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Abstract. The challenges of deploying robots and autonomous vehi-
cles call for further efforts to bring the real-time systems and the formal
methods communities together. In this paper, we discuss the practical-
ity of paramount model checking formalisms in implementing dynamic-
priority-based cooperative schedulers, where capturing the waiting time
of tasks has a major impact on scalability. Subsequently, we propose a
novel technique that alleviates such an impact, and thus enables schedu-
lability analysis and verification of real-time/behavioral properties within
the same model checking framework, while taking into account hardware
and OS specificities. The technique is implemented in an automatic trans-
lation from a robotic framework to UPPAAL, and evaluated on a real
robotic example.

1 Introduction

In robotics, schedulability analysis needs to be consolidated with the verification
of other important properties such as bounded response and safety. This need is
flagrant in e.g. mixed-criticality software, where some tasks are allowed to exceed
their deadlines. Dually, important hardware-software settings (e.g. number of
cores, scheduling policy) are classically abstracted away in formal verification.
This renders verification results valid only if all tasks run in parallel at all times,
which is seldom a realistic assumption.

Bridging the gap between these communities would be of a great benefit
to practitioners and researchers: one could imagine a unified framework where
schedulability, but also other properties can be verified, on a model that is faith-
ful to both the underlying robotic specification and the characteristics of the OS
and the robotic platform. This is however very difficult in practice. For instance,
theoretical results on schedulers are difficult to exploit given e.g. the low-level
fine-grain concurrency at the functional layer of robotic systems, where com-
ponents directly interact with sensors and actuators (details in Sect. 3.1). Simi-
larly, enriching formal models with e.g. dynamic-priority-based scheduling poli-
cies usually penalizes the scalability of their verification, even in non-preemptive
settings. As an example, cooperative EDF [20] requires knowing the waiting time
of tasks in order to compute their priorities. Model checking frameworks are hos-
tile to this kind of behavior: UPPAAL [7], for instance, does not allow reading
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the value of a clock (to capture waiting time), which requires using discrete-
time-like methods that create further transitions in the model [19], leading to
unscalable verification in the context of complex robotic systems.

In this paper, we propose a novel approach that allows schedulability anal-
ysis and formal verification of other properties within the same framework. We
transform capturing waiting times from a counting problem to a search problem,
which we solve using a binary-search-inspired technique. Integrated within a tem-
plate, this technique allows us to automatically obtain, from functional robotic
specifications, scalable formal models enriched with dynamic-priority coopera-
tive schedulers. Our contribution is thus threefold: we (i) propose a novel app-
roach for the general problem of capturing, at the model level, the value of time
elapsed between some events, (ii) enable model checking robotic specifications
while taking into account hardware- and OS-related specificities and (iii) autom-
atize the process so the formal models are obtained promptly from any robotic
specification with no further modeling efforts. We pay a particular attention to
the readability of this paper by a broad audience in the different communities
of robotics, formal methods and real-time systems. In that regard, we adopt a
level of vulgarization with simple mathematical notions, together with sufficient
references for further readings.

The rest of this paper is organized as follows. First, we propose a novel tech-
nique that ensures alleviating the effect of modeling schedulers on scalability
(Sect. 2). Then, in Sect. 3, we present the UPPAAL template [15], which auto-
matically generates formal models from robotic specifications, and show how we
extend it with dynamic-priority schedulers using the solution shown in Sect. 2.
In Sect. 4, we use the automatically generated models to verify properties over a
real-world case study, before we explore the related work in Sect. 5 and conclude
with a discussion and possible future work (Sect. 6).

2 Capturing Time

In this paper, we focus on dynamic-priority cooperative (i.e. non preemptive)
schedulers, namely cooperative Farliest Deadline First (EDF) and Highest
Response Rate Next (HRRN). The computations of either of these schedulers
rely on a key information: the waiting time. Let us consider n tasks T7..T),.
Whenever a core is free, w;, the time each task T; has been waiting in the queue
so far, is used to compute its priority. In EDF (resp. HRRN), the smaller (resp.
higher) the value of d; — w; (resp. 1+ ZJ—), the higher the priority of T;, where
d; is the (relative to task activation) deadline (resp. e; is the estimated evecu-
tion time) of T; (more in Sect.3.3). The task with the highest priority is then
released: it is removed from the queue and a core is assigned to it.

Now, we need to integrate these schedulers into “model-checkable” formal
models of robotic and autonomous systems. We explore thus two main for-
malisms: time Petri nets TPN and timed automata extended with urgencies
UTA, both extended with data variables. This is because most of paramount
model checkers are based either on the former (e.g. Fiacre/TINA [8] and
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Romeo [22]) or the latter (e.g. UPPAAL [7] and IMITATOR [6]). Also, we already
have templates that translate robotic specifications to both Fiacre/TINA [12]
and UPPAAL [15]. Exploring both TPN and UTA will help us conclude on which
of these templates we need to extend with schedulers.

2.1 Preliminaries

We (very briefly) present TPN and UTA as to show the difference between these
formalisms in the context of this paper. In the original “model checkable” version
of each formalism, timing constraints (bounds of time intervals in TPN and clock
constraints in UTA) are allowed in Q> U oco. Since we can always multiply all
timing constraints by a natural that brings them to NU oo (that is the lowest
common multiple LCM of their denominators), we use natural constraints in our
presentation.

Time Petri Nets TPN: Time Petri nets TPN [24] are Petri nets extended with
time intervals (we only focus on closed intervals in this succinet presentation).
Each transition ¢ is associated with an interval I(t) = [a;, b;] over R>, where
at € N (resp. by € NU o) is the earliest (resp. latest) firing deadline of t. The
semantics of I(t) is as follows: if ¢ was last enabled since date d, ¢ may not
fire before d + a; and must fire before or at d + b; unless it is disabled before
then by firing another transition. Time intervals in TPN are thus relative to the
enabledness of transitions: if ¢ is disabled, then I(¢) has no semantic effect. We
consider a version of TPN where guards and operations over data variables are
possible on transitions.

Timed Automata with Urgencies UTA: Timed automata TA [4] extend finite-
state Biichi automata with real-valued clocks. The behavior of TA is thus
restricted by defining (natural) constraints on the clock variables and a set of
accepting states. A simpler version allowing local invariant conditions is intro-
duced in [18], on which this paper (and tools like UPPAAL) relies. The syntax
and semantics of TA in this paper follow those in [2] except that we refer to
switches as edges. UTA [9] extend TA with a notion of urgency on edges, mainly
(i) the strong urgency eager, denoted i, meaning the edge is to be taken as soon
as enabled and (ii) the weak (by default) urgency lazy, meaning the edge may
be taken when enabled. Transitions resulting from synchronizing some clock-
constraint-free edges inherit the strongest urgency (if there is at least one ¢ edge
in the synchronization, the resulting transition is also i) We consider a version
of UTA where guards and operations over data variables are possible on edges.

TPN vs UTA: What we need to retain for the sake of understanding this paper
relates uniquely to the way time is handled in both formalisms. The main dif-
ference is that TPN feature no clocks (time intervals depend on transitions
enablendess) whereas clocks in UTA evolve monotonically and independently
from edges/transitions enabledness.
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2.2 A High Level Presentation: Problem and Solution

We analyze the problem of capturing an arbitrary time, in both TPN and UTA
models, at a framework-independent high level. We consider in each case a “pro-
cess” that needs to store the value of time 7 separating two events e and ¢’,
captured through the Booleans b and ¥, respectively. The value of 7 is needed
to perform further computations in the model. Since we are reasoning at a high
level, we use standard algorithmic notations: < for assignment, = for equality
and — for negation. In UTA, reset(z) denotes resetting the valuation of clock
x to zero. In graphical representations, guards are in green, operations in blue,
and discontinued arcs/edges refer to missing parts of the model.

Before we go any further, it is very important to distinguish between the
modeling and the verification levels. Here, it is essential to capture and store
7 in order to construct the model (the model depends on the value of 7, as
explained for EDF and HRRN above, and further detailed in Sect.3.3). We
cannot just use verification techniques to e.g. look for the bounds 7 lies within,
because the model itself relies on the exact value of T for each e —> €’ sequence,
the tracking of which is far from obvious. Indeed, TPN feature no clocks to
capture 7 directly in the model. Surprisingly, this is also the case for UTA:
UTA-based model-checkers allow comparing a clock value to some constraints,
but none of them permits reading such a value as to e.g. store it in a variable,
since that would prevent symbolic representations like regions [3]. It follows that
we can only approximate 7 to its truncated natural value (or the natural that
upper-bounds it).

The Classical Method: Figure 1 shows the “classical” way to capture 7 in TPN.
The original net is in black stroke: as soon as (denoted by the interval [0,0]) b
(resp. b') is true, transition ¢ (resp. t') is fired, which unmarks place p (resp. the
“waiting” place w) and marks place w (resp. p’). When p’ is marked, we need
the value of 7 to perform further computations. The part in light blue is thus
added to the net. Transition ¢_count, whose input and output place is w, is fired
at each time unit as long as event €’ is not received, which increments the value
of 7. Consequently, as soon as p’ is marked, 7 holds the truncated natural value
of the real duration d separating e and ¢’ (d — 1 if d is natural).

Fig. 1. Capturing waiting time in TPN Fig. 2. Capturing waiting time in UTA
(Color figure online) (Color figure online)
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An equivalent solution is implemented in UTA (Fig. 2). Location [ is to wait
for event e. Eager (i) edges are taken as soon as their guard is true. The invariant
on clock = at location w enforces taking the added edge (in light blue) at each
time unit, which increments the value of 7. This method, referred to as integer
clocks, is proposed to solve a similar problem in [19].

Now, in either formalism, this solution is very costly: adding transitions trig-
gered at each time unit creates further interleavings and complexity that leads
to combinatory explosion in real-world robotic case studies (Sect. 4.1).

An Optimized Method: A key idea of this paper relies on transforming the count-
ing problem into a search problem: instead of counting the time elapsed between
e and €', we search for the value of T once €’ is received. This technique requires
however an upper bound of 7 (that is a value UP we know 7 will never exceed).
In our solution, this value may change for each sequence e —> ¢’ (UP may take
a different value each time location [ (or place p) is (re-)reached).

The solution in UTA is shown in Fig.3. At location s (for search), at
which time cannot elapse (all outgoing edges are 5), we undertake a binary
search (aka half-interval search) that swings the value of 7 within the bounds
u (upper bound, initially UP) and d (lower bound, initially 0) till z lies within
[t — 1,7+ 1], after which we simply assign 7 the natural that lower-bounds the
real value of = (by taking one of the edges from s to I’). This method is not
implementable in TPN due to the absence of clocks.

Now, we already know that, generally, binary search algorithms (logarithmic
complexity) are faster than linear ones. We extrapolate that the number of times
edges from location s (in the optimized solution, Fig.3) are taken is generally
(and noticeably) smaller than the one of taking the self-loop at location w (in
the classical solution, Fig.2). Thus, there is a considerable gain in terms of state
space size (and therefore scalability) when using the optimized technique, as we
will confirm in Sect.4.1.

<T-1 b
reset(x)
u—UP

d~0

T — (u+d)/2

T — (u+d)/2

Fig. 3. Capturing waiting time in UTA (optimized solution) (Color figure online)
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Note that we can think of more optimized solutions, like simply testing the
value of x between each pair of integers ¢ and ¢ + I within the range 0.. UP
on separate edges from s to !’. This would not, however, work if the value of
UP varies from an e —> ¢’ sequence to another, which renders the solution less
generic (e.g. in the context of schedulability, it would not work for tasks with
variable deadlines [29]).

3 Application to Robotic Systems

In previous work, we bridged the robotic framework G®oM3 (Sect.3.1) with
Fiacre/TINA [12,13] and UPPAAL [15] through templates. Now, we only extend
the UPPAAL template (since the optimized method, Sect.2, is only imple-
mentable in UTA) with EDF and HRRN schedulers. The UPPAAL template
output is proven faithful to the semantics of G*oM3 [14,15]. Therefore, we
present briefly G'oM3 in this section, then explain some of the former’s impor-
tant behavioral and real-time aspects using an example of an automatically
generated UPPAAL model of a G'oM3 component.

3.1 oM3

“%M3 [14,23] is a component-based framework for specifying and implement-
ing functional layer specifications. Figure4 shows the organization of a G*oM3
component. Activities, executed following requests from external clients, imple-
ment the core algorithms of the functionality the component is in charge of (e.g.
reading laser sensor, navigation). Two types of tasks are therefore provided: (i)
a control Task to process requests, validate the requested activity (if the pro-
cessing returns no errors), and report to the clients and (ii) execution task(s)
to execute activities. Tasks (resp. components) share data through the Internal
Data Structure IDS (resp. ports).

An execution task is in charge of a number of activities. With each period,
it will run sequentially, among such activities, those that have been already
validated by the control task. Activities are finite-state machines FSM, each state
called a codel, at which a piece of C or C++ code is executed. Each codel specifies
a WCET (worst case execution time) on a given platform, and the possible
transitions following its execution. Taking a pause transition or a transition to
the special codel ether ends the execution of the activity. In the former (resp.
latter) case, the activity is resumed at the next period (resp. terminated).

IDS, Ports & Concurrency: At ths OS level, tasks are parallel threads, with fine-
grain concurrent access to the IDS and the ports: a codel (in its activity, run
by a task) locks only the IDS field(s) and/or port(s) required for its execution
(simultaneous readings are allowed). A codel in conflict (cannot execute at the
same time) with another codel because of this locking mechanism is called thread
unsafe (thread safe otherwise). Because of the concurrency over ports, codels in
conflict may belong to different components. This aspect renders generalizing
results on optimal schedulers very difficult in the context of robotics, as referred
to in Sect. 1.
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Fig. 4. A generic G*oM3 component Fig. 5. The RobNav application

Case Study: In this paper, we consider a variation of the RobNav applica-
tion developed by fellow researchers at LAAS-CNRS (Fig.5, technical details
in [13]). The G*"oM3 specification includes four components interacting to achieve
autonomous terrestrial navigation. There are five execution tasks. Additionally,
each component has a control task. The total number of tasks is therefore nine.
The presentation in this paper focuses mainly on execution tasks and is greatly
simplified. For more details on control tasks (e.g. how they are activated) and
more complex aspects (e.g. interruption of activities), we refer the interested
reader to [14].

3.2 UPPAAL Template

We show in Fig.6 a very simplified version of the automatically generated
UPPAAL model of the periodic execution tasks odo and track (ROBLOCO compo-
nent, one time unit in the model is equal to 1 ms). This model follows the imple-
mentation model shown in [15], proven faithful to the semantics of G*'oM3 [14,15].

The urgency process is to enforce ¢ transitions through the urgent channel exe
(UPPAAL supports ¢ transitions only, not ¢ edges). Note that not all activities
are shown.

Each task ¢ is composed of a manager (to execute, at its location manage,
activities sequentially), a timer (to send, through the Boolean tick_t, period sig-
nals to the manager), and a number of activities the task executes. The next()
function browses the array tab_t, whose cells are records with two fields: n (activ-
ity name) and s (activity status), and returns the index of the first activity that
is previously validated by the control task and still not executed in this cycle
(an information retrieved through the s fields). The manager and the activities
use this function, together with the variables lock_t and turn_t, to communicate:
the manager computes the identity of the next activity to execute and gives it
the control (through turn_t and lock_t). The activity will then execute until it
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pauses (e.g. reaching track_pause in TrackSpeedStart) or terminates (e.g. reach-
ing ether in InitPosPort), in which case it computes the identity of the next
activity to execute (in 7) and gives the control back to the manager. When there
are no more activities to execute (¢ is equal to the size of tab_t and the manager
has the control through lock_t), the manager transits back to its initial location
start.

Now, at the activity level, a signal is transmitted when the activity pauses or
terminates (through the Boolean finished_t) to the control task (not shown here),
so the latter informs the client that requested such activity and updates the sta-
tus of the activity in tab_t. A thread-unsafe codel c¢ is represented using two
locations, ¢ and c_exec (e.g. compute and compute_exec in TrackOdoStart). The
guards and operations over the array of Booleans mut ensure no codels in con-
flict (e.g. codel track in TrackSpeedStart and codel compute in TrackOdoStart)
execute simultaneously, and the urgency on ¢ — c_exec edges ensures the codel
executes (or loses some resources) as soon as it has the required resources. The
invariants on locations c_ezec and the guards on the clock on the edges of the
form c_exec — reflect the fact that a codel is executed in a non-zero time that
cannot exceed its WCET. For thread-safe codels, c_exec locations are not needed,
and the invariant is thus associated with ¢ locations.

As we can see, this model is highly concurrent: tasks may run on different
cores and locking shared resources is fine grain (at the codels level) with simulta-
neous readings allowed. These features allow to maximally parallelize the tasks,
but render manual verification and analytical techniques for schedulability anal-
ysis impractical.

3.3 Extending with Schedulers

We show how to extend the UPPAAL template with cooperative EDF and
HRRN schedulers. First, we use the case study to exemplify on how to adapt the
solution shown in Sect. 2 to efficiently and correctly integrate such schedulers.
Then, we automatize such integration within the template.

Ezxample: Let us get back to the ROBLOCO example. The manager processes are
the only ones that will be affected. Also, we will need a scheduler process. Let us
first introduce the constants, shared variables and channels that the scheduler
and managers need to communicate and synchronize.

Constants: The number of tasks in the application is denoted by the constant
size_sched. An array of constant naturals periods is introduced in which, with
each task denoted by index 4, a period periods|i] is associated.

Shared Variables: We need a queue (array) T of size size_sched in which we
insert tasks dynamic priorities. Then, since priorities change their position when
T is dequeued, we need an array p such that p[i] tracks the index of T that
points to the cell holding the dynamic priority of task ¢ (that is T[p[¢]]). Also,
we need a natural len to store the number of waiting tasks, an array w to store
the waiting time for each task ¢, and a natural s_count to store the number of
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Fig. 6. UPPAAL model of tasks odo and track (automatically generated)
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tasks for which the search for the waiting time has already finished. Finally, the
natural nc stores the number of available cores.

Channels: A handshake channel insert is introduced to increment len. A broad-
cast channel up synchronizes with as many tasks as len to start the search opera-
tion. Besides, a broadcast channel en synchronizes the scheduler with all waiting
tasks in order to diffuse the decision for each task on whether it is released (given
a core to execute) or not (needs to wait further). Finally, a broadcast channel
srch eliminates interleaving between managers during the search operation (more
explanation below).

We show now the scheduler, then how the manager of odo is modified
accordingly:

Scheduler: The scheduler (Fig.7) has three locations: start (initial), update
and give. The last two are committed, which (i) prevents interleaving with other
interactions in the system and (ii) enforces urgency on all their outgoing edges
(time cannot elapse).

The self-loop edge at location start, synchronized on insert, increments the
number of waiting tasks each time a task wants to execute (we do not need a
guard on this edge because the size of T is already equal to the number of tasks
in the application). From location start, it is possible to reach location update
providing there is at least one task to release.

s_count < len

insert?

Fig. 7. UPPAAL model of the scheduler

At location update, an edge synchronized over the channel srch allows looping
as long as the search has not finished for all waiting tasks (with one search
operation for all tasks at once thanks to the broadcast channel srch). Another
edge permits reaching the location give as soon as the search has finished for
all waiting tasks (captured through the value of s_count). On this very edge,
the core of the scheduling algorithm is implemented: function update_queue()
updates the dynamic priorities in each T'[p[i]] before the function dequeue()
finds the task with the highest priority and removes its priority by updating
both p and T. The core of update_queue() is given later in this section.
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Now, from location give, the initial location is immediately reached through
an edge synchronized on the channel en. The number of cores as well as the
number of waiting tasks is decremented as the task having the highest priority
is released.

Manager: In the new manager model (Fig.8), we have a clock z and four
intermediate locations: ask, search, decide, and error. To meet the upper-bound
condition (Sect.2), we reason as follows. In such a real-time system, we do not
tolerate that a task is still waiting (for a core) since a duration equal to its
period. Thus, we enforce an urgency (through an invariant) from location ask
(at which the clock x tracks the waiting time) to location error as soon as the
waiting time is equal to the task period. Then, at the analysis step, we start by
checking whether error is reachable in any manager in the model, in which case
we drop the analysis and increase the number of cores.

lock_odo &&
i == size_odo-1

ctart oxel mana6e lock odo &&

error x==period[0] Ya

w.[O]:= (u+d)/2

Fig. 8. UPPAAL model of the odo manager (enriched)

The remaining aspects are rather trivial considering the scheduler model and
the search technique in Sect. 2 (we reuse the variable names for search bounds,
uw and d, from Fig. 3): p[i] is updated from start to ask, the edge from ask to
search is synchronized on up to drag all waiting tasks managers to the committed
location search at which they loop, synchronized on srch, until the search ends.
When all managers reach their respective decide locations, s_count is equal to
len (the number of waiting tasks) and, in each manager, either the edge to
manage or ask is taken, depending on whether the task i is released (recognized
through p[i] equalling —1), or not (otherwise). In the latter case, d (resp. u), the
lower (resp. upper) bound for the next search is updated to the current value
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of w[i] (resp. period[i]). Finally, the task frees the core at the end of execution
(operation nc 4+ + on the edge from manage to start).

Automatic Synthesis: At this stage, we are ready to automatize the process. The
user may pass the flag -sched to the UPPA AL template, followed by two numbers:
the scheduling policy (HRRN (1) or EDF (2)) and the number of cores (a natu-
ral in 0 .. 9). For instance, the following command line generates the UPPAAL
model of the G*oM3 specification spec.gen, that integrates a cooperative EDF
scheduler over four cores:

genom3 uppaal/model -sched=24 spec.gen

Now, the core of the UPPAAL template is enriched to automatically inte-
grate such specificities in the generated model. As an example, the listing below
shows the piece of the template that generates the update_queue() function. The
interpreter evaluates what is enclosed in < ’> in Tcl and outputs the rest as is.
Line 1 conditions generating the function with the validity of the option passed
by the programmer and lines 8-9 generates the right dynamic-priority formula
according to the specified scheduler in the option. In the case of EDF, we simply
subtract the waiting time w[i] from the (relative) deadline, fixed to the period
period[i]. For HRRN, we proceed as follows. The estimated execution time is
usually an average computed dynamically. Here, we fix it statically to the period
of the task (the same reasoning was followed in [12] for the SJF scheduling pol-
icy). Then, since we can only perform integer divisions in UPPAAL, we look
for the LCM lem_p of all periods and multiply the priority formula by it. Since
lem_p is strictly positive, the inequality sign is not affected.

1 < if {$argv >= 10} {’>

2 /* scheduling */
3 /x update dynamic priorities */
4 void update_queue (int &T[size_sched], int &p[size_sched], int
&w[size_sched]) {
5 int i;
6 for (i:= 0; i<size_sched; i++) {
7 if (p[i] >= @) {TLplill:=
8 <’if {$argv < 20} {’>lcm_p + w[i] * (lcm_p/period[i])
9 <’} else {’>period[i] - w[il<’}’>;3}}
10 3%
11 <3>
4 Results

We aim to analyze the deployability of the case study (Sect.3.1) on the Robotnik
Summit-XL platform [1], featuring an embedded four-core PC running Linux.
There are two requirements, which we are unable to guarantee using classical
FCFS and SJF schedulers from [12]. The track task is hard real-time (R1): it must
always finish executing its activities within its period (new computed speeds
must be sent to the controller at a fixed rate of 20 Hz). The remaining tasks
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are soft real-time, with the condition that the time by which a task exceeds
its period must be always smaller than the period itself (R2). R1 is a typical
schedulability property, whereas R2 is a bounded response property. UPPAAL
models extended with EDF and HRRN are automatically generated from the
case study. The results presented below are identical for both schedulers.

Schedulability: To check the schedulability of a task ¢, we first make sure such a
task never waits for a duration equal to its period before starting to execute its
activities, that is location error of its manager is unreachable:

A[] not manager_t.error

This safety property does not guarantee schedulability, but its falsification allows
to quickly invalidate R1 (and is generally unacceptable for any task). Thus, we
start by one core (nc = 1) and increase as soon as the safety property is violated
for any task. We stop when nc is equal to four, the number of cores on the
platform. The results show that as soon as nc reaches three, the property is
satisfied for all tasks.

At this point, we fix nc to three and verify R1 (task track). The reasoning is
as follows. A task is busy (waiting or executing activities) as long as its manager
is not at location start (we verify beforehand that locations ask and manage
are reachable in all managers). Thus, we check whether no new signal from the
timer is sent while the manager is not at location start:

A[] (not manager_track.start imply not tick_track)

This safety property is violated for nc = 8, which means R1 is dissatisfied, which
is no longer the case as soon as we increase nc to four. We fix thus nc to four
and pursue the verification for the remaining tasks in order to assess R2.

Bounded Response: Now, for each task ¢ that is not schedulable, we ask for the
maximum value of clock z at location manage, at which activities are executed:
sup{manager_t.manage} : manager_t.x

Then, we simply subtract the period of ¢ from the result to get exc;, the
maximum amount of time by which ¢ exceeds its period.

The results for both schedulability and bounded response are given in Table 1.
All tasks are feasible, besides scan (component roblaser) that may exceed its
period by up to 20 ms (which is inferior to its period). R1 and R2 are thus both
met on the four-core platform, and we can provide the precise maximum amount
of time by which the only non schedulable task may overrun its period.

Table 1. Verification results (four cores).

t odo | track | plan | fuse | scan
schedulabe | Yes | Yes | Yes | Yes | No

excy / |/ / /120
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4.1 Discussion

The results are encouraging: (i) schedulability is verified for all tasks and (ii)
if schedulability is violated, the precise upper bound of the time the period
is exceeded is retrieved. All this is done automatically at both the modeling
(template) and verification (model checker) levels, while taking into account the
real hardware and OS specificities. As expected, the search technique used to
capture waiting times scales much better than the classical counting one: with
the former, verification results are obtained within around 80 s for each property
with less than 1 Gb of RAM usage, while with the latter no answer is given after
several minutes and 4 Gb. However, we do not know whether we can obtain
better results (e.g. schedulability of all tasks or shorter exceeding time) with
preemptive schedulers. Indeed, we may not rely on generic theoretical results to
know whether preemptive schedulers may perform better than cooperative ones
in this case, and, unfortunately, preemption do generally not scale with model
checking (Sect. 5). Possible directions to deal with this issue are given in Sect. 6.

5 Related Work

Real-Time Analysis and Model Checking in Robotics: Bridging the gap between
analytical techniques (e.g. in schedulability analysis) and model checking is gen-
erally not explored at the functional layer of robotic and autonomous systems.
On one hand, works focusing on model checking [21,25,30] ignore hardware and
OS constraints (number of cores and scheduling policy) which restricts the valid-
ity of results to only when the number of cores in the platform is at least equal
to that of the robotic tasks, which is usually an unrealistic assumption. On
the other hand, real-time analysis of functional robotic components [16,17,28],
mainly focusing on schedulability, is non automatic, gives no guarantees on other
important properties and is hard to extend to verify specific temporal constraints
(such as bounded response). Moreover, theoretical results on optimized sched-
ulers are hard to generalize to the case of robotics due to the complexity of
multitasking models. For instance, the experiments in [26] show how, contrary
to generic theoretical results, some non preemptive schedulers perform better
than preemptive ones in the case of a mobile robot application.

Model-Checking for Schedulability: Using model-checking-based techniques to
verify schedulability has been studied in the past, producing tools such as
TIMES [5]. Unfortunately, such tools are too high-level to implement complex
robotic applications, which prevents their use as a uniform environment to verify
various real-time and behavioral properties, including schedulability. Further-
more, they target mainly preemptive schedulers, and consequently suffer from
scalability issues in large applications.

Capturing Time in Formal Models: To the best of our knowledge, enriching for-
mal models of robotic applications with dynamic-priority cooperative schedulers
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is a non-explored research direction. Still, the problem that arises, i.e. stor-
ing arbitrary time values in variables to construct the model, has been already
encountered in other domains. It is the case of [19], where the authors use inte-
ger clocks to perform arithmetics on clock values stored in natural variables.
Such integer clocks, relying on a classical counting algorithm, lead to unscalable
models in the case of large robotic applications.

Comparison to Our Previous Work: In [12], we extended the Fiacre template
with FCFS and SJF cooperative schedulers. We concluded that we would need
to integrate more “intelligent” schedulers with dynamic priorities, which we effi-
ciently achieve in this paper using a novel binary-search-based technique. Practi-
tioners can thus automatically generate, from any robotic specification, a formal
model enriched with EDF or HRRN, on which various properties can be verified
within the same framework, UPPAAL. The results enable deploying the case
study on a four-core platform.

6 Conclusion

In this paper, we elaborate an effort to bring the robotics, the real-time systems
and the formal methods communities together. We aim at providing, automat-
ically, formal models of robotic specifications that take into account the actual
hardware and OS specificities. In order to consider optimized (dynamic-priority)
schedulers, we propose a scalable search method that we automatize within the
UPPAAL template developed in [15]. The obtained results are encouraging, and
allow to deploy the case study on a four-core robotic platform while fulfilling
real-time requirements. This work gives also insights on the use of formalisms
in practice. For instance, we favor TA-based to TPN models for this particular
problem, where it was the other way around in [11].

A possible direction of future work is considering preemptive schedulers.
Indeed, those may further improve the deployability, but do unfortunately not
scale with model checking. We are exploring the extension of the UPPAAL-
SMC (Statistical Model Checking) template [15] with preemptive schedulers in
order to verify the properties up to some high probability. In that regard, works
like [10] may help us deal with the lack of probabilistic requirements in the
robotics domain (what could be considered as a “sufficiently high probability” for
a robotic application?). Another direction is to integrate more low-level specifici-
ties, such as cache interferences (modeled using UPPAAL in [27]), in our models
as to gain a higher confidence in the verification results.
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