as the supplemental predicate set.

Example 1. Consider Fig. 1. The models of QA and QG are first trained by the
original training set {(q1, t1), (q2, t2)}. During the training, QG model learns how
to generate questions utilizing the copy action and the text evidence extracted
from the wiki documents. As the predicate <artworks> is unseen, the QA model
can not answer the questions like “qt=What is the drawing of [subj]” with the
answer triple 〈subj, artworks, obj〉. However after fine tuning, the QA model
with the sampled triple ts2 = 〈Leonardo da Vinci, artworks, Vitruvian Man〉 and
generated question qg2 , can answer qt correctly. On the other hand, it is hard for
2 Note that in this process the QA and QG models could be trained utilizing the dual

learning framework.

How Question Generation Can Help Question Answering 85

QA model to link the question “Where was [subj] born in” to the gold predicate
<nationality> because the phrase is unseen in the training phase. While fine
tuning can bring such unseen phrases to enhance the capacity of the QA model.

3 Models

3.1 QA Model

We describe the details of the question answering (QA) model in this section.
Generally, a QA model could be formulated as a function fqa(q, a) that estimates
the correctness of every candidate answer a given the question q. For convenience,
we reduce the QA model to a relation classification model and use the candi-
date predicate rel to replace the answer a. Compared with other subtasks such
as entity linking in KBQA, relation extraction plays a more significant role in
affecting the final results [21]. The accuracy of entity linking are relatively high
in existing KBQA methods while the performance of relation extraction is not
good enough due to the unseen predicates or paraphrases.

We propose a simple yet effective relation extraction model based on recur-
rent neural network (RNN). To better support the unseen relations, we factorize
the relation names to word sequences and formulate relation extraction as a
sequence matching and ranking task.Specifically, the input relation becomes r =
{r1, ..., rm}, where the m tokens are split into relation names. For example, the
relation location.country.languages spoken can be divided into {location, coun-
try, languages, spoken}. Each token above is transformed to its pre-trained word
embedding [12] then we use a Bidirectional Long Short-Term Memory (BiLSTM)
[22] to obtain the hidden representations. A max pooling layer is employed to
extract the most salient local features to form a fixed-length global feature vec-
tor, then we obtain the final relation representation hr.

We use the same neural network to get the question representation hq and
then compute the similarity using cosine distance function. To learn a more gen-
eral representation in the syntactic level, we replace the entity mention with a
generic symbol <e>, such as “where is <e> from”. However, this mechanism
discards all entity information and might confuse the model in some cases. There-
fore, we detect the type t of topic entity and concatenate the type representation
with question representation. We find that this type information could improve
the performance significantly.

The model described above is trained with a ranking training approach, which
drives the model to output a high score for question q with gold relation r+ while
producing a lower score for incorrect relations r− in the candidate relation pool
R. The loss function is denoted as following.

lrel = max{0, λ − Ss(q, r+) + Ss(q, r−)} (3)

where the pair of question and correct predicate (q, r+) are forced to have a
score of at least margin λ and Ss(q, r) = Cosine(hq,hr). The candidate relation
pool R consists of all predicates connected with the gold topic entity e in q.

86 S. Hu et al.

3.2 QG Model

Factoid QG is the task generating natural language questions given an input
triple from knowledge bases. The generated question is concerned with the sub-
ject and predicate of the fact, and the object of the fact represents a valid
answer to the generated question [13]. The QG model approximates the condi-
tional probability of the generated question q = {w1, w2, ..., wn} given an input
fact a = {s, p, o}, formulated as:

p(q|a) =
n∏

t=1

p(wt|w<t, a) (4)

where w<t denotes all previous generated words until time step t. Inspired by the
recent success of sequence-to-sequence learning in Neural Machine Translation
[1], we treat the QG problem as a kind of translation task and employ the
encoder-decoder architecture to tackle it. Specifically, the encoder encodes the
given fact a = {s, p, o} into three fixed size vectors hs = Efes, hp = Efep and
ho=Efeo, where Ef is the KB embedding matrix learned using TransE [3], es, ep
and eo are one-hot vectors of s, p and o. We concatenate those three vectors to
obtain the encoded fact hf = [hs;hp;ho]. Later the decoder takes hf to generate
a question in a sequential way.

Note that in the fine tuning component, we leverage the QG model to gener-
ate supplemental question-answer pairs to fine tune the trained QA model. We
expect the supplemental labeled data to contain the predicates or phrases not
encountered by the QA model during training process so that the QA model
can enhance its capability. Thus the QG model should be able to generate ques-
tions given the triples with unseen predicates. Following [6], we introduce a text
encoder. For each fact a we collect n textual evidence D = {d1, d2, ..., dn} from
wiki documents. A set of n Gated Recurrent Neural Networks (GRU) with shared
parameters are utilized to encode each textual evidence. The hidden state of i-th
word in j-th textual evidence is calculated as:

h
dj
i = GRUj(Edw

j
i , h

dj
i−1) (5)

where Ed is the pre-trained word embedding matrix [12] and wj
i is the one-hot

vector of i-th word in dj . We concatenate each hidden state of textual evidence
to get the final encoded text hd = [hd1

|d1|;h
d2
|d2|; ...;h

dn

|dn|].
For the decoder we use a GRU with an attention mechanism [1] act-

ing over the input textual evidence. Given a set of encoded input vectors
I = {h1, h2, ..., hk} and the decoder’s previous hidden state st−1, the atten-
tion mechanism calculates αt = {αi,t, ..., αk,t} as a vector of scalar weights, each
αi,t determines the weight of its corresponding encoded input vector hi.

ei,t = va
�tanh(Wast−1 + Uahi) (6)

αi,t =
exp(ei,t)

∑k
j=1 exp(ej,t)

(7)

How Question Generation Can Help Question Answering 87

where va, Wa, Ua are trainable weight matrices of the attention modules. Then
we calculate an overall attention over all tokens in all textual evidence:

ad
t =

|D|∑

j=1

|di|∑

i=1

α
dj

i,th
dj

i (8)

where α
dj

i,t is a scalar value determining the weight of the i-th word in the j-th
textual evidence di at time step t.

Recent works on NMT tackle the rare/unknown words problem using copy
actions [10]. It copies the words with a specific position from the source to the
output text. We leverage this mechanism to solve the issue of unseen predicates.
We adopt a variant of [6] which copies the words with same POS tags rather
than specific positions. This can improve the generalization ability of our QG
model. At each time step, the decoder chooses to output either a word from
the vocabulary or a special token indicating a copy action from the textual
evidence. Those special tokens are replaced with their original words before
being outputted.

4 Experiment

4.1 Setup

We conduct experiments on two datasets SimpleQuestions [2] and WebQSP [18].
Each question in these datasets is labeled with the gold semantic parse so that
we can evaluate both relation detection task with gold entity linking results and
the KBQA task independently.

SimpleQuestions (SQ) is a large scale KBQA dataset with more than 100
thousand labeled data. Each question in SQ has only one entity and one relation,
which can be answered by a single triple in knowledge base. We use the Freebase
subset with 2M entities (FB2M) [2] in order to compare with previous works.
For relation detection task, we use the dataset processed by [19] for comparison.

WebQSP is a medium scale KBQA dataset containing both single-triple
and multi-triple questions. Following [18], we use S-MART [15] entity-linking
outputs. For relation detection task, we use the dataset processed by [21] for
comparison.

4.2 Relation Detection Results

Table 1 shows the relation detection accuracy when using different percentages
of gold data to train the models. QA Baseline is the model described in Sect. 3.1.
Dual Learning trains QA and QG models simultaneously and improves the per-
formance on both two datasets. To further demonstrate the effectiveness of fine
tuning component, we run the entire pipeline (Dual Learning + Fine Tuning)
with different percentages of training data. When the ratio is 50%, we randomly
select 50% question-triple pairs from training data as available part and regard

88 S. Hu et al.

the other 50% as sampling part. The QA and QG models are trained jointly by
feeding the available part. For each triple in the sampling part we use QG model
to generate the supplemental training data and then tune the QA model. When
the ratio is 100%, we use the method in Sect. 2.2 to sample the extra triples from
KB and generate the supplemental training data.

Table 1. Relation detection accuracy in different ratios of available gold training data

Methods SQ WebQSP

5% 50% 100% 5% 50% 100%

BiCNN [17] – – 90.0 – – 77.74

AMPCNN [19] – – 91.3 – – –

HR-BiLSTM [21] – – 93.3 – – 82.53

QA baseline 88.3 91.0 91.9 51.76 72.95 80.56

Dual learning 88.7 91.5 92.7 52.64 74.53 81.87

Dual learning + Fine tuning 89.8 91.7 93.0 54.37 79.02 83.63

The fine tuning component improves the accuracy on all levels of available
gold data. For WebQSP, the largest increase (4.49%) occurs in WebQSP-50%.
This is because using 50% training data leads to more unseen predicates and
larger improvement margin than using 100% training data. Although WebQSP-
5% has most unseen predicates, such a small number (155) of training data limits
the generalization ability of QG model. For SQ the largest increase (1.1%) occurs
in SQ-5% rather than SQ-50% since the former already has enough training
data (3611). When using 100% gold training data, the accuracy improvement on
WebQSP is larger than on SQ. The underlying reason is that SQ has too many
repetitive predicates and a very small number (0.7%) of unseen predicates, i.e.,
the improvement space of SQ dataset is relatively small.

We also compare our framework with existing QA methods.BiCNN model
is re-implemented by [21] from STAGG [17], where both questions and rela-
tions are represented with the word hash trick on character tri-grams, and we
report their results directly. AMPCNN [19] propose an attentive max pooling
stacking over word-CNN, so that the predicate representation can be matched
with the predicate-focused question representation more effectively. HR-BiLSTM
[21] propose a hierarchical recurrent neural network enhanced by residual learn-
ing to compare questions and relations via different levels of abstraction and
achieves state-of-the-art results for both SimpleQuestions and WebQSP datasets.
Our entire pipeline (83.63%) outperformed the state-of-art result (82.53%) on
WebQSP while still having a minor gap (0.3%) to reach the state-of-art on
SimpleQuestions. Note that the final results could be improved by refining our
simple QA model using more complex neural network architectures, we leave it
as future work.

How Question Generation Can Help Question Answering 89

4.3 Comparison Results of Dual Learning

Table 2 shows the relation detection results using different methods to calculate
the marginal possibility Pa(a) in the formula 1. Dual Learning with templates
based translation achieves the best performance among all these methods. Sim-
ulating Pa(a) to the predicate frequency performs poor (79.1%) on WebQSP
dataset. This is most likely because the sample space of a, i.e., the training data
size is too small. It is interesting that template-based translation method has
better performance than NAG method. Although translating the triples accord-
ing to templates has lower diversity and fluency than utilizing the sequence-to-
sequence model, the latter one may be hard to learn with a small-scale supervised
dataset.

Table 2. Comparison results of dual learning (Accuracy)

Pa(a) calculation SQ WebQSP

Dual learning Predicate frequency 91.6 79.1

Dual learning Translate by templates 92.7 81.9

Dual learning Translate by NAG 92.1 80.5

4.4 QG Performance

Table 3 describes the performance of QG model trained with 100% training data.
To evaluate the correctness we sample 100 generated questions from the test set.
A question q is regarded as correct if it represents the target predicate (no
matter of the fluency). The results show that our QG model is able to generate
supplemental training data in fine tuning component with high quality.

Table 3. Results of QG model, the correct ratio is evaluated by human on 100 sampled
questions

BLEU-4 Correct ratio

SimpleQuestions 34.6 94%

WebQSP 39.0 93%

4.5 KBQA End-Task Results

Finally we evaluate the end-to-end performance on KBQA task. The accuracy
of KBQA end task is shown in Table 4. Our approach performs better (64.4%)
than the state-of-art systems (63.9%) on WebQSP while still having a minor
gap (0.2%) to reach the state-of-art on SQ.Our KBQA pipeline is similar with
[21], we use entity linking outputs from S-MART [15] and AMPCNN [19] for
WebQSP and SimpleQuestions.

90 S. Hu et al.

Table 4. Results of question answering

SimpleQuestions WebQSP

STAGG [17] 72.8 63.9

AMPCNN [19] 76.4 –

HR-BiLSTM [21] 78.7 63.9

Our approach 78.5 64.4

4.6 Case Study

Table 5 lists some examples to compare the QA baseline and fine tuned QA.
The baseline predicts an incorrect relation <music.group member.instruments
played> of question q due to gold relation r = <music.group membership.role>
is absent in the training process. Given a sampled triple containing this unseen
relation with textual evidence, QG model generates a question q′ having similar
hidden representation with q. After fine tuning by feeding (q′, r), the QA model
can predict correctly.

Table 5. Examples of the fine tuning framework.

Gold question (with entity type) Gold Triple Prediction (Baseline)

q : what role did Paul McCartney
in the Beatles? (Musical Artist)

<Paul McCartney,
music.group membership.
role, Lead Vocals>

<Paul McCartney,
music.group member.
instruments played, Guitar>

Generated question (with entity
type)

Sampled triple Prediction (Fine Tuned)

q′ : what role does John Lennon
play? (Musical Artist)

<John Lennon,
music.group membership.
role, Drums>

<Paul McCartney, music.
group membership.role,
Lead Vocals>

5 Related Work

There are different types of QA tasks including text based QA [20] and knowledge
based QA [8]. Our work belongs to knowledge based QA where the answer are
facts in KB. Yu et al. [21] design a neural relation detection model to improve the
question answering performance. They use deep residual bidirectional LSTMs
to compare questions and relation names via different levels of abstraction and
achieve state-of-the-art accuracy for SimpleQuestions and WebQSP datasets.
Hu et al. [8] propose a state-transition framework to parse the questions into
complex query graphs utilizing several predefined operations. Dong et al. [4]
train a sequence to tree model to translate natural language to logical forms.

Question Generation draws a lot of attentions in many applications. Luong
et al. [10] propose a model that generates positional placeholders pointing to

How Question Generation Can Help Question Answering 91

some words in source sentence and copy it to target sentence, i.e., the copy
actions. Dong et al. [5] generate paraphrases of given questions to increase the
performance of QA systems which rely on paraphrase datasets, neural machine
translation and rule mining. ElSahar et al. [6] present a neural model for factoid
QG in a Zero-Shot setup, that is generating questions for triples containing
predicates, subject types or object types that were not seen at training time.

6 Conclusion

In this paper we study how to utilize Question Generation (QG) models to help
Knowledge Base Question Answering (KBQA). Specifically, we propose a unified
framework to combine QA and QG with the help of knowledge base and text
corpus. The models of QA and QG are first trained jointly on the gold dataset
by utilizing the probabilistic correlation between them, then the QA model is
fine tuned by utilizing a supplemental dataset constructed by the QG model
with the help of text evidence. The proposed framework can solve the challenges
of unseen predicates and phrases in KBQA. Empirical results show that our
framework improves the performance of KBQA and performs comparably with
or even better than the state-of-the-arts.

Acknowledgments. This work was supported by The National Key Research and
Development Program of China under grant 2018YFB1003504 and NSFC under grant
61961130390, 61622201 and 61532010.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. CoRR abs/1409.0473 (2014)

2. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question
answering with memory networks. CoRR abs/1506.02075 (2015)

3. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Proceedings of NIPS (2013)

4. Dong, L., Lapata, M.: Language to logical form with neural attention. In: Proceed-
ings of ACL (2016)

5. Dong, L., Mallinson, J., Reddy, S., Lapata, M.: Learning to paraphrase for question
answering. In: Proceedings of EMNLP, pp. 875–886 (2017)

6. ElSahar, H., Gravier, C., Laforest, F.: Zero-shot question generation from knowl-
edge graphs for unseen predicates and entity types. In: Proceedings of NAACL-
HLT, pp. 218–228 (2018)

7. Hu, S., Zou, L., Yu, J.X., Wang, H., Zhao, D.: Answering natural language ques-
tions by subgraph matching over knowledge graphs. Trans. Knowl. Data Eng.
30(5), 824–837 (2018)

8. Hu, S., Zou, L., Zhang, X.: A state-transition framework to answer complex ques-
tions over knowledge base. In: Proceedings of EMNLP, pp. 2098–2108 (2018)

9. Liu, C., He, S., Liu, K., Zhao, J.: Curriculum learning for natural answer genera-
tion. In: Proceedings of IJCAI, pp. 4223–4229 (2018)

92 S. Hu et al.

10. Luong, T., Sutskever, I., Le, Q.V., Vinyals, O., Zaremba, W.: Addressing the rare
word problem in neural machine translation. In: Proceedings of ACL (2015)

11. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extrac-
tion without labeled data. In: Proceedings of ACL, pp. 1003–1011 (2009)

12. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Proceedings of EMNLP, pp. 1532–1543 (2014)

13. Serban, I.V., et al.: Generating factoid questions with recurrent neural networks:
the 30 m factoid question-answer corpus. In: Proceedings of ACL (2016)

14. Tang, D., Duan, N., Qin, T., Zhou, M.: Question answering and question generation
as dual tasks. CoRR abs/1706.02027 (2017)

15. Yang, Y., Chang, M.: S-MART: novel tree-based structured learning algorithms
applied to tweet entity linking. In: Proceedings of ACL, pp. 504–513 (2015)

16. Yang, Z., Hu, J., Salakhutdinov, R., Cohen, W.W.: Semi-supervised QA with gen-
erative domain-adaptive nets. In: Proceedings of ACL, pp. 1040–1050 (2017)

17. Yih, W., Chang, M., He, X., Gao, J.: Semantic parsing via staged query graph
generation: question answering with knowledge base. In: ACL (2015)

18. Yih, W., Richardson, M., Meek, C., Chang, M., Suh, J.: The value of semantic parse
labeling for knowledge base question answering. In: Proceedings of ACL (2016)

19. Yin, W., Yu, M., Xiang, B., Zhou, B., Schütze, H.: Simple question answering by
attentive convolutional neural network. In: COLING, pp. 1746–1756 (2016)

20. Yu, L., Hermann, K.M., Blunsom, P., Pulman, S.: Deep learning for answer sen-
tence selection. CoRR abs/1412.1632 (2014)

21. Yu, M., Yin, W., Hasan, K.S., dos Santos, C.N., Xiang, B., Zhou, B.: Improved
neural relation detection for knowledge base question answering. In: Proceedings
of ACL (2017)

22. Zhou, P., et al.: Attention-based bidirectional long short-term memory networks
for relation classification. In: Proceedings of ACL (2016)

	How Question Generation Can Help Question Answering over Knowledge Base
	1 Introduction
	2 Our Approach
	2.1 Dual Learning
	2.2 Fine Tuning

	3 Models
	3.1 QA Model
	3.2 QG Model

	4 Experiment
	4.1 Setup
	4.2 Relation Detection Results
	4.3 Comparison Results of Dual Learning
	4.4 QG Performance
	4.5 KBQA End-Task Results
	4.6 Case Study

	5 Related Work
	6 Conclusion
	References

