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Abstract. The interpretation of chest radiographs is an essential task
for the detection of thoracic diseases and abnormalities. However, it is a
challenging problem with high inter-rater variability and inherent ambi-
guity due to inconclusive evidence in the data, limited data quality or
subjective definitions of disease appearance. Current deep learning solu-
tions for chest radiograph abnormality classification are typically lim-
ited to providing probabilistic predictions, relying on the capacity of
learning models to adapt to the high degree of label noise and become
robust to the enumerated causal factors. In practice, however, this leads
to overconfident systems with poor generalization on unseen data. To
account for this, we propose an automatic system that learns not only
the probabilistic estimate on the presence of an abnormality, but also an
explicit uncertainty measure which captures the confidence of the sys-
tem in the predicted output. We argue that explicitly learning the clas-
sification uncertainty as an additional measure to the predicted output,
is essential to account for the inherent variability characteristic of this
data. Experiments were conducted on two datasets of chest radiographs
of over 85,000 patients. Sample rejection based on the predicted uncer-
tainty can significantly improve the ROC-AUC, e.g., by 8% to 0.91 with
an expected rejection rate of under 25%. Eliminating training samples
using uncertainty-driven bootstrapping, enables a significant increase in
robustness and accuracy. In addition, we present a multi-reader study
showing that the predictive uncertainty is indicative of reader errors.

1 Introduction

The interpretation of chest radiographs is an essential task in the practice of a
radiologist, enabling the early detection of thoracic diseases [9,12]. To acceler-
ate and improve the assessment of the continuously increasing number of radio-
graphs, several deep learning solutions have been recently proposed for the auto-
matic classification of radiographic findings [4,12,13]. Due to large variations in
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image quality or subjective definitions of disease appearance, there is a large
inter-rate variability which leads to a high degree of label noise [9]. Modeling
this variability when designing an automatic system for assessing this type of
data is essential; an aspect which was not considered in previous work.

Using principles of information theory and subjective logic [6] based on the
Dempster-Shafer framework for modeling of evidence [1], we present a method
for training a system that generates both an image-level label and a classification
uncertainty measure. We evaluate this system for classification of abnormalities
on chest radiographs. The main contributions of this paper include:

1. describing a system for jointly learning classification probabilities and classifi-
cation uncertainty in a parametric model;

2. proposing uncertainty-driven bootstrapping as a means to filter training sam-
ples with highest predictive uncertainty to improve robustness and accuracy;

3. comparing methods for generating stochastic classifications to model classifi-
cation uncertainty;

4. presenting an application of this system to identify cases with uncertain clas-
sification, yielding more accurate classification on the remaining cases;

5. showing that the uncertainty measure can distinguish radiographs with correct
and incorrect labels according to a multi-radiologist-consensus study.

2 Background and Motivation

2.1 Machine Learning for the Assessment of Chest Radiographs

The open access to the ChestX-Ray8 dataset [12] of chest radiographs has led
to a series of recent publications that propose machine learning based systems
for disease classification. With this dataset, Wang et al. [12] also report a first
performance baseline of a deep neural network at an average area under receiver
operating characteristic curve (ROC-AUC) of 0.75. These results have been fur-
ther improved by using multi-scale image analysis [13], or by actively focusing the
attention of the network on the most relevant sub-regions of the lungs [3]. State-
of-the-art results on the official split of the ChestX-Ray8 dataset are reported
in [4] (avg. ROC-AUC of 0.81), using a location-aware dense neural network. In
light of these contributions, a recent study compares the performance of such an
AI system and 9 practicing radiologists [9]. While the study indicates that the
system can surpass human performance, it also highlights the high variability
among different expert radiologists for the reading of chest radiographs. The
reported average specificity of the readers is very high (over 95%), with an aver-
age sensitivity of 50% ± 8%. With such a large inter-rater variability, one may
ask: How can real ’ground truth’ data be obtained? Does the label noise affect
the training? Current solutions do not consider this variability, which leads to
models with overconfident predictions and limited generalization.

Principles of Uncertainty Estimation: One way to handle this challenge is
to explicitly estimate the classification uncertainty from the data. Recent meth-
ods for uncertainty estimation in the context of deep learning rely on Bayesian
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estimation theory [8] or ensembles [7] and demonstrate increased robustness to
out-of-distribution data. However, these approaches come with significant com-
putational limitations; associated with the high complexity of sampling param-
eter spaces of deep models for Bayesian risk estimation; or associated with the
challenge of managing ensembles of deep models. Sensoy et al. [10] propose an
efficient alternative based on the theory of subjective logic [6], training a deep
neural network to estimate the sample uncertainty based on observed data.

3 Proposed Method

Following the work of Sensoy et al. [10] based on the Dempster-Shafer theory of
evidence [1], we apply principles of subjective logic [6] to derive a binary clas-
sification model that can support the joint estimation of per-class probabilities
(p̂+; p̂−) and predictive uncertainty û. In this context, a decisional framework is
defined through the assignment of so called belief masses from evidence collected
from observed data to individual attributes, e.g., membership to a class [1,6]. Let
us denote b+ and b− the belief values for the positive and negative class, respec-
tively. The uncertainty mass u is defined as: u = 1 − b+ − b−, where b+ = e+/E
and b− = e−/E with e+; e− ≥ 0 denoting the per-class collected evidence and
total evidence E = e+ + e− +2. For binary classification, we propose to model the
distribution of such evidence values using the beta distribution, defined by two
parameters α and β as: f(x;α, β) = Γ (α+β)

Γ (α)Γ (β)x
α−1(1 − x)β−1, where Γ denotes

the gamma function and α, β > 1 with α = e+ + 1 and β = e− + 1. In this
context, the per-class probabilities can be derived as p+ = α/E and p− = β/E.
Figure 1 visualizes the beta distribution for different α, β values.

A training dataset is provided: D = {Ik, yk}N
k=1, composed of N pairs of

images Ik with class assignment yk ∈ {0, 1}. To estimate the per-class evidence
values from the observed data, a deep neural network parametrized by θ can be
applied, with: [e+k , e−

k ] = R(Ik;θ), where R denotes the network response func-
tion. Using maximum likelihood estimation, one can learn the network param-
eters θ̂ by optimizing the Bayes risk of the class predictor pk with a beta prior
distribution:

Ldata
k =

∫
‖yk − pk‖2 Γ (α + β)

Γ (α)Γ (β)
pα−1

k (1 − pk)β−1dpk, (1)

where k ∈ {1, . . . , N} denotes the index of the training example from dataset D,
pk the predicted probability on the training sample k, and Ldata

k defines the
goodness of fit. Using linearity properties of the expectation, Eq. 1 becomes:

Ldata
k = (yk − p̂+

k )2 + (1 − yk − p̂−
k )2 +

p̂+
k (1 − p̂+

k ) + p̂−
k (1 − p̂−

k )
Ek + 1

, (2)

where p̂+
k and p̂−

k denote the network’s probabilistic prediction. The first two
terms measure the goodness of fit, and the last term encodes the variance of the
prediction [10].



Quantifying and Leveraging Classification 679

(a) Confident negative (b) Confident positive (c) High uncertainty

Fig. 1. Probability density function of the beta distribution: example parameters (α, β)
modeling confident and uncertain predictions.

To ensure a high uncertainty value for data samples for which the gathered
evidence is not conclusive for an accurate classification, an additional regular-
ization term Lreg

k is added to the loss. Using information theory, this term is
defined as the relative entropy, i.e., the Kullback-Leibler divergence, between
the beta distributed prior term and the beta distribution with total uncertainty
(α, β = 1). In this way, cost deviations from the total uncertainty state, i.e.,
u = 1, which do not contribute to the data fit are accounted for [10]. With the
additional term, the total cost becomes L =

∑N
k=1 Lk with:

Lk = Ldata
k + λ KL

(
f(p̂k; α̃k, β̃k)‖f(p̂k; 〈1, 1〉)

)
, (3)

where λ ≥ 0, p̂k = p̂+
k , with (α̃k, β̃k) = (1, βk) for yk = 0 and (α̃k, β̃k) = (αk, 1)

for yk = 1. Removing additive constants and using properties of the logarithm
function, one can simplify the regularization term to the following:

Lreg
k = log

Γ (α̃k + β̃k)
Γ (α̃k)Γ (β̃k)

+
∑

x∈{α̃k,β̃k}
(x − 1)

(
ψ(x) − ψ(α̃k + β̃k)

)
, (4)

where ψ denotes the digamma function and k ∈ {1, . . . , N}. Using stochastic
gradient descent, the total loss L is optimized on the training set D.

Sampling the Data Distribution: An important requirement to ensure train-
ing stability and to learn a robust estimation of evidence values is an adequate
sampling of the data distribution. We empirically found dropout [11] to be a
simple and very effective strategy to address this problem. In practice, dropout
emulates an ensemble model combination driven by the random deactivation of
neurons. Alternatively, one may use an explicit ensemble of M models {θk}M

k=1,
each trained independently. Following the principles of deep ensembles [7], the
per-class evidence can be computed from the ensemble estimates {e(k)}M

k=1 via
averaging. In our work, we found dropout to be as effective as deep ensembles.

Uncertainty-driven Bootstrapping: Given the predictive uncertainty mea-
sure û, we propose a simple and effective algorithm for filtering the training
set with the target of reducing label noise. A fraction of training samples with
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highest uncertainty are eliminated and the model is retrained on the remaining
data. Instead of sample elimination, robust M-estimators may be applied, using
a per-sample weight that is inversely proportional to the predicted uncertainty.
The hypothesis is that by focusing the training on ‘confident’ labels, we increase
the robustness of the classifier and improve its performance on unseen data.

4 Experiments

Dataset and Setup: The evaluation is based on two datasets, the ChestX-
Ray8 [12] and PLCO [2]. Both datasets provide a series of AP/PA chest radio-
graphs with binary labels on the presence of different radiological findings, e.g.,
granuloma, pleural effusion, or consolidation. The ChestX-Ray8 dataset contains
112,120 images from 30,805 patients, covering 14 findings extracted from radi-
ological reports using natural language processing (NLP) [12]. In contrast, the
PLCO dataset was constructed as part of a screening trial, containing 185,421
images from 56,071 patients and covering 12 different abnormalities.

For performance comparison, we selected location-aware dense networks [4]
as baseline. This method achieves state-of-the-art results on this problem, with
a reported average ROC-AUC of 0.81 (significantly higher than that of com-
peting methods: 0.75 [12] and 0.77 [13]) on the official split of the ChestX-Ray8
dataset and a ROC-AUC of 0.88 on the official split of the PLCO dataset.
To evaluate our method, we identified testing subsets with higher confidence
labels from multi-radiologist studies. For PLCO, we randomly selected 565 test
images and had 2 board-certified expert radiologists read the images – updating
the labels to the majority vote of the 3 opinions (incl. the original label). For
ChestX-Ray8, a subset of 689 test images was randomly selected and read by
4 board-certified radiologists. The final label was decided following a consensus
discussion. For both datasets, the remaining data was split at patient level in
90% training and 10% validation. All images were rescaled to 256 × 256 using
bilinear interpolation.

System Training: We constructed our learning model from the DenseNet-121
architecture [5]. A dropout layer with a dropout rate of 0.5 was inserted after
the last convolutional layer. We also investigated the benefits of using deep
ensembles to improve the sampling (M = 5 models trained on random subsets
of 80% of the training data; we refer to this with the keyword [ens]). A fully
connected layer with ReLU activation units maps to the two outputs α and β.
We used a systematic grid search to find the optimal configuration of training
meta-parameters: learning rate (10−4), regularization factor (λ = 1; decayed to
0.1 and 0.001 after 1/3, respectively 2/3 of the epochs), training epochs (around
12, using an early stop strategy with a patience of 3 epochs) and a batch size of
128. The low number of epochs is explained by the large size of the dataset.

Uncertainty-driven Sample Rejection: Given a model trained for the assess-
ment of an arbitrary finding, one can directly estimate the prediction uncertainty
û = 2/(α+β) ∈ [0, 1]. This is an additional measure to the predicted probability,



Quantifying and Leveraging Classification 681

Fig. 2. Evolution of the F1-scores for the positive (+) and negative (–) classes relative
to the sample rejection threshold - determined using the estimated uncertainty. We
show the performance for granuloma and fibrosis based on the PLCO dataset [2]. The
baseline (horizontal dashed lines) is determined using the method from [4] (working
point at max. average of per-class F1 scores). Decision threshold for our method is
fixed at 0.5.

Table 1. Comparison between the reference method [4] and several versions of our
method calibrated at sample rejection rates of 0%, 10%, 25% and 50% (based on the
PLCO dataset [2]). Lesion refers to lesions of the bones or soft tissue.

ROC-AUC

Finding Guendel et al. [4] Ours [0%] Ours [10%] Ours [25%] Ours [50%]

Granuloma 0.83 0.85 0.87 0.90 0.92

Fibrosis 0.87 0.88 0.90 0.92 0.94

Scaring 0.82 0.81 0.84 0.89 0.93

Lesion 0.82 0.83 0.86 0.88 0.90

Cardiac Ab 0.93 0.94 0.95 0.96 0.97

Average 0.85 0.86 0.89 0.91 0.93

with increased values on out-of-distribution cases under the given model. One
can use this measure for sample rejection, i.e., set a threshold ut and steer the
system to not output its prediction on all cases with an expected uncertainty
larger than ut. Instead, these cases are labeled with the message “Do not know
for sure; process case manually”. In practice this leads to a significant increase in
accuracy compared to the state-of-the-art on the remaining cases, as reported in
Table 1 and Fig. 2. For example, for the identification of granuloma, a rejection
rate of 25% leads to an increase of over 20% in the micro-average F1 score. On
the same abnormality, a 50% rejection rate leads to a F1 score over 0.99 for
the prediction of negative cases. We found no significant difference in average
performance when using ensembles (see Fig. 2).

System versus Reader Uncertainty: To provide an insight into the meaning
of the uncertainty measure and its correlation with the difficulty of cases, we
evaluated our system on the detection of pleural effusion (excess accumulation
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Fig. 3. Left: Predictive uncertainty distribution on 689 ChestX-Ray test images; a
higher uncertainty is associated with cases of the critical set, which required a label
correction according to expert committee. Right: Plot showing the capacity of the
algorithm to eliminate cases from the critical set via sample rejection. Bars indicate
the percentage of critical cases for each batch of 5% rejected cases.

of fluid in the pleural cavity) based on the ChestX-Ray8 dataset. In particular,
we analyzed the test set of 689 cases that were relabeled using an expert com-
mittee of 4 experts. We defined a so called critical set, that contains only cases
for which the label was changed after the expert reevaluation. According to the
committee, this set contained not only easy examples for which probably the
NLP algorithm has failed to properly extract the correct labels from the radio-
graphic report; but also difficult cases for which the evidence of effusion was
very subtle. In Fig. 3 (left), we empirically show that the uncertainty estimates
of our algorithm correlate with the committee’s decision to change the label.
Specifically, for unchanged cases, our algorithm displayed very low uncertainty
estimates (average 0.16) at an average AUC of 0.976 (rejection rate of 0%). In
contrast, on cases in the critical set, the algorithm showed higher uncertainties
distributed between 0.1 and the maximum value of 1 (average 0.41). This indi-
cates the ability of the algorithm to recognize the cases where annotation errors
occurred in the first place (through NLP or human reader error). In Fig. 3 (right)
we show how cases of the critical set can be effectively filtered out using sample
rejection. Qualitative examples are shown in Fig. 4.

(a) û, p̂ = 0.90, 0.45 (b) û, p̂ = 0.93, 0.48 (c) û, p̂ = 0.54, 0.65 (d) û, p̂ = 0.11, 0.05

Fig. 4. ChestX-Ray8 test images assessed for pleural effusion (û: est. uncertainty, p̂:
output probability; with affected regions circled in red). Figures 4a, 4b and 4c show
positive cases of the critical set with high predictive uncertainty – possibly explained
by the atypical appearance of accumulated fluid in 4a, and poor quality of image 4b.
Figure 4d shows a high confidence case with no pleural effusion. (Color figure online)



Quantifying and Leveraging Classification 683

Uncertainty-driven Bootstrapping: We also investigated the benefit of using
bootstrapping based on the uncertainty measure on the example of plural effu-
sion (ChestX-Ray8). We report performance as [AUC ; F1-score (pos. class);
F1-score (neg. class)]. After training our method, the baseline performance was
measured at [0.89; 0.60; 0.92] on testing. We then eliminated 5%, 10% and 15%
of training samples with highest uncertainty, and retrained in each case on the
remaining data. The metrics improved to [0.90; 0.68; 0.92]5%, [0.91; 0.67; 0.94]10%
and [0.93;0.69;0.94]15% on the test set. This is a significant increase, demon-
strating the potential of this strategy to improve the robustness to label noise.

5 Conclusion

In conclusion, this paper presents an effective method for the joint estimation
of class probabilities and classification uncertainty in the context of chest radio-
graph assessment. Extensive experiments on two large datasets demonstrate a
significant accuracy increase if sample rejection is performed based on the esti-
mated uncertainty measure. In addition, we highlight the capacity of the system
to distinguish radiographs with correct and incorrect labels according to a multi-
radiologist-consensus user study, using the uncertainty measure only.
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collected by the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screen-
ing Trial. The statements contained herein are solely those of the authors and
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