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Abstract. We propose an efficient approach to estimate the uncertainty
of deep-neural network classifiers based on the tradeoff of two measure-
ments. The first based on subjective logic and the evidence of soft-max
predictions and the second, based the Mahalanobis distance between
new and training samples in the embedding space. These measurements
require neither modifying, nor retraining, nor multiple testing of the
models. We evaluate our methods on different classification tasks includ-
ing breast cancer risk, breast density, and patch-wise tissue type and
considering both an in-house database of 1600 mammographies, as well
as on the public INBreast dataset. Throughout the experiments, we show
the ability of our method to reject the most evident outliers, and to offer
AUC gains of up to 10%, when keeping 60% of most certain samples.

Keywords: Uncertainty · Classification · Deep learning ·
Mammography · Breast cancer

1 Introduction

The risks of erroneous decisions are especially high when developing computer-
aided systems for medical decision support. Therefore, there has been a recent
interest in measuring the uncertainty of deep-learning-based predictions. In com-
puter vision, the Out-of-distribution (OOD) detection task [5] aims at identifying
whether or not a new test image belongs to the train in-distribution (ID) and
can thus be classified with certainty. Current OOD benchmarks rely on public
datasets that come from distinct data distributions (e.g. MNIST vs. CIFAR). In
medical image analysis, the OOD detection is important but challenging because
the differences between the data distributions used for training and testing are
often subtle, for instance, due to variability in acquisition parameters, machine,
or inclusion conditions for the patients. In addition to the in/out distribution
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uncertainty, we are confronted with noisy data (aleatoric uncertainty), and a lim-
ited knowledge of the underlying phenomena (model or epistemic uncertainty),
resulting from the scarcity of annotated datasets.

In this work, our goal is to provide a measure of uncertainty allowing us
to identify potentially erroneous classifications, whether they come from a data
uncertainty or a distribution shift. Similar to [9], the amount of tolerated uncer-
tainty will result in a trade-off between the number of retained images and the
level of accuracy. In the quest of generality, we propose combining two uncer-
tainty measurements which neither require modifying the classification model
nor re-training it with a modified loss function. The first one, based on subjec-
tive logic [6], exploits information from the predicted classification probabilities,
while the second, inspired from [2], defines the region within the feature space
around the known training data samples which is considered as certain.

We demonstrate the interest of our approach for different breast imaging
classification tasks namely, risk assessment (high vs. low risk), breast density
stratification according to BI-RADS scores, and glandular vs. conjunctive patch-
tissue classification. We evaluate our method on in-house and public datasets [12]
and demonstrate that our technique can effectively detect error-prone images
while increasing the reliability of the retained predictions (in terms of the accu-
racy). For the completeness of our study, we also compare to the state-of-the-art
methods [4,15]. To the best of our knowledge, we are the first to propose such
uncertainty measurements for classification tasks in breast imaging analysis.

Related Work: Usually, for a given sample, a deep learning classifier yields
probabilities of belonging to the given classes. Hendrycks et al. [5] established a
measure of uncertainty directly from the class probabilities without any further
modification or training of the model. Liang et al. [10] pushed this idea forward
by proposing an additional adversarial perturbation and soft-max scaling. Simi-
lar to [5,10], our first uncertainty measurement also exploits the softmax output
but interpreted through the lens of subjective logic [6].

Recently, several approaches have been proposed based on a Bayesian formu-
lation of the uncertainty. Bayesian networks are well suited for isolating different
sources of uncertainty but have an inherent high complexity. Approximations like
Monte-Carlo dropout [4] have been leveraged to propose practical uncertainty
estimates [7] which has been successfully used in different classification and seg-
mentation tasks [1,3,13]. These methods, however, require the modification of
the training to include dropout layers (if not present) and multiple runs dur-
ing the test. Also, following a Bayesian approach, several recent works model
the output of a deep network with a Dirichlet distribution [11,15]. By design-
ing uncertainty-aware loss functions and through variational optimization, these
approaches allow extracting uncertainty measurements from a unique run. How-
ever, they are still not generalizable to pre-trained models.

The third line of approaches [2,8] uses the Mahalanobis distance in the fea-
ture space (produced by the network embedding) to define a region of certainty
and evaluate how far a new sample is from the known dataset. Considering
the above state-of-the-art techniques and fixing as objective the practicality of
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implementation, we propose an efficient yet affordable method to measure the
uncertainty, which combines a subjective logic interpretation of the soft-max
outputs as well as the Mahalanobis Distance.

2 Methods

Let X = {xi,yi}Ni=1 be a training dataset composed of images xi and class labels
yi ∈ {Ck}Kk=1. Consider a classifier h that assigns to an input xi a class proba-
bility vector p̂ = h(xi), where pik ∈ p̂i denotes the probability of xi to belong to
class Ck. Then, suppose the classifier can be decomposed into two steps, where
the first computes a feature representation zi = g(xi) and the second, estimates
the class probabilities p̂ = f(zi). The classifier can be a deep neural network
trained end-to-end, where the g(·) corresponds to the penultimate layer and f(·)
stands for the soft-max. Our goal is to determine an uncertainty measurement
v for each prediction of h. By defining a tolerated amount of uncertainty thv we
should be able to detect and put aside uncertain test samples while increasing
the expected performance of the classifier.

In this work, we consider a combination of two uncertainty measurements
v = [u,Dm]. First, a prediction uncertainty u(p) : p �→ R, based on the infor-
mation contained from the probabilistic predictions. Second, a data closeness
measurement Dm(z) : z �→ R following a Mahalanobis approach [2] that mea-
sures the distance Dm of a sample to the training distribution cluster.

The prediction uncertainty u builds on recent works interpreting the
maximum predicted probability [5], or the entropy of the probabilistic predic-
tions [11,13] as a measure of uncertainty. However, inspired from [15] we rely
on Subjective Logic [6], a formalization of Dempster-Shafer evidence theory to
facilitate a direct interpretation of the uncertainty values. While Malinin et.al.
[11] argue that the Dirichlet Loss function is required to induce a meaningful
notion of uncertainty, we show as in [5], that the output of a classifier network
trained with a soft-max layer and a cross-entropy loss still has practical value
for uncertainty estimation. Formally, for K classes we have:

u +
K∑

k=1

bk = 1, bk =
ek
S

, u =
K

S
, S =

K∑

k=1

(ek + 1), (1)

where u is the sought uncertainty, bk is the belief for the class k and ek is the
evidence provided by the network for the class k. Having ek + 1 = expf(x) we
obtain the uncertainty estimate:

u(x) =
K

∑K
k=1 expf(x)

(2)

The use of subjective logic requires particular attention to the logits’ scale.
From Eq. 1 we have u ∈ [0, 1], with umax = 1 corresponding to the case with
no evidence. With Eq. 2 and the logits f(x) ∈ [−∞,+∞], we may have com-
putational issues for large values of f(x). To avoid this phenomenon, logits are
rescaled, or saturated for instance to exp(f(x)) ∈ [0, 2 · 1012].
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The second considered uncertainty measurement is the Mahalanobis dis-
tance [2] calculated from a given sample to the known distribution, as:

DM (x) =
√

(g(x) − μ)TΣ(−1)(g(x) − μ), (3)

where g(x) is the output of the model’s penultimate layer for a sample x, μ and
Σ are the mean and the covariance matrix of the cluster of all points in the
training dataset X , once mapped to the embedding space through function g().

Although the entropy and related measurements on the posterior proba-
bilities are well-known to be related uncertainty, we have observed that the
Mahalanobis distance brings a complementary aspect especially related to out-
of-distribution cases [2]. For instance, when a classifier trained on breast images
(ID) is fed with outliers from a flower dataset (OOD), we see that the rejection
criterion based on the Mahalanobis distance is quite effective (See Fig. 1-left). In
a situation where we artificially generate a linear transition from an ID patch to
an OOD patch (Fig. 1-right) for a binary classification problem1, we observe a
similar behavior. The efficiency of the uncertainty u is obvious at the middle of
the transition corresponding to a mix between an ID and the OOD patch. How-
ever, the uncertainty fails to rise after this point to indicate that the prediction
of the pure OOD patch is wrong. In contrast, the Mahalanobis distance is more
representative towards the OOD patch indicating an uncertain prediction.

Following the potential complementarity of the two estimates, we propose
to simultaneously consider thresholds on both uncertainty measures, in order to
reject uncertain predictions using u > thu as well as data points that are too far
from the certain ID region DM > thD.

FFDM conjunctive class (ID) S-View conjunctive class (OD)

Fig. 1. Left: Toy example with OOD coming from the Flowers database Right: pre-
diction probabilities (output) and variation of the uncertainty u and distance Dm

measurements for the linear transition between an ID and an OOD patches.

3 Experimental Validation

To evaluate the performance of our method, we performed experiments targeting
three mammography image analysis problems: risk classification, breast density
1 Model and patches from the TissueCLSraw experiment described in Sect. 3.
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classification, and a patch-wise tissue characterization task. For the three prob-
lems, we study the performance of the classifiers while changing uncertainty
tolerance thresholds and thus the ratio of test images kept. In particular, (i)
we show the precision at several cut-off values of the ratio of kept images (90%,
60%); (ii) we study the AUC and AUCPR of the predictions, and (iii) we analyze
the statistics of u and DM in the retained ID and OOD samples (see Fig. 4).

RiskCLS. We devise this experiment intending to show the generality and
performance of our method on public models and databases. We focus on the
image-wise risk classification according to Assessment Categories (ACR), where
ACR1-2 stand for low-risk (negative) and ACR4-6 represent high risk (positive)
cases. To create a basis for comparison, we rely on the VGG-based CNN model
from [16], pre-trained on the DDSM (Digital Database for Screening Mammog-
raphy) database. As in [16], we perform fine-tuning of the model using a second
open dataset (INBreast) [12] taking 80 images for fine-tuning and keeping 305
for validation. We evaluate our method with (RiskCLStune) and without the
fine-tuning (RiskCLSinit) step to show the behavior of the uncertainty mea-
surements for the samples from the shifted INBreast distribution, either when
it is completely or only partially unknown.

Fig. 2. Precision and ratio of kept images in the u and DM space: without
(RiskCLSinit, on the left) and with (RiskCLStune, on the right) fine-tuning. The
legends list the precision associated to different cut-offs of the kept image ratio. (Color
figure online)

In Fig. 2 we show the precision (top) and ratio of images kept (bottom) for
different values of uncertainty thu and distance thresholds thD. We also plot in
black the optimal path for the studied test dataset (thresholds that maximize the
precision for a decreasing ratio of images kept) and highlight the performance
at several cut-off points (colored shapes).

We observe the increase of precision between RiskCLSinit and RiskCLStune

models (0.65 vs. 0.88) with 100% of the data produced by the fine-tuning step.
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By retaining only the 60% most certain predictions, the performance increases
respectively by +5% and +2%. Note that without fine-tuning both uncertainty
measurements are equally important for defining the optimal performance path.
The effect of the Mahalanobis distance is reduced with fine-tuning since the
shape of the distribution cluster changes and, thus, the distances of test samples
towards the center of the cluster become shorter.

DensityCLS. The second experiment targets the 4-class image-wise classifica-
tion of breast density based on the 4th edition of BI-RADS. The goals here are (i)
to evaluate our approach when dealing with multi-class classification and (ii) to
challenge it with the real-life scenario of images from a distribution shift caused
by images from different manufacturers. We use the VGG-based model from [14].
The in-house training set consists of 1232 images from a Planmed Nuance Excel
(PNE) mammography system. For validation, we rely on 370 PNE images as
well as on 370 images from Siemens MammoNovation (INBreast [12]).

In Fig. 3, we evaluate the precision for the full test set, as well as for the
ID and OOD parts separately. For the ID dataset, a significant performance
improvement (+8%) is obtained retaining 60% of the data. However, for the OOD
dataset, without any fine-tuning, the performance is low despite the uncertainty
checks. This result shows the limits of our method for subtle distribution shifts.

Fig. 3. Precision of kept images in the u and DM spaces for the DenseCLSraw. The
legends list the precision associated to different cut-offs of the kept image ratio.

TissueCLS. Our final experiment is focused on the patch-wise classification of
image-patches into dense and non-dense tissues. The goal of this experiment is
twofold: (i) to measure the effect of a distribution shift between native 2D Full-
Field Digital Mammography (FFDM) images and 2D views synthesized from
3D tomosynthesis acquisitions, which is of great clinical interest; (ii) to compare
our method to state-of-the-art approaches. For the training, we used a dataset
of patches from FFDM images (pixel spacing 50µm). For validation, the ID
patches came from FFDM images and OOD patches from S-View images (pixel
spacing 98µm).

Figure 4-left shows the smooth improvement of the ROC curves for a decreas-
ing amount of kept images selected with optimal thu and thD. When analyzing
the actual values of u and DM on the ID and OOD samples separately (Fig. 4-
right), we see that the threshold on Mahalanobis distance is more critical for the
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first rejected samples (from 100% up to 70%) while the effect of the uncertainty
comes after (from 70%), illustrating once more their complementarity.

Finally, we compare our approach against two state-of-the-art methods using
the same network architecture in all three experiments. The first consists of an
MC dropout approach [4], that adds dropout layers to the existing model and
keeps them active during test time to collect the variance of the predictions over
different runs (here 10). The variance is then used as the uncertainty measure-
ment. The second method results from training the same model with the Dirich-
let distribution loss function from [15]. From the results reported in Table 1, we
see that our approach is very competitive, while neither requiring model changes
nor additional training. Gal’s method [4] performs better at baseline (100%) due
to the dropout training, but it is at most comparable when considering uncer-
tainty sample pruning (90% and 60%) while requiring redesign, retraining, and
multiple test runs. We also note that softmax probabilistic predictions (uprob)
and the entropy (uentr) may be used as uncertainty alternatives with similar
results. However, Subjective Logic (Eq. 1) remains competitive with the advan-
tage of yielding directly interpretable uncertainty and belief values.

Fig. 4. TissueCLS experiment. Left: ROC curves with kept images ratio, AUC and
FPR@TPR95, Right: statistics of u and DM among the retained samples, for an
increasing amount of kept images.

Table 1. Precision, AUC and AUCPR of different models on the thresholded datasets.
Cut-offs of 100%, 90%, 60% images are reported.

Model Precision AUC AUCPR

100% 90% 60% 100% 90% 60% 100% 90% 60%

Gal [4] 0.74 0.75 0.81 0.89 0.89 0.87 0.87 0.84 0.72

Sensoy [15] 0.87 0.89 0.93 0.87 0.90 0.93 0.81 0.82 0.83

Ours uprob + DM 0.89 0.90 0.94 0.88 0.90 0.96 0.81 0.84 0.90

Ours uentr + DM 0.89 0.90 0.95 0.88 0.91 0.96 0.81 0.84 0.91

Ours uSL + DM 0.89 0.90 0.95 0.86 0.90 0.96 0.75 0.81 0.91
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4 Discussion and Conclusion

In the context of mammography image classification problems, we have studied
the problem of uncertainty measurement, aiming to define a method capable of
differentiating certain from uncertain predictions, and thus increasing the safety
of CAD system suggestions. Uncertainty measurements based on the probability
predictions and the Mahalanobis distance have been shown to be effective tools
towards this end.

With the proposed combination of the two measurements we have demon-
strated that it is possible to detect evident out-of-distribution samples (as the
flowers) while achieving more moderate improvements of performance for subtle
forms of distribution shift (e.g. scanned films vs FFDM or FFDM of different
manufacturers). In these cases, our method deployed on a validation dataset may
be useful to detect the effectiveness of augmentation and fine-tuning strategies
when dealing with small datasets.

With respect to the uncertainty measure based on the probabilistic predic-
tions, the scale of the logits used for the estimate u is worthy of attention: when
using subjective logic a rescaling may be needed. However, we showed, that
entropy or probability may yield similar results (see Table 1). A limitation of
Mahalanobis distance is that it requires having access to the training dataset
in order to compute the covariance matrix, which may not always be possible.
Also, despite the effectiveness of the combination further research is required on
automatic ways to find the optimal thresholds.

Finally, the effectiveness of our method has been shown in several mammog-
raphy classification tasks. Given that no changes in the model nor retraining are
required, our findings can be easily generalized to other medical image analysis
problems confronted to uncertainties coming from the data but also from the
distribution shifts.
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Medical Image Computing and Computer Assisted Intervention - MICCAI 2018,
pp. 655–663. Springer International Publishing, Cham (2018). https://doi.org/10.
1007/978-3-030-00928-1 74
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