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Abstract. Automated disease classification of radiology images has
been emerging as a promising technique to support clinical diagnosis
and treatment planning. Unlike generic image classification tasks, a real-
world radiology image classification task is significantly more challeng-
ing as it is far more expensive to collect the training data where the
labeled data is in nature multi-label; and more seriously samples from
easy classes often dominate; training data is highly class-imbalanced
problem exists in practice as well. To overcome these challenges, in this
paper, we propose a novel scheme of Cross-Attention Networks (CAN) for
automated thoracic disease classification from chest x-ray images, which
can effectively excavate more meaningful representation from data to
boost the performance through cross-attention by only image-level anno-
tations. We also design a new loss function that beyond cross entropy
loss to help cross-attention process and is able to overcome the imbal-
ance between classes and easy-dominated samples within each class. The
proposed method achieves state-of-the-art results.

Keywords: Multi-label · Imbalanced · Medical image classification ·
Cross-Attention Networks

1 Introduction

Chest diseases are constantly a big threat to people’s health. Early diagnosis and
treatment of chest diseases are very important. Computer aided x-ray analysis
is an effective way to diagnose chest diseases. Wang et al. [1] constructed one
of the largest public Chest X-Ray14 datasets. After that, Rajpurkar et al. [2]
proposed a 121 layers convolutional neural network trained on Chest X-Ray14
dataset. Later on, Li et al. [4] proposed a unified structure that can perform
disease identification and localization simultaneously. They used both normal
labelled x-ray images and those with disease location annotations. However,
annotated data are quite expensive to acquire and heavily dependent on expert
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experience. Recently, a large-scale chest x-ray dataset CheXpert [10] came out.
For chest x-ray image processing, data is usually multi-labeled and for each label,
positive-negative samples are often imbalanced and easy samples are usually in
a dominant position, which usually result in poor performance. The general
training data number upsampling or downsampling approach and cross entropy
loss may not be an ideal solution for multi-label imbalance classification problem.

To this end, we propose Cross-Attention Networks with a new loss function
to tackle imbalanced multi-label x-ray chest diseases classification from two dif-
ferent angles: (1) From image processing angle, we design a flexible end-to-end
training Cross-Attention Network architecture which can effectively excavate
more meaningful representation with only image-level annotations. By using
hadamard product of two feature maps, the proposed structure could effectively
eliminate attention noises. (2) From a learning and optimization perspective, we
proposed a new loss function which consists of an attention loss that could facil-
itate the model to learn better representations and a multi-label balance loss to
reduce imbalance between positive and negative classes within each disease and
dominated easy samples. We have also used image-level supervised localization
to validate our model which is able to localize at high risk pathogenic areas in
a better manner. We make thorough experiments on Chest X-Ray14 and CheX-
pert datasets to evaluate the effectiveness of our different proposed components.
Our method achieves the state-of-the-art results.

2 Model

2.1 Cross-Attention Networks

Feature Extraction Networks. After raw data pre-processing, the images are
pumped into two feature extraction networks and gone through convolutional
layers which are worked as feature extractors. Our proposed cross-attention
method is flexible and the two networks can be easily substituted by other
backbone networks. Different from standard CNNs, instead of pushing extracted
features into activation layers and global average pooling layers, we keep these
abstract image-level features for later use.

Cross-Attention Model. We proposed a new cross-attention model that two
networks have attention on each other, which could generate more meaningful
representations. In Fig. 1, after we get the features by pumping images into two
networks which have different initialization or structures, the two feature maps
will go through two ReLU layers respectively to ensure that negative activation
values will not interfere the cross-attention features. Then these feature maps will
be inputted to a transition layer to transform two groups of features into the same
shape. Later on, instead of outer-producting two large tensors as self-attention [5]
methods by building attention for each pair of data point, we used element-wise
hadamard product to get cross-attention feature maps. Cross-attention structure
enables networks to get attention on each other and eliminate noises, which
means the Cross-Attention Networks have the ability to only focus on the areas
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Fig. 1. The proposed Cross-Attention Networks. (1) Data are inputted through ReLU
layers to eliminate the interference of negative activated values; (2) Transition layers
play the role to transform two groups of feature maps into the same dimension; (3)
The element-wise hadamard product is used to get cross-attention feature maps which
urges networks to only focus on the area that have high pathogenic probabilities; (4)
Dashed boxes represent attention loss and multi-label balance loss.

that have high pathogenic chances. Then the cross-attention feature maps will
be concatenated with two output tensors.

Featureall cat = Concat(FCA, FA, FB), whereFCA = FA � FB

where FA, FB represents the feature maps of Network A and Network B, FCA

represents cross-attention feature maps. Concat() function represents concate-
nate function. By using hadamard product, the cross-attention feature maps
FCA would be activated on those areas that only if the two groups of feature
maps FA and FB are both activated, which eliminate the randomness of outliers.
When the loss is back propagated, two networks affect each others’ gradient flows
which also enable two networks update in a more collaborative way.

Transition Layers and Classifier. The transition layers are to transform two
groups of feature maps into the same dimension. We use tranN = Min(CA, CB)
number of 1 ∗ 1 convolutional kernels to transform these two group of feature
maps into the same shape. where CA and CB denote the channel numbers of
different feature maps. By using transition layers, we ensure the dimension of
two feature maps are the same and also add further non-linearity to our cross-
attention model.

In Fig. 1, after getting the all concatenated cross-attention feature maps, we
input these feature maps into a global average pooling layer and then the clas-
sifier. Our model is designed to have different binary classification for different
labels. For each label, the disease probability score is calculated through a sig-
moid function. So our classifier consists of a fully connected layer and a sigmoid
layer to predict the probability of images which may have thoracic diseases.
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2.2 Loss Design

Attention Loss. In order to further excavate more meaningful features in pro-
posed cross-attention model, we define a new attention loss. In Fig. 1, we first
fetch all feature maps from the last block before the global average pooling of
two networks. Each pixel in these feature maps encodes different spatial infor-
mation of the original image. Then we channel-wise sum up these features maps
to form a pathogenic attention map. Different feature maps within one network
have different activation areas, however, majority of these features would con-
centrate on the “right” areas. By getting the summation of these feature maps
within one network, we would coarsely get a pathogenic attention map.

By feeding through a resize layer, we get two same size 1∗H ′ ∗W ′ pathogenic
attention maps from two networks, where H ′ and W ′ represents the height and
width of each feature map. After that, we normalized these two pathogenic
attention maps by dividing the max value of each attention map to ensure each
pixel has the same range of values. Then we calculate the L2 loss of the two
pathogenic attention maps. Through attention loss, we set a constraint to urge
two networks to find mutual pathogenic areas which would smooth the cross-
attention process. The formulation of attention loss is given as below:

Latt = ||norm(
∑N

n=1
fn) − norm(

∑M

m=1
fm)||2

where N and M denote the total size of feature channels within one network. n
and m represent the index of each feature map. fn and fm are different feature
maps from two networks respectively.

Multi-label Balance Loss. Poor performance can be easily caused by imbal-
ance between classes, which is not ideal for standard cross entropy loss to solve.
And easy-dominated samples hamper models to learning genuine discriminated
features. Inspired by Lin et al. [3], we designed a loss that extends the focal
loss to multi-label setting with balance factors. To our best of knowledge, it is
the first work to do that. Through this loss, our model can not only handle the
imbalance between positive-negative samples within each disease, but also exca-
vate more meaningful representation out of dominated easy samples. We sum
up the balance loss from each disease to represent multi-label balance loss.

Lbal =
∑L

l=1
−wl− · [1 − pl(Y = 0|X)]γ(1 − y)logpl(Y = 0|X)+

− wl+ · [1 − pl(Y = 1|X)]γylogpl(Y = 1|X)

where L is the total number of multiple labels and l means each label of different
type of diseases. wl+ = |Nl|

|Pl|+|Nl| and wl− = |Pl|
|Pl|+|Nl| , which means balance factor

to eliminate positive-negative sample imbalance between each binary classes. Pl

and Nl represent numbers of positive and negative samples of a certain disease.
Parameter γ controls the curvature and shape of the multi-label balance loss,
which may have better performance to mine “hard” examples to contribute
more to the model training in some γ settings, especially when “easy” examples
dominate the dataset greatly.
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Cross-Attention Loss Function. The cross-attention loss function is a com-
bined loss function which is:

L = αLatt + Lbal.

where α represents the trade-off factor between attention loss and multi-label bal-
ance loss. The attention loss could force the model to focus on pathogenic areas
more accurately. Multi-label balance loss helps the model eliminate positive-
negative sample imbalance problem and easy sample dominated problem within
each disease.

3 Experiments

3.1 Experiments on Chest X-Ray14 Dataset

Experimental Settings. We validate our proposed Cross-Attention Networks
on Chest X-Ray14 dataset [1] and follow the official train-val and test data split
to keep fair comparison. We further split the official train-val set into 78485
images for training and 8039 images for validation and ensure no patient overlap
among these three sets. We downscale input images to the size of 256 * 256 and
random crop to 224 * 224 with the batch-size of 96 and initial learning rate of
0.001. We set the dropout rate of last fully connected layer to 0.2 and loss trade-
off factor to 0.01. In the multi-label balance loss, we empirically set γ to 2. All
experiments are evaluated in terms of AUROC values.

Model Comparison. The quantitative performance of models comparison is
demonstrated in Table 1. CAN1 represents the Cross-Attention Networks model1
with densenet121 and densenet169 as its backbone networks and CAN2 means
the Cross-Attention Networks model2 with two densenet121. The two networks
within our model are initialized with different weights which are warmed up at
the dataset. Since the experiments of Li et al. [4] is not done on the official
split [1] and they leverage extra location labels to train, in order to have a fair
comparison, their results will not participate in best result comparison in each
row (marked in bold font).

From Table 2, the cross-attention model achieved the best result in terms of
average AUROC scores for most individual disease cases. The improvements are
remarkable especially for those diseases with extremely scarce positive samples.
For example, “Hernia“ only has 227 images (%0.202) and “Fibrosis” only con-
tains 1686 images (%1.504) in the dataset, the proposed CAN2 model obtained
0.932 and 0.827 in terms of the AUROC score respectively, which is much better
than its competitors. This is because our cross-attention model with the newly
designed cross-attention loss function penalizes those hard examples and can
have better differentiate between positive/negative in a good manner.
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Table 1. Results comparison between different methods on Chest X-Ray14 Dataset

Diseases Wang

etc. [1]

Yao

etc. [6]

CheXNet

[2]

Li etc. [4]* Guendel

etc. [7]

Xia etc. [8] CAN1 CAN2

Split by Wang Yes Yes Yes No Yes Yes Yes Yes

Image resize 256 * 256 256 * 256 256 * 256 512 * 512 256 * 256 256 * 256 256 * 256 256 * 256

Atelectasis 0.773 0.733 0.759 0.800 0.767 0.743 0.772 0.777

Cardiomegaly 0.854 0.856 0.871 0.870 0.883 0.875 0.894 0.894

Effusion 0.861 0.806 0.821 0.870 0.828 0.811 0.828 0.829

Infiltration 0.636 0.673 0.700 0.700 0.709 0.677 0.703 0.696

Mass 0.761 0.718 0.810 0.830 0.821 0.783 0.830 0.838

Nodule 0.664 0.777 0.759 0.750 0.758 0.698 0.762 0.771

Pneumonia 0.664 0.684 0.718 0.670 0.731 0.696 0.721 0.722

Pneumothorax 0.799 0.805 0.848 0.870 0.846 0.810 0.856 0.862

Consolidation 0.770 0.711 0.741 0.800 0.745 0.726 0.756 0.750

Edema 0.861 0.806 0.844 0.880 0.835 0.833 0.846 0.846

Emphysema 0.736 0.842 0.891 0.910 0.895 0.822 0.892 0.908

Fibrosis 0.739 0.743 0.810 0.780 0.818 0.804 0.824 0.827

PT 0.749 0.724 0.768 0.790 0.761 0.751 0.773 0.779

Hernia 0.746 0.775 0.867 0.770 0.896 0.900 0.932 0.934

Average 0.758 0.761 0.801 0.806 0.807 0.781 0.814 0.817

Ablation Study. To evaluate the effectiveness of our different proposed compo-
nents, we also implement them separately in ablation study to monitor how they
influence the performance. In Table 3, “121” and “169” represent Densenet121
and Densenet169. “had” means element-wise hadamard product cross-attention.
Lbce, “Lbal” and “Latt” are binary cross entropy loss, multi-label balance loss and
attention loss. “all cat” is the operation to get all concatenated cross-attention
feature maps. In order to have a fair comparison, we have not only done the
experiments to compare with existing methods, but also compared with dif-
ferent feature aggregation methods with exact parameter numbers. “add” and
“max” means element-wise addition or maximum operation between two feature
maps respectively, and these two methods have the same parameters with our
proposed cross-attention networks.

Table 2. Results comparison between different methods

Methods Methods

121+Lbce 0.801 121+169(add+all cat)+Lbal+Latt 0.810

121+Lbal 0.806 121+169(max+all cat)+Lbal+Latt 0.810

169+Lbal 0.806 121+169(had)+Lbal+Latt 0.811

121+169(had)+Lbal 0.809 Cross-attention model1(CAN1) 0.814

121+169(had+all cat)+Lbal 0.810 Cross-attention model2(CAN2) 0.817

From Table 2, we found that our CAN model boosts the performance in such
imbalanced dataset. By using “hadamard” produce of two feature maps, the
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average AUROC score increases from 0.806 to 0.809. Because the randomness of
“poor” activation and outliers are eliminated. Also, the model can be updated
through back propagating gradients of each other in a more collaborative way;
however, “add” and “max” operations do not have this attribute, so even with
all concatenate feature maps and cross-attention loss function, the results are
both stagnated at 0.810. With the help of proposed attention loss, the AUROC
score is lifted to 0.811. Because attention loss drags the attention of two networks
closer which would facilitate cross-attention process. Our CAN model achieves
AUROC of 0.814 and 0.817, the new state-of-the-art results.

Image-Level Supervised Disease Localization. To better understand our
model, disease localization heat maps are generated by only image-level super-
vised labels [9]. Since we used Global Average Pooling as our last pooling layer,
we directly sum up the multiplication of weights and feature maps between pool-
ing layer and fully connected layer to localize.

Network A Network B Cross-a en on Network

Atelectasis

Network A Network B Cross-a en on Network

Effusion

Fig. 2. The results of the localization of chest diseases.

In Fig. 2, the heat maps localize on high-probability disease areas and the
blue bounding boxes indicate the ground-truth location of the diseases. Our
proposed Cross-Attention Networks provide better performance to focus on high-
probability disease areas in a better manner than using the networks separately.
This means that Cross-Attention Networks enable model updates in a collabo-
rative way and could have better feature representations.

3.2 Experiments on CheXpert Dataset

Experimental Settings. We also validate our proposed Cross-Attention Net-
works on newly released dataset CheXpert [10] with “Frontal views” and “Lat-
eral views”, and keep the exact same settings of compared methods and our
method throughout all experiments. In the CheXpert experiments, in order to
have enough data for testing, we split 222914 images for training and the other
734 images for testing, and we further ensure no patient overlap among them.

Model Comparison. In our experiments, we keep the consistent experi-
mental settings by only using U(uncertain)-Ones introduced by the CheXpert
paper [10]—mapping all instances of the uncertain label to 1, and we test all
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models on 14 labels by either just using “Frontal views” or treating “Frontal
views” and “Lateral views” equally, which means we do not select the best
uncertainty approach for each disease and do not use maximum probability of
the observations across the views or other bells and whistles. We further com-
pare the results obtained by “Add” and “Max” operations. Table 3 shows the
experimental results comparison on 14 labels classification tasks.

From Table 3, We can find that the cross-attention model achieved the best
AUROC scores for most individual disease cases in whether “Frontal Views
Only” or “Frontal + Lateral Views” setting.

Table 3. Results comparison on 14 labels classification tasks on CheXpert dataset

Experiments Frontal views only Frontal + Lateral (Equally)

Labels CheXNet Add Max CAN CheXNet Add Max CAN

Atelectasis 0.659 0.683 0.697 0.667 0.707 0.678 0.691 0.713

Cardiomegaly 0.775 0.781 0.760 0.773 0.775 0.777 0.757 0.790

Consolidation 0.702 0.735 0.729 0.732 0.755 0.746 0.730 0.757

Edema 0.827 0.846 0.843 0.840 0.863 0.858 0.867 0.861

Enlarged Cardio 0.551 0.505 0.518 0.552 0.531 0.491 0.568 0.555

Fracture 0.616 0.732 0.710 0.722 0.588 0.638 0.608 0.735

Lung Lesion 0.704 0.775 0.831 0.757 0.710 0.778 0.741 0.805

Lung Opacity 0.767 0.741 0.768 0.788 0.784 0.764 0.770 0.783

No Finding 0.887 0.879 0.883 0.893 0.872 0.865 0.865 0.859

Pleural Effusion 0.860 0.887 0.891 0.892 0.874 0.887 0.881 0.892

Pleural Other 0.607 0.699 0.647 0.711 0.710 0.718 0.710 0.680

Pneumonia 0.641 0.674 0.671 0.710 0.535 0.601 0.647 0.666

Pneumothorax 0.807 0.812 0.823 0.824 0.842 0.826 0.809 0.836

Support Devices 0.869 0.882 0.877 0.889 0.899 0.879 0.879 0.913

Average 0.734 0.759 0.760 0.768 0.746 0.750 0.752 0.775

4 Conclusion

This paper proposed an end-to-end trainable Cross-Attention Networks (CAN)
scheme for multi-label x-ray chest diseases classification. The Cross-Attention
Networks not only utilize the attention loss for better attention at the regions
of interest, but also overcome the positive-negative sample imbalance and easy
sample dominated problems with multi-label balanced loss. Cross-Attention Net-
works can effectively excavate meaningful representation from data by having
attention on each other and updating models in a more collaborative way. Quan-
titative and qualitative results demonstrate the state-of-the-art performance of
our method.
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