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Abstract. X-ray based measurement and guidance are commonly used
tools in orthopaedic surgery to facilitate a minimally invasive workflow.
Typically, a surgical planning is first performed using knowledge of bone
morphology and anatomical landmarks. Information about bone location
then serves as a prior for registration during overlay of the planning on
intra-operative X-ray images. Performing these steps manually however is
prone to intra-rater/inter-rater variability and increases task complexity
for the surgeon. To remedy these issues, we propose an automatic frame-
work for planning and subsequent overlay. We evaluate it on the example
of femoral drill site planning for medial patellofemoral ligament recon-
struction surgery. A deep multi-task stacked hourglass network is trained
on 149 conventional lateral X-ray images to jointly localize two femoral
landmarks, to predict a region of interest for the posterior femoral cor-
tex tangent line, and to perform semantic segmentation of the femur,
patella, tibia, and fibula with adaptive task complexity weighting. On 38
clinical test images the framework achieves a median localization error of
1.50 mm for the femoral drill site and mean IOU scores of 0.99, 0.97, 0.98,
and 0.96 for the femur, patella, tibia, and fibula respectively. The demon-
strated approach consistently performs surgical planning at expert-level
precision without the need for manual correction.

Keywords: Landmark localization · Multi-label bone segmentation ·
MPFL · X-ray guidance · Orthopaedics · Surgical planning

1 Introduction

In orthopaedics, X-ray imaging is frequently used to facilitate planning and
operative guidance for surgical interventions. By capturing patient-specific char-
acteristics and contextual information prior to and during the procedure, such
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image-based tools benefit a more reliable and minimally invasive workflow at
reduced risk for the patient. To this end, typical assessment involves geometric
measurements of patient anatomy, verification of correct positioning of surgical
tools and implants, as well as navigational guidance with help of anatomical land-
marks and bone morphology. In current clinical practice, several methodologies
have been established which leverage this toolset to standardize routine proce-
dures. One example is the Schoettle planning methodology for reconstruction
surgery of a ruptured medial patellofemoral ligament (MPFL) [8]. To restore the
anatomically correct biomechanics and to forestall recurrent injuries, the opti-
mal fixation area on the femur is approximated by the Schoettle Point, which
can be derived from several osseous landmarks (Fig. 1). Unfortunately, execution
of such a methodology faces several clinical and technical challenges [5,9]. First,
many orthopaedic surgeries target anatomical regions which are not directly
inferable from the image but rely on auxiliary structures derived from anatom-
ical landmarks, leading to inter-rater and intra-rater differences. Secondly, the
overlay of the planning result on subsequent intra-operational images requires
registration to compensate for motion which should be restricted to the anatom-
ical region of interest (ROI), in the case of MPFL, the femoral bone. And lastly,
manual intra-operational planning and interaction with a guidance application
in a sterile setting are disruptive in the doctor’s surgical workflow.

Using MPFL reconstruction as an example, we present a framework which
allows fully-automatic localization of anatomical landmarks, semantic segmen-
tation of bone structures, and prediction of ROIs for geometric line features
on X-ray images. Building upon the ideas of [1], we exploit recent advances
in sequential deep learning architectures in form of deep stacked hourglass net-
works (SHGN) [7] to refine predictions based on the learned residual information
between the ground truth and intermediate estimates. We propose an extension
to a multi-task learning approach to incorporate cross-task information for an
enriched and more general feature set, which proved to be beneficial in X-ray

Fig. 1. Approximation of the Schoettle Point psp [8] as the center of the inner circle of
three lines. These lines can be derived from osseous landmarks on a lateral radiograph.
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based segmentation tasks [2]. To automatically weight the single task loss terms,
our framework introduces a novel adaption of gradient normalization [3] for
stacked network architectures by integrating it with a deeply supervised opti-
mization scheme. We evaluate this approach for femoral attachment site planning
in MPFL reconstruction surgery which is a clinically relevant and common pro-
cedure. We demonstrate expert-level performance of our proposed solution with
a comprehensive evaluation including clinical data and an inter-rater study with
multiple surgeons. The achieved results enable direct integration into the opera-
tive workflow and in almost all cases allow the number of manual planning steps
to be limited to the confirmation of the planning proposal, so that the surgeon
can remain sterile throughout the procedure.

2 Methods

2.1 Multi-task Stacked Hourglass Network

A SHGN is a multi-stage convolutional network architecture which sequentially
arranges l = 1, 2, ..., L symmetrical Fully Convolutional Networks referred to as
hourglass modules (HG) [7]. By cascaded inference, several iterations of bottom-
up and top-down processing of data and features are performed to capture and
combine the input morphology at various scales and abstraction levels. At the
end of the expanding path of each HG, features are fed into an additional bot-
tleneck residual unit before being distributed for individual task processing. For
each task t = 1, 2, ..., T we introduce a separate prediction module to facilitate
task-specific discriminative power, allow for intermediate estimates, and exploit
iterative refinement by reinjection (Fig. 2).

Fig. 2. Proposed multi-task network based on the SHGN architecture with intermedi-
ate GradNorm weight balancing, instance normalization (IN), and pre-activation layout
for residual bottleneck units [3,4,7]. Here, Cin = 1, C1 = 64, C2 = 128, and C∗ = 256.
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Weighted Multi-label Segmentation Loss. X-ray images are superimposi-
tion projections, which leads to ambiguities in class assignment for overlapping
bones with similar imaging characteristics. Instead of using multinomial pixel-
wise classification, we therefor define bone segmentation as a multi-class/multi-
label problem and perform separate binomial classifications for each bone in the
target region to allow a pixel to be assigned multiple labels. We further exploit
this multi-label information to penalize errors in overlap regions, which we derive
by a characteristic function gbij = [

∑
c ybcij > 1] and incorporate into the loss

function with scaling factor β. y corresponds to a 4th-order tensor (B,C,H,W ),
where the task-specific ground truth maps are stacked along C. Each tensor
element is indexed with b ∈ [1, B], c ∈ [1, C], i ∈ [1,H], and j ∈ [1,W ] where
B, C, H, W mark batch, channel, height, and width dimensions. The resulting
segmentation loss for prediction ŷ[l] with sigmoid nonlinearity σ computes by

L[l]
seg=

1
BHW

∑

(b,c,i,j)

(1+βgbij)
[
−ylog

(
σ
(
ŷ[l]

))
−(1−y)log

(
1−σ

(
ŷ[l]

))]

bcij
. (1)

Landmark and Region of Interest Loss. Landmarks and ROIs are repre-
sented as heat-maps, which encode the localization likelihood as a spatial inten-
sity distribution. For landmark ground truth, a 2D unnormalized Gaussian with
a standard deviation of 6 pixels is centered on the annotated position. Likewise,
the line’s ROI ground truth is derived by placing equidistant pseudo landmarks
along the ground truth cortical line. For loss calculation, heat-map matching is
performed as

L[l]
{lm,roi} =

1
BCHW

∑

(b,c,i,j)

(
ŷ
[l]
bcij − ybcij

)2

. (2)

We derive landmark positions by performing the arg max operation on the pre-
dicted likelihood scores. For the posterior femoral cortex tangent line LM1
(Fig. 1), we mask the femur segmentation outline with the predicted ROI and
discard features with a likelihood below 0.5 prior to a least squares regression.

Task Weighting and Total Loss. We utilize deep supervision to ease gra-
dient flow across multiple stages of the SHGN and to facilitate faster training.
For this purpose, individual task losses are calculated and summed up for both
intermediate and final HGs to form a single loss value. To respect imbalanced
task difficulties and to avoid overfitting to only a subset of tasks, we use gradient
normalization (GradNorm) and adapt it to a deeply supervised setting [3]. Grad-
Norm generally tackles task imbalance by reducing the variance across the tasks’
training rates. For this purpose, task-specific loss weighting factors are learned
by jointly reducing an additional multi-task loss function on the basis of gradient
magnitudes to adaptively adjust the gradient norm at each update step [3]. The
GradNorm weights for each supervised HG are based on the last shared bottle-
neck layer before branching off to the prediction modules (Fig. 2). The resulting
balanced loss is given by Ltotal =

∑L
l=1 w

[l]
segL[l]

seg + w
[l]
lmL[l]

lm + w
[l]
roiL[l]

roi.
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2.2 Dataset and Training Procedures

Training and validation data consists of 185 lateral X-ray projections of the
knee joint acquired prior to reconstruction surgery. The data was split with
ratio 0.8/0.2 for training and validation (149/36 images). For evaluation, 38
separate test images with standardized measuring spheres of 30 mm diameter
were used. Annotation of the ground truth landmark positions and line reference
points on training and validation images was performed by one orthopaedic
surgeon with an interactive proprietary tool (Fig. 1). To allow for an estimate
on inter-rater variability, annotation on the test data was extended to three
orthopaedic surgeons from the same hospital. Ground truth segmentation masks
for the femur, patella, tibia, and fibula were created by the first author. A basic
set of data augmentations (rotation, scaling, horizontal flipping) as well as linear
contrast scaling with a probability of p = 0.5 each were applied during training.
After augmentation, the variably sized images were zero-padded to square spatial
dimensions and subsequently downsampled to a resolution of 256 × 256 pixels.

We devise a multi-task SHGN with L = 4 HGs and introduce instance nor-
malization layers for approximate contrast invariance and to smooth the opti-
mization landscape [6]. We consider T = 3 tasks and hence construct three
prediction modules at the end of each HG. The network was implemented with
PyTorch (v0.4.1) and trained on a NVIDIA Quadro P5000 over 250 epochs
with batch size 2. The network parameters and GradNorm task weights were
optimized with RMSProp at learning rates of 0.00025 and 0.025 respectively.
The learning rate for network parameters was halved every 60 epochs. Based on
prior hyper-parameter optimization, GradNorm’s asymmetry hyper-parameter
was set to α = 1 at each HG, and the penalizing weight factor for multi-label
segmentation was assigned to β = 0.6.

3 Evaluation

Bone Segmentation. The model consistently yields high overlap- and contour-
based metric results and successfully delineates all target bone structures
(Table 1). Qualitative assessment indicates successful disambiguation in over-
lapping areas, in narrow interarticular joint spaces, and in low-contrast regions
(Fig. 3). Also, uncommon image characteristics like osteophytes along joint con-
tours as well as aberrant lateral projections are resolved with high precision.
However, subpar performance is observed for the fibula due to the proximal part
being mostly overlapped by the tibia with seemingly no intensity shifts. Like-
wise, wrongful assignment of spherical markers to the tibia or the femur leads
to high contour distances.

Line and Landmark Localization. Predictions for the landmarks pblum
and ptmc are spatially precise with median Euclidean distance (ED) errors of
1.18, CI80%[0.99, 1.74]mm and 2.14, CI80%[1.71, 2.63]mm respectively (Fig. 3).
In general, it can be observed that localization of ptmc is less robust due to its
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Table 1. Segmentation performance on 38 test images for all bones in target region.

Anatomy Mean IOU
(Mean ± STD)

Average surface distance
(Mean ± STD) (mm)

Hausdorff distance
(Mean ± STD) (mm)

Femur 0.99 ± 0.01 0.12 ± 0.61 2.96 ± 7.51

Patella 0.97 ± 0.02 0.02 ± 0.02 0.62 ± 0.56

Tibia 0.98 ± 0.02 0.23 ± 0.85 3.76 ± 10.77

Fibula 0.96 ± 0.02 0.14 ± 0.68 2.38 ± 5.41

Fig. 3. Automatic results for multi-task segmentation (a, c) and localization (b, d). In
(a), false-positive assignment of a spherical marker to the tibia is observed.

dependence on true-lateral imaging. Slight deviations from a true-lateral pro-
jection lead to non-overlapping femoral epicondyles, which necessitates three-
dimensional reasoning and compensation for correct spatial positioning. For
measuring the alignment of the cortical extension line, ED of the ground truth
points pprox and pdist to the predicted line are averaged, yielding a median score
of 0.62, CI80%[0.48, 0.79]mm.

Adaptive Task Weighting. The learned GradNorm task weights gener-
ally reduce the segmentation training rate across all modules in exchange for
increased landmark and ROI loss contributions (Fig. 4). With advanced training
time, balancing slightly converges which indicates harmonization of the task-
specific loss magnitudes and gradients. Especially in early HGs, optimization
towards a single task is observed.

Inter-rater Analysis and Automatic Planning. The observed inter-rater
EDs of the constructed Schoettle Points are generally within a circular confi-
dence area with radius r = 2.50mm, which describes an anatomically correct
femoral MPFL insertion site [8]. In comparison, automatic plannings are equally
reliable and can reduce variability caused by differences in planning strategy
between expert raters (Table 2, Fig. 5). However, morphological variations of the
femoral cortex or a too short predicted line ROI frequently lead to slight anterior
shifting. Likewise, projection of individual ED errors onto the longitudinal and
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Fig. 4. Development of GradNorm task weights for each HG during training.

Fig. 5. Visualization of errors between individually planned Schoettle Points and the
experts’ centroid. Distance scores are standardized w.r.t. pixel/mm spacing and to the
mean orientation of LM1 based on expert annotations. Per image, all results are visually
aligned to a reference planning, whose Schoettle Point corresponds to this centroid. For
comparison with the original Schoettle area of r = 2.50 mm, the average confidence
circle as planned by the experts (bounded by LM1, LM2 and LM3) is overlayed.

Table 2. Inter-rater variability and comparison with proposed automatic planning. The
median ED at 80% confidence level (mm) between raters is reported for full dataset
and subset of images agreed to be suitable for surgical planning by all raters.

First rater Second rater Schoettle point
(38/38 test images)

Schoettle point (29/38
suitable test images)

1 2 2.35, [1.94, 2.85] 2.68, [2.09, 3.13]

1 3 2.31, [1.91, 2.79] 2.49, [1.91, 2.95]

2 3 1.67, [1.37, 2.22] 1.62, [1.07, 2.12]

Autom. 1 2.41, [1.97, 2.99] 2.64, [1.64, 3.10]

Autom. 2 (gr. truth training) 1.46, [1.00, 1.85] 1.33, [0.91, 1.59]

Autom. 3 1.61, [1.45, 1.87] 1.56, [1.27, 1.73]

Autom. Expert centroid 1.50, [1.41, 2.07] 1.41, [1.28, 1.52]

anteroposterior axes indicates an error tendency towards the anterior direction,
which underlines difficulties in correct assessment of the femoral bow (Fig. 5).

4 Discussion and Conclusion

We proposed an automatic framework for joint prediction of segmentations
and heatmaps for spatial localization of landmarks and line features. On the
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example of MPFL reconstruction surgery, we could show that we can facilitate
surgical planning by providing planning proposals at expert-rater precision. We
see limitations in that the proposed method was only trained and tested on
pre-operational, conventional X-ray images which depict a large portion of the
femoral shaft and typically have high contrast. For seamless integration into a
clinical workflow with subsequent overlay of the planning result on live images,
the framework performance must be evaluated on fluoroscopic image data. This
modality however imposes additional difficulties onto automated prediction by
superimposed surgical tools and by greater overall heterogeneity in image char-
acteristics and acquisition settings. This could partially by solved by overlay of
simulated tools and implants in the image domain during training, which showed
to increase robustness of learning-based algorithms [6].

As shown in this work, planning methods like the Schoettle methodology
might also inherently tolerate variability in assessment strategy and typically
cannot be securely validated due to absence of anatomical ground truth. An
automatic solution should therefor utilize an adequate encoding of this variabil-
ity to alleviate overfitting to a certain type of annotation strategy by a single
rater. Furthermore, while we experience satisfactory results in estimating a line
by masking segmentation contour features, such cross-task coupling introduces
additional failure points in the planning pipeline. As for estimation of the poste-
rior femoral cortex, strongly curved femoral shafts allow an anterior shift of the
fitted line, which is directly conditioned by the longitudinal extends of the pre-
dicted ROI. To this end, we aim to look at ways to derive confidence estimates
for each task and to keep the number of interdependent tasks at a reasonable
level. In future work, we also seek to adapt our approach to different anatomies
by exploiting the highly generalizable concept of heat-map matching for a direct
representation of arbitrarily shaped features.

Disclaimer. The methods and information presented here are based on research
and are not commercially available.
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