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Abstract. The approach based on translation pieces is appealing for
neural machine translation with a translation memory (TM), owing to
its efficiency in both computation and memory consumption. Unfortu-
nately, it is incapable of capturing sufficient contextual translation lead-
ing to a limited translation performance. This paper thereby proposes
a simple yet effective approach to address this issue. Its key idea is to
employ the word position information from a TM as additional rewards
to guide the decoding of neural machine translation (NMT). Experi-
ments on seven tasks show that the proposed approach yields consistent
gains particularly for those source sentences whose TM is very similar
to themselves, while maintaining similar efficiency to the counterpart of
translation pieces.

Keywords: Word position · Translation memory · Neural machine
translation

1 Introduction

A translation memory (TM) provides the most similar source-target sentence
pairs to the source sentence to be translated, and it yields more reliable trans-
lation results particularly for those matched segments between a TM and the
source sentence [9]. Therefore, a TM has been widely used in machine translation
systems. For example, various research work has been devoted to integrating TM
into statistical machine translation (SMT) [4,6,12]. As an evolutional shift from
SMT to the advanced neural machine translation (NMT), there are increasingly
interests in employing TM information to improve the NMT results.

Li et al. and Farajian et al. proposed a fine tuning approach in [2,5] to
train a sentence-wise local neural model on top of a retrieved TM, which was
further used for testing a particular sentence. Despite its appealing performance,
the fine-tuning for each testing sentence leads to the low latency in decoding.
On the contrary, in [3] and [13], the standard NMT model was augmented by
additionally encoding a TM for each testing sentence. The proposed model was
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trained to optimize for testing all source sentences. Although these approaches
[3,13] are capable of capturing global context from a TM, its encoding of a TM
with neural networks requires intensive computation and considerable memory,
because a TM typically encodes much more words than those encoded by a
standard NMT model.

Thankfully, a simple approach was proposed in [14], which was efficient in
both computation and memory. Rather than employing neural networks for TM
encoding, they represent a TM for each sentence as a collection of translation
pieces consisting of weighted n-grams in a TM, whose weights are added into
NMT probabilities as rewards. Unfortunately, because translation pieces capture
very local context in a TM, this approach can not generate good translations
when a TM is very similar to the testing sentence: in particular, the translation
quality is far away from perfect even if the reference translation of the source
sentence is included in the training set as argued by [13].

To address the above issue, this paper proposes a word position aware TM
approach which captures more contextual information in a TM while maintain-
ing similar efficiency to [14]. Our intuition is that: when translating a source
sentence, if a word y is at the position i of a target sentence in a TM, and the
word y should be in the output, then the position of y in the output should be
not far away from i.

To put this intuition into practice, we design two types of position rewards
according to the normal distribution and then integrate them into NMT with
translation pieces. We apply our approach to Transformer, a strong NMT system
[11]. Extensive experiments on seven translation tasks demonstrate the proposed
method delivers substantial BLEU improvements over Transformer and it further
consistently and significantly outperforms the approach in [14] over 1 BLEU score
on average, while our running speed is almost the same as that in [14].

2 Background

2.1 NMT

In this paper, we use the state-of-the-art NMT model, Transformer [11], as our
baseline. Suppose x =

〈
x1, . . . , x|x|

〉
is a source sentence with length |x| and

y =
〈
y1, . . . , y|y|

〉
is the corresponding target sentence of x with length |y|.

Generally, for a given x, Transformer aims to generate a translation y according
to the conditional probability P (y|x) defined by neural networks:

P (y|x) =
|y|∏

i=1

P (yi|y<i,x) (1)

where y<i = 〈y1, . . . , yi−1〉 denotes a prefix of y with length i−1. To expand
each factor P (yi|y<i,x), Transformer bases on the encoder-decoder framework
similar to the standard sequence-to-sequence learning in [1].

More specifically, in encoding x, an encoder is composed of L layers of neural
networks. During decoding process, the Transformer is also composed of L layers
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Fig. 1. An example of translation pieces in translation memory. The red part is
employed to extract translation pieces, such as “gets”, “object”, “object that”, “object
that is”, “object that is associated” and “that” etc. (Color figure online)

of neural networks as mentioned in [11]. The factory P (yi|y<i,x) can be defined
as following:

P (yi|y<i,x) = softmax
(
φ(hD,L

i )
)

(2)

where hD,L
i indicates the ith hidden unit at Lth layer under the encoder-decoder

framework, and φ is a linear network to project the hidden unit to a vector with
dimension of the target vocabulary size.

The standard decoding algorithm for NMT is beam search. Namely, at each
time step i, we keep n-best hypotheses. The probability of a complete hypothesis
is computed as following:

log P (y|x) =
|y|∑

i=1

log P (yi|y<i,x) (3)

2.2 Translation Pieces

For a source sentence x to be translated, we use an off-the-shelf search engine
to retrieve a set of source sentences along with corresponding translations from
translation memory (TM), and then get the TM list {(xm,ym)|m ∈ [1,M ]}.
Then, we calculate the similarity between x and xm as following [3]:

sim(x,xm) = 1 − dist(x,xm)
max(|x|, |xm|) (4)

where dist(·) denotes the edit-distance and |x| denotes the word-based length
of x.

Following [14], we firstly collect translation pieces from the TM list. Specif-
ically, translation pieces (up to 4-grams) are collected from the retrieved target
sentences ym as possible translation pieces Gm

x for x, using word-level alignments
to select n-grams that are related to x and discard others. For example, in Fig. 1,
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Fig. 2. Adding word position rewards into the NMT output layer. v refers to a word
in the target vocabulary, and i′ refers to the expected position of word v3 according to
TM. Therefore, the position reward at time i′ is larger than that at time i.

the red part of the retrieved TM target sentence is employed to extracted trans-
lation pieces for the source sentence, such as “gets”, “object” and “object that”
etc. While the black part of the TM target sentence is the unmatched piece
that will not be collected. Formally, the translation pieces Gx from TM are
represented as:

Gx = ∪M
m=1G

m
x (5)

where Gm
x denotes all weighted n-grams from 〈xm,ym〉 with n up to 4.

Secondly, we calculate a score for each u ∈ Gx. The weighted score for each
u measures how likely it is a correct translation piece for x based on sentence
similarity between the retrieved source sentences {xm|m ∈ [1,M ]} and the input
sentence x as following:

sp(x, u) = max
1≤m≤M∧u∈Gm

x

sim(x,xm) (6)

And then, as shown in Fig. 2(a)(b), an additional translation piece reward
for the collected translation pieces will be added to NMT output layer according
to:

Rp(yi|y<i,x) = λ

4∑

n=1

δ
(
yi
i−n+1 ∈ Gx, sp(x, u)

)
(7)

where λ can be tuned on the development set and δ(cond, val) is computed as:

δ(cond, val) =
{

0 if cond is false
val if cond is true

(8)
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Fig. 3. An example of word position relationship between translation memory and
decoding step. Position i refers to the decoding step and i∗ refer to the global position
information according to TM. The same color position numbers (except gray) represent
the position relationship between translation memory and each decoding step in the
NMT output layer. For example, at decoding step 4, the positions of output word
“object” are 3 and 7 in TM as shown in red. (Color figure online)

Finally, based on Eqs. 2 and 7, the updated probability P ′(yi|y<i,x) for the
word yi is calculated by:

P ′(yi|y<i,x) = P (yi|y<i,x) × eRp(yi|y<i,x) (9)

In this section, we provide a brief summary of how to use retrieved translation
pieces in TM for NMT. For more details, we refer readers to [14].

3 Word Positions Aware TM

In order to improve greatly the translation quality, we hope the NMT output
majorly follows the target sentences of TM. Although translation pieces are very
useful to accomplish word selection, it is hard to capture sufficient contextual
information beyond 4-grams in a TM, leading to the limited translation perfor-
mance: in particular, given the TM source sentence, it is hard for the translation
pieces to guide the NMT model to generate the reliable translation even if its
reference is in the TM.

Then, inspired by our intuition stated in Sect. 1, we study the position of
word y in the collected translation pieces, and find that:

– If there is a low similarity between the TM source sentence and the input
sentence, the positions of word y in translation pieces are less helpful to
guide the decoding process.

– In the middle similarity situation, the positions of word y in translation pieces
are helpful to guide the decoding process.

– In the high similarity situation, the positions of word y in translation pieces
are very helpful to guide the decoding process.
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In general, word positions may be helpful to supply more contextual infor-
mation or long distance knowledge, and it depends on the similarity between
the source and the TM source sentences. As shown in Fig. 3, if the TM source
is highly similar to the source, the word position i′ in the TM target should be
not far away from the word position i in the decoding process. For example, at
decoding step 4, the positions of output word “object” are 3 and 7 in TM as
shown in red.

Therefore, if we consider the global position of a word in a TM, it is possible
to improve NMT with translation pieces. Hence, we try some methods to capture
the position distribution such as the linear distribution, the normal distribution,
and the multinomial distribution. Finally, we select the normal distribution. As
shown in Fig. 2(a)(c), v refers to a word in the target vocabulary, and i′ refers
to the expected position of word v3 according to TM. And we add word position
rewards into the NMT output layer according to normal distributions. Therefore,
the position reward at time i′ is larger than that at time i.

In this paper, we will design two types of position rewards, namely sentence
level rewards and piece level rewards, for the given target word v from the
retrieved TM according to normal distributions as follows.

3.1 Sentence Level Position

To capture contextual information or long distance knowledge, in this paper, we
use the normal distribution to represent the relationship between positions. And
we adopt the top-1 TM instance xm,ym to learn the parameters of distributions
for word positions at the sentence level. Finally, the mathematical expectation of
the normal distribution is i′ and the standard deviation is 2·sim(x,xm). Specifi-
cally, for the target word yi and the translation target position i during decoding,
the corresponding position score sps at the sentence level is calculated as follow-
ing:

sps(x, yi, i) =
e− 1

2 ·
(

i−i′
2·sim(x,xm)

)2

2
√

2π · sim(x,xm)
(10)

where i′ refers to the position of the word yi in ym.
Then, an additional sentence level position reward is calculated as following:

Rps(yi|i,y<i,x) = δ
(
yi ∈ xm, sps(x, yi, i)

)
(11)

In this way, the NMT results capture sentence level patterns as we expected,
overcoming the limitation of translation pieces and the presence of mismatched
source words.

3.2 Piece Level Position

The piece level positions are beneficial to help the underlying NMT system to
further capture local patterns. Similar to integrating the sentence level position
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above, the score of piece level position n (0 ≤ n ≤ 3) of the word yi in the
collected translation piece u is simply based on the standard normal distribution
with the mathematical expectation is 0 and the standard deviation is 1:

spp(x, yi, n) =
e− (n+1)2

2√
2π

(12)

where n refers to the relative position of the word yi in the piece u. For example,
as shown in Fig. 3, the translation pieces are collected using the method stated in
Sect. 2.2; such as “associated”, “is associated”, “that is associated” and “object
that is associated” are collected. And at time step 7 when decoding the word
“associated” in the NMT output layer, the values of n in those four pieces are
0, 1, 2 and 3, separately.

As a result, an additional piece level position reward can be added according
to:

Rpp(yi|i,y<i,x) = λ

3∑

n=0

δ
(
yi
i−n+1 ∈ Gx, spp(x, yi, n)

)
(13)

In summary, at each time step i, we update the probabilities over the out-
put vocabulary and increase the probabilities of those that match the expected
positions according to:

P ′(yi|y<i,x) = P (yi|y<i,x)×eRp(yi|y<i,x)×eRps(yi|i,y<i,x)×eRpp(yi|i,y<i,x) (14)

4 Experiments

In this section, we demonstrate, by experiments, the advantages of the proposed
model: it yields better translation on the basis of [14] with the help of word
positions from translation memory; and it still be able to keep the low latency
in terms of running time mainly because of the lightweight position formulation
using normal distributions.

4.1 Settings

To fully explore the effectiveness of our proposed model, we conduct translation
experiments on 7 language pairs, namely, zh-en, fr-en, en-fr, es-en, en-es, de-en,
and en-de. And we use case-insensitive BLEU score on single references as the
automatic metric [7] for translation quality evaluation. We collect about 2 million
news sentences from several online news websites for zh-en experiments, and
manage to obtain pre-processed JRC-Acquis corpus from [3] for other language
pairs. The highly related text in the corpus is suitable for us to make evaluations.
For each language pair, we randomly select 2000 samples to form a development
and a test set respectively. The rest of the pairs are used as the training set.
In addition, we employ Byte Pair Encoding [8] on the previous datasets. We
maintain a source/target vocabulary of 35k tokens for each language pair.



374 Q. He et al.

Fig. 4. An example of translation results generated by other methods and our model.
TM Source denotes the sentence that is most similar to the input. TM Target
denotes the target sentence of the TM source. The blue parts in the TFM-* are the
translation pieces extracted from the TM target according to word alignments. Under-
translation in the input and its corresponding in the reference are shown in red. (Color
figure online)

As the proposed method is directly build upon the Transformer architecture
[11], which is referred to as TFM in this paper. Following [14], we implement
translation pieces based system on top of Transformer for fair comparison, and it
is denoted by TFM-P. The implemented systems for the proposed word position
integration methods are denoted by TFM-PS and TFM-PSP for the sentence
level positions and the sentence + piece level positions, respectively.

For each sentence, we retrieve 100 translation pairs from the training set by
using Apache Lucene, and score them with fuzzy matching score, finally select
top N = 5 translation sentence pairs as the TMs for the sentence x to be
translated.

Furthermore, since there is a hyper-parameter λ in the system TFM-PSP
(the same principle for TFM-P and TFM-PS) which is sensitive to the specific
translation task, we tune it carefully on the development set for all translation
tasks.

4.2 Results and Analysis

Some of translation examples are given in Fig. 4. As shown in Fig. 4, TFM and
TFM-P have under-translations while TFM-PS and TFM-PSP don’t. Under-
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translation refers to that some source words are not translated. Our proposed
methods can make full use of the fragment information in TM target and obtain
translation results which are highly similar to those in TM target, with the help
of word positions from translation memory.

Table 1. Translation accuracy in terms of BLEU on 7 translation tasks. Best results
are highlighted.

zh-en fr-en en-fr es-en en-es de-en en-de

Dev

TFM 41.59 65.29 64.46 64.96 62.09 60.50 54.06

TFM-P 48.87 70.74 68.94 67.10 67.35 65.48 60.86

TFM-PS 50.57 71.12 69.46 68.90 67.76 65.96 61.66

TFM-PSP 50.70 71.18 69.49 69.02 67.87 65.99 61.71

Test

TFM 40.14 65.43 64.07 63.92 61.48 60.37 53.38

TFM-P 46.65 70.95 69.12 67.32 66.95 65.13 60.06

TFM-PS 48.82 71.00 69.45 68.28 67.17 65.49 60.77

TFM-PSP 48.84 71.01 69.50 68.51 67.22 65.54 60.81

Table 2. Similarity Analysis - Translation quality (BLEU score) on zh-en task for
the divided subsets according to similarity. Best results are highlighted.

Dev Test

Similarity [0.0,0.4) [0.4,0.7) [0.7,1.0] [0.0,1.0] [0.0,0.4) [0.4,0.7) [0.7,1.0] [0.0,1.0]

Ratio(%) 70.64 8.06 21.30 100.00 72.98 7.37 19.65 100.00

TFM 37.39 49.01 49.05 41.59 36.83 49.11 46.83 40.14

TFM-P 37.60 57.77 71.67 48.87 37.53 56.05 66.93 46.65

TFM-PS 37.62 59.19 77.55 50.57 37.57 57.08 75.60 48.82

TFM-PSP 37.61 59.45 78.13 50.70 37.54 57.03 75.90 48.84

Translation Accuracy. Table 1 shows the main experimental results. From the
overall perspective, we can see that our methods outperform the baseline TFM-
P system 0.1–2.2 BLEU points varying as tasks. The zh-en translation task
obtains the maximized promotion with the word position integration, while the
fr-en translation task cannot make an immediate benefits as the bold numbers
shown in Table 1. The main reason is that the baseline is extraordinarily strong
(fr-en: 70.95 vs zh-en: 46.65), and this result is still consistent with the discovery
reported in [14].
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Influence on Similarity. In order to dig deeper on the influence of various
similarities, we reported the translation quality on zh-en task for the divided
subsets according to similarity, in terms of BLEU and TER [10] as shown in
Tables 2 and 3, respectively.

The low similarity subset which is in the range of [0.0, 0.4), does little to help
the result. And the middle similarity subset [0.4, 0.7) obtains improvements by 1
BLEU point. The high similarity subset that is in the range of [0.7, 1.0], obtains
significant improvements, up to 9 BLEU points and down to 9.16 TER (The
lower the TER value, the better) points for the test set, respectively, with the
help of word position rewards as we expected according to [13].

Table 4 shows statistics of each dev and test set on seven translation tasks
where sentences are grouped by their similarity scores. In addition, the sentence
level word positions are the main contributors to the quality improvement. In
this way, we can conclude that the word positions extracted from TM are efficient
to improve the final translation results in most cases, especially for those source
sentences that are very similar to TM.

Table 3. Similarity Analysis - Translation quality (TER score) on zh-en task for
the divided subsets according to similarity. Best results are highlighted.

Dev Test

Similarity [0.0,0.4) [0.4,0.7) [0.7,1.0] [0.0,1.0] [0.0,0.4) [0.4,0.7) [0.7,1.0] [0.0,1.0]

Ratio(%) 70.64 8.06 21.30 100.00 72.98 7.37 19.65 100.00

TFM 50.85 40.74 40.08 47.20 50.68 40.86 42.59 48.07

TFM-P 50.81 36.20 25.41 43.00 50.59 35.32 30.77 45.00

TFM-PS 50.83 35.10 20.21 41.60 50.44 35.23 21.75 42.75

TFM-PSP 50.84 35.01 19.65 41.50 50.45 35.27 21.61 42.74

Table 4. Composition of dev and test sets based on similarity score on 7 translation
tasks.

(Dev | Test)

Ratio(%) zh-en fr-en en-fr es-en en-es de-en en-de

[0,0.1) 4.03 | 5.23 1.35 | 0.85 0.25 | 0.35 0.20 | 0.15 1.50 | 1.20 0.45 | 0.45 2.00 | 1.80
[0.1,0.2) 43.74 | 42.81 9.85 | 11.3 4.85 | 6.55 5.45 | 4.95 10.00 | 11.20 9.65 | 9.25 12.45 | 13.25
[0.2,0.3) 16.23 | 18.55 11.10 | 10.05 12.15 | 10.55 15.00 | 15.30 13.55 | 13.75 13.45 | 14.65 11.40 | 11.55
[0.3,0.4) 6.64 | 6.38 10.00 | 10.40 10.90 | 10.50 13.25 | 11.90 10.15 | 8.45 10.85 | 10.80 10.35 | 9.20
[0.4,0.5) 3.00 | 2.97 7.90 | 7.15 7.40 | 8.30 8.20 | 8.60 7.80 | 6.25 8.50 | 7.95 7.00 | 6.05
[0.5,0.6) 2.89 | 2.37 8.65 | 8.10 11.55 | 10.05 8.60 | 10.45 6.50 | 9.40 8.55 | 8.65 8.30 | 8.85
[0.6,0.7) 2.18 | 2.03 10.15 | 10.65 10.50 | 10.30 8.45 | 8.65 8.65 | 8.05 8.60 | 8.15 7.80 | 7.70
[0.7,0.8) 2.89 | 2.70 13.00 | 12.90 12.75 | 14.10 9.00 | 9.30 8.80 | 9.35 9.40 | 9.75 8.55 | 9.85
[0.8,0.9) 5.77 | 5.50 15.05 | 15.55 16.30 | 16.20 16.30 | 15.65 16.25 | 16.15 17.65 | 15.70 17.20 | 17.00
[0.9,1) 12.58 | 11.45 12.95 | 13.05 13.25 | 13.10 15.65 | 15.05 16.80 | 16.20 12.90 | 14.65 14.95 | 14.75
[0,1) 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100 100 | 100
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Running Time. We eliminate the retrieval time and directly compare running
time for neural models as shown in Table 5. From this table, we observe that our
proposed approach still be able to keep the low latency, compared to the baseline
TFM-P employing translation pieces, and our system TFM-PSP achieves better
translation performance with sentence and piece level positions.

Hyper-parameter Robustness. At last, we try to verify the robustness of the
hyper-parameter λ among various translation tasks, and show the search process
in Table 6 on zh-en task. As shown in Table 6, there is enough parameter space
for λ to keep smaller translation quality volatility. In general, we can search a
better value for λ in the range of [1.0, 1.3] for other translation tasks.

In summary, the extensive experimental results show that the proposed app-
roach achieves better translation on the basis of [14] with the help of word
positions from TM, especially for those source sentences that are very similar to
TM. In addition, this approach still be able to keep the low latency in terms of
running time.

5 Related Work

In SMT paradigm, many research works are devoted to integrating a translation
memory into the SMT [4,6,12]. Such as [4] extracted bilingual segments from a
TM which matched the source sentence to be translated, and adopted SMT to
decode for those unmatched parts of the source sentence.

Table 5. Running time in terms of seconds/sentence on zh-en task. The average lengths
of sentences in Dev and Test are 31.34 and 31.17 words/sentence, respectively.

TFM TFM-P TFM-PS TFM-PSP

Dev 0.31 0.76 0.76 0.86

Test 0.31 0.76 0.71 0.85

Table 6. Translation quality (BLEU score) among various values of λ on zh-en task.

λ 1.0 1.1 1.2 1.3 1.4

Dev 50.36 50.70 50.58 49.99 49.92

Test 48.82 48.84 48.89 48.70 48.15

Recently, TM based NMT has been witnessed the increasing interests. As
NMT does not explicitly rely on the translation rules as SMT, many works
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resort to different approaches. For example, Li et al. and Farajian et al. [2,5]
proposed a fine tuning approach to train a sentence-wise local neural model on
top of a retrieved TM, which was further used for testing a particular sentence.
The standard NMT model was augmented by additionally encoding a TM for
each testing sentence in [3] and [13], and the proposed global models were trained
to optimize for testing all source sentences. However, the above two approaches
require intensive computation and considerable memory.

Considering the complexity in computation and memory, a simple and effec-
tive method that retrieved translation pieces to guide NMT for narrow domains
was proposed in [14]. Their method was effective and simple, however, it can only
captured local information in a hard manner while ignoring the global informa-
tion in TM. Hence, in order to keep the low complexity and capture both global
and local context information, in this work, we study the distribution of word
positions in the collected translation pieces from TM, and employ the word
position information as additional rewards to guide the decoding of NMT.

6 Conclusion

To capture sufficient contextual information in translation pieces extracted from
translation memory, we have proposed a novel method that integrates sentence
and piece level positions of translation memory into neural machine translation.
The extensive experimental results on 7 translation tasks have demonstrated that
the proposed method further achieve better translation results on the basis of
integrating translation pieces, especially for those source sentences that are very
similar to those retrieved from translation memory. What’s more, this approach
still be able to keep the low latency and memory consumption, and the system
architecture in brief.
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