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Abstract. Nonlinear image registration continues to be a fundamen-
tally important tool in medical image analysis. Diagnostic tasks, image-
guided surgery and radiotherapy as well as motion analysis all rely heav-
ily on accurate intra-patient alignment. Furthermore, inter-patient reg-
istration enables atlas-based segmentation or landmark localisation and
shape analysis. When labelled scans are scarce and anatomical differ-
ences large, conventional registration has often remained superior to deep
learning methods that have so far mainly dealt with relatively small or
low-complexity deformations. We address this shortcoming by leverag-
ing ideas from probabilistic dense displacement optimisation that has
excelled in many registration tasks with large deformations. We propose
to design a network with approximate min-convolutions and mean field
inference for differentiable displacement regularisation within a discrete
weakly-supervised registration setting. By employing these meaningful
and theoretically proven constraints, our learnable registration algorithm
contains very few trainable weights (primarily for feature extraction)
and is easier to train with few labelled scans. It is very fast in training
and inference and achieves state-of-the-art accuracies for the challenging
inter-patient registration of abdominal CT outperforming previous deep
learning approaches by 15% Dice overlap.
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1 Introduction and Related Work

Conventional medical image registration mostly relies on iterative and multi-
scale warping of a moving towards a fixed scan by minimising a dissimilarity
metric together with a regularisation penalty. Deep learning based image regis-
tration (DLIR) aims to mimic this process by training a convolutional network
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-32226-7 6) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2019
D. Shen et al. (Eds.): MICCAI 2019, LNCS 11769, pp. 50–58, 2019.
https://doi.org/10.1007/978-3-030-32226-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32226-7_6&domain=pdf
http://orcid.org/0000-0002-7489-1972
https://doi.org/10.1007/978-3-030-32226-7_6
https://doi.org/10.1007/978-3-030-32226-7_6
https://doi.org/10.1007/978-3-030-32226-7_6


Probabilistic Dense Displacement Networks 51

that can predict the non-linear alignment function given two new unseen scans.
Thus instead of multiple warping steps a single feed-forward transfer function
has to be found using many convolution layers. The supervision for DLIR can
be based on automatic or manual correspondences, semantic labels or intrinsic
cost functions. It has immense potential for time-sensitive applications such as
image-guidance, fusion, tracking and shape analysis through multi-atlas registra-
tion. However, due to the large space of potential deformations that can map two
corresponding anatomies onto one another, the problem is much less constrained
than image segmentation and therefore remains an open challenge.

A number of approaches has been applied to brain registration [1,17], which
usually deals with localised deformations of few millimetres and for which huge
labelled datasets (�100 scans) exist. For other anatomies in the abdomen, the
prostate or lungs, with shape variations of several centimetres, DLIR was mainly
applied to less complex cases of intra-patient registration [6,9]. For inhale-exhale
lung registration the accuracy of DLIR is still inferior to conventional approaches:
≈ 2.5 mm in [13,15] compared to <1 mm in [12]. When training the state-of-
the-art weakly-supervised DLIR approach Label-Reg [6] on abdominal CT [14]
for inter-patient alignment, we reached an average Dice of only 42.7%, which is
still substantially worse than the conventional NiftyReg algorithm [10] with a
Dice of 56.1% and justifies further research.

Our hypothesis is that large and highly deformable transformations across
different patients are difficult to model with a deep continuous regression net-
work without resorting to complex multi-stage warping pipelines. Instead the use
of discrete registration, which explores a large space of quantised displacements
simultaneously, has been shown to capture abdominal and chest deformations
more effectively [5,12,16] and can be realised with few or a single warping step.
Unsurprisingly, discrete displacement settings have been explored in 2D vision
for DLIR: namely the FlowNet-C [2]. A correlation layer (see Eq. 1 in [2]) is
proposed that contains no trainable weights and computes a similarity metric of
features from two images by shifting the moving image with a densely quantised
displacement space (21 × 21 pixel offsets) yielding a 441-channel joint feature
map. Next, a very large 441(+32) × 256 × 3 × 3 kernel is learned (followed by
further convolutions) that disregards the explicit 4D geometry of the displace-
ment space. Hence, the large number of optimisable parameters results in huge
requirements of supervised training data. Extending this idea to 3D is very dif-
ficult as the dimensionality increases to 6D after dense correlation and has not
been yet considered despite its benefits. Probabilistic and uncertainty modelling
has been studied in DLIR, cf. [9,17], but not in a discrete setting.

Contributions. We propose a new learning model for DLIR that better lever-
ages the advantages of probabilistic dense displacement sampling by introducing
strong regularisation with differentiable constraints that explicitly considers the
6D nature of the problem. We hence decouple convolutional feature learning
from the fitting of a spatial transformation using mean-field inference for regu-
larisation [8,18] and approximate min-convolutions [3] for computing inter-label
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compatibilities. Our feature extractor uses 3D deformable convolutions [4] and is
very lightweight. To our knowledge this is the first approach that combines dis-
crete DLIR with the differentiable use of mean-field regularisation. In contrast
to previous work, our model requires fewer trainable weights, captures larger
deformations and can be trained from few labelled scans to high accuracy. We
also introduce a new non-local label loss for improved guidance instead of the
more widely used spatial transformer based loss.

Fig. 1. Concept of probabilistic dense displacement network: (1) deformable convolu-
tion layers extract features for both fixed and moving image. (2) the correlation layer
evaluates for each 3D grid point a dense displacement space yielding a 6D dissimi-
larity map. (3) spatial filters that promote smoothness act on dimensions 4–6 (min-
convolutions) and dim. 1–3 (mean-field inference) in alternation. (4) the probabilistic
transform distribution obtained using a softmax (over dim. 4–6) is used in a non-local
label loss and converted to 3D displacements for a diffusion regularisation and to warp
images

2 Methods

We aim to align a fixed IF and moving IM 3D scan by finding a spatial trans-
formation ϕ based on a learned feature mapping f of IF and IM subject to con-
straints on the regularity of ϕ. In order to learn a suitable feature extraction that
is invariant to noise and uninformative contrast-variations, we provide a super-
visory label during training for both volumes �F and �M , for which �F ≈ ϕ ◦ �M
should hold after registration. We define spatial coordinates as continuous vari-
ables x ∈ (−1,+1)3 and use trilinear interpolation to sample from discrete grids.
ϕ is parameterised with a set of k ∈ |K| ∈ R

3 (a few thousands) control points
on a coarser grid. The range of displacements d is constrained to a discrete dis-
placement space, with linear spacing e.g. L = q ·{−1,− 6

7 ,− 5
7 , . . . ,+ 5

7 ,+ 6
7 ,+1}3,

where q is a scalar that defines the capture range and in our case |L| is 3375.
The network model should predict a 6D tensor of displacement probabilities
K ∈ R

3 × L ∈ R
3, where the sum over the dimensions 4-6 of L for each control
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point is 1. The (inner) product of the probabilities with the displacements L
yields the weighted average of these probabilistic estimates to obtain 3D dis-
placements for ϕ during inference.

(1) Convolutional feature learning network: To learn a meaningful
nonlinear mapping from input intensities to a dense feature volume (with |c| = 16
channels and a stride of 3), we employ the Obelisk approach [4], which comprises
a 3D deformable convolution with trainable offsets followed by a simple 1 ×
1 MLP and captures spatial context very effectively. We extend the authors’
implementation by adding a normal 5×5×5 convolution kernel with 4 channels
prior to the Obelisk layer to also learn edge-like features. The network has 64
spatial filter offsets and in total 120k trainable parameters, shared for fixed and
moving scan to yield f(IF ) and f(IM ).

(2) Correlation layer for dense displacement dissimilarity: Given
the feature representation of the first part, we aim to find a regularised displace-
ment field that assigns a vector d to every control point for a nonlinear transform
ϕ(k) ← d that maximises the (label) similarity between fixed and warped mov-
ing scan. As done in conventional discrete registration [5] and the correlation
layer of [2], we perform a dense evaluation of a similarity metric over the dis-
placement search space d ∈ L. The negated mean squared error (MSE) across
the feature dimension c of learned descriptors is used to obtain the 6D tensor
of dissimilarities D(k,d) = − 1

|c|
∑

c(fc(IF )k − fc(IM )k+d)2. Different metrics
such as the correlation coefficient could be employed. Due to the sparsity of the
control points the displacement similarity evaluation requires less than 2 GFlops
in our experiments. The capture range of displacements q is set to 0.4.

3) Regularisation using min-convolutions and mean-field inference:
Since nonlinear registration is usually ill-posed, additional priors are used to keep
deformations spatially smooth. In contrast to other work on DLIR, which in prin-
ciple learn an unconstrained deformation and only enforce spatial smoothness as
loss term, we propose to model regularisation constraints as part of the network
architecture. A diffusion-like regularisation penalty for displacements based on
their squared difference R(di,dj) = ||di −dj ||2 is often used in Markov random
field (MRF) registration [3] and e.g. optimised with loopy belief propagation
(LBP). [7] and [18] integrated smoothness constraints of graphical models into
end-to-end learned segmentation networks. Since, LBP requires many iterations
to yield an optimum and is hence not well suited as unrolled network layers, we
use the fast mean-field inference (two iterations) used for discrete optimisation
in [8] (in [18] 5 iterations were used). It consists of two alternating steps: a label-
compatibility transform that acts on spatial control points independently and
a filter-based message passing implemented using average pooling layers with a
stride of 1.

As noted in [3] the diffusion regularisation for a dense displacement space
can be computed using min-convolutions with a lower envelope of parabolas
rooted at the (3D) displacement offsets with heights equaling to the sum of
dissimilarity term and the previous iteration of the mean-field inference. This
lower envelope is not directly differentiable, but we can obtain a very accurate
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approximation using first, a min-pooling (with stride = 1) that finds local minima
in the cost tensor followed by two average pooling operations (with stride = 1)
that provide a quadratic smoothing. As shown with blue blocks in Fig. 1, the
novel regularisation part of our approach comprises min- and average-pooling
layers that act on the 3 displacement dimensions (min-convolution) followed by
average filtering on the 3 spatial dimensions (mean-field inference). Before each
operation, scaling and bias factors α1−α6 are introduced and optimised together
with the feature layers during end-to-end training.

Probabilistic Transform Losses and Label Supervision: We can make
further use of the probabilistic nature of our displacement sampling and specify
our supervised label loss term based on a non-local means weighting [11]. I.e.,
we first convert the negated output of the regularisation part (scaled by α6) into
pseudo-probabilities using a softmax computed over the displacements. Next,
one-hot representations of the moving segmentation are sampled at the same
spatially displaced locations and these vectors are multiplied by the estimated
probabilities to compute the label loss as MSE w.r.t. the ground truth (one-hot)
segmentation. The continuous valued 3D displacement field ϕ is obtained by a
weighted average of the probabilistic estimates multiplied with the displacement
labels and followed by trilinear interpolation to the image resolution. A diffusion
regularisation penalty over all 3 spatial gradients λ · (|∇ϕ1|2 + |∇ϕ2|2 + |∇ϕ3|3)
of the displacement field is employed to enable a user-defined balancing between
a smooth transform (with low standard deviation of Jacobians) and accurate
structural alignment.

3 Experimental Validation

To demonstrate the ability of our method to capture very large deformations
across different patients within the human abdomen, we performed experiments
with a 3-fold cross validation on 10 contrast-enhanced 3D CT scans of the VIS-
CERAL3 training data [14] with each nine anatomical structures manually seg-
mented: � liver, � spleen, � pancreas, � gallbladder, � unary bladder, � right
kidney, � left kidney, � right psoas major muscle (psoas) and � left psoas (see
Fig. 2). The images were resampled to isotropic voxel sizes of 1.5 mm3 with
dimensions of 233 × 168 × 286 voxels and without any manual pre-alignment.

We compare our probabilistic dense displacement network (pdd-net)1 with
the two conventional algorithms NiftyReg [10] and deeds [5] that performed
best in the inter-patient abdominal CT registration study of [16], a task not
yet tackled by DLIR. NiftyReg was used with mutual information and a 5-
level multi-resolution scheme to capture large deformations and has a run-time
of 40–50 s. Deeds was considered with a single scale dense displacement space
(which takes about 4–6 s) and then extended to three-levels of discrete optimisa-
tion (25–35 s run-time). Next, we trained the weakly-supervised DLIR method

1 Our code with all implementation details will be made publicly available.
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Label-Reg [6] on our data (in >24 h per fold). To reduce memory require-
ments below 32 GBytes, the resolution was reduced to 2.2 mm and the base
channel number halved to 16. Further small adjustments were made to opti-
mise for inter-patient training. We implemented a 3D extension of FlowNet-C
[2] in pytorch with Obelisk feature extraction, a dense correlation layer and a
regularisation network that has |L| = 3375 input channels, comprises five 3D
conv. layers with batch-norm and PReLU. It has 2 million weights and out-
puts a (non-probabilistic) 3D displacement field. In order to obtain meaningful
results it was necessary to add a semantic segmentation loss to the intermediate
output of the Obelisk layers. Our proposed method employs the same feature
learning part (with 200k parameters) but now uses min-convolutions, mean-field
inference (no semantic guidance) and the non-local label loss, which adds only
6 trainable weights (and not 2 million). The influence of these three choices is
analysed with an ablation study, where a replacement of Obelisk feature learning
with handcraft self-similarity context features [5] is also considered. We use a
diffusion regularisation weight of λ = 1.5 for control grids of size 323 and affine
augmentation of fixed scans throughout and trained our networks with Adam
(learning rate of 0.01) for 1500 iterations in ≈90 min and ≈16 GByte of GPU
memory with checkpointing. We implemented an instance-wise gradient descent
optimiser that refines the feed-forward predictions. [1] also used this idea, but
in our case it is a hundred times faster (0.24 s vs 24 s), since we can directly
operate on the pre-computed displacement probabilities and require no iterative
back-propagation through the network.

Table 1. Quantitative comparative evaluation of cross-validation for 10 scans of the
VISCERAL anatomy 3 dataset, based on 24 combinations of test scans not seen in
training (numbers are Dice scores). Our method pdd-net outperforms the considered
DLIR methods, Label-Reg and FlowNet-C, by a margin of about 15% and closes the gap
to conventional methods, NiftyReg and deeds, for this task. Our ablation study shows
the benefits of (1) the use of learned Obelisk features vs handcrafted self-similarity
context (SSC) descriptors, (2) employing mean-field inference and (3) the use of our new
non-local label loss. ◦Additionally a fast instance level optimisation was implemented
for pdd-net+inst.. ∗FlowNet-C is our 3D extension of [2] with Obelisk features and
a trainable regularisation network. To compare: the Dice before registration was 30.0%
on average.

Method (1) (2) (3) � � � � � � � � � Average std(Jac) Runtime

Label-Reg 71 51 7 5 38 53 59 45 55 42.7± 5.5 0.58 4 s

FlowNet-C∗ ✔ ✔ 73 45 9 7 40 48 53 49 52 41.8± 7.2 0.34 0.13 s

pdd+SSC ✘ ✔ ✔ 69 47 8 6 49 56 56 59 57 45.2± 5.4 0.54 1.38 s

pdd w/o MF ✔ ✘ ✔ 74 53 7 8 49 65 63 56 60 48.2± 4.8 0.38 0.45 s

pdd w/o NL ✔ ✔ ✘ 83 62 11 8 47 69 68 60 60 51.9± 7.1 0.39 0.57 s

pdd-net ✔ ✔ ✔ 84 62 13 12 57 76 70 69 68 56.7± 6.0 0.40 0.57 s

pdd+inst.◦ ✔ ✔ ✔ 83 66 18 14 58 77 74 68 68 58.4± 5.9 0.26 0.71 s

deeds+SSC 1 level 72 50 14 13 51 54 58 62 60 48.0± 6.8 0.67 4 s

deeds+SSC 3 level 78 62 18 19 60 71 67 70 69 57.0± 8.2 0.27 25 s

NiftyReg NMI 5 level 77 58 19 27 56 70 65 67 66 56.1± 18 1.30 42 s
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4 Results and Discussions

The inference time of pdd-net is only 0.57 s, yielding plausible displacement
fields with a standard deviation of the Jacobian determinants of 0.40 and <1%
folding voxels (negative Jacobians). Table 1 shows the average Dice scores across
24 registrations of the cross-validation, where no labelled training scan was used
for any evaluated test registration. Our method outperforms the two compared
DL approaches, Label-Reg and FlowNet-C, by a margin of about 15% points
and achieves 56.7% Dice for this challenging inter-patient task with an initial
alignment of only 30%. It is 10% better than a comparable setting of the con-
ventional discrete registration deeds with one grid-level. In particular the labels
�, �, �, �, �, � and � are very well aligned. Our instance-wise (per scan-pair)
optimisation requires 0.24 s, reduces foldings (to less than 0.6%) and further
increases the accuracy to 58.4%, which is above the level of the conventional
multi-level registrations deeds and NiftyReg.

Comparing deeds+SSC with one grid-level to our variant pdd+SSC, which
uses the same self-similarity features and only adapts the α parameters of the
regularisation part, we get a similar accuracy and deformation complexity. This
suggests that the proposed regularisation layers with min-convolutions and two
mean-field inference steps can nearly match the capabilities of the full sequential
MRF optimisation in [5]. Using weak supervision to learn features results in
more than 20% increased Dice. The non-local loss term and our instance-wise
fine-tuning, contribute further gains of 5% and 2% Dice overlap, respectively.
The importance of the mean-field inference is clear, given the inferior quality
of an unconstrained FlowNet-C with more trainable weights or our variant that
only uses min-convolutions but no filtering in spatial domain. We achieve a more
robust alignment quality (lower std.dev. of Dice) than conventional registration.
Visual registration examples are shown in Fig. 2 and as surface-rendered video
files in the supplementary material.

Fig. 2. Visual outcome of proposed pdd-net method to register two patients and trans-
fer a segmentation (moderate example). Most organs have been very well aligned and
also anatomies that are not labelled in training (stomach, vertebras) can be registered.

5 Conclusion

Our novel pdd-net combines probabilistic dense displacements with differen-
tiable mean-field regularisation to achieve one-to-one accuracies of over 70%
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Dice for 7 larger anatomies for inter-patient abdominal CT registration. It out-
performs the previous deep learning-based image registration (DLIR) methods,
Label-Reg and FlowNet-C, by a margin of 15% points and can be robustly
trained with few labelled scans. It closes the quality gap of DLIR (with
small training datasets) to state-of-the-art conventional methods, exemplified
by NiftyReg and deeds, while being extremely fast (0.5 s). Our concept offers
a clear new potential to enable the use of DLIR in image-guided interventions,
diagnostics and atlas-based shape analysis beyond the currently used pixel seg-
mentation networks that lack geometric interpretability. Future work could yield
further gains by using multiple alignment stages and a more adaptive sampling
of control points. A more elaborate evaluation on larger datasets with addi-
tional evaluation metrics (surface distances) could provide more insights into
the method’s strengths and weaknesses.
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8. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaus-
sian edge potentials. In: NeurIPS, pp. 109–117 (2011)
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